

How do we understand the age-related increase in semantic priming?

Manson Fong 2023/02/22

Outline

Background

- Brain changes in normal ageing
- Compensatory mechanisms

Semantic priming

- Why semantic priming?
- Experimental design
- Preliminary findings

Background

Common signs of neurodegeneration

Busche & Hyman (2020). Synergy between amyloid-*b* and tau in Alzheimer's disease. *Nature Neuroscience*.

The Nun Study

"ONE OF THE MOST INNOVATIVE EFFORTS TO ANSWER QUESTIONS ABOUT WHO GETS ALZHEIMER'S DISEASE AND WHY." —The New York Times

Aging with

What the Nun Study Teaches Us About Leading Longer, Healthier, and More

Meaningful Lives

DAVID SNorphithmatical ON, PH.D.

"One astounding finding from the Nun Study came from comparing language usage in their youth with the development of AD later in life. In brief, this type of analysis convincingly demonstrated that complex cognitive skills and abilities at a relatively young age correlate with a *decreased* likelihood of developing AD in late adulthood." --- Sweatt et al., 2010

What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus

Anders M. Fjell^{a,*}, Linda McEvoy^b, Dominic Holland^{b,d}, Anders M. Dale^{b,c,d}, Kristine B. Walhovd^a, for the Alzheimer's Disease Neuroimaging Initiative¹

^a Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway

^b Multimodal Imaging Laboratory, University of California, San Diego, CA, USA

^c Department of Radiology, University of California, San Diego, CA, USA

^d Department of Neurosciences, University of California, San Diego, CA, USA

ARTICLE INFO

Article history: Received 9 September 2013 Received in revised form 19 December 2013 Accepted 5 February 2014 Available online 16 February 2014

Keywords:

Normal aging Alzheimer's disease (AD) Default mode network (DMN) Cerebral cortex Hippocampus Amyloid

ABSTRACT

What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in frontotemporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.

Modifiable risk factors

Comorbidities

- Vascular diseases
- Type II diabetes
- Traumatic brain injury
- Epilepsy
- Depression

Lifestyle

- Physical activity
- Sleep Disturbance

7/55

- Diet
- Smoking
- Alcohol

Grey matter, white matter, & ventricles

Young vs. AGING brain

Structural hallmarks of brain aging

Coupé et al. (2017). <u>Human brain mapping</u>. Towards a unified analysis of brain maturation and aging across the entire lifespan.

Differential changes in ageing

Park & Reuter-Lorenz (2009). Annual Review of Psychology.

Age-related neural reorganization

Compensation mechanisms in older adults

Both groups: activated a broad network of left-lateralized regions.

Younger adults: distinct activation pattern in the left temporoparietal regions at the back of the brain and in the bilateral thalamus.

Older adults: more activation in the right frontal regions. Activity increases with semantic performance → COMPENSATION

Middle age: an understudied life stage

- Most neuroscientific studies on cognitive ageing typically only compare younger and older adult groups.
 - The difficulty here is probably pragmatic than theoretical—it is simply too time-consuming and costly for middle-aged adults around the world to spend a few hours or days to take part in a research program.
 - We still know so little about the brain changes in the middle age.

Age-related cognitive changes

Importance of crystallized intelligence

- Crystallized intelligence may have a compensatory effect on cognition in old age
 - Default–Executive Coupling Hypothesis of Aging (DECHA; Spreng et al., 2018)
 - "Semanticization of cognition"
- Because crystallized intelligence is often the last to decline in dementia, generally it has received relatively less attention.
 - For instance, traditional screening tools for dementia included a few items on crystallized intelligence, based on
 - Picture naming tests
 - Categorization tasks (apples and bananas).
 - Verbal fluency (single category).

Cases of category-specific impairments

Cases	Preserved	Impaired	Modality
C.H.C. (Nielson, 1946)	Living things (including flowers)	Inanimate objects and food	Sight or touch
Flora D (Nielson, 1946)	Inanimate objects	Animate objects	Not specified
3 patients with diffuse cerebral lesions (Warrington, 1975)	Superordinate categories	Subordinate items	Verbal
4 patients (Warrington & Shallice, 1984)	Inanimate objects	Living things & foods	Both visual and verbal
1 patient (Warrington & Shallice, 1984)	Abstract words	Concrete words	Verbal

Warrington (1975)

- In dementia, when given probe questions about each item (animals, household objects, and birds were used as test items),
 - patients were unable to make judgments requiring detailed knowledge of each concept ("Is this a foreign animal?")
 - performed much better when asked to determine the general (superordinate) category ("Is this an object or an animal?").

Semantic memory disturbance in AD patients

• Prominent naming disorder (Chertkow, Bub, & Seidenberg, 1989)

- Semantic deficits may be the primary cause of anomia in early AD.
 - Semantic errors are much more frequent on object-naming tasks than mere perceptual misrecognitions (Martin & Fedio, 1983)
 - The anomia of mild to moderate AD patients were more closely associated with a semantic deficit (impaired category fluency) than perceptual deficit (form discrimination task) (Huff, Corkin, & Growdon, 1986)
 - Demented patients showing very disturbed comprehension and naming of objects could still perform within normal limits on a variety of perceptual tests.

Semantic memory disturbance in AD patients

- Decreased word fluency (Grant & Adams, 1986)
- Impaired ranking of semantic attributes (Grober, Buscke, Kawas, & Fuld, 1985)
- Altered patterns of paradigmatic word associations (Gewirth, Shindler, and Hier, 1984)
- Huff et al. (1986) demonstrated a definite item-to-item correspondence between loss of word comprehension and anomia for a particular concept in AD patients.

Intermediate summary

- Present screening tools for dementia and mild cognitive impairment may have undervalued the contributions of semantics to our overall cognitive functions.
- Instead of making the assumption that semantic functions are relatively intact in old age, it is a worthwhile effort to examine the associations of individual differences in semantic functions.
- In particular, from the compensation point of view, would increasing the crystallized knowledge be a viable lifestyle intervention for combatting dementia?

Semantic priming

Semantic memory & mental lexicon

- Semantic memory: the system which processes, stores, and retrieves information about the meaning of words, objects/concepts, and facts (Tulving, 1972).
- Mental lexicon: The complete list of vocabulary of an individual.

"okra pods" 秋葵

Damasio's view on semantic representations (1989)

"The representations of physical structure components of entities are recorded in the same neural ensembles in which corresponding activity occurred during perception, but the combinatorial arrangements which describe their pertinent linkages ... are stored in separate neural ensembles called convergence zones."

"The concerted reactivation of physical structure fragments, on which recall of experiences depends, requires the firing of convergence zones and the concomitant firing of the feedback projections arising from them."

"Convergence zones are located throughout the telencephalon, at multiple neural levels, in association cortices of different orders, limbic cortices, subcortical limbic nuclei, and non-limbic subcortical nuclei such as the basal ganglia."

Damasio. 1989. Cognition.

What do category-specific impairments tell us?

"The analysis of neuropsychological disorders of lexical processing has provided important clues about the general organization of the lexical system and the internal structure of the processing components.

Reports of patients with selective dysfunction of specific semantic categories such as abstract versus concrete words, living things versus inanimate objects, animals, fruits and vegetables, proper names, and so forth, support the hypothesis that **the neural organization of the semantic processing component is organized in these categories.**"

Caramazza & Hillis. 1991. Nature.

might arise through

Anterior temporal lobe & "hub-and-spoke" theory

learning about the statistical structure of our multimodal experiences"

26/55

"Conceptual knowledge"

a Computational framework

Controlled semantic cognition (CSC) theory

b

Theoretical development

- 1971 Dual coding theory
- 1972 Semantic vs. episodic memory
- 1989 Convergence zone
- 2005 Hub-and-spoke theory
- 2017 Controlled semantic cognition (CSC)

Paivio Tulving Damasio Patterson et al.

Lambon Ralph et al.

Semantic priming effect (SPE)

• What is SPE?

If the two semantically related words (i.e., within the same semantic category such as "tools" or associated, e.g., "monkey" and "banana") are presented in succession, the processing of the 2nd word would be facilitated in a range of tasks, including lexical decision, naming, categorization, etc.

Importance of the priming paradigm

- Priming results are important for two main reasons.
 - Normal priming results can be found in patients who perform poorly on other semantic memory tests, enabling us to distinguish between
 - (1) loss of, or damage to, information in semantic memory;
 - (2) voluntary access to that information.
 - By charting the priming effects for different kinds of words / semantic relations, we can investigate the detailed pattern of loss and preservation of different types of semantic information.

- Refers to an increase in semantic priming effect in primed lexical decision task within pathological groups (Chertkow et al., 1989; Moss & Tyler, 1995)
- Compared to younger adults, in the visual domain, older adults have also been reported to exhibit hyper-priming.
- The finding is sometimes attributed to lower processing speed and poor inhibition in older adults.

3 competing hypotheses on hyper-priming

• H1a

Hyper-priming, i.e., the age-related increase in auditory semantic priming (ASP) effect, represents the general growth in semantic knowledge with age.

• H1b

 Hyper-priming is merely a by-product of lower RT of older adults, which leaves more room for facilitation. In other words, the smaller priming effect in younger adults is caused by a ceiling effect.

• H1c

 Hyper-priming is caused by the reduced ability of older adults in inhibiting the unrelated prime, which *hinders target processing*.

Age-related differences in concreteness and relations

- H2a: Is there <u>selective</u> age-related differences in the neural representation of abstract words?
 - Is Group (young / middle-aged / old) × Concreteness (concrete / abstract) significant?
- H2b: Is there <u>selective</u> age-related differences in the neural representations of categorical vs. associative relations?
 - Is Group (young / old) × Relatedness (related / unrelated)?
- H2c: The semantic representations of *concrete and abstract relations* have *dissociable developmental trajectories due to normal aging*.
 - Is the three-way interaction Group x Concreteness x Relation significant?
 - The priming effect for <u>categorically related</u> <u>abstract</u> pairs may be smallest for <u>older adults</u>.

- H3a: The continued growth in semantic ability during middle age is accompanied by strengthened RSFCs in the left frontotemporal network, especially between DLPFC and ATL.
- H3b: The decline in semantic ability during senescence is accompanied by weakened RSFCs in the left frontotemporal network, especially between DLPFC and ATL.

Visit	Content	Purpose
1	Screening & questionnaire	General health & cognitive screening; To gather basic health info (e.g., blood pressure, pulse rate, BMI, vision, and audition) and language background
2	Cognitive battery	To assess the participants' cognitive functions in various domains comprehensively
3	MRI	Semantic priming task + recognition test
4	EEG	Semantic priming task

Task	Task name	Cognitive measures
1	SSRT	Procedural memory
2	Stroop	Processing speed and inhibition
3	Digit Span	Phonological short term memory
4	Hong Kong List Learning Test Trial 1-3	Verbal short term memory
5	One-back	Attention
6	Hong Kong List Learning Test Trial 4 (10 min)	Delayed verbal memory (10 min)
7	Tower of Hanoi	Fluid intelligence and visuospatial reasoning
8	Hong Kong List Learning Test Trial 5 (30 min)	Delayed verbal memory (30 min)
9	Hong Kong List Learning Test – Recognition	Delayed recognition memory
10	Picture naming	Object recognition and semantic retrieval
11	Verbal fluency	Controlled semantic retrieval
12	Operation span	Working memory
13	Trail making A & B	Processing speed and visual search
14	SSRT retest	Procedural memory

Fong et al. 2020. *Quarterly Journal of Experimental Psychology*. Fong et al. 2022. *Frontiers in Human Neuroscience*.

Rationale of the experiment

- The majority of the published research on semantic priming focused on the visual domain and have considered relatedness and concreteness.
- Some have additionally considered the distinction of associative/thematic and categorical/taxonomic relationship (e.g., Sachs et al., 2008; Chen et al., 2014)
 - However, the categorical relations are often confounded with associations (e.g., cats and dogs), and vice versa, casting doubts to the differential representations of the two relationships.
- In addition to explaining the hyper-priming effect, we would like to tease apart these two semantic dimensions, and additionally determine whether the trajectory of ageing is distinct for each type of semantic relation (A/C/CA) and concreteness (concrete/abstract).

Hong Kong Cantonese Word Database

PairID	Word1	Word2	RelatednessY	RelatednessO	CategoricalnessY	CategoricalnessO	AssociativenessY	AssociativenessO	FamiliarityY1	Familiarity01	FamiliarityY2	FamiliarityO2	Concreteness1	Concreteness2
1	耐性	心機	3.9	3.8	4	4	4	4	4.56	4.06	4.38	3.88	1.79	1.47
2	信念	抱負	4.05	3.79	4	3.5	4	4	3.81	4.13	3.38	4.31	1.42	1.37
3	指引	介紹	3.6	3.52	3	3	4	3.5	4.31	3.94	4.44	3.88	2.26	2.32
4	人脈	關係	4.35	3.88	4	4	4	4.5	4	3.59	4.69	4.18	1.95	1.68
5	地位	身份	4.25	4.45	4	4	5	4.5	3.94	4.25	4	4.31	1.89	2
6	文憑	學歷	4.35	4.68	4	4	4.5	4.5	4	4.47	4.69	4.33	2.95	2.62
7	檔案	文件	4.5	4.54	5	4.5	5	4.5	4.25	4.38	4.38	4.44	3.37	3.32
8	武術	功夫	4.55	4.68	5	4.5	4.5	4.5	3.31	4.07	3.69	4	2.52	2.67
9	物理	化學	4.55	3.58	4	4	4	4.5	3.81	3.56	4.19	3.81	2.32	2.58
10	現實	理想	4.25	3.58	3	3	4	4	4.56	3.88	4.25	4.06	1.74	1.47
11	經濟	金融	4.6	4.56	4.5	4	5	4.5	4.44	3.76	3.5	3.65	1.95	1.47
12	資質	能力	3.85	3.47	3.5	3.5	4	4	3.88	4.25	4.06	4.19	1.53	1.63
13	預算	計劃	3.95	4.16	3.5	4	4	4	4.31	4.06	4.5	4.12	2.42	1.89
14	緣分	友情	4.2	3.94	3.5	4	4	4	4	4.27	4.44	4.67	1.38	1.86
15	星座	生肖	3.9	3.9	4	4	4	4	4.44	4.07	4.75	4.67	2.48	2.48
16	詩歌	樂曲	4.2	4.14	4.5	4	4	4.5	4.13	4	4.31	4	2.84	2.95
17	友誼	親情	4	3.65	4	4	4	4	4.63	4	4.63	4.12	1.74	1.74
18	約定	信用	4.45	3.56	3.5	3.5	4.5	4	4.13	4.13	4.13	4.38	1.84	1.74
19	供應	需求	4.5	3.94	4	4	5	5	4.13	4.38	4.19	4.25	2.42	1.84
20	數量	成本	3.55	3.27	2	2.5	4	3.5	4.69	4.38	4.31	4.31	2.42	2.05
21	意見	勸告	3.7	3.31	4	3.5	4	4	4.56	4.06	3.94	3.94	2.05	1.79
22	界限	邊緣	3.15	3.37	4	4	3.5	3.5	3.69	4.19	4.31	4.13	1.74	2.26
23	定義	公式	3.95	3.53	3	3	4	3.5	4.13	4	4.31	3.93	1.62	2.52
24	興趣	志向	4.2	3.74	4	4	4.5	4	4.88	4.24	3.75	3.82	2.11	1.53
25	型號	版本	4.05	3.88	4.5	3.5	4	4	4.44	4.27	4.13	3.93	3.19	2.19
26	姓名	年齡	3.9	4.11	3	3	4	3.5	4.81	4.8	4.88	4.87	2.9	2.86
27	鄰里	社區	3.95	3.96	3	4	4	4	4.13	4.18	4.25	4	2.21	2.37
28	激情	浪漫	4	3.79	4	3.5	4	4	3.81	3.88	3.81	3.88	1.58	1.32
29	利潤	增幅	3.95	3.64	3	3	4	4	4.13	4.44	4.38	4.25	2.21	2.37
30	範圍	領域	3.5	3.69	4	4	4	4	4.25	4.25	3.81	4	2.21	1.95

Semantic priming: stimulus design

	Purely categorical (C)	Purely associative (A)	Both categorical & associative (CA)	Unrelated
Concrete	輪船 – 火車	白髮 – 老人	火箭 – 衛星	花朵-雪糕
	ferry – train	white hair – elder	rocket – satellite	flower-ice-cream
Abstract	心腸 – 品性	保險 – 賠償	方法 – 步驟	夢想 – 判決
	heart – character	insurance - compensation	method – step	dream – verdict

• Stimulus design

- 36 pairs per condition
- SOA = 800 ms (due to auditory mode of presentation, SOA much longer than typical visual studies)
- Phonological overlap were avoided as much as possible (no sharing of base syllable)

Behavioral results (Accuracy)

Priming effect = Unrelated – other conditions (A/C/CA)

Correlates of semantic priming effect

Pearson's correlation

	Correlations														
	AverageSP AbsSP ConSP Age Education MoCA Synonym Shipley StroopCW DigitSpan HKLLT TOH														
AverageSP	Pearson Correlation	1	.796 ^{**}	.788**	.502**	042	063	.201	.083	325**	245	197	337**		
	Sig. (2-tailed)		<.001	<.001	<.001	.673	.529	.041	.406	<.001	.013	.046	<.001		
	Ν	103	103	103	103	103	103	103	103	103	103	103	103		

hyper-priming effect

Linear regression

Partial correlation

	Co	rrelations		
Control Variables			AverageSP	Age
Synonym & Education &	AverageSP	Correlation	1.000	.309
MoCA & Shipley & StroopCW & DigitSpan &		Significance (2-tailed)		.002
HKLLT & TOH		df	0	93
	Age	Correlation	.309	1.000
		Significance (2-tailed)	.002	
		df	93	0

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	64.296	59.561		1.079	.283
	Age	1.076	.339	.424	3.171	.002
	Education	-1.335	1.420	091	941	.349
	Synonym	1.309	1.510	.086	.867	.388
	Shipley	.619	.627	.101	.987	.326
	StroopCW	167	.470	040	356	.723
	DigitSpan	-4.259	2.831	139	-1.504	.136
	HKLLT	156	1.596	010	098	.922
	тон	080	1.178	008	068	.946

a. Dependent Variable: AverageSP

Interpretations

- The analyses thus far suggested that the hyper-priming effect (i.e., the age-related increase in semantic priming effect) is a genuine effect that could not be accounted for by non-semantic cognitive domains, nor could it be accounted for by demographical factors (e.g., education).
- It is plausible that accurate behavioral measures of semantic functions or other more fundamental factors (neural?) are necessary to account for the hyper-priming effect.

Effect of concreteness

Effect of relation type

MRI session (task sequence)

Name	Purpose	Basis of the parameter choice	Minutes (approximate)		
Localizer	Setting field of view		Several seconds		
T1 MPRAGE	Structural MRI	ADNI	5 minutes		
Field map (AP)	Correcting distortion		8 seconds		
Field map (PA)	correcting distortion	ПСР	8 seconds		
Functional localizer (Run 1)			8 minutes		
Functional localizer (Run 2)	Critical tacks	HCP; multiband sequence with	8 minutes		
Semantic priming (Run 1)		(TR = 800 ms)	11 minutes		
Semantic priming (Run 2)		````	11 minutes		
Field map (AP)	Correcting distortion		8 seconds		
Field map (PA)		Πር٢	8 seconds		

Post test: incidental verbal recognition memory test (old / new judgment)

Post-test: implicit verbal recognition memory

- Task: Old / new judgment
- Old stimuli
 - 6 primes each from eight conditions [Concreteness x Relation]
 - 6 targets each from eight conditions [Concreteness x Relation]
- New stimuli
 - 48 concrete and 48 abstract stimuli that are matched with old words in psycholinguistic properties (familiarity / concreteness / AoA / stroke count)
- Predictions: Participants with larger semantic priming effect will exhibit
 - Better recognition memory overall;
 - Better recognition memory for concrete than abstract targets;
 - Better recognition memory for related pairs (CA/C/A) than unrelated pairs (U);
 - Better recognition memory for targets than primes.

Segmentation (grey and white matter)

Grey matter

White matter

Segmentation (cerebrospinal fluid, meninges, and skull)

Cerebrospinal fluid

Meninges

Skull

From Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., ... & Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. *Neurobiology of Aging*, *32*(5), 916-932.

Table 3

Mean volume of the different neuroanatomical structures per decade.

	Total sample $(N = 883)$														
	18–29 yea	rs ($N = 262$)	30–39 yea	rs ($N = 109$)	40–49 yea	rs (N=159)	50–59 yea	rs ($N = 100$)	60–69 yea	rs ($N = 110$)	70–79 yea	rs ($N = 105$)	80–95 yea	rs ($N = 38$)	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Cerebral Cor	517426	66685	489079	69076	484994	73159	446856	60459	419190	68791	393507	58007	389445	39685	
Cerebral WM	448369	55455	465638	59881	473373	70145	451591	57500	427932	59294	393931	53765	360263	53355	
Lat Vent	12659	6902	15046	9093	16152	9943	17472	9330	24566	12949	34205	17344	41336	17985	
Inf Lat Vent	651	363	724	434	705	432	712	401	1045	671	1742	1130	2499	1191	
Cerebel WM	28320	3506	28543	3444	28410	3747	27360	3587	25787	3544	24452	3198	22862	4006	
Cerebel Cor	109909	13173	108925	12313	107773	13778	101211	13572	97125	13010	90332	13464	90595	9440	
Thalamus	14002	1518	14037	1431	13624	1600	12749	1449	12241	1513	11510	1358	10931	1182	
Caudate	7848	981	7319	887	7139	901	6939	850	6853	1011	6975	972	7285	1269	
Putamen	12507	1400	11312	1360	10707	1136	10206	1127	9640	1034	9520	1158	9035	1209	
Pallidum	3638	452	3395	481	3236	394	3051	435	2981	485	2889	336	2646	466	
Hippocampus	8214	889	8319	941	8368	1044	8101	1027	7467	1106	6865	979	6201	730	
Amygdala	3540	459	3442	467	3400	495	3216	477	3025	524	2766	440	2679	507	
Accumbens	1492	266	1263	244	1175	199	1142	229	1060	178	1013	181	1038	180	
3rd Vent	1032	286	992	361	1033	356	1173	406	1419	526	1813	574	1927	708	
4th Vent	1979	576	1945	640	1801	514	1847	491	2016	666	2126	664	2077	665	
Brainstem	21456	2385	22186	2413	22206	2696	21444	2594	21277	2732	20179	2565	19086	2455	
CSF	1195	241	1241	338	1273	269	1245	281	1412	330	1542	654	1606	496	
Total volume	1176723	125178	1163458	130877	1164404	151413	1093865	126705	1034578	135408	963939	120410	922066	98074	
ICV	1586302	161092	1615561	173216	1610050	185966	1552345	157821	1534473	159132	1538938	175808	1488398	171561	

18-29 years (N = 154) 30-39 years (N = 58) 40-49 years (N = 83) 50-59 years (N = 64) 60-69 years (N = 72)70–79 years (N = 67) 80–95 years (N = 30) Mean SDMean SD Mean SD Mean SD Mean SD Mean SD Mean SD Cerebral Cor Cerebral WM Lat Vent Inf Lat Vent Cerebel WM Cerebel Cor Thalamus Caudate Putamen Pallidum Hippocampus Amygdala Accumbens 3rd Vent 4th Vent Brainstem CSF Total volume ICV Males (N=355)18-29 years (N = 108) 30-39 years (N=51) 40-49 years (N = 76) 50-59 years (N = 36) 60-69 years (N=38) 70–79 years (N = 38) 80-95 years (N=8)Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Cerebral Cor Cerebral WM Lat Vent Inf Lat Vent Cerebel WM Cerebel Cor Thalamus Caudate Putamen Pallidum Hippocampus Amygdala Accumbens 3rd Vent 4th Vent Brainstem CSF Total volume ICV

Females (N = 528)

51/55

% change per decade From Walhovd et al. (2011)

	18–29 to 30–39	30-39 to 40-49	40-49 to 50-59	50–59 to 60–69	60–69 to 70–79	70–79 to 80–95	18–29 to 80–95
Cerebral Cor	-5.5	8	-7.9	-6.2	-6.1	-1.0	-24.7
Cerebral WM	3.9	1.7	-4.6	-5.2	-7.9	-8.5	-19.7
Lat Vent	18.9	7.4	8.2	40.6	39.2	20.8	226.5
Inf Lat Vent	11.2	-2.6	1.0	46.8	66.7	43.5	283.9
Cerebel WM	.8	5	-3.7	-5.7	-5.2	-6.5	-19.3
Cerebel Cor	9	-1.1	-6.1	-4.0	-7.0	.3	-17.6
Thalamus	.2	-2.9	-6.4	-4.0	-6.0	-5.0	-21.9
Caudate	-6.7	-2.5	-2.8	-1.2	1.8	4.4	-7.2
Putamen	-9.6	-5.3	-4.7	-5.5	-1.2	-5.1	-27.8
Pallidum	-6.7	-4.7	-5.7	-2.3	-3.1	-8.4	-27.3
Hippocampus	1.3	.6	-3.2	-7.8	-8.1	-9.7	-24.5
Amygdala	-2.8	-1.2	-5.4	-5.9	-8.6	-3.1	-24.3
Accumbens	-15.3	-7.0	-2.8	-7.2	-4.4	2.5	-30.4
3rd Vent	-3.9	4.1	13.6	21.0	27.8	6.3	86.7
4th Vent	-1.7	-7.4	2.6	9.1	5.5	-2.3	5.0
Brainstem	3.4	.1	-3.4	8	-5.2	-5.4	-11.0
CSF	3.8	2.6	-2.2	13.4	9.2	4.2	34.4
Total volume	-1.1	.1	-6.1	-5.4	-6.8	-4.3	-21.6

Percentage change per decade for the total sample based on raw volumes.

Cor: cortex; WM: white matter; Lat: lateral; Inf: inferior; Vent: ventricles; CSF: cerebrospinal fluid; Total volume: the sum of all the other structures (CSF and ventricles not included).

CROSS-SECTIONAL DIFFERENCES IN BRAIN VOLUMES (in mm³)

	All							Male							Female						
	18-29	30-39	40-49	50-59	60-69	70-79	80-89	18-29	30-39	40-49	50-59	60-69	70-79	80-89	18-29	30-39	40-49	50-59	60-69	70-79	80-89
Left-Lateral-Ventricle	6804.9	7099.9	9196.7	10853.6	13087.0	14910.5	26324.9	7439.6	8038.0	10158.3	12033.5	13526.6	17227.9	41526.1	6233.6	6005.5	8662.5	9526.3	12687.5	12013.7	11123.6
Left-Inf-Lat-Vent	346.8	301.4	293.3	390.9	422.6	544.1	451.3	321.1	343.7	345.6	381.0	491.2	697.0	501.5	369.9	252.2	264.2	402.1	360.3	352.9	401.0
Left-Hippocampus	4276.7211	4037.4385	<mark>3970.4857</mark>	<mark>3941.2588</mark>	3892.819	<mark>3708.9556</mark>	3145.3	4535.7889 ·	<mark>4136.3286</mark>	3991.84	4073.7667	4098.65	3757.55	3277.3	4043.56	<mark>3922.0667</mark>	<mark>3958.6222</mark>	3792.1875	3705.7	3648.2125	3013.3
Left-Amygdala	1655.7789	1570.7077	1547.9	1559.2412	1510.8857	1421.7167	1110.65	1805.4222	1557.2	1553.58	1612.0111	1575.59	1470.34	1153.4	1521.1	<mark>1586.4667</mark>	1544.7444	1499.875	1452.0636	<mark>1360.9375</mark>	1067.9
Left-Thalamus	8969.9263	8018.8538	7839.4929	7634.9412	7283.1333	<mark>6868.9444</mark>	7029.35	9433.5	8101.7286	8273.62	<mark>8136.0667</mark>	7532.34	7057.26	8061.4	8552.71	<mark>7922.1667</mark>	7598.3111	7071.175	7056.5818	6633.55	5997.3
Left-Caudate	3912.2421	<mark>3579.4385</mark>	<mark>3385.6643</mark>	3215.0353	<mark>3232.1238</mark>	<mark>3314.9611</mark>	3332.25	4051.2444	3722.328 <mark>6</mark>	3677.3	<mark>3137.2222</mark>	3246.12	3380.82	3295.4	3787.14	<mark>3412.7333</mark>	<mark>3223.6444</mark>	3302.575	3219.4	3232.6375	3369.1
Left-Putamen	5327.2632	<mark>5196.4538</mark>	4744.1857	4793.2588 ·	4588.3619	4359.0389	4054.55	5578.5	5318.1143	4903.38	5069.8667	4838.26	4377.58	4287.1	5101.15	5054.5167	4655.7444	4482.075	4361.1818 ·	4335.8625	3822
Left-Pallidum	2195.2368	2080.9692	2065.9357	2006.5235	2041.1905	1945.1167	1912.75	2323.8111	2142.1857	2086.52	<mark>2107.9222</mark>	2190.44	1956.57	2107	2079.52	2009.55	2054.5	1892.45	1905.5091	1930.8	1718.5
Left-Accumbens-area	495.48947	<mark>461.46923</mark>	380.95	<mark>398.94118</mark>	<mark>383.31905</mark>	342.36667	249.75	574.76667 ·	<mark>458.97143</mark>	378.08	<mark>410.68889</mark>	385.04	359.37	273.8	424.14	<mark>464.38333</mark>	<mark>382.54444</mark>	385.725	<mark>381.75455</mark>	321.1125	225.7
Left-Cerebellum-White- Matter	15992.537	15747.292	14679.414	14474.041	14209.967	13494.528	12105.9	17018.144	15949.7	15188.64	14813.4	14801.28	13812.47	13775	15069.49	15511.15	14396.511	14092.263	13672.409	13097.1	10436.8
Left-Cerebellum-Cortex	56868.3	<mark>54129.108</mark>	50868.029	50545.524	49829.514	<mark>48512.894</mark>	44239.8	<mark>62172.078</mark>	55523.5	54585.48	52384	52076.8	48725.39	50733.7	52094.9	<mark>52502.317</mark>	48802.778	<mark>48477.238</mark>	47786.527	48247.275	37745.9
Right-Lateral-Ventricle	5896.8	5508.6	8589.1	8898.4	11895.9	12881.4	22356.5	6543.4	6227.8	8875.4	9627.6	11291.0	14846.0	34340.0	5314.8	4669.5	8430.0	8078.1	12445.8	10425.6	10373.0
Right-Inf-Lat-Vent	362.2	327.7	346.4	346.1	424.8	545.3	523.7	357.5	373.7	398.1	367.0	450.8	677.0	819.9	366.4	274.1	317.6	322.7	401.1	380.6	227.4
Right-Hippocampus	4454.7	4268.5	4131.7	4179.9	4064.8	3843.1	3226.7	4545.3	4330.4	4290.6	4336.2	4294.4	3845.5	3340.0	4373.2	4196.2	4043.4	4004.0	3856.2	3840.1	3113.3
Right-Amygdala	1768.6	1702.6	1651.0	1647.7	1684.8	1580.4	1391.9	1919.1	1777.7	1716.4	1707.9	1826.4	1640.5	1340.2	1633.1	1615.0	1614.6	1580.0	1556.1	1505.4	1443.6
Right-Thalamus	8606.3	7990.0	7445.6	7414.1	7072.3	6736.4	6713.4	9089.6	8211.6	7779.1	7782.9	7500.8	6838.0	7225.8	8171.4	7731.4	7260.3	6999.1	6682.8	6609.4	6200.9
Right-Caudate	4010.7	3630.3	3490.5	3339.9	3345.4	3385.4	3600.4	4150.0	3762.9	3877.6	3301.5	3352.8	3413.3	3876.7	3885.4	3475.7	3275.4	3383.1	3338.6	3350.6	3324.0
Right-Putamen	5576.2	5295.4	4923.1	4895.1	4616.0	4415.0	3996.8	5785.8	5377.8	5215.9	5163.9	4830.0	4416.9	3988.0	5387.5	5199.3	4760.4	4592.7	4421.4	4412.6	4005.5
Right-Pallidum	2146.2	1995.3	2054.9	2006.1	2028.3	1890.5	1726.3	2259.6	2026.3	2123.0	2103.8	2112.6	1855.9	1864.4	2044.2	1959.3	2017.0	1896.3	1951.7	1933.7	1588.1
Right-Accumbens-area	602.1	561.7	471.5	493.9	476.1	413.9	393.9	663.5	561.2	472.4	528.9	496.2	394.4	454.6	546.8	562.2	471.0	454.5	457.9	438.3	333.1
Right-Cerebellum-White- Matter	15296.4	15004.5	14293.7	13764.9	13890.8	12635.1	12229.0	16534.6	15221.3	15424.8	14413.3	14471.4	13122.5	14389.8	14182.0	14751.6	13665.4	13035.5	13363.0	12025.9	10068.2
Right-Cerebellum-Cortex	56846.2	54542.2	51375.7	50827.9	49863.5	49437.5	45250.6	61817.2	56286.0	54838.0	52662.8	52199.6	49799.9	51732.9	52372.3	52507.8	49452.2	48763.5	47739.7	48984.4	38768.3
CerebralWhiteMatterVol	22549.2	21139.7	20885.0	21021.9	21268.3	20460.0	19079.0	24217.1	21486.8	22025.8	21972.1	22346.5	20848.9	22619.5	21048.1	20734.8	20251.2	19953.1	20288.2	19973.9	15538.5
Brain-Stem	488197.5	435672.6	455970.5	443449.2	443470.2	413178.3	362579.0	526021.7	448572.4	487294.6	473411.9	469872.7	427853.1	437161.0	454155.8	420622.8	438568.2	409741.1	419467.9	394834.8	287997.0
SubCortGrayVol	64077.1	59403.0	57078.6	56625.5	55227.0	52914.0	50154.0	67708.9	60627.6	59663.8	58950.6	57744.7	53842.0	54057.0	60808.5	57974.3	55642.4	54009.8	52938.2	51754.0	46251.0
TotalGrayVol	716195.9	650541.0	639270.3	622720.6	608501.2	596719.8	570208.3	770845.4	665746.3	681871.9	645399.7	637360.3	614363.2	634380.9	667011.3	632801.4	615602.7	597206.6	582265.7	574665.4	506035.7
EstimatedTotalIntraCranial	1583643.2	1470497.1	1507530.3	1494315.5	1507022.2	1487217.1	1489408.6	1661868.0	1511746.6	1573365.6	1575781.5	1599993.3	1544619.3	1758387.9	1513240.9	1422372.7	1470955.2	1402666.2	1422503.0	141546434/	15270429.3

Vol

CROSS-SECTIONAL DIFFERENCES IN BRAIN VOLUME CHANGES

% change per annum	All						Male						Female					
	30-39	40-49	50-59	60-69	70-79	80-89	30-39	40-49	50-59	60-69	70-79	80-89	30-39	40-49	50-59	60-69	70-79	80-89
Left-Lateral-Ventricle	0.4	3.0	1.8	2.1	1.4	7.7	0.8	2.6	1.8	1.2	2.7	14.1	-0.4	4.4	1.0	3.3	-0.5	-0.7
Left-Inf-Lat-Vent	-1.3	-0.3	3.3	0.8	2.9	-1.7	0.7	0.1	1.0	2.9	4.2	-2.8	-3.2	0.5	5.2	-1.0	-0.2	1.4
Left-Hippocampus	-0.6	-0.2	-0.1	-0.1	-0.5	-1.5	-0.9	-0.3	0.2	0.1	-0.8	-1.3	-0.3	0.1	-0.4	-0.2	-0.2	-1.7
Left-Amygdala	-0.5	-0.1	0.1	-0.3	-0.6	-2.2	-1.4	0.0	0.4	-0.2	-0.7	-2.2	0.4	-0.3	-0.3	-0.3	-0.6	-2.2
Left-Thalamus	-1.1	-0.2	-0.3	-0.5	-0.6	0.2	-1.4	0.2	-0.2	-0.7	-0.6	1.4	-0.7	-0.4	-0.7	0.0	-0.6	-1.0
Left-Caudate	-0.9	-0.5	-0.5	0.1	0.3	0.1	-0.8	-0.1	-1.5	0.3	0.4	-0.3	-1.0	-0.6	0.2	-0.3	0.0	0.4
Left-Putamen	-0.2	-0.9	0.1	-0.4	-0.5	-0.7	-0.5	-0.8	0.3	-0.5	-1.0	-0.2	-0.1	-0.8	-0.4	-0.3	-0.1	-1.2
Left-Pallidum	-0.5	-0.1	-0.3	0.2	-0.5	-0.2	-0.8	-0.3	0.1	0.4	-1.1	0.8	-0.3	0.2	-0.8	0.1	0.1	-1.1
Left-Accumbens-area	-0.7	-1.7	0.5	-0.4	-1.1	-2.7	-2.0	-1.8	0.9	-0.6	-0.7	-2.4	0.9	-1.8	0.1	-0.1	-1.6	-3.0
Left-Cerebellum-White-Matter	-0.2	-0.7	-0.1	-0.2	-0.5	-1.0	-0.6	-0.5	-0.2	0.0	-0.7	0.0	0.3	-0.7	-0.2	-0.3	-0.4	-2.0
Left-Cerebellum-Cortex	-0.5	-0.6	-0.1	-0.1	-0.3	-0.9	-1.1	-0.2	-0.4	-0.1	-0.6	0.4	0.1	-0.7	-0.1	-0.1	0.1	-2.2
Right-Lateral-Ventricle	-0.7	5.6	0.4	3.4	0.8	7.4	-0.5	4.3	0.8	1.7	3.1	13.1	-1.2	8.1	-0.4	5.4	-1.6	-0.1
Right-Inf-Lat-Vent	-1.0	0.6	0.0	2.3	2.8	-0.4	0.5	0.7	-0.8	2.3	5.0	2.1	-2.5	1.6	0.2	2.4	-0.5	-4.0
Right-Hippocampus	-0.4	-0.3	0.1	-0.3	-0.5	-1.6	-0.5	-0.1	0.1	-0.1	-1.0	-1.3	-0.4	-0.4	-0.1	-0.4	0.0	-1.9
Right-Amygdala	-0.4	-0.3	0.0	0.2	-0.6	-1.2	-0.7	-0.3	0.0	0.7	-1.0	-1.8	-0.1	0.0	-0.2	-0.2	-0.3	-0.4
Right-Thalamus	-0.7	-0.7	0.0	-0.5	-0.5	0.0	-1.0	-0.5	0.0	-0.4	-0.9	0.6	-0.5	-0.6	-0.4	-0.5	-0.1	-0.6
Right-Caudate	-0.9	-0.4	-0.4	0.0	0.1	0.6	-0.9	0.3	-1.5	0.2	0.2	1.4	-1.1	-0.6	0.3	-0.1	0.0	-0.1
Right-Putamen	-0.5	-0.7	-0.1	-0.6	-0.4	-0.9	-0.7	-0.3	-0.1	-0.6	-0.9	-1.0	-0.3	-0.8	-0.4	-0.4	0.0	-0.9
Right-Pallidum	-0.7	0.3	-0.2	0.1	-0.7	-0.9	-1.0	0.5	-0.1	0.0	-1.2	0.0	-0.4	0.3	-0.6	0.3	-0.1	-1.8
Right-Accumbens-area	-0.7	-1.6	0.5	-0.4	-1.3	-0.5	-1.5	-1.6	1.2	-0.6	-2.1	1.5	0.3	-1.6	-0.4	0.1	-0.4	-2.4
Right-Cerebellum-White-Matter	-0.2	-0.5	-0.4	0.1	-0.9	-0.3	-0.8	0.1	-0.7	0.0	-0.9	1.0	0.4	-0.7	-0.5	0.3	-1.0	-1.6
Right-Cerebellum-Cortex	-0.4	-0.6	-0.1	-0.2	-0.1	-0.8	-0.9	-0.3	-0.4	-0.1	-0.5	0.4	0.0	-0.6	-0.1	-0.2	0.3	-2.1
CerebralWhiteMatterVol	-0.6	-0.1	0.1	0.1	-0.4	-0.7	-1.1	0.3	0.0	0.2	-0.7	0.8	-0.1	-0.2	-0.1	0.2	-0.2	-2.2
Brain-Stem	-1.1	0.5	-0.3	0.0	-0.7	-1.2	-1.5	0.9	-0.3	-0.1	-0.9	0.2	-0.7	0.4	-0.7	0.2	-0.6	-2.7
SubCortGrayVol	-0.7	-0.4	-0.1	-0.2	-0.4	-0.5	-1.0	-0.2	-0.1	-0.2	-0.7	0.0	-0.5	-0.4	-0.3	-0.2	-0.2	-1.1
TotalGrayVol	-0.9	-0.2	-0.3	-0.2	-0.2	-0.4	-1.4	0.2	-0.5	-0.1	-0.4	0.3	-0.5	-0.3	-0.3	-0.3	-0.1	-1.2
Estimated Total Intra Cranial Vol	-0.7	0.3	-0.1	0.1	-0.1	0.0	-0.9	0.4	0.0	0.2	-0.3	1.4	-0.6	0.3	-0.5	0.1	0.0	-1.4

- The consequences of the structural and functional brain changes on crystallized intelligence, particularly semantic processing, have not yet been fully determined.
- Thus far, we have found a genuine hyper priming effect (an age-related increase in auditory semantic priming effect) that could not be accounted for merely by cognitive performance.
- Other measures of semantic processing and brain measures may shed light on the nature of the effect.

- Chertkow, H., Bub, D., & Seidenberg, M. (1989). Priming and semantic memory loss in Alzheimer's disease. *Brain and Language*, *36*(3), 420-446.
- Fong, M. C-M., Ma, M. K-H., Chui, J. Y. T., Law, T. S-T., Hui, N-Y., Au, A., & Wang, W. S. (2022). Foreign language learning in older adults: anatomical and cognitive markers of vocabulary learning success. *Frontiers in Human Neuroscience*, 16, 787413.
- Fong, M. C-M., Law, T. S-T., Ma, M. K-H., Hui, N. Y., & Wang, W. S. (2021). Can inhibition deficit hypothesis account for age-related differences in semantic fluency? Converging evidence from Stroop color and word test and an ERP flanker task. *Brain and Language*, 218, 104952.
- Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer's Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. *Progress in Neurobiology*, 117, 20-40.
- Laisney, M., Giffard, B., Belliard, S., de La Sayette, V., Desgranges, B., & Eustache, F. (2011). When the zebra loses its stripes: Semantic priming in early Alzheimer's disease and semantic dementia. *Cortex*, 47(1), 35-46.
- Moss, H. E., & Tyler, L. K. (1995). Investigating semantic memory impairments: the contribution of semantic priming. Memory, 3(3-4), 359-395.
- Neely, J. H. (1990). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In Besner, D. and Humphreys G. W. (eds.) *Basic Processes in Reading*, 272-344.

Acknowledgement

Team members:

Prof. William S-Y. Wang Dr. Matthew K-H. MA Dr. Chenwei XIE Miss Roza N-Y. HUI **Miss Yun FENG** Miss Zhuoya LIU Miss Fangfei LI Miss Jiaxin CHEN Miss Meko Y-T. LAU Ms Yifeng WU **Collaborators:** Dr. Daphne S. K. CHEUNG (SN, HKPolyU) Dr. Jerry W. F. YEUNG (SN, HKPolyU) Prof. Thomas K. S. CHOI (SN, HKPolyU) Dr. Connie L. L. HUI (ABCT, HKPolyU) Prof. Mary M. Y. WAYE (School of Nursing, CUHK) Prof. W. T. CHIEN (School of Nursing, CUHK) Prof. Ron G. CHEN (EE, CityU)

Other funding support

- HKRGC-GRF 15601718
 - PI: Wang, W. S-Y.
 - Co-Is: Yang, G. F-P., Mok, V. C.-T., Wong, A., Au, A.
- HKRGC-GRF 15606119
 - PI: Wang, W. S-Y.
 - Co-ls: Fong, MC-M., Au, A.
- Startup fund for strategic hiring scheme, HKPolyU
- Dean's Reserve, Faculty of Humanities, HKPolyU
- Departmental GRF, Department of CBS, HKPolyU
- Projects of RISA, HKPolyU
- Donations by Sin Wai Kin Foundation
- Research Grant Matching Scheme, RGC