Subject Description Form

Subject Code	BME32138
Subject Title	Cellular Engineering
Credit Value	3
Level	3
Prerequisite	Human Biology I & II for Biomedical Engineering (ABCT2331 & ABCT2332) or equivalent subjects
Objectives	 Deliver knowledge in the fundamentals of cell biology with particular emphasis on cellular physiological and pathological processes. Introduce the principles of engineering methods/technologies applied in cellular/molecular biology and biomedical sciences. Prepare undergraduate students with basic concepts and skills for biomedical research using cellular engineering approaches.
Intended	Upon completion of the subject, students will be able to:
Learning	a. Understand the fundamental concepts in cellular/molecular biology
Outcomes	and significances of cellular engineering in biomedical research and
	applications.
	b. Comprehend the principles of technologies in cellular engineering.
	c. Design experiments with cellular engineering methods to solve basic
	scientific questions in cell biology and biomedical sciences.
Contribution to	Programme Outcome 1: Demonstrate an ability to apply knowledge
Programme	of mathematics, science, and engineering appropriate to the
Outcomes (Refer	Biomedical Engineering (BME) discipline. (Teach, Practice, and
to Part I Section	Measure)
10)	 Programme Outcome 2: Demonstrate an ability to design and conduct BME experiments, as well as to analyze and interpret data. (Practice and Measure)
	Programme Outcome 4: Demonstrate an ability to identify, formulate,
	and solve BME problems. (Teach, Practice, and Measure)
	 Programme Outcome 6: Demonstrate an ability to critically evaluate research and professional literature, and understand the principles and practice of conducting research in clinical and industrial
	environments relevant to BME. (Practice and Measure)
Subject Synopsis/	Conceptual: Overview of cellular engineering in cell biology and
Indicative	biomedical sciences; Cell structure and subcellular organelles; Genetics
Syllabus	and epigenetics of the cell; Protein synthesis/trafficking/maturation; Cell
	cycle and growth; Cell mechanics and cytoskeletal dynamics (e.g. cell
	stiffness and cellular contractility); Cell-cell and cell-extracellular

	T .								
	environment (e.g. matrix) interactions; Cellular and intercellular signal								
	transduction and networks; Mechanotransduction; Cells in develop								
	(stem cells), ageing (cell senescence) and diseases; Cellular engineering								
	in regenerative medicine.								
	Technological: Cell culture technology; Cellular genetic engineering,								
	Measurements of cell growth and death; Gene expression assessments;								
	Cellular imaging; Live-cell function and activity assessments; Molecular								
	and cellular tracking (e.g. genetic lineage tracking, bioluminescence);								
	Cell manipulation technology (e.g. Dielectrophoresis trap, Surface								
	acoustic waves and magnetic trapping); Cell positioning technology								
	(e.g. Micro-contact printing and microfluidic patterning); Technologies								
	for cell mechanics measurement (e.g. Optical tweezers, Atomic force								
	microscopy, and Magnetic twisting cytometry); Technologies for								
	cellular traction measurement (e.g. Traction force microscope and								
	Micropost array).								
Teaching and	Lectures/Seminar: the major concepts and principles in cellular								
Learning	engineering will be delivered through lectures and invited seminars.								
Methodology	Students presen	tation/Jo	urnal	club	/Group	discus	sion:	stude	nts will
	be assigned to read, present and discuss recent research papers to gain								
	knowledge in the latest advances and developments in cellular								
	engineering.								
	Laboratory tuto				•	ed to ob	serve	and le	earn the
	laboratory technic	ques in ce	llular	engir	eering.				
Assessment	Specific % Intended subject learning outcomes to								
Methods in	assessment	weight							
Alignment with	methods/tasks	ing							
Intended	Assignments	30 %	u	-					
Learning	and	30 70		V	$\sqrt{}$				
Outcomes	presentations		'	•	'				
	Mid-term quiz	30 %			V				
	1		V	V	V				
	Final	40 %			√				
	examination	100.0/							
	Total	100 %							
	Explanation of	the appro	opriat	eness	of the	asses	sment	meth	ods in
	assessing the intended learning outcomes:								
Student Study	Class contact:								
Effort Required	Lecture 30 Hrs.							0 Hrs.	
	Laboratory						9 Hrs.		
<u> </u>									

	-						
	Other student study effort:						
	Self-study	60 Hrs.					
	Assignment	27 Hrs.					
	Total student study effort	126 Hrs.					
	Class contact:						
Reading List and	1. Alberts B. Molecular biology of the cell. Sixth edition. ed. New						
References	York, NY: Garland Science, Taylor and Fran	York, NY: Garland Science, Taylor and Francis Group; 2015.					
	2. King MR. Principles of cellular engineering:	King MR. Principles of cellular engineering: understanding the					
	biomolecular interface. Amsterdam; Boston: Elsevier Academic						
	Press; 2006.						
	3. Bronzino JD, Peterson DR. Molecular, cellula	Bronzino JD, Peterson DR. Molecular, cellular, and tissue					
	engineering. Fourth edition. ed. Boca Raton: CRC Press, Taylor						
	& Francis Group; 2015.						
	4. Cortassa S. An introduction to metabolic and	Cortassa S. An introduction to metabolic and cellular					
	engineering. Second edition. ed. Hackensack, New Jersey:						
	World Scientific; 2012.	World Scientific; 2012.					
	5. Cathomen T, Hirsch M, Porteus MH, Americ	Cathomen T, Hirsch M, Porteus MH, American Society of					
	Gene & Cell Therapy. Genome editing: the n	Gene & Cell Therapy. Genome editing: the next step in gene					
	therapy. New York: Springer; 2016.	therapy. New York: Springer; 2016.					
	6. Stein GS. Human stem cell technology and b	Stein GS. Human stem cell technology and biology: a research					
	guide and laboratory manual. Hoboken, N.J.: Wiley-Blackwell;						
	2011.	2011.					
	7. Lodish HF. Molecular cell biology. Eighth ed	Lodish HF. Molecular cell biology. Eighth edition. ed. New					
	York: W.H. Freeman-Macmillan Learning; 2	York: W.H. Freeman-Macmillan Learning; 2016.					
	8. Pörtner R. Animal cell biotechnology: metho	Pörtner R. Animal cell biotechnology: methods and protocols.					
	Third edition. ed. New York: Humana Press;	Third edition. ed. New York: Humana Press; 2014. Doulatov S, Daley GQ. Development. A stem cell perspective					
	9. Doulatov S, Daley GQ. Development. A sten						
	on cellular engineering. Science. 2013;342(6	159):700-2.					
	10. Nielsen J, Keasling JD. Engineering Cellular Metabolism. Cell.						

2016;164(6):1185-97.