Subject Description Form

Subject Code	BME32136				
Subject Title	Upper Limb Orthotics				
Credit Value	3				
Level	3				
Prerequisite and Co- Requisite	Prerequisites ABCT2331 Human Biology for Biomedical Engineering I; and ABCT2332 Human Biology for Biomedical Engineering II; and BME21119 Fundamentals of Biomechanics Co-Requisite BME31125 Biomechanics				
Objectives	This subject provides students with the principles and practical laboratory experiences in the prescription, design, fabrication, fitting, and evaluation of upper limb orthotic devices. The subject progressively integrates the health and engineering studies which the students have taken as part of their earlier academic studies, and which form the basis for the derivation of the scientific principles used in the practice of upper limb orthotics.				
Intended Learning Outcomes	Upon completion of the subject, students will be able to carry out the following procedures, in a safe manner, according to the patients' conditions. a. To assess the patients b. To prescribe orthotic interventions c. To take measurement on the patients d. To design appropriate orthotic devices e. To perform the technical process f. To fit the orthoses g. To evaluate the interventions h. To communicate with the patients effectively				
Contribution to Programme Outcomes (Refer to Part I Section 10)	 Programme Outcome 1: Demonstrate an ability to apply knowledge of mathematics, science, and engineering appropriate to the Biomedical Engineering (BME) discipline. (Teach, Practice and Measure) Programme Outcome 3: Demonstrate an ability to design a system, component, or process relevant to BME to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health 				

and safety, manufacturability and sustainability. (Teach and Practice)

- Programme Outcome 4: Demonstrate an ability to identify, formulate, and solve BME problems. (Teach, Practice and Measure)
- Programme Outcome 9: Demonstrate an ability to function in multidisciplinary teams. (Teach, Practice and Measure)
- Programme Outcome 10: Demonstrate an understanding of professional and ethical responsibility. (Teach, Practice and Measure)

Subject Synopsis/ Indicative Syllabus

- Review of the anatomy, biomechanics, and pathomechanics of the upper limb;
- Principles and concepts of clinical assessments of the upper limb;
- Use of assessment tools for recognizing normal and abnormal findings of the upper limb;
- Clinical reasoning in assessment, diagnosis, planning, implementation, and evaluation of the upper limb disorder and management;
- Introduction to upper limb orthotics; materials and components; biomechanics of upper limb orthotics; upper limb orthoses for different levels, disorders and clinical conditions;
- The clinical assessment, documentation, measurement, moulding, cast rectification, fabrication; fitting, checkout and outcome measure of upper limb orthoses are included.

Teaching and Learning Methodology

The 21 hours of lectures and tutorials will be supported by 39 hours of demonstrations and laboratory teaching. The subject is to integrate the theoretical knowledge and the technical skills in a way that is important to patient care and management. Students will need to go through step by step the clinical process of patient assessment, patient measurement, casting, cast rectification, fabrication, patient fitting, and patient evaluation. Besides the development of technical skills, emphasis is placed on the development of clinical judgement and the process of clinical problem solving. Direct feedback from the patients/subjects at various stages, as well as from the instructors throughout the process, would constitute important inputs to the learning experience. In the process, students will also learn how to interact with the patients. At the end of a practical series, students will be guided to critique the work of other fellow students under the facilitation of the instructor. This is done to maximize the learning experience by learning not only from one's own mistakes but also from those of the fellow students.

Assessment
Methods in
Alignment with
Intended
Learning
Outcomes

Specific assessment	% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate)							
methods/tasks		a	b	c	d	e	f	g	h
Student presentations	10%	√	√		√			√	
Practical assignments	30%	V	√	√	√	V	V	√	√
Quizzes	20%	√	√	√	√			√	
Final examination	40%	V	√	√	√			√	
Total	100%								

Note: To pass this subject, students must obtain grade D or above in both continuous assessment and final examination.

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

Each of the individual learning outcomes will be assessed as part of the integrated outcome demonstrated by the student in patient care. Individual orthotics design and fitting projects will be assessed with direct feedback from the model patients/subjects at various stages, as well as from the instructors throughout the process. In the process, students will also learn how to interact with the patients. At the completion of assigned individual projects, students will be guided to critique the work of other fellow students under the facilitation of the instructor. This is done to maximize the learning experience by learning not only from one's own experience but also from those of the fellow students. A final examination will be used to establish that the student has understood and can integrate the factual materials required to provide upper limb orthotic services.

Student Study Effort Expected

ı	Class contact:	
	Lecture	18 Hrs.
	■ Tutorial	3 Hrs.
	 Demonstration and laboratory 	39 Hrs.

	Other student study effort:						
	Open laboratory practice	39 Hrs.					
	Written assignment and revision	39 Hrs.					
	Total student study effort	138 Hrs.					
Reading List and References	 Cannon N.M., Foltz R.W., Koepfer J.M., Lauck M.F., Simpson D.M. and Bromley R.S. Manual of Hand Splinting, 1985. 						
	■ Fess E.E. and Philips C.A. Hand Splinting Principles and Methods, 1987.						
	 Hsu J.D. and Goldberg B. Atlas of Orthoses and Assistive Devices, 2008. 						
	 Hunter J. and Schneider L. Rehabilitation of the Hand: Surgery and Therapy, 1995. 						
	 Hunter J., Schneider L., Mackin E. and Callahan A. Rehabilitation of the Hand, 1990. 						
	 Jacobs M. and Austin N. Splinting: the hand and upper extremity, Lippincott Williams & Wilkins, 2003. 						
	 Kessel L. and Boundy U. A Colour Atlas of Clinical Orthopaedics, 1980. 						
	 Malick M.H., Manual on Dynamic Hand Splinting with Thermoplastic Materials, Harmarville Rehabilitation Center, 1978. 						
	 Malick M.H. Manual on Static Hand Splinting, Harmarville Rehabilitation Center, 1985. 						
	 Malick M.H. and Kasch M.C. Manual on Management of Specific Hand Problems, 1984. 						
	 Philips F. Hand Splinting: Principles and Methods, 1987. 						
	Redford J.B. Orthotics Etcetera, 1986.						
	 Redford J.B., Basmajian J.V. and Trautman P. Clinical Practice and Rehabilitation Technology, 1995. 						
	Rose G.K. Orthotics: Principles and Practice, 1986.						
	 Salter M.I. Hand Injuries: A Therapeutic Approach, 1987. 						
	■ The Hand: Examination & Diagnosis, American Society for Surgery of the Hand, 1990.						
	■ The Hand: Primary Care of Common Problems, American Society for Surgery of the Hand, 1990.						
	 Ziegler E.M. Current Concepts in Orthotics: A Diagnosis-Related Approach to Splinting, 1984. 						
Date of Last Major Revision	14 July 2014						
Date of Last Minor Revision	27 Jan 2015						