Hong Kong Observatory 1-year Placement Programme 2025

Project	Project Title	Project description	Preference of	Knowledge /
Code			department	skills required
A2(a)	Automatic weather	This project aims to adopt machine-learning techniques to develop	Physics, Computer	Interest in meteorology and
	reporting for the	automatic algorithms for generating standard weather reports for	Science,	knowledge in the Python
	Hong Kong	aviation purpose. Weather elements to be incorporate in the	Engineering	programming language.
	International	report include rain, thunderstorms, fog/haze and clouds. Data		
	Airport (HKIA)	used in the project will come from both in-situ and remote-sensing		Experience with machine-
		equipment at HKIA.		learning tools preferred.
A2(b)	Estimation of	Eddy Dissipation Rate (EDR) is closely related to the intensity of	Physics, Computer	Interest in meteorology and
	turbulence Eddy	turbulence in the atmosphere. It can be calculated from high	Science,	aviation.
	Dissipation Rate	frequency data recorded by equipment onboard of aircraft during	Engineering	
	(EDR) using data	flight. The project will, based on previous results, explore and test		Knowledge in aviation systems
	recorded on aircraft	various scientific methods for the estimation of EDR for different		and experience with Python
	and comparison	types of aircraft. The use of Computational Fluid Dynamic (CFD)		programming language
	with computer	model to simulate flow pattern at the Hong Kong International		preferred.
	simulations	Airport will also be conducted and the result will be compared		
		with aircraft data.		Experience in running CFD
				models would be an advantage.

A4(a)	Study of	This project aims to:	Physics, Earth	Strong background in Physics or
	characteristics of	(1) study the characteristics of precipitation over Hong Kong in	System Science,	Mathematics.
	precipitation over	various seasons;	Mathematics,	
	Hong Kong using	(2) compare 2DVD data with radar dual-pol products; and	Computer Science	Experience in Web programming
	Two-Dimensional	(3) develop an interactive webpage to display 2DVD data.	or related	and software development, e.g.
	Video Disdrometer		disciplines.	Python programming and Linux
	(2DVD) data			shell scripting, would be an
			Completion of 2 nd	advantage.
			or 3 rd year of	
			study.	
A4(b)	Enhancement of	This project aims to:	Physics, Earth	Strong background in Physics or
	volcano monitoring	(1) verify and improve the algorithm of estimating height of	System Science,	Mathematics.
	using satellite data	volcanic ash (VA);	Mathematics,	
		(2) explore the way to provide quantitative volcanic ash (QVA)	Computer Science	Experience in Web programming
		concentration information using various satellite data; and	or related	and software development, e.g.
		(3) enhance the volcano monitoring webpage to facilitate	disciplines.	Python programming and Linux
		operational use.		shell scripting, would be an
			Completion of 2 nd	advantage.
			or 3 rd year of	
			study.	

A6	Investigate risk	Turbulence and significant convection are major aviation	Computer Science,	Genuine interest in aviation,
	associated with	hazardous weather phenomena. Risk might depend on the	Mathematics,	meteorology and/or data
	aviation hazardous	severity of hazard and their probability of occurrence. This project	Physics,	science.
	weather based on	aims to study the risk on operation based on analysing observed	Earth System	
	deterministic and	impacts and their relationship with forecast severity and	Science.	Experience in computer
	probabilistic	probability.		programming. Familiar with
	forecasts		Completion of 2 nd	Linux/Unix environment.
			or 3 rd year of	
			study.	Knowledge in Python or parallel
				programming would be an
				advantage.
A6 &	Study on providing	Weather near HKIA is largely affected by the terrain of Lantau	Computer Science,	Genuine interest in aviation,
A1	high fidelity	Island. For example, wind vortices and turbulence are commonly	Mathematics,	meteorology and/or data
	weather data near	seen in HKIA with air flowing around and/or over surrounding	Physics,	science.
	Hong Kong	mountains. This project aims to explore the automatic generation	Earth System	
	International	of high fidelity weather data near HKIA to better support flight	Science.	Experience in computer
	Airport (HKIA).	operations, like the provision of hourly forecast of weather		programming. Familiar with
		elements at the touch down zone, as well as forewarning on the	Completion of 2 nd	Linux/Unix environment.
		occurrence of weather conditions conducive to unsuccessive	or 3 rd year of	
		landing approaches leading to go-arounds.	study.	Knowledge in Python or parallel
				programming would be an
				advantage.

D2(a)	Enhancement of a	This project aims to:	Earth System	Strong academic background
	regional air–sea	(1) Implement three-way Coupled-Ocean-Atmosphere-Wave-	Science,	and IT knowledge.
	coupled modelling	Sediment	Computing	
	system for marine	Transport (COAWST) model to generate marine forecasts for	Science,	Experiences in computer
	forecasting	operational trial;	Oceanography,	programming (e.g. Python, NCL,
			Coastal	MATLAB) under UNIX/Linux
		(2) Enhance the COAWST model to improve forecast of ocean	Engineering,	environment.
		parameters,	Marine	
		particularly under the combined effect of tropical cyclone and	Environmental	Interest in marine
		northeast monsoon;	Science,	environmental science,
			Physics,	oceanography.
		(3) Develop and integrate a data assimilation module to	Mathematics.	
		incorporate observation data		
		into the model analysis field; and		
		(4) Model verification against various types of marine observations		
		and perform model tuning to improve forecast performance.		

D2(b)	Quantitative study	Carry out systematic evaluation of the contribution of sea	Earth System	Strong academic background
	of the effect of sea	temperature and salinity to rapid intensity change of tropical	Science,	and IT knowledge.
	temperature and	cyclones over the South China coastal region based on upper	Computing	
	salinity profiles on	ocean model analysis field, HKO's best-track data of past tropical	Science,	Experiences in computer
	rapid intensity	cyclones, and dynamical parameters derived from NWP model.	Oceanography,	programming (e.g. Python, NCL,
	change of tropical		Coastal	MATLAB) under UNIX/Linux
	cyclones near the		Engineering,	environment.
	South China coastal		Marine	
	areas		Environmental	Interest in marine
	u. 545		Science,	environmental science,
			Physics,	oceanography.
			Mathematics.	
D2(c)	Development of a	This project aims to:	Earth System	Strong academic background
	multi-model	(1) Implement an enhanced algorithm for post-processing of	Science,	with IT knowledge.
	ensemble storm	ECMWF EPS tropical cyclone tracks and intensity prediction to	Computing	
	surge prediction	generate ensemble storm surge forecast at various flood prone	Science,	Knowledge in marine
	system	locations;	Engineering, Land	environmental science /
			surveying and Geo-	oceanography.
		(2) Carry out simulation of past tropical cyclone and monsoon	Informatics,	
		cases using Delft3D Flexible Mesh model and perform model	Physics,	Experiences in computer
		calibration and tuningto improve performance of the model; and	Mathematics.	programming (e.g. Python,
		g , , , , , , , , , , , , , , , , , , ,		QGIS, ArcGIS, JavaScript) under
		(3) Develop an interactive tool for ensemble storm surge		UNIX/Linux environment.
		prediction system to facilitate generation of conditional		
		probabilistic forecasts.		
		probabilistic forecasts.		

D2(d)	Enhancement of	This project aims to:	Earth System	Strong academic background
	GIS-based	(1) Enhance inundation indication maps for storm surges and/or	Science,	with IT knowledge.
	flood/inundation	tsunamis;	Computing	
	indication tool for		Science,	Knowledge in marine
	storm surges, heavy	(2) Explore the extent of flooding due to hydrodynamic processes	Engineering, Land	environmental science /
	rain and tsunamis	such as overtopping waves. Develop data-driven models to predict	surveying and Geo-	oceanography.
	in Hong Kong	flooding due to these processes; and	Informatics,	
			Physics,	Experiences in computer
		(3) Identify high vulnerability regions of Hong Kong under threats	Mathematics.	programming (e.g. Python,
		of coastal flooding and explore automatic identification of routes		QGIS, ArcGIS) under UNIX/Linux
		to safe shelter.		environment.
D3	Evaluate the skills	For sub-seasonal to seasonal forecast (S2S), bridging the gap	Physics,	Strong background in computer
	and explore new	between short-term weather forecasts and long-term climate	Atmospheric	programming (e.g. Python, R,
	prediction tools for	projections, has long been considered a major challenge in climate	Science, Computer	Fortran);
	supporting sub-	forecast. However, some recent research studies have identified	Science and	
	seasonal to	significant potential sources of predictability within this time range.	Engineering, Earth	Experience in data analysis and
	seasonal forecast	The student is expected to:	System Science,	data visualization are required.
		(1) Study the skill and predictability of existing dynamical, statistical	Mathematics,	
		or AI models; and	Statistics, or	Experience in working in Linux
		(2) Explore the potential climate drivers and prediction tools for	related disciplines.	environment would be a plus.
		enhancing sub-seasonal to seasonal forecast.		

F1(a)	Study of extremely	This project aims to:	Meteorology,	Experience in Python
	hot weather (XHOT)	(1) Identify the weather conditions crucial for the occurrence of	Physics, Earth	programming
	conditions in Hong	XHOT;	System Science,	
	Kong and	(2) Develop an AI-based nowcasting method to predict the	Computer Science	Knowledge in AI/ML (practical
	development of	temperature change leading up to XHOT using real-time	and Engineering,	experience in using relevant
	XHOT nowcasting	observations such as satellite, solar radiation, stability, surface	Data Science,	Python libraries, e.g. Scikit-
	guidance using AI	temperature, winds, etc.; and	Mathematics,	learn, TensorFlow, PyTorch,
	and weather	(3) Review and enhance the existing guidance materials on the	Statistics or related	would be preferred)
	observations.	issuance of XHOT Special Weather Tips.	disciplines.	
				Interest in meteorology
			Completion of 2 nd	
			year of study	

F1(b)	Study of rainstorm	In Hong Kong, the dense network of automatic rain gauge is crucial	Meteorology,	Experience and/or knowledge in
	characteristics in	to the monitoring of rainfall distribution. With more and more rain	Physics, Earth	Python programming.
	Hong Kong using	gauges became available in recent years, this project aims to study	System Science,	
	rain gauge data	the spatial and temporal characteristics of rainstorms in Hong	Computer Science	Knowledge and experience in
		Kong using different densities of rain gauges, including frequency	and Engineering,	statistical analysis, machine
		analysis and characterization of extreme rainfall events. Potential	Data Science,	learning, and Linux OS would be
		use of the study results will also be explored, e.g. flooding,	Mathematics,	preferred.
		landslide, traffic, etc.	Statistics or related	
			disciplines.	Genuine interest in meteorology
				and social science.
			Completion of 2 nd	
			year of study	

				1
F12	Application of	HKO has been producing real-time analyses of the 3-dimensional	Computer Science	Knowledge and experience in
	Artificial	atmospheric state containing detailed spatial distributions of	and Engineering,	Python and ML frameworks
	Intelligence (AI) and	dozens of weather parameters, which are ingredients to the	Artificial	required.
	Machine Learning	development of high-impact weather such as rainstorms. This	Intelligence, Data	
	(ML) in high-impact	project will use AI and ML techniques to extract key information	Science, Statistics,	Familiar with Linux
	weather analysis	from the vast analysis dataset and to generate objective short-	Physics,	programming environment.
	and forecasting.	term forecast guidance on high-impact weather events.	Mathematics,	
			Earth System	Interest in meteorology, AI and
			Science or related	ML.
			disciplines.	

				T T
F13(a)	Study of severe	Risk of severe weather may be considered as a product of	Computer Science,	Experience and knowledge in
	weather impact on	vulnerability and exposure. Vulnerability is more related to	Physics,	programming e.g. Python or R
	people in terms of	infrastructure, while exposure relates more to the people subject	Mathematics or	are required.
	population and	to the risk. As a continuation of an ongoing effort to estimate the	Engineering of	
	societal activities	population affected by high-impact weather, this project aims to	related areas.	Knowledge of GIS or html would
		refine the estimation of exposure to severe weather by, for		be an advantage.
		example, data related to common societal activities such as		
		transport, utility or public events, in the general direction of		
		further studying the actual impact of severe weather to people at		
		daily-living context. This would improve our preparedness for		
		coping with severe weather.		

F13(b)	Study the use of	Urbanization has a wide range of effects on the weather, from the	Atmospheric	Experience and knowledge in
	urban-scale	urban heat island effect to the wind channeling effect. Modelling	Science, Computer	programming e.g. Python or R
	weather	requires detailed land use types and geometry of buildings, via,	Science, Physics,	are required.
	observations and	say, urban canopy models. This project aims to explore the use of	Mathematics or	·
	land use data in	available land use data and incorporate the data from smart	related disciplines.	Knowledge of GIS or html would
	forecasting regional	lampposts/microclimate stations installed in the urban area to	·	be an advantage.
	temperature and	look at regional temperature and wind forecasts in response to the		-
	wind	latest NWP roadmap work on "SmartCity" model development.		

F2	Application and	Harness the power of AI and ML to aid forecasters in weather	Computer Science	Knowledge and experience in
	exploration of	forecasting. For example, leveraging image recognition techniques	and Engineering,	Python or other computer
	Artificial	to identify analogous weather cases from historical weather	Artificial	programming language and
	Intelligence (AI) and	imageries and forecasts, and large language models to analyse and	Intelligence, Data	environment (e.g. Linux or
	Machine Learning	draw inspirations from the selected past weather cases, thereby	Science, Statistics,	Unix).
	(ML) in assisting	providing timely recommendations to forecasters.	Physics,	
	weather		Mathematics,	Keen interest in AI and ML.
	forecasting.		Earth System	
			Science or related	
			disciplines.	

F3(a)	Enhancement of	To conduct review of methodologies and enhance:	Earth System	Experience and/or knowledge in
	Automatic Forecast	(1) automatic forecast of weather parameters and probabilistic	Science, Physics,	Python programming required.
	of Regional	prediction for the next few days to 2 weeks ahead, such as the	Computer Science	
	Weather and	products provided in the Automatic Regional Weather Forecast	and Engineering,	Genuine interest in meteorology
	Probabilistic	(ARWF) portal and the Extended Outlook; and	Artificial	and weather prediction using
	Prediction	(2) prediction of the state-of-sky (or weather icon) in ARWF	Intelligence, Data	numerical model data products.
			Science,	
		The student intern will apply:	Mathematics,	Knowledge and experience in
		(1) data products from numerical weather prediction (NWP) models and	Statistics or related	machine learning and using
		ensemble prediction system (EPS) to enhance the current systems	disciplines.	Linux OS preferred.
		and to develop new technique for improving forecasts of extreme		
		weather; and	Completion of 2 nd	
		(2) machine learning model for analyzing the weather photos and	year of study.	
		visibility conditions, enhancing the techniques and verifying model		
		prediction of weather conditions.		

F3(b)	Enhancement of	SWIRLS currently provides nowcasts of severe weather for the next	Earth System	Experience and/or knowledge in
	Severe Weather	couple of hours regarding high-impact significant convective weather	Science, Physics,	Python programming required.
	Nowcast Algorithm	phenomena, including lightning, hail and convective induced gusts.	Computer Science	
	for High-impact	This project aims to:	and Engineering,	Genuine interest in
	Significant	(1) enhance the current methods to identify and track the significant	Artificial	meteorology, and AI/ML
	Convective Weather	convective weather object; and	Intelligence, Data	preferred.
	Phenomena	(2) develop artificial intelligence / machine learning (AI/ML)	Science,	
		algorithm(s) for enhancing severe weather nowcast using multiple	Mathematics,	
		sources of data, including but not limited to surface and upper-air	Statistics or related	
		observations, radar (including dual-polarization Doppler weather	disciplines.	
		radar) and satellite images.		
		The student intern is expected to:		
		(1) review and enhance the severe weather object detection algorithm,		
		study and refine the method(s) in severe weather cases;		
		(2) develop AI/ML algorithm to predict location and intensity of severe		
		weather objects; and		
		(3) conduct studies and verification of the developed algorithms and		
		models using severe weather cases and real-time data.		
		Reference:		
		https://journals.ametsoc.org/view/journals/wefo/35/6/waf-d-20-		
		<u>0028.1.xml</u>		
		https://journals.ametsoc.org/view/journals/wefo/35/4/wafD190242.xml		

F4(a)	Development of	Smart use of the weather-related Big Data, including weather	Computer science,	Experience and knowledge in
	tools for analysing	observations and data of weather impacts, is beneficial for	Physics, Earth	programming e.g. Python and
	weather-related Big	weather forecasting operations by enhancing situational	System Science,	data analysis are required.
	Data and	awareness of weather forecasters and aiding analysis of potential	Mathematics,	
	assessment of	impacts of severe weather such as tropical cyclones and heavy	Statistics or related	Knowledge in development of
	potential weather	rain.	disciplines.	artificial intelligence
	impacts			applications would be an
		In this project, the student will		advantage.
		(1) assist in extracting useful information from the weather-related		
		Big Data, and		
		(2) develop and enhance real-time analysis tools for generating		
		predictive results.		
		Application of artificial intelligence technology might be involved		
		to improve the analysis processes.		

F4(b)	Development of	Every day the Observatory receives numerical weather prediction	Physics, Earth	Knowledge and experience in
	derived numerical	(NWP) model outputs from major meteorological centres in	System Science,	computer programming
	weather prediction	support of its weather forecast operations. While model outputs	Mathematics or	language and environment (e.g.
	model products in	of basic weather parameters, such as wind, temperature and	related disciplines.	Linux/Unix and Python) as well
	support of severe	rainfall amount, have been routinely used in formulating weather		as statistical analysis tool (e.g.
	weather forecasting	forecasts and issuing warnings, derived parameters may offer		R).
		additional guidance for forecasters. For example, "wind shear"		
		calculated from wind speed and direction at different vertical		Keen interest in meteorology.
		levels may be useful for forecasters to assess the likelihood of		
		thunderstorms and associated intense wind gusts.		
		In this project, the student will		
		(1) evaluate the usefulness of various derived parameters from		
		raw NWP outputs in forecasting local weather through verification		
		and case studies.		
		(2) help develop charts and maps of such parameters to enhance		
		the range of NWP products available to forecasters.		

R2	Development and	Arduino-based radiation and meteorological detection device and	Engineering,	Knowledge in basic electronics,
	enhancement of	assembly kit are being used in a STEM education package for	Electronics,	Arduino, ESP32 and 3D-printing
	the radiation and	secondary schools. A new version of the device is being	Physics,	required.
	meteorological	developed by using ESP32 microcontroller unit. It is aimed to	Computer Science,	
	measurement	further develop and optimize the device and its dedicated web-	Earth System	Basic knowledge of
	device and	based platform.	Science or related	programming languages such as
	assembly kit for		disciplines.	HTML5, javascript, php etc.
	school community	The student is expected to:		preferred.
		(1) enhance and optimize the ESP32 and Arduino program;		
		(2) assemble the detection device and perform corresponding		
		quality check;		
		(3) improve the design of device, including hardware resilience,		
		data transfer, power supply etc.;		
		(4) optimize the dedicated web-based platform;		
		(5) study the relationship between the collected data and		
		weather situations, geology etc.; and		
		(6) assist in the outreach educational activities related to the		
		assembly kit (https://youtu.be/i32ETRVvmjQ).		

R3(a)	Enhancement and	The Observatory has established a network of microclimate	Physics, Applied	Knowledge in physical science
	optimization of	stations for urban meteorological measurement. The stations	Physics, Computer	and programming (e.g. Python)
	microclimate	comprise self-developed modules and compact meteorological	Engineering,	are essential.
	station network for	sensors, as well as bollard enclosure using 3D-printing technique.	Electronic	
	urban weather	It is aimed to enhance and optimize the network of microclimate	Engineering, Earth	Knowledge in 3D-printing,
	monitoring	stations.	System Science,	Arduino, electronics and
			Computer Science	statistical analysis are desirable.
		The student is expected to:	or related	
		(1) improve the design of microclimate stations, including	disciplines.	
		hardware resilience, data transfer, power supply &		
		consumption and so on using off-the-shelf and open-sourced		
		electronics;		
		(2) tailor-make parts for bollard-type microclimate stations by 3D-		
		printing;		
		(3) conduct research on microclimate observation data of special		
		weather events; and		
		(4) carry out educational outreach programmes.		
		Remarks:		
		(1) Outdoor duty is required; and		
		(2) Training on microcontroller programming can be provided.		

R3(b)	Studies of urban	Urban meteorological data has been collected for a couple of years	Physics, Applied	Knowledge in physical science
	meteorological data	from microclimate stations and smart lampposts. It is aimed to	Physics,	and programming (e.g. Python)
	from urban	conduct studies on the data to fully utilize the valuable urban	Mathematics,	are essential.
	microclimate	measurements, as well as to enhance data quality assurance	Earth System	
	stations and street	algorithms for urban observation.	Science, Statistics,	Knowledge in statistical analysis,
	level sensors at		Computer Science	machine learning and AI are
	smart lampposts	The student is expected to:	or related	desirable.
		(1) study urban meteorological data of normal and special weather events;	disciplines.	
		(2) conduct data comparison between various types of urban meteorological devices and operational instruments;		
		(3) enhance the data quality assurance algorithms for urban observation; and		
		(4) carry out educational outreach programmes.		
		Remark:		
		Outdoor duty is required.		

R4	Enhancement of	HKO has been utilising atmospheric dispersion models to simulate	Physics, Earth	Knowledge in computing skills
	particle dispersion	dispersion events of radioactive materials to facilitate nuclear	System Science,	and data analysis including Linux
	models and their	emergency assessments. This project aims to further enhance the	Nuclear Science,	and Python programming are
	applications for	applications and set up a model for hydrological dispersion	Computer Science,	preferred.
	radiation	simulations.	or related	
	monitoring and		disciplines.	Knowledge of GIS and
	assessment	The student is expected to:		hydrodynamics would be an
		(1) configure atmospheric and hydrological dispersion modules;	Completion of 2 nd	advantage.
		(2) use dispersion models to simulate the dispersion of radioactive	year of study.	
		materials in pre-set scenarios;		Interest in dispersion modelling
		(3) conduct research on simulated outputs; and		is a plus.
		(4) execute required applications on a high performance computing		
		(HPC) system.		