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Abstract: For the analysis of longitudinal data, Liang, Lu, and Ying (Biometrics

(2009)) proposed a novel joint model to capture the relation between the longi-

tudinal response process and the observation times through latent variables, and

developed an estimation procedure under the assumptions that the distributions

of the latent variables are specified and the censoring times are noninformative.

This may not be true in practice, and here we propose a new estimation procedure

for their model that does not require these assumptions. Estimating equation ap-

proaches are developed for parameter estimation, and the resulting estimators are

shown to be consistent and asymptotically normal. In addition, some procedures

are presented for model selection and model checking. Simulation studies demon-

strate that the proposed method performs well and an application to a bladder

cancer study is provided.
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1. Introduction

Longitudinal data arise frequently in many studies, such as medical follow-

up studies and observational investigations. Various methods for analyzing these

data have been developed; see Laird and Ware (1982); Diggle, Liang, and Zeger

(1994); Lin and Ying (2001); Fitzmaurice, Laird, and Ware (2004); Fan and Li

(2004). Diggle, Liang, and Zeger (1994) summarized the commonly used methods

including estimating equation and random effect model approaches. Lin and

Ying (2001) and Fan and Li (2004) discussed general semiparametric analysis

of longitudinal data. All of these methods need a basic assumption that the

observation and censoring times are noninformative to the longitudinal response

variable.

In many applications, longitudinal processes are subject to nonignorable

dropout or informative censoring; this has been considered by Wu and Car-

roll (1988); Follmann and Wu (1995); Wulfsohn and Tsiatis (1997); Bycott and

Taylor (1998); Henderson, Diggle, and Dobson (2000); Wang and Taylor (2001);

http://dx.doi.org/10.5705/ss.2011.285


572 JIE ZHOU, XINGQIU ZHAO AND LIUQUAN SUN

Roy and Lin (2002); Lin and Ying (2003); Tsiatis and Davidian (2004); Brown,

Ibrahim, and Degruttola (2005); Liu and Ying (2007); Ding and Wang (2008);

Li, Hu, and Greene (2009). In these literatures, observation times are assumed to

be noninformative, but the response process may still be informed by observation

times, even given the covariates. More detailed discussion on this situation can

be found in Lin, Scharfstein, and Rosenheck (2004); Sun et al. (2005); Huang,

Wang, and Zhang (2006); Ryu et al. (2007); Liang, Lu, and Ying (2009); Zhao,

Tong, and Sun (2012). For example, Lin, Scharfstein, and Rosenheck (2004)

considered a marginal regression model and proposed a class of inverse intensity-

of-visit process-weighted estimators; Sun et al. (2005) proposed a joint model

and developed some estimating equation-based estimators; Liang, Lu, and Ying

(2009) suggested a joint model via latent variables and proposed an estimat-

ing equation based on conditional expectations of the latent variable. All these

methods are designed for the situations where either the censoring or observation

times are informative, but not both.

A common situation where informative observation and censoring times oc-

cur is when times are response variable-dependent. Examples include a bladder

cancer study (Byar (1980)) where the occurrence of bladder tumors of a patient

may be related to clinical visit times subject to dropout times or death, and a set

of longitudinal data from a study of children with acute lymphoblastic leukemia

that involves correlated response and observation processes subject to censoring

(Lipsitz et al. (2002)). However, there is little limited research on this kind of

situation. Thus, Sun, Sun, and Liu (2007) presented a joint model for the lon-

gitudinal process, the observation process and the censoring time via a shared

latent variable and Liu, Huang, and O’Quigley (2008) proposed a joint random

effects model for the longitudinal process, the informative observation times, and

a dependent terminal event. It is well known that when the assumption of non-

informative observation times or noninformative censoring time is violated, the

methods relying on such assumption may yield biased results. The purpose here

is to propose a new inference procedure for a class of joint models of longitu-

dinal data with informative observation times as well as informative censoring

time. We borrow the joint random effect model for the longitudinal process and

the observations times proposed by Liang, Lu, and Ying (2009), and develop a

approach that does not rely on the assumptions they require.

The remainder of this paper is organized as follows. Joint modeling of the

longitudinal response, the observation time, and the censoring time through a

latent variable is presented in Section 2. In Section 3, inference procedures about

regression parameters of interest are proposed, and their asymptotic properties

are established. In Section 4, we propose a focused information criterion for

model selection and discuss the assessment of the models described in Section
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2. Some numerical results from simulation studies for evaluating our methods

are reported in Section 5. An application of the proposed methodology to the

bladder cancer study is presented in Section 6, and some concluding remarks are

made in Section 7.

2. Model Specifications

Consider a longitudinal study involving n independent subjects. For subject

i, let Yi(t) denote the longitudinal response process of interest and Xi(t) be

the p× 1 vector of possibly time-dependent covariates. In addition, let Ci be the

censoring time andNi(t) the counting process denoting the number of observation

times before or at time t. The longitudinal process Yi(t) is observed only at the

time points where Ni(t) jumps for t ≤ Ci.

Following Liang, Lu, and Ying (2009), we consider a semiparametric mixed

random effect model for the response process:

Yi(t) = µ0(t) + β′0Xi(t) + u′i Zi(t) + εi(t) , (2.1)

where µ0(t) is an unspecified smooth function of t, β0 is a vector of unknown

regression parameters, Zi(t) is a q-dimensional subvector of (1, Xi(t)
′)′, ui is a

q-dimensional subject-specific random effects, and εi(t) is a measurement error

process. For identifiability of (2.1), the random effects ui are assumed to have

zero mean.

For the observation time process, we assume that, conditional on Xi(·) and
a latent variable vi, Ni(·) is a Poisson process with intensity function

dΛi(t) = vi exp{γ′0Wi}dΛ0(t) , (2.2)

where Λ0(t) is an unspecified baseline cumulative intensity function, Wi is an

r−dimensional time-independent subvector of Xi(t), and γ0 is a vector of un-

known regression parameters. For identifiability of (2.2), we assume that vi is

nonnegative and has mean 1 conditional on Xi(·).
For the joint modeling and analysis of the longitudinal model (2.1) and the

observation time model (2.2), we assume that the association between the two

random effects ui and vi is formulized as E(ui|vi, Xi(·)) = θ0(vi − 1), where θ0
is a q-dimensional parameter. It is also assumed that the censoring time Ci

can depend on ui, vi, and Xi(·) in an arbitrary way but, conditional on vi and

Xi(·), Yi(·), Ni(·) and Ci are mutually independent. In addition, we assume that

E(εi(t)|vi, Xi(·)) = 0.

Remark 1. We allow for a unit component in Zi(t) to make it more general, and

then many joint models via latent variables are included (e.g., Sun, Sun, and Liu

(2007)). For simplicity, we only consider a frailty model with time-independent



574 JIE ZHOU, XINGQIU ZHAO AND LIUQUAN SUN

covariates in (2.2) for the observation process. It is noteworthy that time-

dependent covariates can be included in this model with a more complicated

estimation method (Sun, Song, and Zhou (2011)).

Remark 2. The linear relationship between ui and vi is assumed here for com-

putational simplicity. In fact, the proposed method can be extended to the case

that E(ui|vi, Xi(·)) = f(vi; θ0), where f(vi; θ0) is a q−dimensional vector with

each component a polynomial in vi.

3. Estimation of Regression Parameters

Our main interest is to estimate β0. Note that with the assumptions on ui
and εi(t), (2.1) implies that

E(Yi(t)|Xi(·), vi) = µ0(t) + β′0Xi(t) + θ′0 Zi(t)(vi − 1).

If vi can be observed and γ0 is known, take X∗
i (t) = (Xi(t)

′, Zi(t)(vi − 1))′, and

X̄∗(t; γ) =

∑n
i=1∆i(t)vi exp{γ′Wi}X∗

i (t)∑n
i=1∆i(t)vi exp{γ′Wi}

,

where ∆i(t) = I(Ci ≥ t). Then, following the approach of Lin and Ying (2001),

we can estimate β0 and θ0 using the estimating equation U(β, θ; γ0) = 0, where

U(β, θ; γ) = n−1
n∑

i=1

∫ τ

0
Q(t)[X∗

i (t)− X̄∗(t; γ)]{Yi(t)−Xi(t)
′β − (vi − 1)θ′Zi(t)}

×∆i(t)dNi(t), (3.1)

with the weight function Q(t).

In practice, vi cannot be observed and γ0 is unknown. Under (2.2), given

the random effect vi and covariate Xi(·), the observation process is a nonhomo-

geneous Poisson process. Let mi denote the total number of observations for

subject i before censoring Ci. It follows that, given vi, Xi(·), and Ci, mi has

a Poisson distribution with mean viΛ0(Ci)e
γ′
0Wi . Following Sun, Sun, and Liu

(2007), let F (t) = Λ0(t)/Λ0(τ), α1 = log Λ0(τ) and α0 = (α1, γ
′
0)

′, where τ is the

end point of the study. Then F (t) and α0 can be estimated by

F̂ (t) =
∏

t<s≤τ

(
1−

∑n
i=1 dNi(s)∑n

i=1∆i(s)Ni(s)

)
,

and the solution to the estimating equation

n−1
n∑

i=1

W ∗
i

( mi

F̂ (Ci)
− exp{α′W ∗

i }
)
= 0 (3.2)
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with W ∗
i = (1,W ′

i )
′, respectively.

Note that E(mi|Xi(·), Ci, vi) = viΛ0(Ci)e
γ′
0Wi , so it is natural to estimate vi

by

V̂i =
mi

Λ̂0(Ci)eγ̂
′Wi

,

where Λ̂0(t) = F̂ (t) exp{α̂1}. Replacing vi by V̂i in (3.1), we obtain a plug-in

estimating equation, but it usually provides a biased estimator because such a

plug-in estimating equation has a nonzero mean.

Here is an adjustment of the plug-in estimating equation. Take

hk(m) =

k∏
i=1

(m− i+ 1), h̃k+1(m) =

k+1∏
i=2

(m− i+ 1), for k ≥ 1.

It is easy to show that Ehk(m) = λk for a Poisson distribution random variablem

with mean λ. Note that given Xi(·), Ci, and vi, mi follows a Poisson distribution

with mean λ = viΛ0(Ci)e
γ′
0Wi , so, vki = E(hk(mi)|Xi(·), Ci, vi){Λ0(Ci)e

γ′
0Wi}−k,

k ≥ 1. Since

E(∆i(t)dNi(t)|Xi(·), vi,mi, Ci) = ∆i(t)miΛ0(Ci)
−1dΛ0(t),

we have

E

{
h̃k+1(mi)

{Λ0(Ci)eγ
′
0Wi}k

∆i(t)dNi(t)− vki ∆i(t)dNi(t)
∣∣∣Xi(·), vi

}
= 0, for k ≥ 1.

Motivated by this, we can construct unbiased estimating functions to esti-

mate β0 and θ0. Define

U1(β, θ; Λ0, γ0) =

n∑
i=1

∫ τ

0
Q(t){Xi(t)− X̄(t)}

{
Yi(t)− β′Xi(t)− θ′Zi(t)(Vi1 − 1)

}
×∆i(t)dNi(t),

U2(β, θ; Λ0, γ0) =
n∑

i=1

∫ τ

0
Q(t)

[
{Zi(t)(Vi1 − 1)− Z̄(t)}{Yi(t)− β′Xi(t)}

−θ′Zi(t){Zi(t)(Vi2 − 2Vi1 + 1)− Z̄(t)(Vi1 − 1)}
]
∆i(t)dNi(t),

where Vik = h̃k+1(mi){Λ0(Ci)e
γ′
0Wi}−k,

X̄(t) =

∑n
i=1∆i(t)miΛ0(Ci)

−1Xi(t)∑n
i=1∆i(t)miΛ0(Ci)−1

,

and
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Z̄(t) =

∑n
i=1∆i(t)miΛ0(Ci)

−1Zi(t)(Vi1 − 1)∑n
i=1∆i(t)miΛ0(Ci)−1

.

It is easy to show that E{Ui(β0, θ0; Λ0, γ0)} = 0, i = 1, 2. Thus, β0 and θ0 can be

estimated by the estimating function U(β, θ), where U(β, θ) = (U ′
1(β, θ; Λ̂0, γ̂),

U ′
2(β, θ; Λ̂0, γ̂))

′. Let β̂ and θ̂ be solution to U(β, θ) = 0. To establish the asymp-

totic normality of β̂ and θ̂, we let P1n, P2n and P3n be the empirical distributions

of (Xi, Ci,mi, Ti1, . . . , Ti,mi), (Xi, Ci,mi) and (Xi, Ci,mi, Yi, Ti1, . . . , Ti,mi), re-

spectively. Also let Ṽik, X̃(t) and Z̃(t) be defined in the same way as Vik, X̄(t)

and Z̄(t) with Λ0 and γ0 replaced by Λ̂0 and γ̂. Let

Â(t) =

∫ t

0

∑n
i=1{Yi(u)− β̂′Xi(u)− θ̂′Zi(u)(Ṽi1 − 1)}dNi(u)∑n

i=1∆i(t)miΛ̂(Ci)−1
,

Ĥ(t) =
1

n

n∑
i=1

mi∑
j=1

I(Tij ≤ t), R̂(t) =
1

n

n∑
i=1

mi∑
j=1

I(Tij ≤ t ≤ Ci),

κ̂i(t) =

mi∑
j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)dĤ(u)

R̂2(u)
− I(t < Tij ≤ τ)

R̂(Tij)

}
,

êi =W ∗
i

[ mi

F̂ (Ci)
− exp{α̂′W ∗

i }
]
−
∫
w∗mκ̂i(c)dP2n(w

∗, c,m)

F̂ (c)
,

dM̂i(t) =
{
Yi(t)− β̂′Xi(t)− θ̂′Zi(t)(Ṽi1 − 1)

}
∆i(t)dNi(t)

−∆i(t)miΛ̂0(Ci)
−1dÂ0(t),

and

D̂1 = n−1
n∑

i=1

exp{α̂′W ∗
i }W ∗⊗2

i ,

where v⊗2 = vv′ for a vector v.

Furthermore, let ϕ̂1i denote the vector D̂
−1
1 êi without the first entry and ϕ̂2i

denote the first entry of D̂−1
1 êi. Set φ̂i(t) = κ̂i(t) + ϕ̂2i, b̂i(c, w) = φ̂i(c) + ϕ̂′1iw,

and ξ̂i = (ξ̂′1i, ξ̂2i)
′, where

ξ̂1i=

∫ τ

0
Q(t){Xi(t)− X̃(t)}dM̂i(t)

+

∫ τ

0
Q(t)

[ ∫
{x(t)− X̃(t)} m

Λ̂0(c)
φ̂i(c)I(c ≥ t)dP2n(x, c,m)

]
dÂ0(t)

+

∫ m∑
l=1

Q(tl){x(tl)−X̃(tl)}
h̃2(m)

Λ̂0(c)eγ̂
′w
θ̂′z(tl)b̂i(c, w)dP1n(x, c,m, t1, . . . , tm),
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ξ̂2i =

∫ τ

0
Q(t){Zi(t)(Ṽi1 − 1)− Z̃(t)}

[{
Yi(t)− β̂′Xi(t)

}
∆i(t)dNi(t)

−∆i(t)
mi

Λ̂0(Ci)
dÂ0(t)

]
−
∫ τ

0
Q(t)θ̂′Zi(t)

{
Zi(t)(Ṽi2 − 2Ṽi1 + 1)− Z̃(t)(Ṽi1 − 1)

}
∆i(t)dNi(t)

+

∫ τ

0
Q(t)

[ ∫ mh̃2(m)

Λ̂0(c)2eγ̂
′w
z(t)b̂i(c, w)I(c ≥ t)dP2n(x,m, c)dÂ0(t)

+

∫ τ

0
Q(t)

[ ∫
{z(t)( h̃2(m)

Λ̂0(c)eγ̂
′w

−1)−Z̃(t)} m

Λ̂0(c)
φ̂i(c)I(c ≥ t)dP2n(x, c,m)

]
·dÂ0(t)−

∫ [ m∑
u=1

Q(tu)
h̃2(m)

Λ̂0(c)eγ̂
′w
z(tu)

[
y(tu)− β̂′x(tu)

]
b̂i(c, w)

]
·dP3n(x, c,m, y, t1, . . . , tm)

+

∫ m∑
u=1

Q(tu)θ̂
′z(tu)

[ 2h̃3(m)z(tu)

{Λ̂0(c)eγ̂
′w}2

− h̃2(m)(2z(tu) + Z̃(tu))

Λ̂0(c)eγ̂
′w

]
b̂i(c, w)dP1n.

Theorem 1. Under the regularity conditions (R1)−(R4) stated in the Appendix,

n1/2(β̂ − β0) and n1/2(θ̂ − θ0) have asymptotically a joint normal distribution

with mean zero and a covariance matrix that can be consistently estimated by

Â−1Σ̂Â−1, where

Â =

(
Â11 Â12

Â′
12 Â22

)
, Σ̂ = n−1

n∑
i=1

ξ̂⊗2
i ,

Â11 = n−1
n∑

i=1

∫ τ

0
Q(t){Xi(t)− X̃(t)}⊗2∆i(t)dNi(t) ,

Â12 = n−1
n∑

i=1

∫ τ

0
Q(t)

{
Xi(t)− X̃(t)

}{
Zi(t)(Ṽi1 − 1)− Z̃(t)

}
∆i(t)dNi(t) ,

Â22 = n−1
n∑

i=1

∫ τ

0
Q(t)

{
(Ṽi2 − Ṽ 2

i1)Zi(t)Z
′
i(t) + {Zi(t)(Ṽi1 − 1)− Z̃(t)}⊗2

}
·∆i(t)dNi(t) ,

and ξ̂i is as defined above.

4. Model Selection and Model Checking

In this section, we consider the choice of the random effect covariates and

the assessment of the models described in the previous sections.
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4.1. Model selection

Suppose that we have a vector of covariates Xi(t) in hand, but it is hard

to decide which one to be included in the random effect covariates. In practice,

it may be known that some part of Xi(t) does not have random effects, but

we are not sure about the rest. Let Zi(t) be the part of (1, Xi(t)
′)′ which may

have random effects. The purpose here is to inculde the right part of Zi(t) in

the model. More specifically, model selection tools are proposed to evaluate how

appropriate the setup is for the association between longitudinal outcomes and

informative observation and dropout processes, given that β′0Xi(t) is correctly

pre-specified in model (2.1). Since our main interest is in estimation of covariate

effect β0, it is natural to develop a model selection method focused in this way.

Note that the focused information criterion (FIC, see Claeskens and Hjort (2008,

Chap. 6)) serves this purpose very well but the focused parameter needs to be of

one-dimension in the literature. We generalize FIC to adapt the current problem.

Let

FIC(S) =

p∑
j=1

nE(β̂Sj − β0j)
2,

where β̂Sj is the jth component of β̂S , the estimator of β0 under model S. We

suggest choosing a model by minimizing FIC(S).

Noting that the model selection procedure considered here does not affect the

estimation of parameters in the observation time model, we use the same notation

for all models. Thus we denote by (β̂, θ̂) the estimators of the full model, and

by (β̂S , θ̂S) those for model S, where S is a subset of {1, 2, · · · , q}, and model S

represents the model with random effect covariate ZS(t), the components of Z(t)

with indices belonging to S. Note that when S is the empty set, the model has no

random effect covariates. Let ΠS be the projection matrix such that ΠS(β
′, θ′)′ =

(β′, θ′S)
′ and take AS = ΠSAΠ

′
S , ΣS = ΠSΣΠ

′
S , where A and Σ are defined in

the Appendix. Let Σ2 be the q-dimensional matrix in the lower right corner of

A−1ΣA−1, ΣS
1 be the p-dimensional matrix in the top left corner of A−1

S ΣSA
−1
S ,

and QS be the top p rows of A−1
S ΠSA. Let model Pn be the nth model, under

which (2.1) holds for i = 1, · · · , n, with E(ui|vi, Xi(·)) = (θ0 + δ/
√
n)(vi − 1).

Some properties in a local misspecification setting are summarized here.

Theorem 2. Under (R1)−(R4), we have, under Pn,

Dn ≡
√
n(θ̂ − θ0)⇒N(δ,Σ2),

√
n(β̂S − β0)⇒N(QSδ,Σ

S
1 ).
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The results of this theorem suggest an asymptotic evaluation of FIC(S) in

the local misspecification setting. Thus, under Pn, FIC(S) is approximately

MSE(S, δ) =

p∑
j=1

QSjδδ
′Q′

Sj + tr(ΣS
1 ),

where QSj represents the jth row of QS and tr(ΣS
1 ) is the trace of Σ

S
1 . Note that

DnD
′
n − Σ2 is an asymptotically unbiased estimator of δδ′. Let D̂n =

√
nθ̂, and

Σ̂2, Q̂S , and Σ̂S
1 , be consistent estimators of Σ2, QS , and ΣS

1 , respectively. Then

FIC(S) can be estimated by

F̂IC(S) =

p∑
j=1

max{Q̂Sj(D̂nD̂
′
n − Σ̂2)Q̂

′
Sj , 0}+ tr(Σ̂S

1 ).

Remark 3. Σ̂S
1 can be obtained from Σ̂ as in the definition of ΣS

1 . Note that

the evaluation of Σ̂ depends on β̂ and θ̂. Then Σ̂S
1 can also be obtained by

substituting β̂S and θ̂S into the expression of Σ̂.

Other model selection methods such as the Akaike’s information criterion

(AIC) and the Bayesian information criterion (BIC) could also be considered,

where AIC = 2k/n + log(RSS/n) and BIC = k log(n)/n + log(RSS/n), k is

the dimension of θS , and RSS =
∑n

i=1 M̂i(Ci)
2 is the sum of squared residuals.

However, these selection methods are not designed for obtaining a good estimate

for a focused parameter, and hence they are not appropriate for the purpose of

getting a good estimator for β0. In the simulation section, we will compare the

proposed model selection method with the AIC and BIC criteria.

4.2. Model checking

In this subsection, we propose a test statistic for model assessment. To check

model (2.2), we can use some discussion and simple approaches of Huang and

Wang (2004) for recurrent event data with informative censoring. Here we focus

on checking the goodness of fit of model (2.1). Following Lin et al. (2000), we

consider the cumulative sums of residuals:

F(t, x) = n−1/2
n∑

i=1

∫ t

0
I(Xi(u) ≤ x)dM̂i(u),

where the event {Xi(u) ≤ x} means that each of the p components of Xi(u) is

no larger than the respective component of x.

Take the null hypothesis H0 to be the correct specification of model (2.1)

under the assumption that the random component u′iZi(t) and model (2.2) are
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correctly specified. We show in the Appendix that, under H0, the null distribu-

tion of F(t, x) can be approximated by a zero-mean Gaussian process

F̃(t, x) = n−1/2
n∑

i=1

[∫ t

0

{
I(Xi(u) ≤ x)− Ī(u, x)

}
dM̂i(u)+ψ̂i(t, x)+Γ̂(t, x)′ξ̂i

]
,

(4.1)

where

Ī(t, x) =

∑n
i=1∆i(t)miΛ̂(Ci)

−1I(Xi(t) ≤ x)∑n
i=1∆i(t)miΛ̂(Ci)−1

,

ψ̂i(t, x) =

∫ t

0

[ ∫
{I(x

¯
(u)≤x)−Ī(u, x)} m

Λ̂0(c)
φ̂i(c)I(c ≥ u)dP2n(x

¯
, c,m)

]
dÂ0(u)

+

∫ m∑
l=1

{I(x
¯
(tl) ≤ x)− Ī(tl, x)}

h̃2(m)I(tl ≤ t)

Λ̂0(c)eγ̂
′w

θ̂′z(tl)b̂i(c, w)

·dP1n(x
¯
, c,m, t1, . . . , tm),

Γ̂(t, x) =
1

n

n∑
i=1

∫ t

0

{
I(Xi(u) ≤ x)− Ī(u, x)

}( Xi(u)

Zi(u)(Ṽi1 − 1)

)
dNi(u).

Note that it is difficult to estimate the asymptotic covariance function of

F(t, x) analytically. We appeal to the resampling approach. Let (G1, . . . , Gn)

be independent standard normal variables independent of the data. Then it

can be shown that the null distribution of F(t, x) can be approximated by the

conditional distribution of

F̂(t, x) = n−1/2
n∑

i=1

[ ∫ t

0

{
I(Xi(u) ≤ x)−Ī(u, x)

}
dM̂i(u)+ψ̂i(t, x)+Γ̂(t, x)′ξ̂i

]
Gi.

Thus, one can obtain realizations from F̂(t, x) by repeatedly generating the stan-

dard normal random sample (G1, . . . , Gn) while fixing the observed data. Since

F(t, x) is expected to fluctuate randomly around 0 under H0, a formal lack-

of-fit test may be constructed based on the supremum statistic supt,x |F(t, x)|,
with which the p-value can be obtained by comparing the observed value of

supt,x |F(t, x)| to a large number of realizations from supt,x |F̂(t, x)|.

5. Simulation Studies

Simulation studies were conducted to examine the finite sample properties

of the proposed estimators. In the study, the covariates X1i and X2i were gen-

erated from a Bernoulli distribution with success probability 0.5 and a uniform

distribution U(0, 1), respectively. The latent variable vi followed a gamma distri-

bution with mean 1 and variance 0.5. The censoring time Ci was generated from
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the minimum of C∗
i and τ = 4, where C∗

i follows U(1, 5) or U(1, 1 + v−1), rep-

resenting independent or dependent censoring. Given vi, the observation times

were generated from a Poisson process with intensity cvi exp{0.2X1i − 0.5X2i},
with c = 1.2 and 2.3 corresponding to the independent and dependent censoring.

The average number of observations per subject was about 3 for both cases. The

longitudinal response was generated as

Yi(t) = 1 + 0.5t+ β1X1i + β2X2i + uiZi + ϵi(t),

where Zi = X1i, ui = θ(vi − 1) + N(0, 1), ϵi(t) is normal with mean ψi and

standard deviation 0.5 for all t, and ψi is a standard normal random variable.

We set β2 = 1, β1 = 1,−1 and θ = 1,−1, 0. All simulations were repeated 1,000

times.

The simulation results for estimation of β1 and β2 are reported in Table

1 for two cases of independent and dependent censoring and two sample sizes.

Each part in the table includes the biases (BIAS) given by the sample means

of proposed estimates minus the true values, the sample standard errors (SSE)

of the estimates β̂, the means of the estimated standard errors (ESE) of β̂,

and the empirical 95% coverage probabilities (CP) for β. It can be seen that the

proposed estimation procedures performed well for the situations considered here.

Specifically, the biases of the proposed estimators are close to zero, the proposed

variance estimation procedure provides good estimates, and the 95% empirical

coverage probabilities based on a normal approximation seem reasonable. It is

interesting the estimation results seem to be better when the censoring times are

related to the response and observation processes. The reason may be that the

observation numbers are more stable for the dependent censoring case, since a

subject with larger intensity tends to be censored earlier. Other choices for the

latent variable, such as a log-normal distribution and a combination of gamma

and log-normal distribution, were also considered. The simulation results were

similar and are not presented here.

An additional simulation study was conducted for comparison with the meth-

ods of Liang, Lu, and Ying (2009) (denoted by LLY) and Lin and Ying (2001)

(denoted by LY). We considered the same setups as above. Only the simulation

results for β1 = 1 are presented in Table 2. Note that LY considered the classic

model for the situation where both observation and censoring times are condi-

tionally independent given covariates; LLY considered a more general model that

allows for informative observation times when the censoring time is conditionally

independent given covariates. The simulation results reveal reasonable perfor-

mance of the three methods. That is, the proposed method works well for all

cases considered, but may lose efficiency when the models of LLY or LY hold;

the LLY and LY methods may lead to biased estimates when the corresponding
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Table 1. Simulation results for β1 and β2.

β1 β2
β1 θ n BIAS SSE ESE CP BIAS SSE ESE CP

Independent Censoring
1 1 200 -0.0560 0.3539 0.3295 0.946 0.0120 0.5406 0.5244 0.937

300 -0.0275 0.2505 0.2261 0.934 0.0011 0.4116 0.4036 0.931
-1 200 0.0601 0.3334 0.3112 0.941 0.0120 0.5205 0.5106 0.937

300 0.0409 0.2449 0.2291 0.940 -0.0047 0.4277 0.4053 0.939
0 200 -0.0009 0.2673 0.2570 0.934 0.0028 0.4738 0.4356 0.925

300 -0.0053 0.2100 0.2068 0.937 -0.0201 0.3668 0.3576 0.945
-1 1 200 -0.0685 0.3082 0.2877 0.936 0.0195 0.5296 0.5048 0.931

300 -0.0329 0.2397 0.2243 0.938 0.0091 0.4259 0.4026 0.934
-1 200 0.0554 0.3049 0.2872 0.936 0.0226 0.5353 0.5015 0.936

300 0.0370 0.2341 0.2241 0.946 0.0012 0.4275 0.4008 0.929
0 200 0.0048 0.2635 0.2553 0.942 -0.0110 0.4562 0.4337 0.933

300 0.0108 0.2107 0.2068 0.944 0.0127 0.3692 0.3592 0.941
Dependent Censoring

1 1 200 -0.0280 0.2531 0.2419 0.938 0.0064 0.4634 0.4555 0.943
300 -0.0272 0.2045 0.1951 0.940 0.0098 0.3798 0.3663 0.938

-1 200 0.0481 0.2585 0.2444 0.947 -0.0133 0.4794 0.4509 0.929
300 0.0151 0.1988 0.1934 0.937 -0.0158 0.3766 0.3631 0.934

0 200 -0.0040 0.2293 0.2231 0.935 0.0076 0.4088 0.3940 0.942
300 0.0068 0.1816 0.1792 0.945 -0.0101 0.3404 0.3240 0.933

-1 1 200 -0.0491 0.2480 0.2478 0.952 0.0415 0.5461 0.4895 0.951
300 -0.0176 0.2054 0.1941 0.948 -0.0086 0.3779 0.3649 0.939

-1 200 0.0337 0.3192 0.2823 0.940 -0.0090 0.4901 0.4816 0.947
300 0.0321 0.2050 0.1951 0.930 -0.0054 0.3571 0.3669 0.955

0 200 0.0137 0.2324 0.2237 0.949 -0.0163 0.4214 0.3981 0.938
300 0.0046 0.1811 0.1785 0.949 0.0085 0.3277 0.3223 0.945

independent conditions are violated. Specifically, as shown in Table 2, the LY
estimator seems to be biased when the observation times or the censoring time
is informative and LLY estimator seems to be biased when the censoring time
is informative. The simulation results for other setups were similar and are not
presented here.

We also conducted some simulation studies to evaluate the performance of
the proposed model selection method. For comparison, AIC and BIC methods
were also considered. The data were generated using the same setups as before,
except that here we only took β1 = 1, with θ = 1, 2, 4, and 8. The random effect
covariate Zi was initialized to be (1, X1i, X2i)

′. To assess the performance of
three model selection methods, we calculated two numbers: the average numbers
of zero-estimated coefficients whose true values were zero (labeled as ‘Correct’),
and the average numbers of zero-estimated coefficients whose true values were
non-zero (labeled as ‘Incorrect’). Noting that the FIC method was designed for a
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Table 2. Simulation results for comparison.

Independent Censoring Dependent Censoring
β1 β2 β1 β2

n θ Method BIAS SSE BIAS SSE BIAS SSE BIAS SSE
200 1 ZZS -0.0642 0.3419 0.0162 0.5372 -0.0437 0.2544 0.0024 0.4768

LLY -0.0003 0.2662 0.0102 0.4942 -0.1546 0.2550 0.0255 0.4650
LY 0.4841 0.2934 0.0056 0.5326 0.3308 0.2524 0.0096 0.4631

-1 ZZS 0.0491 0.3049 -0.0200 0.4994 0.0317 0.2517 -0.0136 0.5611
LLY -0.0111 0.2682 -0.0176 0.4779 -0.0195 0.2320 -0.0328 0.4441
LY -0.4906 0.2934 -0.0190 0.5293 -0.3478 0.2506 -0.0163 0.4777

0 ZZS -0.0132 0.2548 0.0053 0.4369 0.0080 0.2358 -0.0137 0.4000
LLY -0.0147 0.2387 0.0019 0.4311 -0.0737 0.2339 -0.0115 0.4015
LY -0.0016 0.2500 -0.0019 0.4347 0.0024 0.2273 -0.0219 0.4022

300 1 ZZS -0.0373 0.2337 0.0101 0.4270 -0.0270 0.1970 -0.0047 0.3895
LLY 0.0019 0.2150 0.0047 0.4076 -0.1538 0.2026 0.0179 0.3799
LY 0.5024 0.2419 0.0011 0.4421 0.3429 0.2091 0.0055 0.3813

-1 ZZS 0.0325 0.2373 0.0045 0.4143 0.0277 0.2072 0.0043 0.3799
LLY -0.0041 0.2197 0.0015 0.3904 -0.0033 0.1980 -0.0138 0.3641
LY -0.4879 0.2378 -0.0010 0.4201 -0.3333 0.2169 0.0015 0.3953

0 ZZS -0.0024 0.2135 0.0133 0.3715 -0.0036 0.1789 0.0232 0.3463
LLY -0.0036 0.2077 0.0124 0.3711 -0.0810 0.1838 0.0249 0.3519
LY -0.0010 0.1957 0.0091 0.3699 -0.0079 0.1802 0.0197 0.3453

Note: ZZS stands for our proposed estimator; LLY stands for the estimator in Liang, Lu, and

Ying (2009); LY stands for the estimator in Lin and Ying (2001).

better estimate of β0, we also calculated the mean squared errors of the resulting
estimator β̂ under the selected model for each method. The simulation results
based on 500 repetitions are reported in Tables 3 and 4. It can be seen from Table
3 that the proposed FIC method tends to select more variables into the model,
while those variables that should be included in the model are rarely missed. In
addition, although AIC and BIC perform better than the FIC method in terms
of the ‘Correct’ number, their performances are worse than the FIC method
with respect to the ‘Incorrect’ number. Also their estimated ‘Incorrect’ numbers
are away from the true value, zero, and this could lead to serious problems.
Furthermore, the results in Table 4 show that the FIC method yielded smaller
mean squared errors of β̂ than AIC and BIC, that is, the FIC method led to
a better estimate of β0. The two evaluations of F̂IC gave similar results for all
cases under consideration.

6. An Application

We applied the proposed methods to the bladder cancer data that have
been analyzed by Sun et al. (2005), Sun, Sun, and Liu (2007) and Liang, Lu,
and Ying (2009), among others. This study was conducted by the Veterans
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Table 3. Simulation results for model selection.

Average number of zero coefficients
Correct Incorrect

n θ F̂ IC1 F̂ IC2 AIC BIC F̂ IC1 F̂ IC2 AIC BIC
Independent Censoring

200 1 0.990 1.026 1.358 1.584 0.238 0.232 0.504 0.542
2 0.864 0.912 1.382 1.580 0.080 0.064 0.464 0.480
4 0.832 0.906 1.472 1.668 0.036 0.040 0.406 0.414
8 0.732 0.866 1.538 1.678 0.050 0.046 0.402 0.406

300 1 0.822 0.868 1.256 1.546 0.090 0.080 0.404 0.434
2 0.694 0.720 1.316 1.572 0.014 0.016 0.356 0.364
4 0.630 0.690 1.400 1.622 0.008 0.008 0.348 0.352
8 0.610 0.648 1.458 1.648 0.002 0.002 0.282 0.286

Dependent Censoring
200 1 0.816 0.960 1.522 1.706 0.196 0.246 0.664 0.694

2 0.638 0.822 1.532 1.772 0.070 0.084 0.560 0.574
4 0.560 0.746 1.618 1.760 0.060 0.068 0.572 0.578
8 0.500 0.696 1.666 1.786 0.020 0.042 0.534 0.542

300 1 0.548 0.640 1.466 1.690 0.074 0.090 0.496 0.538
2 0.372 0.484 1.636 1.800 0.022 0.020 0.528 0.548
4 0.360 0.438 1.590 1.744 0.006 0.016 0.512 0.512
8 0.272 0.388 1.668 1.804 0.006 0.012 0.442 0.450

Note: F̂ IC1 uses β̂ and θ̂ in the estimation of ΣS
1 ; F̂ IC2 uses β̂S and θ̂S in the estimation of

ΣS
1 (see Remark 3). The true numbers for ‘Correct’ and ‘Incorrect’ are 2 and 0, respectively.

Table 4. Mean squared errors for β̂ resulted from different model selection methods.

Independent Censoring Dependent Censoring

n θ F̂ IC1 F̂ IC2 AIC BIC F̂ IC1 F̂ IC2 AIC BIC
200 1 0.387 0.383 0.460 0.452 0.266 0.272 0.328 0.333

2 0.592 0.556 0.932 0.938 0.422 0.422 0.599 0.590
4 1.589 1.578 2.645 2.701 1.099 1.136 1.751 1.777
8 5.599 5.211 8.672 8.889 3.633 3.699 6.629 6.651

300 1 0.258 0.252 0.324 0.333 0.192 0.185 0.228 0.230
2 0.373 0.351 0.619 0.612 0.276 0.284 0.458 0.470
4 1.132 1.088 1.928 1.931 0.692 0.664 1.397 1.409
8 3.300 3.147 6.399 6.370 2.216 2.041 4.803 4.857

Note: F̂ IC1 uses β̂ and θ̂ in the estimation of ΣS
1 ; F̂ IC2 uses β̂S and θ̂S in the estimation of

ΣS
1 (see Remark 3).

Administration Cooperative Urological Research Group. At the beginning of the

study, the patients were randomly assigned to placebo and thiotepa treatment

groups. For each patient, the observed information includes the clinical visit or

observation times (in month), and the number of bladder tumors that occurred
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Table 5. Model selection for the bladder tumor data.

Indicator F̂ IC1 F̂ IC2 AIC BIC Indicator F̂ IC1 F̂ IC2 AIC BIC
(0 0 0) 0.5241 0.4324 1.5906 1.5906 (1 0 0) 0.5363 0.4920 1.5796 1.6083
(0 0 1) 0.5922 0.5950 1.5861 1.6148 (1 0 1) 0.7131 0.7237 1.6142 1.6717
(0 1 0) 0.4910∗ 0.4232∗ 1.5265∗ 1.5552∗ (1 1 0) 0.6633 0.6563 1.6441 1.7016
(0 1 1) 9.7263 8.7640 1.5430 1.6005 (1 1 1) 0.7895 0.7895 1.6267 1.7129

Note: ‘Indicator’ is for inclusion of (1, X1i, X2i) in Zi, for example, (0 0 1) means only X2i

is included in Zi. F̂ IC1 uses β̂ and θ̂ in the estimation of ΣS
1 ; F̂ IC2 uses β̂S and θ̂S in the

estimation of ΣS
1 (see Remark 3). “*” corresponds to the minimum value.

between clinical visits. The data include 85 bladder cancer patients, 47 in the

placebo group and 38 in the thiotepa treatment group. Two baseline covariates

were measured: the number of initial tumors before entering the study and the

size of the largest initial tumor. Here we focus on the effects of thiotepa treatment

and the number of initial tumors on the tumor recurrence process in the presence

of both informative observation times and a dependent terminal event.

For the analysis, we take Yi(t) as the natural logarithm of the number of

observed tumors at time t plus 1 to avoid 0, i = 1, . . . , 85. Let Xi1 = 1 if the

patient was in the thiotepa group and 0 if the patient was in the placebo group,

and Xi2 to be the logarithm of the number of the initial tumors plus 1. Let τ

be the longest observation time (being 53 months). To choose the random effect

covariate Zi, we applied the model selection methods proposed in Section 4 with

an initial choice of Zi = (1, Xi1, Xi2)
′. The values of F̂IC(S), AIC, and BIC for

different submodels S are presented in Table 5, and all of the methods suggested

Zi = Xi1. The application of the proposed method in Section 3 with Q(t) = 1

yielded β̂1 = −0.1451 and β̂2 = 0.1958 with the estimated standard errors of

0.0482 and 0.0515, respectively. These results imply that both the thiotepa

treatment and initial number of tumors have significant effects on the tumor

occurrence process. In particular, the thiotepa treatment significantly reduced

the bladder tumor occurrence rate, and the patients with the higher number

of initial tumors tend to have a higher tumor occurrence rate. In addition, the

clinical visit process seems to be related to the thiotepa treatment, but not to the

initial number of tumors. Moreover θ̂ = −0.1373, with estimated standard error

0.0703, shows that the tumor recurrence process and the observation process

were significantly negatively associated. These results are consistent with those

obtained by Sun et al. (2005) and Liang, Lu, and Ying (2009).

The comparison of of our approach with LY’s and LLY’s methods is sum-

marized in Table 6. The LY estimate for the treatment effect is significantly

overestimated when compared to the other two approaches. The LLY estimate

and ours agree with each other; this can be explained by the fact that the cen-

soring time may be noninformative in this study.
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Table 6. Estimation results with the bladder tumor data.

β1 β2 θ
Method Estimate ESE Estimate ESE Estimate ESE
ZZS -0.145 0.048 0.196 0.052 -0.137 0.0703
LLY -0.127 0.051 0.190 0.051 -0.091 0.037
LY -0.182 0.046 0.189 0.050 – –

We also applied the model checking techniques presented in Section 5 to
assess the adequacy of model (2.1) for the bladder cancer data. We calculated
the statistic F(x, t) and found supx,t |F(x, t)| = 1.4488 with p-value of 0.959,
based on 1,000 realizations, indicating that model (2.1) fits the data well.

7. Concluding Remarks

We have proposed a joint modeling approach for analyzing longitudinal data
via latent variables when both observation times and censoring times are infor-
mative. The joint models are more flexible in the sense that the distributions of
the latent variables are left unspecified. An estimating equation approach was
proposed for parameter estimation, which yields consistent and asymptotically
normal estimators. We also provided a focused information criterion for model
selection and an assessment of model checking. Our estimation procedure can
be easily implemented. Simulation results suggest that the proposed estimation
approach performs well, and an illustrative example was provided.

In the joint models, we have assumed that E(ui|vi, Xi(·)) = θ0(vi − 1), a
linear form, see Section 5. In fact, as long as E(ui|vi, Xi(·)) is a polynomial in
vi, unbiased estimating equations can be constructed. The estimation procedure
can be extended to this case easily. Noting that polynomials can be used to
approximate continuous functions, this extension is useful, but a high order of
the polynomial may lead to something unstable. The simple linear form may be
a good choice for small or moderate sample sizes.

For the model selection, the traditional focused information criterion is based
on the maximum likelihood estimation. Here we extended it to the estimating
equation-based approach. Further studies are needed.
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Appendix : Proofs of Asymptotic Results

We use the notation of the text, and all limits are taken as n→ ∞. Let x̄(t)

and z̄∗(t) be the limit of X̃(t) and Z̃(t), respectively. Write Z∗
i (t) = Zi(t)(vi−1).

To study the asymptotic distributions of β̂ and θ̂, we need the following

regularity conditions.

(R1) P (C ≥ τ, v > 0) > 0, P (C > τδ) = 1, where τδ = inf{t : Λ0(t) > δ} for

some δ > 0, and E{N(τ)2} <∞.

(R2) G(t) = E{vI(C ≥ t) exp(γ′0W )} is a continuous function for t ∈ [0, τ ].

(R3) The weight function Q(t) has bounded variation and converges to a deter-

ministic function q(t) in probability uniformly in t ∈ [0, τ ];

(R4) A is nonsingular, where A =

(
A11 A12

A′
12 A22

)
,

A11 = E
{∫ τ

0
q(t){Xi(t)− x̄(t)}⊗2∆i(t)dNi(t)

}
,

A22 = E
{∫ τ

0
q(t){Z∗

i − z̄∗(t)}⊗2∆i(t)dNi(t)
}
,

A12 = E
{∫ τ

0
q(t){Xi(t)− x̄(t)}{Z∗

i − z̄∗(t)}∆i(t)dNi(t)
}
.

Define R(t)=G(t)Λ0(t), H(t)=
∫ t
0 G(u)dΛ0(u), D1=E{exp{α′

0W
∗
i }W

∗⊗2
i },

κi(t) =

mi∑
j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)dH(u)

R2(u)
− I(t < Tij ≤ τ)

R(Tij)

}
,

ei =W ∗
i

[ mi

F (Ci)
− exp{α′

0W
∗
i }
]
−
∫
w∗mκi(c)dP1(w

∗, c,m)

F (c)
.

where P1(w
∗, c,m) is the joint probability measure of (W ∗

i , Ci,mi). Let ϕ1i denote

the vector D−1
1 ei without the first entry and ϕ2i denote the first entry of D−1

1 ei.

Set φi(t) = κi(t) + ϕ2i, and bi(c, w) = φi(c) + ϕ′1iw.

Proof of Theorem 1. Under (R1) and (R2), it follows from Wang and Taylor

(2001) that

n1/2{Λ̂0(t)− Λ0(t)} = n−1/2Λ0(t)
n∑

i=1

φi(t) + op(1), (A.1)

n1/2{γ̂ − γ0} = n−1/2
n∑

i=1

ϕ1i + op(1). (A.2)
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If

dMi(t) =
{
Yi(t)−β′0Xi(t)−θ′0Zi(t)(Vi1−1)

}
∆i(t)dNi(t)−∆i(t)miΛ0(Ci)

−1dA0(t),

then Mi(t) is a zero-mean process. Hence, using the functional version of the

Law of Large Numbers and Lemma A.1 of Lin and Ying (2001), we get

n−1/2U1(β0, θ0; Λ̂0, γ̂)

= n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}dMi(t)

−n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}

{
Ṽi1 − Vi1

}
θ′0Zi(t)∆i(t)dNi(t)

−n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)−x̄(t)}mi

{
Λ̂0(Ci)

−1−Λ0(Ci)
−1
}
∆i(t)dA0(t)+op(1).

(A.3)

Using (A.1), (A.2), and a Taylor series expansion, we have

n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}{Ṽi1 − Vi1}θ′0Zi(t)∆i(t)dNi(t)

= −n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)} h̃2(mi)

Λ0(Ci)eγ
′
0Wi

×
[
(γ̂ − γ0)

′Wi + Λ0(Ci)
−1{Λ̂0(Ci)− Λ0(Ci)}

]
θ′0Zi(t)∆i(t)dNi(t) + op(1)

= −n−1/2
n∑

i=1

∫ m∑
l=1

q(tl){x(tl)− x̄(tl)}
h̃2(m)θ′0z(tl)

Λ0(c)eγ
′
0w

bi(c, w)

dP1(x, c,m, t1, . . . , tm) + op(1), (A.4)

n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}mi{Λ̂0(Ci)

−1 − Λ0(Ci)
−1}∆i(t)dA0(t)

= −n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)−x̄(t)}

mi

Λ0(Ci)2
{Λ̂0(Ci)−Λ0(Ci)}∆i(t)dA0(t)+op(1)

= −n−1/2
n∑

i=1

∫ τ

0
q(t)

[ ∫
{x(t)− x̄(t)} m

Λ0(c)
φi(c)I(c ≥ t)dP2(x, c,m)

]
dA0(t)

+op(1), (A.5)

where P1(x, c,m, t1, . . . , tm) and P2(x, c,m) is the joint probability measure of

(Xi, Ci,mi, Ti1, . . . , Ti,mi) and (Xi, Ci,mi), respectively. Combining (A.3)−(A.5),
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we obtain

n−1/2U1(β0, θ0) = n−1/2
n∑

i=1

ξ1i + op(1), (A.6)

where

ξ1i =

∫ τ

0
q(t){Xi(t)− x̄(t)}dMi(t)

+

∫ τ

0
q(t)

[ ∫
{x(t)− x̄(t)} m

Λ0(c)
φi(c)I(c ≥ t)dP2(x, c,m)

]
dA0(t)

+

∫ m∑
l=1

q(tl){x(tl)− x̄(tl)}
h̃2(m)

Λ0(c)eγ
′
0w
θ′0z(tl)bi(c, w)dP1(x, c,m, t1, . . . , tm).

Following similar arguments as in the proof of (A.6), we obtain

n−1/2U2(β0, θ0; Λ̂0, γ̂)

= n−1/2
n∑

i=1

∫ τ

0
q(t)

[
{Zi(t)(Vi1 − 1)− z̄(t)}{Yi(t)− β′0Xi(t)}

−θ′0Zi(t){Zi(t)(Vi2 − 2Vi1 + 1)− z̄(t)(Vi1 − 1)}
]
∆i(t)dNi(t)

+n−1/2
n∑

i=1

∫ τ

0
q(t)

{
Ṽi1 − Vi1

}
Zi(t)

[
Yi(t)− β′0Xi(t)

]
∆i(t)dNi(t)

−n−1/2
n∑

i=1

∫ τ

0
q(t)θ′0Zi(t)Zi(t)

{
Ṽi2 − Vi2 − 2(Ṽi1 − Vi1)

}′
Zi(t)∆i(t)dNi(t)

+n−1/2
n∑

i=1

∫ τ

0
q(t)z̄(t)θ′0Zi(t)

{
Ṽi1 − Vi1

}
∆i(t)dNi(t)

−n−1/2
n∑

i=1

∫ τ

0
q(t){Z̃(t)−z̄(t)}

[
Yi(t)−β′0Xi(t)−θ′Zi(t)(Vi1 − 1)

]
∆i(t)dNi(t)

+op(1)

= n−1/2
n∑

i=1

ξ2i + op(1), (A.7)

where

ξ2i =

∫ τ

0
q(t){Zi(t)(Vi1−1)−z̄(t)}

[
{Yi(t)−β′0Xi(t)}dNi(t)−

mi

Λ0(Ci)
∆i(t)dA0(t)

]
−
∫ τ

0
q(t)

{
θ′0Zi(t){Zi(t)(Vi2 − 2Vi1 + 1)− z̄(t)(Vi1 − 1)}∆i(t)dNi(t)

+

∫ τ

0
q(t)

∫
mh̃2(m)

Λ0(c)2eγ
′
0w
z(t)bi(c, w)I(c ≥ t)dP2(x,m, c)dA0(t)
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+

∫ τ

0
q(t)

[ ∫
{z(t)( h̃2(m)

Λ0(c)eγ
′
0w

− 1)− z̄(t)} m

Λ0(c)
φi(c)I(c ≥ t)dP2(x, c,m)

]
dA0(t)

−
∫ [ m∑

u=1

q(tu)
h̃2(m)

Λ0(c)eγ
′
0w
z(tu)

[
y(tu)− β′0x(tu)

]
bi(c, w)

]
dP3(x, c,m, y, t1, . . . , tm)

+

∫ m∑
u=1

q(tu)θ
′
0z(tu)

[ 2z(tu)h̃3(m)

{Λ0(c)eγ
′
0w}2

− (2z(tu) + z̄(tu))h̃2(m)

Λ0(c)eγ
′
0w

]
bi(c, w)

dP1(x, c,m, t1, . . . , tm).

Thus, by (A.6), (A.7) and the Multivariate Central Limit Theorem , n−1/2U(β0,

θ0) converges in distribution to a zero-mean normal random vector with covari-

ance matrix Σ = Eξ⊗2
i , where ξi = (ξ′1i, ξ

′
2i)

′. Note that −n−1∂U(β0, θ0)/∂(β
′, θ′)

converges in probability to A as defined in (R4). A Taylor expansion of U(β̂, θ̂)

at U(β0, θ0) gives

n1/2

(
β̂ − β0
θ̂ − θ0

)
= A−1n−1/2U(β0, θ0) + op(1). (A.8)

Thus, n1/2(β̂−β0) and n1/2(θ̂−θ0) have asymptotically a joint normal distribution

with mean zero and covariance matrix A−1ΣA−1.

Proof of Theorem 2. If

dMi(t, δ) =
{
Yi(t)− β′0Xi(t)−

(
θ0 +

δ√
n

)′
Zi(t)(Vi1 − 1)

}
dNi(t)

−∆i(t)miΛ0(Ci)
−1dA0(t),

thenMi(t, δ) is a zero-mean process under Pn. Hence, using the functional version

of the Law of Large Numbers and Lemma A.1 of Lin and Ying (2001), we get

n−1/2U1(β0, θ0; Λ̂0, γ̂)

=n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}dMi(t, δ) +A12δ

−n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)− x̄(t)}

{
Ṽi1 − Vi1

}
θ′0Zi(t)∆i(t)dNi(t)

−n−1/2
n∑

i=1

∫ τ

0
q(t){Xi(t)−x̄(t)}mi

{
Λ̂0(Ci)

−1−Λ0(Ci)
−1
}
∆i(t)dA0(t)+op(1).



A NEW INFERENCE APPROACH FOR JOINT MODELS OF LONGITUDINAL DATA 591

The last two terms have the same approximations as in the proof of Theorem 1.

Hence

n−1/2U1(β0, θ0; Λ̂0, γ̂) = n−1/2
n∑

i=1

ξ1i(δ) +A12δ + op(1),

where ξ1i(δ) is defined in the same way as ξ1i except that dMi(t) is replaced by

dMi(t, δ). Similarly, we have

n−1/2U2(β0, θ0; Λ̂0, γ̂) = n−1/2
n∑

i=1

ξ2i(δ) +A22δ,

where ξ2i(δ) is defined in the same way as ξ2i except that the second term is

replaced by∫ τ

0
q(t)

(
θ0 +

δ√
n

)′
Zi(t){Zi(t)(Vi2 − 2Vi1 + 1)− z̄(t)(Vi1 − 1)}∆i(t)dNi(t).

The proof can be completed by using a Taylor expansion and Theorem 2.8.10

(the Functional Central Limit Theorem) of van der Vaart and Wellner (1996).

Proof of (4.1). Write

F(t, x) = n−1/2
n∑

i=1

∫ t

0
I(Xi(u) ≤ x)dM̂i(u)

= n−1/2
n∑

i=1

∫ t

0

{
I(Xi(u) ≤ x)− Ī(u, x)

}
dM̂i(u)

= n−1/2
n∑

i=1

∫ t

0

{
I(Xi(u) ≤ x)− Ī(u, x)

}{
Yi(t)− β̂′Xi(t)

−θ̂′Zi(t)(Ṽi1 − 1)
}
∆i(t)dNi(t)

= n−1/2
n∑

i=1

∫ t

0

{
I(Xi(u) ≤ x)− Ī(u, x)

}{
Yi(t)− β′0Xi(t)

−θ′0Zi(t)(Ṽi1 − 1)
}
∆i(t)dNi(t)− Γ̂(t, x)′

√
n((β̂ − β0)

′, (θ̂ − θ0)
′)′.

Then the approximation of the null distribution of F(t, x) follows from argu-

ments similar to those used in the proof of the asymptotic approximation of

n−1/2U1(β0, θ0; Λ̂0, γ̂).
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