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Summary

In this paper, we consider incomplete survival data: partly interval-censored failure time data where
observed data include both exact and interval-censored observations on the survival time of interest. We
present a class of generalized log-rank tests for this type of survival data and establish their asymptotic
properties. The method is evaluated using simulation studies and illustrated by a set of real data from a
diabetes study.

Key words: Asymptotic distribution; Empirical process; Log-rank test; Partial interval-censor-
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1 Introduction

This paper discusses nonparametric comparison of survival functions based on incomplete survival
data: partly interval-censored failure time data (Peto and Peto, 1972; Huang, 1999; Kim, 2003). By
partly interval-censored data, we mean that for some subjects, the exact failure times are observed, but
for the remaining subjects, the survival time of interest is observed only to belong to an interval
instead of being exactly known or right-censored as usually assumed (Li, 2003). Partly interval-cen-
sored data often occur in medical follow-up studies; see the Framingham Heart Disease Study (Odell,
Anderson and D’Agostino, 1992) and the Danish Diabetes Study (Ramlau-Hansen, Jespersen and An-
dersen, 1987).

Survival comparison is usually one of main goals in survival studies. For the case of right-censored
failure time data, there are a number of well-established methods (e.g., Fleming and Harrington, 1991;
Kalbfleisch and Prentice, 2002). For the case of interval-censored failure time data, several authors
have discussed the problem; see Peto and Peto (1972), Finkelstein (1986), Sun (1996, 1998), and Sun,
Zhao and Zhao (2005). In contrast, there exists limited research for the analysis of partly interval-
censored data. Peto and Peto (1972) discussed partly interval-censored data, treating an exact observa-
tion as an interval-censored observation with a very short interval. Turnbull (1976) described a general
scheme of incomplete failure time data and derived self-consistency equations for computing the max-
imum likelihood estimator of the survival functions. Huang (1999) studied asymptotic properties of
the nonparametric maximum likelihood estimator of a distribution function based on partly interval-
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censored data. Kim (2003) used the proportional hazards model for regression analysis of partly inter-
val-censored data.

In this paper, we develop nonparametric test procedures for partly interval-censored data using the
idea behind the generalized log-rank tests for interval-censored data (Sun et al., 2005). The test proce-
dures are presented in Section 2. In Section 3, the asymptotic distributions of the proposed test statis-
tics are derived and Section 4 reports some simulation results for evaluating the proposed methodol-
ogy. They suggest that the approach works well for the practical situations considered. In Section 5
we apply the approach to a set of partly interval-censored data from a diabetes study and Section 6
contains some concluding remarks.

2 Generalized Log-Rank Tests

Consider a survival study that involves n independent subjects from k different populations. Let Tli

denote the survival time of interest for subject i from the l-th population and nl the number of sub-
jects from population l with survival function GlðtÞ and distribution function FlðtÞ ¼ 1� GlðtÞ,
i ¼ 1; . . . ; nl, l ¼ 1; 2; . . . ; k, where n1 þ . . .þ nk ¼ n. Suppose that for the l-th population, we ob-
serve the exact failure times fTli; i ¼ 1; . . . ; nl1g for nl1 subjects and interval-censored failure times
given by fUli;Vli;Dli ¼ IðTli � UliÞ;Gli ¼ IðUli < Tli � VliÞ; i ¼ nl1 þ 1; . . . ; nlg for the remaining
nl2 ð¼ nl � nl1Þ subjects, where Uli and Vli are non-negative random variables independent of Tli such
that Uli < Vli with probability one. For given l and i, where l ¼ 1; . . . ; k, and i ¼ 1; . . . ; nl1, express Tli

as ðTli�; Tli�, but for i ¼ nl1 þ 1; . . . ; nl, define

ðLli;Rli� ¼
ð0;Uli� ; Tli � Uli ;
ðUli;Vli� ; Uli < Tli � Vli ;
ðVli;1Þ ; Tli > Vli :

8<
:

Our goal is to test the hypothesis H0 : G1ðtÞ ¼ . . . ¼ GkðtÞ.
Let G0ðtÞ denote the common survival function under H0 and ĜGnðtÞ its nonparametric maximum like-

lihood estimate (NPMLE), whose determination will be discussed below. Set Nj ¼
Pk

l¼1 nlj; j ¼ 1; 2: To

test H0, motivated by Sun et al. (2005), we propose to use the test statistic Ux ¼ ðUð1Þx ; . . . ;UðkÞx Þ
T ,

where

UðlÞx ¼
N1

nl1

Pnl1

i¼1

xfĜGnðTli�Þg � xfĜGnðTliÞg
ĜGnðTli�Þ � ĜGnðTliÞ

þ N2

nl2

Pnl

i¼nl1þ1

xfĜGnðLliÞg � xfĜGnðRliÞg
ĜGnðLliÞ � ĜGnðRliÞ

and x is a known function over ð0; 1Þ. x will be defined more formally in the next section. Obviously,
different x can be used and will yield different test statistics in practice. When N1 ¼ 0, that is, only
interval-censored failure time data are available, the statistics Ux reduces to that proposed in Sun et al.
(2005), which is a generalization of the log-rank test discussed in Peto and Peto (1972). When
N2 ¼ 0, that is, all the failure times are exactly known, the NPMLE ĜGnð�Þ is 1� F̂Fnð�Þ, where F̂Fnð�Þ is
the empirical distribution function. In this case, letting xðxÞ ¼ x log ðxÞ, we have

Pnl

i¼1

xfĜGnðTli�Þg � xfĜGnðTliÞg
ĜGnðTli�Þ � ĜGnðTliÞ

�
Pnl

i¼1
x0ðĜGnðTliÞÞ

¼
Pnl

i¼1
½1þ log ðĜGnðTliÞÞ�

¼
Pnl

i¼1
½1þ log ð1� Rli=nÞ� ;

where Rli denotes the rank of Tli in the combined sample of size n. When Dli ¼ Gli ¼ 0, we get right-
censored data. Peto and Peto (1972) discussed the test statistic with xðxÞ ¼ x log ðxÞ for right-censored
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data. That is, the proposed test statistics can be seen as generalizations of the log-rank test for exact
failure time data and also right-censored data.

To use Ux, we need to determine ĜGnðtÞ. The simplest method for this, which is used in simulation
studies and the example below, is perhaps the direct application of the Turnbull’s self-consistency
algorithm (Turnbull, 1976). Some other methods can be found in Sun (2006).

3 Asymptotic Distributions

In this section, we will establish the asymptotic distribution of Ux. Let hðxÞ ¼ 1� xð1� xÞ and
assume that limx!0 hðxÞ ¼ limx!1 hðxÞ ¼ c0, where c0 is a constant. Then we can rewrite UðlÞx as

UðlÞh ¼
N1

nl1

Pnl1

i¼1

hfF̂FnðTliÞg � hfF̂FnðTli�Þg
F̂FnðTliÞ � F̂FnðTli�Þ

þ N2

nl2

Pnl

i¼nl1þ1
Dli

hfF̂FnðUliÞg � c0

F̂FnðUliÞ
þ Gli

hfF̂FnðVliÞg � hfF̂FnðUliÞg
F̂FnðVliÞ � F̂FnðUliÞ

�

þ ð1� Dli � GliÞ
c0 � hfF̂FnðVliÞg

1� F̂FnðVliÞ

�
:

Let F0ð�Þ ¼ 1� G0ð�Þ and Hð�Þ and hð�Þ denote the distribution and density functions of ðUi;ViÞ,
respectively. In addition, Let Pnl1 be the empirical measure of the exact observations of the l-th popu-
lation, PN1 the empirical measure of the survival time based on all exact failure time data, P0 the
probability measure of T . Let l2 and n2 denote the Lebesgue measure on R2 and counting measure on
the set fð0; 1Þ; ð1; 0Þ; ð0; 0Þg, respectively. Define

qF0;Hðu; v; d; gÞ ¼ hðu; vÞ fF0ðuÞgd fF0ðvÞ � F0ðuÞgg f1� F0ðvÞg1�d�g

with respect to l2 � n2, which is the density function of ðUi;Vi;Di;GiÞ. Also define
dQ0 ¼ qF0;H dðl2 � n2Þ and for l ¼ 1; . . . ; k,

Qnl2ðu; v; d; gÞ ¼
1

nl2

Pnl

i¼nl1þ1
1fðUli;VliÞ� ðu;vÞ; ðDli;GliÞ¼ ðd;gÞg ;

and

QN2ðu; v; d; gÞ ¼
1

N2

Pk
l¼1

Pnl

i¼nl1þ1
1fðUli;VliÞ� ðu;vÞ; ðDli;GliÞ¼ ðd;gÞg :

Set

fFðtÞ ¼
h0fFðtÞg ; if FðtÞ ¼ Fðt�Þ ;
hfFðtÞg�hfFðt�Þg

FðtÞ�Fðt�Þ ; otherwise

(

and

KFðu; v; d; gÞ ¼ d
hfFðuÞg � c0

FðuÞ þ g
hfFðvÞg � hfFðuÞg

FðvÞ � FðuÞ þ ð1� d� gÞ c0 � hfFðvÞg
1� FðvÞ :

Then UðlÞh can be expressed as

UðlÞh ¼ N1Pnl1ðfF̂Fn
Þ þ N2Qnl2ðKF̂Fn

Þ :

For l ¼ 1; . . . ; k, we assume that ðTli;Uli;VliÞ ði ¼ nl1 þ 1; . . . ; nlÞ satisfy the regularity conditions
given in Groeneboom and Wellner (1992, pp. 81–82). As Huang (1999, pp. 504–505) pointed out, the
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uniform consistency of F̂Fn ¼ 1� ĜGn can be shown as min fN1;N2g ! 1 by using the method of
Groeneboom and Wellner (1992). Also we assume that F0ðtÞ has a support in ½0;M� with a continuous
density function and that there exist 0 < d0; e0 < M=2 and M0 < M such that Pr ðU < d0Þ ¼ 0,
Pr ðU þ e0 � V � M0Þ ¼ 1, 0 < F0ðd0Þ < F0ðM0Þ < 1 and mind0 � t�M0�e0fF0ðt þ e0Þ � F0ðtÞg 6¼ 0,
where M is a constant. Furthermore, suppose that P lim infn!1 min

1�i�nl1

1�l�k

Tli > 0
� � ¼ 1. These con-

ditions usually hold for periodic follow-up studies. The asymptotic distribution of Ux is given in the
following theorem.

Theorem 3.1 Suppose that the above assumptions hold and h has continuous, bounded third-order
derivative on ½a; 1� for any finite positive number a. Also suppose that as n!1, nl1=n! pl1,
nl2=n! pl2 where 0 < pl1 < 1. Let pj ¼

Pk
l¼1 plj, j ¼ 1; 2. Then under H0 and as n!1, Uh=

ffiffiffi
n
p

has
an asymptotic normal distribution with mean zero and covariance matrix S ¼ ðslrÞk�k, where

slr ¼
p1

p1
pl1
� 1

� �
P0ð f 2

F0
Þ þ p2

p2
pl2
� 1

� �
Q0ðK2

F0
Þ ; if l ¼ r;

� p1 P0ð f 2
F0
Þ � p2 Q0ðK2

F0
Þ ; otherwise :

8<
:

The proof of the above theorem is sketched in the appendix. For estimation of S, a natural consis-
tent estimate is given by ŜS ¼ ðŝslrÞk�k, where

ŝslr ¼
N1
n

N1
nl1
� 1

� �
PN1ðf 2

F̂Fn
Þ þ N2

n
N2
nl2
� 1

� �
QN2ðK̂K

2
F̂Fn
Þ ; if l ¼ r ;

� N1
n PN1ðf 2

F̂Fn
Þ � N2

n QN2ðK2
F̂Fn
Þ ; otherwise :

8<
:

The test of the hypothesis H0 can then be performed as follows:

(i) If nl1
N1
¼ nl2

N2
; l ¼ 1; . . . ; k, then we have that

Pk
l¼1

nl1
N1

UðlÞh ¼ 0. Let U0 denote the first ðk � 1Þ
components of Uh and ŜS0 the matrix by deleting the last row and column of ŜS. Then the

hypothesis H0 can be tested by using the statistic c2
0 ¼ Ut

0 ŜS
�1
0 U0=n, which has asymptotically

the c2 distribution with ðk � 1Þ degrees of freedom.
(ii) If the condition in (i) is not satisfied, then the hypothesis H0 can be tested by using the statistic

c2 ¼ Ut
h ŜS
�1

Uh=n, which has asymptotically the c2 distribution with k degrees of freedom.

4 Simulation Study

To investigate the finite sample properties of the proposed procedure, simulation studies were con-
ducted. In the study, we considered the two-sample comparison problem with a total sample size of
n ¼ 200. The survival times Ti’s were generated from the exponential distribution with mean
exp ðaþ bZiÞ, where Zi � Binomial ð1; 0:5Þ, a ¼ 2:0, and b ¼ �0:8;�0:4; 0:0; 0:4; or 0:8. Also it was
supposed that there exist p ¼ 25% or 50% exact observations in the simulated data. To form intervals
for interval-censored observations, we mimicked the set-up commonly used in periodic follow-up
studies. In particular, we first generated C1 and C2 independently from uniform distributions Uð0; q1Þ
and Uð0; q2Þ, respectively. Here q1 and q2 are constants chosen to give pre-specified percentages of
left-censored, interval-censored and right-censored observations among the interval-censored observa-
tions. Then Ui and Vi were defined to be the nearest half unit to C1 and as the maximum of the
nearest half unit to C1 þ C2 and Ui þ 0:5, respectively, and ðLi;Ri� are formed accordingly as dis-
cussed in Section 2. The results reported below are based on 5000 replications.

Table 1 presents the empirical sizes and powers of the proposed test based on simulated partly
interval-censored data with p ¼ 25% exact observations for different values of b. In the table, we
considered four different compositions of left-censored, interval-censored and right-censored observa-
tions for interval-censored observations, which are given in the first column of the table. The second
and third columns give the values of parameters used in the functions xðxÞ ¼ x log ðxÞ xrð1� xÞg. For
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comparison, we also calculated and included in the table the empirical size and power of the param-
etric score test for b ¼ 0 assuming that we know the underlying distribution. It can be seen from the
table that the proposed test procedures seem to have the right size (nominal level 0.05 was used) and
their powers are close to those of the parametric score test for many settings, suggesting that it per-
forms well under these situations. The results for p ¼ 50% are given in Table 2 and similar to those
given in Table 1. It can be seen that when there exist more exact observations, the power generally
increases as expected.

To evaluate the c2 distribution approximation given in the theorem to the finite distribution of the
proposed test statistic, we studied the quantile plots of the test statistic against the c2 variable with
degrees of freedom equal to 1 and 2 under different set-ups. All of them suggest that the c2 approx-
imation works well.

5 Illustrative Example

Now we applied the proposed test procedure to the Steno Memorial Hospital diabetic data from Denmark
that have been discussed by Andersen et al. (1992) and Kim (2003) among others. There generally exist
two main types of diabetes: Type I (insulin-dependent) and Type II (non-insulin-dependent). Type I dia-
betes is the most severe form and occurs mainly at young ages, whereas Type II diabetes is a milder type
and develops later in life. In this study, we consider 731 patients who were younger than 31, diagnosed as
Type I diabetics between 1933 and 1972, and followed until death, emigration, or 31 December 1984.

The data set includes the information on gender, date of birth and age at diagnosis of the disease in the
study. The survival time of interest is time from onset of diabetes to onset of diabetic nephropathy (DN),
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Table 1 Estimated powers and sizes with 25% exact observations.

Percentages
of censoring

r g b

�1.0 �0.8 �0.4 0.0 0.4 0.8 1.0

0 0 1.000 0.996 0.553 0.048 0.524 0.979 0.999
1=3 � 1=3 � 1=3 1 1.000 0.983 0.465 0.042 0.433 0.946 0.993

1 0 0.984 0.901 0.328 0.051 0.336 0.889 0.980
1 0.999 0.973 0.426 0.048 0.446 0.956 0.995

Score test 1.000 0.999 0.686 0.052 0.652 0.996 1.000

0 0 1.000 0.992 0.539 0.051 0.534 0.988 1.000
1=4 � 1=2 � 1=4 1 0.998 0.972 0.438 0.044 0.432 0.958 0.996

1 0 0.977 0.865 0.291 0.048 0.298 0.866 0.973
1 0.997 0.955 0.394 0.049 0.438 0.962 0.996

Score test 1.000 0.998 0.677 0.053 0.664 0.996 1.000

0 0 1.000 0.994 0.566 0.052 0.555 0.989 1.000
1=2 � 1=4 � 1=4 1 0.999 0.987 0.496 0.043 0.478 0.969 0.997

1 0 0.972 0.874 0.329 0.047 0.356 0.907 0.985
1 0.998 0.961 0.431 0.050 0.467 0.969 0.998

Score test 1.000 0.999 0.699 0.054 0.678 0.997 1.000

0 0 1.000 0.991 0.507 0.049 0.457 0.957 0.996
1=4 � 1=4 � 1=2 1 0.998 0.971 0.413 0.044 0.360 0.894 0.979

1 0 0.988 0.915 0.341 0.048 0.320 0.853 0.966
1 0.999 0.972 0.422 0.047 0.382 0.906 0.982

Score test 1.000 0.997 0.629 0.050 0.590 0.987 0.999
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a major complication of Type I diabetes and a sign of kidney failure, which is defined to be present if at
least four samples of 24 h urine at time intervals of at least one month contain more than 0.5 g protein.
All 731 patients considered here had developed DN at time of admission or by the end of study, meaning
that there is no right-censoring in the data. There were 595 exact and 136 interval-censored observations.
Among the 731 patients, there were 277 females, 454 males, 222 aged less than 10, and 509 aged be-
tween 10 and 30. The focus here is on the effects of gender and age on the development of DN.

To test the overall effect of gender and age together, we conducted joint comparison with both
gender and age together. The patients were divided into four groups: males aged less than 10, males
aged between 10 and 30, females aged less than 10 and females aged between 10 and 30 as in Kim
(2003). The test results are summarized in Table 3 by using different xðxÞ ¼ x log ðxÞ xrð1� xÞg. It
can be seen from Table 3 that when ðr; gÞ ¼ ð0; 1Þ, the test suggests that there is no sufficient evi-
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Table 2 Estimated powers and sizes with 50% exact observations.

Percentages
of censoring

r g b

�1.0 �0.8 �0.4 0.0 0.4 0.8 1.0

0 0 1.000 0.997 0.602 0.042 0.585 0.995 1.000
1=3 � 1=3 � 1=3 1 1.000 0.990 0.494 0.042 0.482 0.979 0.998

1 0 0.980 0.878 0.325 0.050 0.327 0.884 0.979
1 0.998 0.965 0.439 0.050 0.433 0.964 0.996

Score test 1.000 0.999 0.736 0.048 0.724 0.998 1.000

0 0 1.000 0.997 0.594 0.044 0.591 0.996 1.000
1=4 � 1=2 � 1=4 1 0.999 0.987 0.487 0.040 0.479 0.979 0.999

1 0 0.972 0.858 0.292 0.050 0.299 0.868 0.972
1 0.996 0.956 0.411 0.049 0.423 0.964 0.997

Score test 1.000 0.999 0.732 0.046 0.732 0.999 1.000

0 0 1.000 0.997 0.602 0.044 0.600 0.996 1.000
1=2 � 1=4 � 1=4 1 1.000 0.990 0.520 0.040 0.509 0.984 0.999

1 0 0.973 0.868 0.316 0.051 0.330 0.904 0.983
1 0.996 0.961 0.430 0.049 0.441 0.971 0.998

Score test 1.000 0.999 0.745 0.047 0.740 0.998 1.000

0 0 1.000 0.996 0.566 0.044 0.536 0.989 0.999
1=4 � 1=4 � 1=2 1 0.999 0.989 0.467 0.044 0.437 0.958 0.997

1 0 0.982 0.889 0.325 0.049 0.310 0.858 0.968
1 0.997 0.969 0.429 0.049 0.389 0.933 0.990

Score test 1.000 0.999 0.702 0.048 0.675 0.998 1.000

Table 3 Analysis results of overall effect of gender and age for
the diabetic data.

r g U0 c2 p-value

0 0 (98.60, 7.99, �13.09, �153.88) 22.50 0.00016
0 1 (10.71, 38.80, �0.33, �61.92) 7.39 0.11677
1 0 (87.89, �30.81, �12.76, �91.96) 47.99 0.00000
1 1 (28.76, �11.12, �5.29, �27.66) 28.42 0.00001
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dence for the overall effect of gender and age together on the development of DN. On the other hand,
the tests with ðr; gÞ ¼ ð0; 0Þ, ð1; 0Þ or ð1; 1Þ indicate that the overall effect is significant.

To test the separate effects of gender and age, we conducted separate comparison with respect
to gender and age. For the age effect, we again divided the patients into two groups, either younger
than 10 or otherwise. The test results are summarized in Table 4 by using different
xðxÞ ¼ x log ðxÞ xrð1� xÞg. It can be seen from Table 4 that when ðr; gÞ ¼ ð0; 0Þ or ð0; 1Þ, the test
procedures suggest that there is no sufficient evidence for either gender or age effect on the onset of
diabetic nephropathy. On the other hand, the method with ðr; gÞ ¼ ð1; 0Þ or ð1; 1Þ indicates that there
exist some or significant effects of both gender and age.

Note that different xðxÞ gave different conclusions. To explain the different p-values in Tables 3 and
4, one needs to study the weight function xðxÞ. When ðr; gÞ ¼ ð0; 0Þ or ð0; 1Þ, it puts more weights to
later survival differences, while xðxÞ with ðr; gÞ ¼ ð1; 0Þ or ð1; 1Þ gives more weights to early survival
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Table 4 Analysis results of separate effect of gender and age for the diabetic data.

Gender

r g U0 c2 p-value

0 0 (69.60, �42.93) 4.58 0.1015
0 1 (21.10, �12.99) 0.64 0.7254
1 0 (48.51, �29.94) 12.75 0.0017
1 1 (15.55, �9.90) 6.04 0.0489

Age

r g U0 c2 p-value

0 0 (26.70, �61.82) 3.72 0.1560
0 1 (2.92, �7.09) 0.40 0.8181
1 0 (23.78, �54.73) 13.22 0.0013
1 1 (7.28, �16.89) 8.32 0.0156
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Figure 1 Estimates of the survival functions of two gender groups with dia-
betes data.
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differences. To further investigate this, we obtained the separate estimates of the survival functions
with respect to gender and age and they are presented in Figures 1 and 2, respectively. They show that
there seem to exist some early survival differences before 20 or 25 years between the two groups with
respect to both gender and age, but no obvious differences after that time. By fitting the proportional
hazards model to the data, Kim (2003) concluded that overall effect of gender and age together was
not significant on the development of diabetic nephropathy.

6 Concluding Remarks

This paper discussed nonparametric comparison of survival functions when partly interval-censored
failure time data are available. For the problem, a class of nonparametric tests was proposed and both
finite sample and asymptotic properties of the proposed tests were established. The proposed test
statistics are generalizations of the log-rank test statistic discussed in Peto and Peto (1972) and those
in Sun et al. (2005) for interval-censored data. In comparison with the test procedures given in Kim
(2003), in addition to the derived asymptotic distribution, the proposed procedure has the advantage
that the calculation of its variance estimate is straightforward as it does not involve inverting the high-
dimensional information matrix. In contrast, the variance estimation given in Kim (2003) originally
involves inverting the high-dimensional information matrix, although that was resolved by his general-
ized missing information principle, which allows one to invert the information matrix that only in-
volves the MLE of the regression parameter.

In comparison with right-censored failure time data, only limited research exists for partly interval-
censored failure time data although they frequently occur in public health and medical studies such as
clinic trials. One obstacle to this is that partial interval-censoring is much harder to deal with than
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right-censoring. One consequence resulting from partial interval-censoring is that counting process and
martingale theory that make the study of right-censored data relatively easy are no longer available for
partly interval-censored data. Instead, the empirical process theory needs to be used to study partly
interval-censored data.

A direction for future research is to study the properties of the test statistic under alternatives for
selection of weight function x. In the cases of exact failure time data and right-censored data, the
local asymptotic power of the generalized log-rank test can be discussed along the lines of Anderson
et al. (1992, pp. 372–379). However, it seems to be difficult to discuss this behavior of the test for
general partly interval-censored data since in this case, ĜGn does not have an explicit expression any-
more and its property still needs to be investigated.

Appendix: Proof of Theorem 3.1

By the assumption

P lim inf
n!1

min
1�i�nl1

1�l�k

Tli > 0
8<
:

9=
;
¼ 1 ;

we have that for any e > 0, there exists a finite positive number t such that

inf
n

P min
1�i�nl1

1�l�k

Tli 	 t
8<
:

9=
;
	 1� e :

Let An ¼ min
1�i�nl1

1�l�k

Tli 	 t
8<
:

9=
;

. Then we have

1ffiffiffi
n
p UðlÞh ¼

N1ffiffiffi
n
p Pnl1ðfF̂Fn

Þ þ N2ffiffiffi
n
p Qnl2ðKF̂Fn

Þ :

Note that

Pnl1ðfF̂Fn
Þ ¼ ðPnl1 � P0Þ fðfF̂Fn

� fF0Þ 1½t;M�g 1An þ ðP0 � PN1Þ fðfF̂Fn
� fF0Þ 1½t;M�g 1An

þ Pnl1ðfF̂Fn
� fF0Þ1Ac

n
� PN1ðfF̂Fn

� fF0Þ 1Ac
n

þ PN1ðfF̂Fn
Þ þ Pnl1ðfF0Þ � PN1ðfF0Þ

and

Qnl2ðKF̂Fn
Þ ¼ ðQnl2 � Q0ÞðKF̂Fn

� KF0Þ þ ðQ0 � QN2ÞðKF̂Fn
� KF0Þ

þ QN2ðKF̂Fn
Þ þ Qnl2ðKF0Þ � QN2ðKF0Þ :

Since for any d0 > 0,

P
N1ffiffiffi

n
p jPnl1ðfF̂Fn

� fF0Þj 1Ac
n
> d0

� �
� PðAc

nÞ < e ;

P
N1ffiffiffi

n
p jPN1ðfF̂Fn

� fF0Þj 1Ac
n
> d0

� �
� PðAc

nÞ < e ;

and by the same arguments as those used in Sun et al. (2005), we have thatffiffiffiffiffiffi
nl2
p ðQnl2 � Q0Þ ðKF̂Fn

� KF0Þ ! 0

and ffiffiffiffiffiffi
N2
p

ðQN2 � Q0Þ ðKF̂Fn
� KF0Þ ! 0
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in probability as n!1, then

1ffiffiffi
n
p UðlÞh ¼

N1ffiffiffi
n
p ðPnl1 � P0Þ fðfF̂Fn

� fF0Þ 1½t;M�g 1An þ
N1ffiffiffi

n
p ðP0 � PN1Þ fðfF̂Fn

� fF0Þ 1½t;M�g 1An

þ N1ffiffiffi
n
p PN1ðfF̂Fn

Þ þ N2ffiffiffi
n
p QN2ðKF̂Fn

Þ
� �

þ N1ffiffiffi
n
p Pnl1ðfF0Þ �

N1ffiffiffi
n
p PN1ðfF0Þ þ

N2ffiffiffi
n
p Qnl2ðKF0Þ �

N2ffiffiffi
n
p QN2ðKF0Þ þ 
pð1Þ :

It is easy to see that Pnl1ðfF0Þ, PN1ðfF0Þ, Qnl2ðKF0Þ and QN2ðKF0Þ are U-statistics and

N1ffiffiffi
n
p Pnl1ðfF0Þ �

N1ffiffiffi
n
p PN1ðfF0Þ þ

N2ffiffiffi
n
p Qnl2ðKF0Þ �

N2ffiffiffi
n
p QN2ðKF0Þ; l ¼ 1; . . . ; k

� �

has the asymptotic distribution given in the theorem. For the term fN1PN1ðfF̂Fn
Þ þ N2QN2ðKF̂Fn

Þg, it
follows from the arguments similar to the Proposition 3.2 of Groeneboom (1996) that
fN1PN1ðfF̂Fn

Þ þ N2QN2ðKF̂Fn
Þg ¼ 0. Thus for the proof, it is sufficient to show that

ffiffiffiffiffiffi
nl1
p ðPnl1 � P0Þ fðfF̂Fn

� fF0Þ 1½t;M�g ! 0

and ffiffiffiffiffiffi
N1
p

ðPN1 � P0Þ fðfF̂Fn
� fF0Þ 1½t;M�g ! 0

in probability as n!1.
From the following property of F̂Fn used by Huang (1999)

sup j F̂FnðtÞ � F0ðtÞj ¼ Opðn�
1
2Þ ;

we have that for t 2 ½t;M�,

fF̂Fn
ðtÞ � fF0ðtÞ ¼ ½h0fF̂FnðtÞg � h0fF0ðtÞg�

þ h00fF̂FnðtÞg fF̂FnðtÞ � F̂Fnðt�Þg þ Opðn�1Þ :
Define

F ¼ fF : F is a distribution function defined on ½0;M�; FðtÞ > 0; Fðt�Þ > 0g ;
G ¼ f½h0fFðtÞg � h0fF0ðtÞg� 1½t;M�ðtÞ : F 2 Fg

and

H ¼ fh00fFðtÞg fFðtÞ � Fðt�Þg1½t;M�ðtÞ : F 2 Fg :

Then F is a P-Donsker from the proof of Corollary 5.1 of Huang and Wellner (1995), and G and H
are P-Donsker by using the bracket entropy theorem of van der Vaart and Wellner (1996, pp. 127–159)
and the arguments similar to those used in Huang and Wellner (1995). It thus follows from the uni-
form asymptotic equicontinuity of the empirical process resulting from the Donsker property (van der
Vaart and Wellner, 1996, pp. 168–171) thatffiffiffiffiffiffi

nl1
p ðPnl1 � P0Þ ðfF̂Fn

� fF0Þ ! 0

and ffiffiffiffiffiffi
N1
p

ðPN1 � P0Þ ðfF̂Fn
� fF0Þ ! 0

in probability as n!1. This completes the proof.
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