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Abstract: In semiparametric and nonparametric statistical inference, the asymp-

totic normality of estimators has been widely established when they are
√
n-con-

sistent. In many applications, nonparametric estimators are not able to achieve this

rate. We have a result on the asymptotic normality of nonparametric M -estimators

that can be used if the rate of convergence of an estimator is n−1/2 or slower. We

apply this to study the asymptotic distribution of sieve estimators of functionals

of a mean function from a counting process, and develop nonparametric tests for

the problem of treatment comparison with panel count data. The test statistics are

constructed with spline likelihood estimators instead of nonparametric likelihood

estimators. The new tests have a more general and simpler structure and are easy

to implement. Simulation studies show that the proposed tests perform well even

for small sample sizes. We find that a new test is always powerful for all the sit-

uations considered and is thus robust. For illustration, a data analysis example is

provided.
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1. Introduction

Weak convergence theory and empirical theory (van der Vaart and Wellner

(1996)) have been widely used to study the asymptotic properties of estimators

in semiparametric and nonparametric models. When the convergence rate of es-

timators is n−1/2, the asymptotic distribution of the estimators can be derived

by using the weak convergence theorem on Z-estimators (van der Vaart and

Wellner, 1996, p.310). For example, Zeng, Lin and Yin (2005) and Zeng and

Lin (2006, 2007) obtained the desired asymptotic normality of the estimators for

the proportional odds model and the semiparametric transformation models by

verifying the conditions of Theorem 3.3.1 of van der Vaart and Wellner (1996).

When the convergence rate is slower than n−1/2, for example, the convergence
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rates of nonparametric maximum likelihood estimators of cumulative distribution

functions based on interval-censored data are n−1/3 (Groeneboom and Wellner

(1992)), this theorem is no longer applicable. For such situations, it is diffi-

cult to derive the asymptotic distribution of nonparametric estimators. Zhang

(2006) and Balakrishnan and Zhao (2009) investigated the asymptotic normality

of functionals of the nonparametric maximum pseudo-likelihood and likelihood

estimators for panel count data. We have a general theorem dealing with the

asymptotic normality of nonparametric M -estimators and we apply this to panel

count models as illustrative examples.

For the nonparametric inference of panel count data, several estimation and

testing methods have been developed. Sun and Kalbfleisch (1995), Wellner and

Zhang (2000), Lu, Zhang and Huang (2007), and Hu, Lagakos and Lockhart

(2009a,b) studied the nonparametric estimation of the mean function of the un-

derlying counting process with panel count data by using isotonic regression tech-

niques, the likelihood approach, the spline likelihood approach, the estimating

equation approach, and the generalized least squares method, respectively; Thall

and Lachin (1988), Sun and Fang (2003), Zhang (2006), and Balakrishnan and

Zhao (2009) presented some nonparametric tests for nonparametric comparison

of mean function of counting process with panel count data. For a comprehensive

review about the analysis of panel count data, see Sun and Zhao (2013).

Lu, Zhang and Huang (2007, 2009) showed that the spline likelihood esti-

mators have a convergence rate slower than n−1/2 but faster than n−1/3, and

are more efficient both statistically and computationally than the nonparametric

maximum likelihood estimators in simulations. In this paper, we explore asymp-

totic normality of functionals of spline likelihood estimators of mean functions,

and propose some new nonparametric tests based on them to compare with ex-

isting tests for the nonparametric comparison of counting processes with panel

count data.

The remainder of the article is organized as follows. In Section 2, we present

a general theorem regarding the asymptotic normality of nonparametric M -

estimators. In Section 3, we briefly review the nonparametric spline-based like-

lihood estimators for panel count data and establish the asymptotic normality

of their functionals. Section 4 presents two classes of nonparametric test statis-

tics for comparing two treatment groups with respect to their mean functions.

The asymptotic normality of the proposed test statistics are established. Section

5 reports some simulation results to assess the finite-sample properties of the

proposed test procedure and to compare them with the tests based on the non-
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parametric likelihood estimators. A data analysis example is provided in Section

6. Section 7 contains some concluding remarks. The proofs of theorems are given

in the Supplementary Materials available at the Statistica Sinica journal website.

2. Asymptotic Distributional Theory of Nonparametric M-Estimators

Suppose X = (X1, . . . , Xn) is a random sample taken from the distribution

of X, and ln(Λ;X) =
∑n

i=1m(Λ;Xi) is an objective function based on X, where

Λ is an unknown function in the class F . Let Fn be the sieve parameter space

satisfying

Fn ⊆ Fn+1 ⊆ · · · ⊆ F , forn ≥ 1.

Assume that Λ̂n is the estimator of Λ0 that maximizes ln(Λ;X) with respect to

Fn.

Suppose Λη is a parametric path in F through Λ, Λη ∈ F and Λη|η=0 = Λ.

Let H = {h : h = ∂Λη

∂η |η=0} and l∞(H) be the space of bounded functionals on

H under the supermum norm ||f ||∞ = suph∈H |f(h)|. For h ∈ H, we define a

sequence of maps Gn of a neighborhood of Λ0, denoted by U , in the parameter

space for Λ into l∞(H) by

Gn(Λ)[h] = n−1 ∂

∂η
ln(Λη;X)|η=0

= n−1
n∑

i=1

∂

∂η
m(Λη;Xi)|η=0

≡ Pnψ(Λ;X)[h],

and take G(Λ)[h] = Pψ(Λ;X)[h], where P and Pn denote the probability mea-

sure and empirical measure with Pf =
∫
fdP and Pnf = n−1

∑n
i=1 f(Xi), re-

spectively.

To establish the asymptotic normality, we need the following conditions.

A1.
√
n(Gn −G)(Λ̂n)[h]−

√
n(Gn −G)(Λ0)[h] = op(1).

A2. G(Λ0)[h] = 0 and Gn(Λ̂n)[h] = op(n
−1/2).

A3.
√
n(Gn−G)(Λ0)[h] converges in distribution to a tight Gaussian process on

l∞(Hr).

A4. G(Λ)[h] is Fréchet-differentiable at Λ0 with a continuous derivative ĠΛ0
[h].

A5. G(Λ̂n)[h]−G(Λ0)[h]− ĠΛ0
(Λ̂n − Λ0)[h] = op(n

−1/2).
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Theorem 1. If A1-A5 hold, then for any h ∈ H,

−
√
nĠΛ0

(Λ̂n − Λ0)[h] =
√
n(Gn −G)(Λ0)[h] + op(1).

Remark 1. The above theorem does not require the Λ̂n be
√
n-consistent,

while the conditions stated in Theorem 3.3.1 of van der Vaart and Wellner (1996)

imply that the estimator has the usual convergence rate n−1/2.

Remark 2. Assumptions A2-A4 are the analytical conditions given in

Theorem 3.3.1 of van der Vaart and Wellner (1996). Assumptions A1 and A5

require the remainder in a Taylor expansion be negligible; they are weaker than

those required by van der Vaart and Wellner (1996).

The theorem can be widely used to establish the asymptotic normality of

nonparametric estimators no matter whether the rate of convergence is n−1/2,

or is slower. We focus on counting process models with panel count data to

illustrate applications of the theorem.

3. Asymptotic Normality of Functionals of Nonparametric Spline-

based Likelihood Estimators for Panel Count Data

3.1. Nonparametric spline-based likelihood estimation

Consider a recurrent event study that consists of n independent subjects

and let Ni(t) denote the number of occurrences of the recurrent event of interest

before or at time t for subject i. For subject i, suppose that Ni(·) is observed only

at finite time points TKi,1 < · · · < TKi,Ki
≤ τ , where Ki denotes the potential

number of observation times, i = 1, . . . , n, and τ is the length of the study.

In the following, we assume that (Ki;TKi,1, . . . , TKi,Ki
) are independent of

the counting processes Ni’s. Let X = (K,T,N), where T = (TK,1, . . . , TK,K) and

N = (N(TK,1), . . . , N(TK,K)). Then {Xi = (Ki,Ti,Ni), i = 1, . . . , n} is a ran-

dom sample of size n from the distribution of X, where Ti = (TKi,1, . . . , TKi,Ki
)

and Ni = (Ni(TKi,1), . . . , Ni(TKi,Ki
)).

Suppose that for each subject, Ni(t) is a non-homogeneous Poisson process

with the mean function Λ(t). The log pseudo-likelihood and the log-likelihood

functions for Λ are

lpsn (Λ) =

n∑
i=1

Ki∑
j=1

[Ni(TKi,j) log {Λ(TKi,j)} − Λ(TKi,j)] ,
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ln(Λ) =

n∑
i=1

Ki∑
j=1

[∆Ni(TKi,j) log {∆Λ(TKi,j)} −∆Λ(TKi,j)] ,

after omitting the parts independent of Λ, where TKi,0 = 0, ∆Λ(TKi,j) = Λ(TKi,j)−
Λ(TKi,j−1), and ∆Ni(TKi,j) = Ni(TKi,j)−Ni(TKi,j−1).

For estimation of the smooth function Λ0(t), we use B-spline function ap-

proximation (Lu, Zhang and Huang (2007)). Let T = {si, i = 1, . . . ,mn + 2l},
with

τ0 = s1 = · · · = sl < sl+1 < · · · < smn+l < smn+l+1 = · · · = smn+2l = τ,

be a sequence of knots that partition [τ0, τ ] into mn + 1 subintervals Ii =

[sl+i, sl+i+1], for i = 0, 1, . . . ,mn. Let Φn be the class of polynomial splines

of order l ≥ 1 with the knot sequence T . Then Φn can be linearly spanned by

the normalized B-spline basis functions {Bi, i = 1, . . . , αqn} with qn = mn + l

(Schumaker (1981)). Define a subclass of Φn,

Ψn =

{
qn∑
i=1

αiBi : 0 ≤ α1 ≤ · · · ≤ αqn

}
.

Following Lu, Zhang and Huang (2007), the estimators Λ̂ps
n and Λ̂n are the values

that maximize lpsn (Λ) and ln(Λ) with respect to Λ ∈ Ψn, respectively.

We denote the spline pseudo-likelihood and spline likelihood estimators of Λ

by Λ̂ps
n =

∑qn
i=1 α̂

ps
inBi and Λ̂n =

∑qn
i=1 α̂inBi.

3.2. Asymptotic normality

Let B denote the collection of Borel sets in R, and let B[0,τ ] = {B ∩ [0, τ ] :

B ∈ B}. Following Wellner and Zhang (2000), define measures µ1 and µ2 as

follows: for B,B1, B2 ∈ B[0,τ ],

µ1(B) =

∞∑
k=1

P (K = k)

k∑
j=1

P (Tk,j ∈ B|K = k)

= E





K∑
j=1

I(TK,j ∈ B)



 ,

µ2(B1 ×B2) =

∞∑
k=1

{P (K = k)

k∑
j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k)}
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= E




K∑
j=1

I(TK,j−1 ∈ B1, TK,j ∈ B2)


 .

Define the L2-metrics d1 and d2 as

d1(Λ1,Λ2) =

{∫
|Λ1(t)− Λ2(t)|2dµ1(t)

}1/2

,

d2(Λ1,Λ2) =

{∫ ∫
|(Λ1(u)− Λ1(v))− (Λ2(u)− Λ2(v))|2dµ2(u, v)

}1/2

.

To establish the asymptotic properties of the estimators, we need the follow-

ing regularity conditions.

C1. The maximum spacing of the knots, ∆ ≡ maxl+1≤i≤mn+l+1 |si − si−1| =
O(n−v) with mn = O(nv) for 0 < v < 0.5. There exists a constant M > 0

such that ∆/δ ≤ M uniformly in n, where δ ≡ minl+1≤i≤mn+l+1 |si − si−1|.

C2. The true mean function Λ0 is a nondecreasing function over [0, τ ] with

Λ(0) = 0, with a bounded rth derivative in [0, τ ] for r ≥ 1, and Λ′
0(t) ≥ a0

for some a0 ∈ (0,∞).

C3. There exists a positive integer K0 such that P (K ≤ K0)=1.

C4. For some positive constant k0, E[exp{k0N(τ)}] < ∞.

C5. P (∩K
j=1{TK,j ∈ [τ0, τ ]}) = 1 with τ0 > 0, Λ0(τ0) > 0, and Λ0(τ) ≤ M0 for

some constant M0 > 0.

C6. µ1(τ0) > 0, and for all τ0 < τ1 < τ2 < τ , µ1((τ1, τ2)) > 0.

C7. There exists a positive constant s0 such that P (min1≤j≤K{TK,j−TK,j−1} ≥
s0) = 1.

C8. µ1 is absolutely continuous with respect to Lebesgue measure, with deriva-

tive µ̇1.

C9. µ2 is absolutely continuous with respect to Lebesgue measure, with deriva-

tive µ̇2.

C10. If with probability 1, h(TK,j) = 0, j = 1, . . . ,K for some h, then h = 0.

Conditions C1–C5 and C7 are required by Lu, Zhang and Huang (2007); con-

dition C6 is required by Balakrishnan and Zhao (2009). Conditions C8 and C9
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are similar to C11 in Wellner and Zhang (2007). Condition C10 is needed for

identifiability of the model.

Theorem 2. Suppose C1-C6 and C10 hold, and let

Hr =
{
g(·) : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all τ0 ≤ s, t ≤ τ

}
,

where g(r−1) is the (r − 1)th derivative function of g, and c0 is a constant.

(i) If C8 holds, then for h ∈ Hr,

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}dh(t) →d N(0, σ2
ps), (3.1)

where σ2
ps is given at (S2.4) of Supplementary Materials.

(ii) If C7 and C9 hold, then for h ∈ Hr,

√
n

∫
{Λ̂n(t)− Λ0(t)}dh(t) →d N(0, σ2), (3.2)

where σ2 is given at (S2.7) of Supplementary Materials.

Corollary 1. Suppose the conditions in Theorem 2 hold.

(i)
√
n

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t) →d N(0, σ2

1), (3.3)

where h ∈ Hr, and

σ2
1 = E




K∑
j=1

h(TK,j)
N(TK,j)− Λ0(TK,j)

Λ0(TK,j)



2

. (3.4)

(ii)
√
n

∫
{h(u)− h(v)}{Λ̂n(u)− Λ̂n(v)} − {Λ0(u)− Λ0(v)}

{Λ0(u)− Λ0(v)}
dµ2(u, v)

→d N(0, σ2
2), (3.5)

where h ∈ Hr, and

σ2
2 = E




K∑
j=1

∆h(TK,j)
∆N(TK,j)−∆Λ0(TK,j)

∆Λ0(TK,j)



2

. (3.6)
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}1/2

.

To establish the asymptotic properties of the estimators, we need the follow-

ing regularity conditions.

C1. The maximum spacing of the knots, ∆ ≡ maxl+1≤i≤mn+l+1 |si − si−1| =
O(n−v) with mn = O(nv) for 0 < v < 0.5. There exists a constant M > 0

such that ∆/δ ≤ M uniformly in n, where δ ≡ minl+1≤i≤mn+l+1 |si − si−1|.

C2. The true mean function Λ0 is a nondecreasing function over [0, τ ] with

Λ(0) = 0, with a bounded rth derivative in [0, τ ] for r ≥ 1, and Λ′
0(t) ≥ a0

for some a0 ∈ (0,∞).

C3. There exists a positive integer K0 such that P (K ≤ K0)=1.

C4. For some positive constant k0, E[exp{k0N(τ)}] < ∞.

C5. P (∩K
j=1{TK,j ∈ [τ0, τ ]}) = 1 with τ0 > 0, Λ0(τ0) > 0, and Λ0(τ) ≤ M0 for

some constant M0 > 0.

C6. µ1(τ0) > 0, and for all τ0 < τ1 < τ2 < τ , µ1((τ1, τ2)) > 0.

C7. There exists a positive constant s0 such that P (min1≤j≤K{TK,j−TK,j−1} ≥
s0) = 1.

C8. µ1 is absolutely continuous with respect to Lebesgue measure, with deriva-

tive µ̇1.

C9. µ2 is absolutely continuous with respect to Lebesgue measure, with deriva-

tive µ̇2.

C10. If with probability 1, h(TK,j) = 0, j = 1, . . . ,K for some h, then h = 0.

Conditions C1–C5 and C7 are required by Lu, Zhang and Huang (2007); con-

dition C6 is required by Balakrishnan and Zhao (2009). Conditions C8 and C9
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are similar to C11 in Wellner and Zhang (2007). Condition C10 is needed for

identifiability of the model.

Theorem 2. Suppose C1-C6 and C10 hold, and let

Hr =
{
g(·) : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all τ0 ≤ s, t ≤ τ

}
,

where g(r−1) is the (r − 1)th derivative function of g, and c0 is a constant.

(i) If C8 holds, then for h ∈ Hr,

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}dh(t) →d N(0, σ2
ps), (3.1)

where σ2
ps is given at (S2.4) of Supplementary Materials.

(ii) If C7 and C9 hold, then for h ∈ Hr,

√
n

∫
{Λ̂n(t)− Λ0(t)}dh(t) →d N(0, σ2), (3.2)

where σ2 is given at (S2.7) of Supplementary Materials.

Corollary 1. Suppose the conditions in Theorem 2 hold.

(i)
√
n

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t) →d N(0, σ2

1), (3.3)

where h ∈ Hr, and

σ2
1 = E




K∑
j=1

h(TK,j)
N(TK,j)− Λ0(TK,j)

Λ0(TK,j)



2

. (3.4)

(ii)
√
n

∫
{h(u)− h(v)}{Λ̂n(u)− Λ̂n(v)} − {Λ0(u)− Λ0(v)}

{Λ0(u)− Λ0(v)}
dµ2(u, v)

→d N(0, σ2
2), (3.5)

where h ∈ Hr, and

σ2
2 = E




K∑
j=1

∆h(TK,j)
∆N(TK,j)−∆Λ0(TK,j)

∆Λ0(TK,j)



2

. (3.6)

937



8 XINGQIU ZHAO AND YING ZHANG

Remark 3. These results can be used to construct new tests for the prob-

lem of multi-sample nonparametric comparison of counting processes with panel

count data.

Remark 4. We can show that under some regularity conditions, (3.1)-(3.6)

hold for the two nonparametric likelihood-based estimators proposed by Wellner

and Zhang (2000).

4. Nonparametric Two-sample Tests

Consider a longitudinal study with some recurrent event and n independent

subjects from two groups, nl in the lth group with n1+n2 = n. Let Ni(t) denote

the counting process arising from subject i and Λl(t) denote the mean function

of the counting process corresponding to group l, l = 1, 2. Here, the problem

of interest is to test the null hypothesis H0 : Λ1(t) = Λ2(t). Suppose subject i

is observed only at distinct time points 0 < TKi,1 < · · · < TKi,Ki
and that no

information is available about Ni(t) between them.

Let Λ̂ps
l and Λ̂l denote the spline pseudo-likelihood and spline likelihood

estimators of Λl based on samples from all the subjects in the lth group. Let

Λ0(t) denote the common mean function of the Ni(t)’s under H0, and let Λ̂ps
0 and

Λ̂0 be the spline pseudo-likelihood and spline likelihood estimators of Λ0 based

on the pooled data. Clearly, µ1(t) and µ2(u, v) can be consistently estimated by

µ̂1(t) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j ≤ t),

µ̂2(u, v) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j−1 ≤ v, TKi,j ≤ u),

respectively.

To test the hypothesis H0, Zhang (2006) and Balakrishnan and Zhao (2009)

proposed to use the two statistics

UZ =
√
n

∫ τ

0
Wn(t){Λ̂1,mple(t)− Λ̂2,mple(t)}dµ̂1(t),

UBZ =
1√
n

n∑
i=1



Ki−1∑
j=1

Wn(TKi,j)Λ̂0,mle(TKi,j)
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×

{(
∆Λ̂1,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
−

∆Λ̂1,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)

−

(
∆Λ̂2,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
−

∆Λ̂2,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)}

+Wn(TKi,Ki
)Λ̂0,mle(TKi,Ki

)

×

{(
1−

∆Λ̂1,mle(TKi,Ki
)

∆Λ̂0,mle(TKi,Ki
)

)
−

(
1−

∆Λ̂2,mle(TKi,Ki
)

∆Λ̂0,mle(TKi,Ki
)

)}]
,

where Wn(t) is a bounded weight process, Λ̂l,mple and Λ̂l,mle denote the maximum

pseudo-likelihood and maximum likelihood estimators of Λl based on samples

from all the subjects in the lth group, and Λ̂0,mle denotes the maximum likelihood

estimator of Λ0 based on the pooled data. We propose the two test statistics

Ups
n =

√
n

∫
hpsn (t)

Λ̂ps
1 (t)− Λ̂ps

2 (t)

Λ̂ps
0 (t)

dµ̂1(t)

=
1√
n

n∑
i=1

Ki∑
j=1

hpsn (TKi,j)
Λ̂ps
1 (TKi,j)− Λ̂ps

2 (TKi,j)

Λ̂ps
0 (TKi,j)

,

Un =
√
n

∫
{hn(u)− hn(v)}

{Λ̂1(u)− Λ̂1(v)} − {Λ̂2(u)− Λ̂2(v)}
{Λ̂0(u)− Λ̂0(v)}

dµ̂2(u, v)

=
1√
n

n∑
i=1

Ki∑
j=1

{∆hn(TKi,j)}
∆Λ̂1(TKi,j)−∆Λ̂2(TKi,j)

∆Λ̂0(TKi,j)
,

where hpsn (t) and hn(t) are bounded weight processes. For the propose of compar-

ison, we consider three choices of the weight processes hpsn (t) and hn(t): h
ps
n (t) =

Λ̂ps
0 (t)W

(k)
n (t) and hn(t) = Λ̂0(t)W

(k)
n (t), where W (1)(t) = 1, W

(2)
n (t) =

∑n
i=1 I

(t ≤ TKi,Ki
), and W

(3)
n (t) = 1 − W

(2)
n (t) =

∑n
i=1 I (t > TKi,Ki

). Other choices

of weight processes can be made. For example, if we take hn(t) = {Λ̂0(t)}2, the
structure of Ups

n is similar to UZ , while the structure of Un is much simpler than

that of UBZ .

Theorem 3. Suppose the conditions of Theorem 2 hold. Suppose that hn(t)’s

are bounded weight processes and that there exists a bounded function h(t) such

that h ∈ Hr, and

[∫ τ

0
{hn(t)− h(t)}2dµ1(t)

]1/2
= op(n

−1/2(1+2r)).

938



8 XINGQIU ZHAO AND YING ZHANG

Remark 3. These results can be used to construct new tests for the prob-

lem of multi-sample nonparametric comparison of counting processes with panel

count data.

Remark 4. We can show that under some regularity conditions, (3.1)-(3.6)

hold for the two nonparametric likelihood-based estimators proposed by Wellner

and Zhang (2000).

4. Nonparametric Two-sample Tests

Consider a longitudinal study with some recurrent event and n independent

subjects from two groups, nl in the lth group with n1+n2 = n. Let Ni(t) denote

the counting process arising from subject i and Λl(t) denote the mean function

of the counting process corresponding to group l, l = 1, 2. Here, the problem

of interest is to test the null hypothesis H0 : Λ1(t) = Λ2(t). Suppose subject i

is observed only at distinct time points 0 < TKi,1 < · · · < TKi,Ki
and that no

information is available about Ni(t) between them.

Let Λ̂ps
l and Λ̂l denote the spline pseudo-likelihood and spline likelihood

estimators of Λl based on samples from all the subjects in the lth group. Let

Λ0(t) denote the common mean function of the Ni(t)’s under H0, and let Λ̂ps
0 and

Λ̂0 be the spline pseudo-likelihood and spline likelihood estimators of Λ0 based

on the pooled data. Clearly, µ1(t) and µ2(u, v) can be consistently estimated by

µ̂1(t) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j ≤ t),

µ̂2(u, v) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j−1 ≤ v, TKi,j ≤ u),

respectively.

To test the hypothesis H0, Zhang (2006) and Balakrishnan and Zhao (2009)

proposed to use the two statistics

UZ =
√
n

∫ τ

0
Wn(t){Λ̂1,mple(t)− Λ̂2,mple(t)}dµ̂1(t),

UBZ =
1√
n

n∑
i=1



Ki−1∑
j=1

Wn(TKi,j)Λ̂0,mle(TKi,j)
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×

{(
∆Λ̂1,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
−

∆Λ̂1,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)

−

(
∆Λ̂2,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
−

∆Λ̂2,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)}

+Wn(TKi,Ki
)Λ̂0,mle(TKi,Ki

)

×

{(
1−

∆Λ̂1,mle(TKi,Ki
)

∆Λ̂0,mle(TKi,Ki
)

)
−

(
1−

∆Λ̂2,mle(TKi,Ki
)

∆Λ̂0,mle(TKi,Ki
)

)}]
,

where Wn(t) is a bounded weight process, Λ̂l,mple and Λ̂l,mle denote the maximum

pseudo-likelihood and maximum likelihood estimators of Λl based on samples

from all the subjects in the lth group, and Λ̂0,mle denotes the maximum likelihood

estimator of Λ0 based on the pooled data. We propose the two test statistics

Ups
n =

√
n

∫
hpsn (t)

Λ̂ps
1 (t)− Λ̂ps

2 (t)

Λ̂ps
0 (t)

dµ̂1(t)

=
1√
n

n∑
i=1

Ki∑
j=1

hpsn (TKi,j)
Λ̂ps
1 (TKi,j)− Λ̂ps

2 (TKi,j)

Λ̂ps
0 (TKi,j)

,

Un =
√
n

∫
{hn(u)− hn(v)}

{Λ̂1(u)− Λ̂1(v)} − {Λ̂2(u)− Λ̂2(v)}
{Λ̂0(u)− Λ̂0(v)}

dµ̂2(u, v)

=
1√
n

n∑
i=1

Ki∑
j=1

{∆hn(TKi,j)}
∆Λ̂1(TKi,j)−∆Λ̂2(TKi,j)

∆Λ̂0(TKi,j)
,

where hpsn (t) and hn(t) are bounded weight processes. For the propose of compar-

ison, we consider three choices of the weight processes hpsn (t) and hn(t): h
ps
n (t) =

Λ̂ps
0 (t)W

(k)
n (t) and hn(t) = Λ̂0(t)W

(k)
n (t), where W (1)(t) = 1, W

(2)
n (t) =

∑n
i=1 I

(t ≤ TKi,Ki
), and W

(3)
n (t) = 1 − W

(2)
n (t) =

∑n
i=1 I (t > TKi,Ki

). Other choices

of weight processes can be made. For example, if we take hn(t) = {Λ̂0(t)}2, the
structure of Ups

n is similar to UZ , while the structure of Un is much simpler than

that of UBZ .

Theorem 3. Suppose the conditions of Theorem 2 hold. Suppose that hn(t)’s

are bounded weight processes and that there exists a bounded function h(t) such

that h ∈ Hr, and

[∫ τ

0
{hn(t)− h(t)}2dµ1(t)

]1/2
= op(n

−1/2(1+2r)).
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If n1/n → p as n → ∞, where 0 < p < 1, then, under H0 : Λ1 = Λ2 = Λ0,

(i) Ups
n has an asymptotic normal distribution N(0, σ2

ps), where

σ2
ps =

(
1

p
+

1

1− p

)
σ2
1

with σ2
1 as given as (3.4);

(ii) Un has an asymptotic normal distribution N(0, σ2), where

σ2 =

(
1

p
+

1

1− p

)
σ2
2

with σ2
2 as given as (3.6);

(iii) If

max
1≤i≤n

E




Ki∑
j=1

{hn(TKi,j)− h(TKi,j)}
2


 −→ 0,

then σ2
1, σ

2
2 can be consistently estimated by

σ̂2
1 =

1

n

n∑
i=1




Ki∑
j=1

hn(TKi,j)
Ni(TKi,j)− Λ̂ps

0 (TKi,j)

Λ̂ps
0 (TKi,j)



2

,

σ̂2
2 =

1

n

n∑
i=1




Ki∑
j=1

∆hn(TKi,j)
∆Ni(TKi,j)−∆Λ̂0(TKi,j)

∆Λ̂0(TKi,j)



2

, respectively.

Remark 5. For the asymptotic normality of the proposed test statistics,

we do not need the condition that h ◦ Λ−1
0 is a bounded Lipschitz function as

required by Zhang (2006) and Balakrishnan and Zhao (2009).

Remark 6. We can show that, under some regularity conditions, (i)-(iii)

hold if the spline pseudo-likelihood and spline likelihood estimators in the ex-

pression of Ups
n and Un are replaced with the nonparametric maximum pseudo-

likelihood and nonparametric maximum likelihood estimators proposed by Well-

ner and Zhang (2000), respectively.

5. Simulation Study

We conducted a simulation study to investigate the finite-sample properties
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of the proposed test statistics and to make comparisons with those of the tests

presented by Zhang (2006) and Balakrishnan and Zhao (2009). We let T ps =

Ups
n /σ̂ps and T = Un/σ̂, where

σ̂ps =

{(
n

n1
+

n

n2

)
σ̂2
1

}1/2

,

σ̂ =

{(
n

n1
+

n

n2

)
σ̂2
2

}1/2

,

and Ups
n , Un, and σ̂2

l be as given in Section 4. By Theorem 3, the null hy-

pothesis can be tested by T ps and T , which have asymptotic standard normal

distributions. For the generation of panel count data, denoted by {ki, tij , nij , j =

1, . . . , ki, i = 1, . . . , n}, we first generated the number of observation times ki
from the uniform distribution U{1, . . . , 10}, and then, given ki, we took the

observation times tij ’s to be the order statistics of a random sample of size

ki drawn from U{1, . . . , 12}. To generate the nij ’s, we assumed that, given a

nonnegative random variable γi, Ni(t) is a Poisson process with mean function

Λi(t|γi) = E(Ni(t)|γi). Let Sl denote the set of indices for subjects in group l,

l = 1, 2. For comparison, we considered cases representing two patterns of the

mean functions:

Case 1. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γit exp(β) for i ∈ S2.

Case 2. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γi
√
βt for i ∈ S2.

As shown in Figures 1-2 of Balakrishnan and Zhao (2009), the two mean

functions do not overlap in Case 1 and they cross over in Case 2.

For each case, we took γi = 1 and γi ∼ Gamma(2, 1/2) corresponding to

Poisson and mixed Poisson processes, respectively. For each setting, we took

n1 = 30, n2 = 50 and n1 = 50, n2 = 70. We considered the weight processes

h(j)n (t) = Λ̂0(t)W
(j)
n (t), j = 1, 2, 3, with

W (1)
n (t) = 1, W (2)

n (t) =
1

n

n∑
i=1

I(t ≤ tki,ki
), and

W (3)
n (t) =

1

n

n∑
i=1

I(t > tki,ki
),

and h
(4)
n (t) = {Λ̂0(t)}2, denoting the corresponding tests by Tj with h

(j)
n (j =

940



10 XINGQIU ZHAO AND YING ZHANG

If n1/n → p as n → ∞, where 0 < p < 1, then, under H0 : Λ1 = Λ2 = Λ0,
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ps), where

σ2
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)
σ2
1
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1 as given as (3.4);
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σ2 =

(
1
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+

1

1− p

)
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2

with σ2
2 as given as (3.6);

(iii) If

max
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Ki∑
j=1
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then σ2
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1 =
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∆Ni(TKi,j)−∆Λ̂0(TKi,j)
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2

, respectively.

Remark 5. For the asymptotic normality of the proposed test statistics,

we do not need the condition that h ◦ Λ−1
0 is a bounded Lipschitz function as

required by Zhang (2006) and Balakrishnan and Zhao (2009).

Remark 6. We can show that, under some regularity conditions, (i)-(iii)

hold if the spline pseudo-likelihood and spline likelihood estimators in the ex-

pression of Ups
n and Un are replaced with the nonparametric maximum pseudo-

likelihood and nonparametric maximum likelihood estimators proposed by Well-

ner and Zhang (2000), respectively.

5. Simulation Study

We conducted a simulation study to investigate the finite-sample properties
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of the proposed test statistics and to make comparisons with those of the tests

presented by Zhang (2006) and Balakrishnan and Zhao (2009). We let T ps =

Ups
n /σ̂ps and T = Un/σ̂, where

σ̂ps =
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n

n1
+

n

n2

)
σ̂2
1

}1/2

,

σ̂ =

{(
n

n1
+

n

n2

)
σ̂2
2

}1/2

,

and Ups
n , Un, and σ̂2

l be as given in Section 4. By Theorem 3, the null hy-

pothesis can be tested by T ps and T , which have asymptotic standard normal

distributions. For the generation of panel count data, denoted by {ki, tij , nij , j =

1, . . . , ki, i = 1, . . . , n}, we first generated the number of observation times ki
from the uniform distribution U{1, . . . , 10}, and then, given ki, we took the

observation times tij ’s to be the order statistics of a random sample of size

ki drawn from U{1, . . . , 12}. To generate the nij ’s, we assumed that, given a

nonnegative random variable γi, Ni(t) is a Poisson process with mean function

Λi(t|γi) = E(Ni(t)|γi). Let Sl denote the set of indices for subjects in group l,

l = 1, 2. For comparison, we considered cases representing two patterns of the

mean functions:

Case 1. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γit exp(β) for i ∈ S2.

Case 2. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γi
√
βt for i ∈ S2.

As shown in Figures 1-2 of Balakrishnan and Zhao (2009), the two mean

functions do not overlap in Case 1 and they cross over in Case 2.

For each case, we took γi = 1 and γi ∼ Gamma(2, 1/2) corresponding to

Poisson and mixed Poisson processes, respectively. For each setting, we took

n1 = 30, n2 = 50 and n1 = 50, n2 = 70. We considered the weight processes

h(j)n (t) = Λ̂0(t)W
(j)
n (t), j = 1, 2, 3, with

W (1)
n (t) = 1, W (2)

n (t) =
1

n

n∑
i=1

I(t ≤ tki,ki
), and

W (3)
n (t) =

1

n

n∑
i=1

I(t > tki,ki
),

and h
(4)
n (t) = {Λ̂0(t)}2, denoting the corresponding tests by Tj with h

(j)
n (j =
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Table 1. Estimated size and power of the tests for Poisson processes.

β T1 T2 T3 T4 TBZ1 TBZ2 TBZ3

n1 = 30, n2 = 50
0.0 0.053 0.049 0.054 0.054 0.053 0.051 0.062
0.1 0.321 0.189 0.147 0.255 0.324 0.184 0.159
0.2 0.859 0.578 0.396 0.750 0.857 0.568 0.408
0.3 0.990 0.903 0.713 0.966 0.989 0.901 0.712

n1 = 50, n2 = 70
0.0 0.055 0.051 0.057 0.047 0.059 0.054 0.057
0.1 0.445 0.278 0.184 0.360 0.447 0.268 0.187
0.2 0.948 0.736 0.555 0.898 0.948 0.730 0.555
0.3 1.000 0.979 0.858 1.000 1.000 0.976 0.853

n1 = 50, n2 = 100
0.0 0.041 0.044 0.053 0.043 0.043 0.045 0.055
0.1 0.448 0.277 0.164 0.351 0.443 0.279 0.174
0.2 0.961 0.776 0.579 0.923 0.961 0.771 0.583
0.3 1.000 0.991 0.926 1.000 1.000 0.990 0.926

n1 = 30, n2 = 50
3 1.000 0.580 1.000 1.000 1.000 0.593 1.000
5 0.997 0.081 1.000 1.000 0.997 0.082 1.000
8 0.483 0.543 0.995 0.998 0.483 0.544 0.991

n1 = 50, n2 = 70
3 1.000 0.823 1.000 1.000 1.000 0.932 1.000
5 1.000 0.073 1.000 1.000 1.000 0.076 1.000
8 0.619 0.714 1.000 1.000 0.619 0.713 1.000

n1 = 50, n2 = 100
3 1.000 0.760 1.000 1.000 1.000 0.761 1.000
5 1.000 0.083 1.000 1.000 1.000 0.085 1.000
8 0.699 0.822 1.000 1.000 0.701 0.820 1.000

1, 2, 3, 4) and TBZj with W
(j)
n (j = 1, 2, 3). Here, the nonparametric maximum

likelihood estimators Λ̂l,mle, Λ̂0,mle were computed by using the modified iterative

convex minorant algorithm in Wellner and Zhang (2000); the spline likelihood

estimators Λ̂l and Λ̂0 were computed by using the algorithm in Lu, Zhang and

Huang (2007). The results reported here are based on 1,000 Monte Carlo repli-

cations using R software.

Tables 1 and 2 present the estimated sizes and powers of the proposed test

statistics Tj ’s and TBZj ’s (Balakrishnan and Zhao (2009)) at significance level

α = 0.05 for different values of β and the different weight processes based on

the simulated data for the two cases with γi = 1 and γi ∼ Gamma(2, 1/2),

respectively. The two parts of each table include the comparison of Tj and TBZj

with the sample sizes n1 = 30, n2 = 50 and n1 = 50, n2 = 70 in Cases 1 and
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Table 2. Estimated size and power of the tests for mixed Poisson processes.

β T1 T2 T3 T4 TBZ1 TBZ2 TBZ3

n1 = 30, n2 = 50
0.0 0.059 0.051 0.061 0.058 0.061 0.048 0.062
0.1 0.187 0.126 0.091 0.157 0.187 0.123 0.098
0.2 0.568 0.378 0.286 0.492 0.564 0.381 0.286
0.3 0.869 0.637 0.560 0.785 0.871 0.638 0.549

n1 = 50, n2 = 70
0.0 0.050 0.049 0.054 0.061 0.049 0.053 0.054
0.1 0.267 0.185 0.134 0.218 0.270 0.189 0.133
0.2 0.751 0.498 0.387 0.659 0.750 0.500 0.391
0.3 0.968 0.827 0.737 0.942 0.968 0.828 0.738

n1 = 50, n2 = 100
0.0 0.043 0.041 0.053 0.055 0.043 0.041 0.059
0.1 0.264 0.158 0.150 0.226 0.263 0.157 0.152
0.2 0.747 0.501 0.425 0.675 0.746 0.508 0.433
0.3 0.989 0.868 0.756 0.963 0.989 0.865 0.762

n1 = 30, n2 = 50
3 1.000 0.509 1.000 1.000 1.000 0.527 1.000
5 0.951 0.076 1.000 1.000 0.951 0.077 1.000
8 0.317 0.384 0.998 0.973 0.315 0.375 0.997

n1 = 50, n2 = 70
3 1.000 0.747 1.000 1.000 1.000 0.750 1.000
5 0.994 0.065 1.000 1.000 0.995 0.065 1.000
8 0.429 0.485 1.000 0.996 0.428 0.479 1.000

n1 = 50, n2 = 100
3 1.000 0.677 1.000 1.000 1.000 0.681 1.000
5 0.996 0.078 1.000 1.000 0.996 0.078 1.000
8 0.456 0.631 1.000 1.000 0.455 0.624 1.000

2, respectively. To see what happens when the difference between n1 and n2

becomes large, we also considered the sample sizes n1 = 50, n2 = 100. The

simulation results shown in the tables suggest that the tests based on the spline

likelihood estimators have similar sizes and powers to those of the tests based on

the nonparametric maximum likelihood estimators.

The new test procedure is easy to implement and performs well for all the

situations considered. However, for Case 2 with n1 = 30 and n2 = 50, we note

that the estimated powers of test TBZj ’s display “NA” often when running the

simulation program. In this case, we chose to report the simulation results when

the estimated powers of test TBZj ’s were available. It is surprising that the

proposed test T1 with the simplest structure has similar size and power to TBZ1

with a complicated structure when the simulated values of TBZ1 are available.
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The new test T4 has similar power to T1 and TBZ1 in Case 1 and to T3 and TBZ3

in Case 2. We conclude that T4, with a simple structure, is always powerful for

the two cases considered, and thus robust.

To evaluate the asymptotic normality of Theorem 3, we constructed the

quantile plots of the test statistics against the standard normal. Figures 1 and

2 present such plots for T4 and they reveal that the asymptotic normality is

justified for the given finite sample sizes. Similar plots were obtained for test

statistics T1, T2 and T3 and other situations as well.
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6. An Application

We applied the proposed tests to a set of panel count data arising from

a skin cancer chemoprevention trial conducted by the University of Wisconsin

Comprehensive Cancer Center in Madison, Wisconsin. It was a double-blinded

and placebo-controlled randomized phase III clinical trial. The primary objective

of this trial was to evaluate the effectiveness of 0.5g/m2/day PO difluoromethy-

lornithine (DFMO) in reducing new skin cancers in a population of the patients

with a history of non-melanoma skin cancers: basal cell carcinoma and squamous

cell carcinoma. The study consisted of 290 patients who were randomized to two

groups: DFMO group (143) or the placebo group (147). The observed data in-

cluded a sequence of observation times in days and the numbers of occurrences of

both basal cell carcinoma and squamous cell carcinoma between the observation

times for patients in different treatment groups (see Table 9.3 of Sun and Zhao

(2013)). Sun and Zhao (2013) analyzed these data and found that the overall

DFMO treatment seemed to have some mild effects in reducing the recurrence

rates of basal cell carcinoma and quamous cell carcinoma. In addition, they pre-

sented a graphical comparison of the two groups and concluded that the DFMO

treatment seemed to have some effects in reducing the recurrence rate of basal

cell carcinoma but not to have any effect on the recurrence rate of squamous cell

carcinoma. For this reason, we focused on comparing two treatment groups in

terms of the recurrence rates of basal cell carcinoma.

To test the difference between the two groups, we treated the DFMO group

as group 1 and the placebo group as group 2. Let Ni(t) represent the number of

the occurrences of basal cell carcinoma up to time t for patient i, i = 1, . . . , 290.

Let Λl(t) denote the expected occurrences of basel cell carcinoma up to time t

for group l. The goal is to test H0 : Λ1(t) = Λ2(t) = Λ0(t). The spline likelihood

estimates Λ̂l and Λ̂0 of Λl and Λ0 based on samples from all the patients in

the l-th group and the pooled data are shown in Figure 3. We applied the test

procedure of Section 4 to this problem and obtained T1 = −2.2285, T2 = −0.9245,

T3 = −2.0245 and T4 = −2.1940 where Tj ’s are as defined in Section 5, giving

p-values of 0.0258, 0.3552, 0.0429, and 0.0282 based on the standard normal.

The test results from T1, T3 and T4 suggest that the incidence rates of basal

cell carcinoma were significantly reduced by the DFMO treatment, while test T2

fails to reject H0. This can be easily understood by looking at the behavior of

the estimates. From Figure 3, the difference of mean functions at later times

dominate the difference at earlier times so that the test with W
(2)
n could not
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cell carcinoma but not to have any effect on the recurrence rate of squamous cell

carcinoma. For this reason, we focused on comparing two treatment groups in

terms of the recurrence rates of basal cell carcinoma.

To test the difference between the two groups, we treated the DFMO group

as group 1 and the placebo group as group 2. Let Ni(t) represent the number of

the occurrences of basal cell carcinoma up to time t for patient i, i = 1, . . . , 290.

Let Λl(t) denote the expected occurrences of basel cell carcinoma up to time t

for group l. The goal is to test H0 : Λ1(t) = Λ2(t) = Λ0(t). The spline likelihood

estimates Λ̂l and Λ̂0 of Λl and Λ0 based on samples from all the patients in
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The test results from T1, T3 and T4 suggest that the incidence rates of basal
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fails to reject H0. This can be easily understood by looking at the behavior of

the estimates. From Figure 3, the difference of mean functions at later times

dominate the difference at earlier times so that the test with W
(2)
n could not

945



16 XINGQIU ZHAO AND YING ZHANG

Figure 3. The estimated mean functions for the skin cancer study.

detect the difference between two groups.

7. Concluding Remarks

For semiparametric models, Wellner and Zhang (2007) developed a general

theorem for deriving the asymptotic normality of semiparametric M -estimators

of regression parameters. We can establish similar theory. For example, we

have the following results about the asymptotic normality of estimators in the

semiparametric model considered by Wellner and Zhang (2007) and Lu, Zhang

and Huang (2009). Suppose that for each subject, given a d-dimensional vector of

covariates Zi, Ni(t) is a non-homogeneous Poisson process with the mean function

Λi(t|Zi) = Λ0(t) exp{Z ′
iβ}, where Λ0 is an unknown baseline mean function and

β is a d-dimensional vector of unknown regression parameters.

Let θ̂psn = (β̂ps
n , Λ̂ps

n ) and θ̂n = (β̂n, Λ̂n) be the semiparametric pseudo-

likelihood and likelihood estimators of Lu, Zhang and Huang (2009). Let Bd

denote the collection of Borel sets in Rd, and B and B[0,τ ] as defined in Section

3. Let F be the cumulative distribution function of Z. We considered measures

ν1 and ν2 as follows: for B,B1, B2 ∈ B[0,τ ] and B3 ∈ Bd,

ν1(B ×B3) =

∫

B3

∞∑
k=1

P (K = k|Z = z)

k∑
j=1

P (Tk,j ∈ B|K = k, Z = z)dF (z),

ν2(B1 ×B2 ×B3) =

∫

B3

∞∑
k=1

{P (K = k|Z = z)
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×
k∑

j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k, Z = z)


 dF (z).

Take H̃r =
{
(h1, h2) : h1 ∈ Rd, ||h1|| ≤ 1, h2 ∈ Hr, h2(0) = 0

}
. Under some reg-

ularity conditions,

(i) For (h1, h2) ∈ H̃r, h
′
1

√
n(β̂ps

n − β0) +
√
n
∫
{Λ̂ps

n (t)−Λ0(t)}dh2(t) is asymp-

totically normal.

(ii) For (h1, h2) ∈ H̃r, h
′
1

√
n(β̂n − β0) +

√
n
∫
{Λ̂n(t) − Λ0(t)}dh2(t) is asymp-

totically normal.

(iii) (Asymptotic Normality of β̂ps
n )

√
n(β̂ps

n − β0) →d N(0,Σps), where Σps =

(Aps)−1Bps((Aps)−1))′ with

Aps = E




K∑
j=1

Λ0(TK,j)e
β′
0Z

{
Z −

E
(
Zeβ

′
0Z |K,TK,j

)
E (eβ

′
0Z |K,TK,j)

}⊗2

 ,

Bps = E




K∑
j=1

K∑
j′=1

{
N(TK,j)− Λ0(TK,j)e

β′
0Z
}

×
{
N(TK,j′)− Λ0(TK,j′)e

β′
0Z
}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j

)
E (eβ

′
0Z |K,TK,j)

}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j′

)
E (eβ

′
0Z |K,TK,j′)

}′]
,

and (Asymptotic Normality of Functional of Λ̂ps
n ) for h ∈ Hr,

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}eβ
′
0z

×





h(t)

Λ0(t)
− z′ (Γps)−1E


Zeβ

′
0Z

K∑
j=1

h(TK,j)




 dν1(t, z)

→d N(0, σ̃2
1),

where
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Γps = E


ZZ ′

K∑
j=1

Λ0(TK,j)e
β′
0Z


 ,

σ̃2
1 = E




K∑
j=1

{
N(TK,j)− Λ0(TK,j)e

β′
0Z
}

×





h(TK,j)

Λ0(TK,j)
− Z ′ (Γps)−1E


Zeβ

′
0Z

K∑
j′=1

h(TK,j′)









2

.

(iv) (Asymptotic Normality of β̂n)
√
n(β̂n−β0) →d N(0,Σ), where Σ = (A)−1B((A)−1))′

with

A = E




K∑
j=1

∆Λ0(TK,j)e
β′
0Z

{
Z −

E
(
Zeβ

′
0Z |K,TK,j−1, TK,j

)
E (eβ

′
0Z |K,TK,j−1, TK,j)

}⊗2

 ,

B = E




K∑
j=1

K∑
j′=1

{
∆N(TK,j)−∆Λ0(TK,j)e

β′
0Z
}

×
{
∆N(TK,j′)−∆Λ0(TK,j′)e

β′
0Z
}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j−1, TK,j

)
E (eβ

′
0Z |K,TK,j−1, TK,j)

}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j′−1, TK,j′

)
E (eβ

′
0Z |K,TK,j′−1, TK,j′)

}′]

and (Asymptotic Normality of Functional of Λ̂n) for h ∈ Hr,

√
n

∫ {(
Λ̂n(t)− Λ̂n(s)

)
− (Λ0(t)− Λ0(s))

}
eβ

′
0z

×





h(t)− h(s)

Λ0(t)− Λ0(s)
− z′Γ−1E


Zeβ

′
0Z

K∑
j=1

∆h(TK,j)





 dν2(s, t, z)

→d N(0, σ̃2
2),

where

Γ = E


ZZ ′

K∑
j=1

∆Λ0(TK,j)e
β′
0Z


 ,
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σ̃2
2 = E




K∑
j=1

{
∆N(TK,j)−∆Λ0(TK,j)e

β′
0Z
}

×




∆h(TK,j)

∆Λ0(TK,j)
− Z ′Γ−1E


Zeβ

′
0Z

K∑
j′=1

∆h(TK,j′)








2

.

Here, the obtained asymptotic distributions for β̂ps
n and β̂n are the same as

those in Theorem 3.3 of Wellner and Zhang (2007) and Theorem 3 of Lu, Zhang

and Huang (2009). The new results about the baseline mean function can be

used to conduct statistical hypothesis tests. The proofs of the above conclusions

are available from the authors.

Supplementary Materials

The supplementary materials include proofs of theorems.
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PROOFS OF THEOREMS

S1 Proof of Theorem 2.1

By assumptions A4 and A5 with A2, we have

−
√
nĠΛ0(Λ̂n − Λ0)[h] = −

√
nG(Λ̂n)[h] + op(1). (S1.1)

By assumptions A1 and A2, we have

−
√
nG(Λ̂n)[h] =

√
n(Gn −G)(Λ0)[h] + op(1). (S1.2)

Thus, it follows from (S1.1) and (S1.2) that

−
√
nĠΛ0(Λ̂n − Λ0)[h] =

√
n(Gn −G)(Λ0)[h] + op(1),

which completes the proof of the theorem.
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S2 Proof of Theorem 3.1

To prove Theorem 3.1, we need to show the following lemma first.

Lemma 1. Define ψps(Λ;X)[h] =
∑K

j=1

{
N(TK,j)

Λ(TK,j)
− 1
}
h(TK,j) and

Gn(δ)[h]

=

{
ψps(Λ;X)[h]− ψps(Λ0;X)[h] :

d1(Λ,Λ0) < δ,

supτ0≤t≤τ |Λ(t)− Λ0(t)| < δ0,
Λ ∈ Ψn

}
.

Let ∥ · ∥P,B be the “Bernstein norm” defined as ∥f∥P,B = {2P (e|f | − 1 −

|f |)}1/2 by van der Vaart and Wellner (1996). Then the ε-bracketing num-

ber associated with ∥ · ∥P,B for Gn(δ)[h], denoted by N[ ](ε,Gn(δ)[h], ∥ · ∥P,B),

is bounded by (δ/ε)cqn, that is,

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

for a constant c independent of h, where the symbol . denotes that the

left-hand side is bounded above by a constant times the right-hand side.

Proof. For Λ with supτ0≤t≤τ |Λ(t) − Λ0(t)| < δ0, we obtain that M1 ≤

Λ(t) ≤M2 over t ∈ [τ0, τ ] where M1 and M2 are positive constants. Denote

the ceiling of x by ⌈x⌉. By the calculation in Shen and Wong (1994, page

597), for any ε < δ, there exists a set of brackets
{
[ΛL

i ,Λ
U
i ]: i = 1, . . . , (δ/ε)cqn

}

such that for any Λ ∈ Ψn, Λ
L
i (t) ≤ Λ(t) ≤ ΛU

i (t) over t ∈ [τ0, τ ] for some
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1 ≤ i ≤ (δ/ε)c1qn , where ∥ΛU
i − ΛL

i ∥∞ ≤ ε, and c is a constant. Define

mL
i (X)[h] =

K∑
j=1

N(TK,j)

[{
I(h(TK,j) ≥ 0)

max (ΛU
i (TK,j),M2)

+
I(h(TK,j) < 0)

max (ΛL
i (TK,j),M1)

}

− 1

Λ0(TK,j)

]
h(TK,j)

and

mU
i (X)[h] =

K∑
j=1

N(TK,j)

[{
I(h(TK,j) ≥ 0)

max (ΛL
i (TK,j),M1)

+
I(h(TK,j) < 0)

max (ΛU
i (TK,j),M2)

}

− 1

Λ0(TK,j)

]
h(TK,j).

After some calculations, we have ||mU
i (X)[h]−mL

i (X)[h]||2P,B . ε2 and

for any m(Λ;X)[h] ∈ Gn(δ)[h], there exist some i such that m(Λ,X)[h] ∈

[mL
i (X)[h],mU

i (X)[h]]. Therefore, we have

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

for a universal constant c, which completes the proof of the lemma.

Proof of Theorem 3.1. To derive the asymptotic normality of the estimators,

we need to verify conditions A1-A5 stated in Theorem 2.1.

To prove part (i), we define a sequence of maps Sps
n mapping a neigh-

borhood of Λ0, denoted by U , in the parameter space for Λ into l∞(Hr)
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as

Sps
n (Λ)[h] = n−1 d

dε
lpsn (Λ + εh)

∣∣∣
ε=0

= n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ(TKi,j)
− 1

}
h(TKi,j)

= Pnψps(Λ;X)[h].

Correspondingly, we define the limit map Sps : U −→ l∞(Hr) as

Sps(Λ)[h] = P

[
K∑
j=1

{
N(TK,j)

Λ(TK,j)
− 1

}
h(TK,j)

]
.

We will show (A1) by applying Lemma 1. For h ∈ Hr, let the class

Gn(δ)[h] be as defined in Lemma 1 for some δ > 0. Then by Lemma 1, we

have

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

uniformly in h, and

J[ ](ε,Gn(δ)[h], ∥ · ∥P,B) =
∫ δ

0

√
1 + logN[ ](ε,Gn(δ)[h], ∥ · ∥P,B) dε . q1/2n δ.

Lu, Zhang and Huang (2007) showed that d1(Λ̂
ps
n ,Λ0) → 0 almost surely and

hence that the uniform consistency of Λ̂ps can be shown by using arguments

similar to Proposition 5 of Schick and Yu (2000) under conditions C2-C6;

that is,

sup
τ0≤t≤τ

|Λ̂ps
n (t)− Λ0(t)| → 0 almost surely.



S2. PROOF OF THEOREM 3.15

By Theorem 2 of Lu, Zhang and Huang (2007), nr/(1+2r)d1(Λ̂
ps
n ,Λ0) = Op(1)

with r > 1. Thus we have ψps(Λ̂
ps
n ;X)[h] − ψps(Λ0;X)[h] ∈ Gn(δ)[h] with

δ = δn = O(n−r/(1+2r)). Furthermore, for any ψps(Λ;X)[h]−ψps(Λ0;X)[h] ∈

Gn(δn)[h], we have

sup
h∈Hr

||ψps(Λ;X)[h]− ψps(Λ0;X)[h]||2P,B . d21(Λ,Λ0).

Hence, using the maximal inequality in Lemma 3.4.3 of van der Vaart and

Wellner (1996), we obtain that

EP∥n1/2(Pn − P )∥Gn(δn)[h] . J[ ](δn,Gn(δn)[h], ∥ · ∥P,B)

×
{
1 + c

J[ ](δn,Gn(δn)[h], ∥ · ∥P,B)
δ2n
√
n

}

. q1/2n δn + qnn
−1/2

= O(n1/(2(1+2r))−r/(1+2r)) +O(n1/(1+2r)−1/2)

= O(n(1−2r)/(2(1+2r)) +O(n(1−2r)/(2(1+2r))

= o(1),

where c is a positive constant. Therefore, employing the Markov inequality,

we have

√
n(Pn − P )(ψps(Λ̂

ps
n ;X)[h]− ψps(Λ0;X)[h]) = op(1)

uniformly in h. Thus, (A1) holds.

For (A2), clearly Sps(Λ0)[h] = 0 for h ∈ Hr, and we need to show that
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Sps
n (Λ̂ps

n )[h] = o(n−1/2) for h ∈ Hr. Note that Λ̂ps
n =

∑qn
ℓ=1 α̂

ps
ℓnBℓ satisfies

the following score equation

n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ̂ps
n (TKi,j)

− 1

}
Bℓ(TKi,j) = 0, ℓ = 1, . . . , qn.

Thus, for any h =
∑qn

ℓ=1 αℓBℓ ∈ Φn, we have

n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ̂ps
n (TKi,j)

− 1

}
h(TKi,j) = 0,

that is, Sps
n (Λ̂ps

n )[h] = 0 for any h ∈ Φn.

For any h ∈ Hr, there exists hn ∈ Φn such that ||hn − h||∞ = O(n−rv).

Next we need to show that

Sps
n (Λ̂ps

n )[h− hn] = o(n−1/2).

For this, we write

Sps
n (Λ̂ps

n )[h− hn] = {Sps
n (Λ̂ps

n )[h− hn]− Sps
n (Λ0)[h− hn]}+ Sps

n (Λ0)[h− hn]

≡ I1n + I2n.

Since

P |I1n| = n−1

∣∣∣∣∣
n∑

i=1

Ki∑
j=1

Ni(TKi,j)

×

{
1

Λ̂ps
n (TKi,j)

− 1

Λ0(TKi,j)

}
{h(TKi,j)− hn(TKi,j)}

∣∣∣∣∣
. d1(Λ̂

ps
n ,Λ0)||h− hn||∞
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and

PI22n = n−1P

[
K∑
j=1

{
N(TK,j)

Λ0(TK,j)
− 1

}
{h(TK,j)− hn(TK,j)}

]2

. n−1||h− hn||2∞,

then it follows that I1n = op(n
−1/2) and I2n = op(n

−1/2), which implies

(A2).

Condition (A3) holds because Hr is a Donsker class and the functional

Sps
n is a bounded Lipschitz function with respect to Hr.

For (A4), by the smoothness of Sps(Λ), the Fréchet differentiability

holds and the derivative of Sps(Λ) at Λ0, denoted by Ṡps
Λ0
, is a map from the

space {(Λ− Λ0) : Λ ∈ U} to l∞(Hr) and

Ṡps
Λ0
(Λ− Λ0)[h]

=
d

dε
{Sps(Λ0 + ε(Λ− Λ0))[h]}

∣∣∣
ε=0

(S2.1)

= −P

[
K∑
j=1

h(TK,j)

{
Λ(TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]
.

Thus, by condition C8, we have

−Ṡps
Λ0
(Λ− Λ0)[h] =

∫
(Λ(t)− Λ0(t))dQ

ps(h)(t) (S2.2)

where

Qps(h)(t) = P

[
K∑
j=1

I(TK,j ≤ t)
h(TK,j)

Λ0(TK,j)

]
.
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Next we show that (A5) holds. Note that

Sps(Λ̂ps
n )[h]− Sps

Λ0
[h]− Ṡps

Λ0
(Λ̂ps

n − Λ0)[h]

= P

[
K∑
j=1

{
N(TK,j)

Λ̂ps
n (TK,j)

− 1

}
h(TK,j)

]

+P

[
K∑
j=1

h(TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]

= P

[
K∑
j=1

h(TK,j)

Λ0(TK,j)Λ̂
ps
n (TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)
}2
]

= Op(d
2
1(Λ̂

ps
n ,Λ0)).

By Theorem 2 of Lu, Zhang and Huang (2007),

d21(Λ̂
ps
n ,Λ0) = Op(n

−2r/(1+2r)) = op(n
−1/2),

and thus (A5) holds.

It follows from Theorem 2.1 that

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}dQps(h)(t) =
√
n(Sps

n − Sps)(Λ0)[h] + op(1). (S2.3)

Next, we show that Qps is one-to-one, that is, for h ∈ Hr, if Q
ps(h) = 0,

then h = 0.

Suppose that Qps(h) = 0. Then Ṡps
Λ0
(Λ − Λ0)[h] = 0 for any Λ in the

neighborhood U . In particular, we take Λ = Λ0 + ϵh for a small constant ϵ.
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Thus we have

0 = Ṡps
Λ0
(Λ− Λ0)[h]

= −ϵP

[
K∑
j=1

Λ0(TK,j)

{
h(TK,j)

Λ0(TK,j)

}2
]
,

which yields

h(TK,j) = 0, j = 1, . . . , K, a.s.

and so h = 0 by condition C10.

For each h ∈ Hr, since Q
ps is invertible, there exists hps ∈ Hr such that

Qps(hps) = h. Therefore, we have

√
n

∫
{Λ̂ps

n (t)−Λ0(t)}dh(t) =
√
n(Sps

n −Sps)(Λ0)[h
ps] + op(1) →d N(0, σ2

ps),

where

σ2
ps = E{ψ2

ps(Λ0;X)[hps]}. (S2.4)

To prove part (ii), we define a sequence of maps Sn mapping a neigh-

borhood of Λ0, U , in the parameter space for Λ into l∞(Hr) as:

Sn(Λ)[h] = n−1 d

dε
ln(Λ + εh)

∣∣∣
ε=0

.

Write ∆Ni(TKi,j) = Ni(TKi,j)−Ni(TKi,j−1), ∆Λ(TKi,j) = Λ(TKi,j)−Λ(TKi,j−1),
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and ∆h(TKi,j) = h(TKi,j)− h(TKi,j−1). Then, we have

Sn(Λ)[h]

= n−1

n∑
i=1

Ki∑
j=1

[{
∆Ni(TKi,j)

∆Λ(TKi,j)
− 1

}
∆h(TKi,j)

]

≡ Pnψ(Λ;X)[h].

Correspondingly, we define the limit map S : U −→ l∞(Hr) as

S(Λ)[h] = P

[
K∑
j=1

{
∆N(TK,j)

∆Λ(TK,j)
− 1

}
∆h(TK,j)

]
.

Furthermore, the derivative of S(Λ) at Λ0, denoted by ṠΛ0 , is a map

from the space {(Λ− Λ0) : Λ ∈ U} to l∞(Hr) and

ṠΛ0(Λ− Λ0)[h]

= −P
K∑
j=1

∆h(TK,j)

{
∆Λ(TK,j)−∆Λ0(TK,j)

∆Λ0(TK,j)

}
(S2.5)

= −
∫

{Λ(t)− Λ0(t)}dQ(h)(t)

where

Q(h)(t) = P

[
K∑
j=1

{I(TK,j ≤ t)− I(TK,j−1 ≤ t)} ∆h(TK,j)

∆Λ0(TK,j)

]
.

Similarly, we can show that
√
n(Sn −S)(Λ̂n)[h]−

√
n(Sn −S)(Λ0)[h] =

op(1), S(Λ0)[h] = 0, Sn(Λ̂n)[h] = op(n
−1/2), and

S(Λ̂n)[h]− S(Λ0)[h]− ṠΛ0(Λ̂n − Λ0)[h] = Op(d
2
2(Λ̂n,Λ0)).
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By Theorem 2 of Lu, Zhang and Huang (2007), we have d2(Λ̂n,Λ0) =

Op(n
−r/(1+2r)), and so

S(Λ̂n)[h]− S(Λ0)[h]− ṠΛ0(Λ̂n − Λ0)[h] = op(n
−1/2).

Thus it follows from Theorem 2.1 that

√
n

∫
{Λ̂n(t)− Λ0(t)}dQ(h)(t) =

√
n(Sn − S)(Λ0)[h] + op(1). (S2.6)

Next, we show that Q is one-to-one, that is, for h ∈ Hr, if Q(h) = 0,

then h = 0

Suppose that Q(h) = 0. Then ṠΛ0(Λ − Λ0)[h] = 0 for any Λ in the

neighborhood U . In particular, we take Λ = Λ0 + ϵh for a small constant ϵ.

Thus we have

0 = ṠΛ0(Λ− Λ0)[h]

= −ϵP

[
K∑
j=1

∆Λ0(TK,j)

{
∆h(TK,j)

∆Λ0(TK,j)

}2
]
,

which yields

∆h(TK,j) = 0, j = 1, . . . , K, a.s.

Thus,

h(TK,j) = 0, j = 1, . . . , K, a.s.

and so h = 0 by condition C10.
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For each h ∈ Hr, since Q is invertible, there exists unique h∗ ∈ Hr such

that Q(h∗) = h. Thus, we have

√
n

∫
{Λ̂n(t)− Λ0(t)}dh(t) =

√
n(Sn − S)(Λ0)[h

∗] + op(1) →d N(0, σ2),

where

σ2 = E{ψ2(Λ0;X)[h∗]}. (S2.7)

Proof of Corollary 3.1. (i) Note that

P

[
K∑
j=1

h(TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]
=

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t).

Thus it follows from (S2.1)-(S2.3) that

√
n

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t) =

√
n(Sps

n − Sps)(Λ0)[h] + op(1),

which completes the proof of (i).

Similarly, the result in part (ii) follows from (S2.5) and (S2.6).
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S3 Proof of Theorem 4.1

(i) Note that

U (ps)
n =

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ̂ps
2 (TK,j)

Λ̂ps
0 (TK,j)

}

=
√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}

−
√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

2 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
,

and

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}

= Ups
1n + Ups

2n + Ups
3n + Ups

4n

where

Ups
1n =

√
n(Pn − P )

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
,

Ups
2n =

√
nP

[
K∑
j=1

{hn(TK,j)− h(TK,j)}
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

]
,

Ups
3n =

√
nP

[
K∑
j=1

h(TK,j){Λ̂ps
1 (TK,j)− Λ0(TK,j)}

{
1

Λ̂ps
0 (TK,j)

− 1

Λ0(TK,j)

}]
,

Ups
4n =

√
nP

[
K∑
j=1

h(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ0(TK,j)

]
.

By the arguments similar to those used in the proof of Theorem 3.1 of

Balakrishnan and Zhao (2009), we can show that Ups
1n = op(1), U

ps
2n =

op(1), and U
ps
3n = op(1).
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From (S2.1)-(S2.3), we have

Ups
4n =

√
n(Pn1 − P )ψps(Λ0;X)[h] + op(1),

where Pn1 is the empirical measure based on group 1. Similarly, we

have

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

2 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}

=
√
n(Pn2 − P )ψps(Λ0;X)[h] + op(1),

where Pn2 is the empirical measure based on group 2. Hence, we have

Ups
n =

√
n

n1

√
n1(Pn1 − P )ψps(Λ0;X)[h]

−
√

n

n2

√
n2(Pn2 − P )ψps(Λ0;X)[h] + op(1).

Here Pn1 and Pn2 are independent. Thus it follows that Ups
n converges

in distribution to N(0, σ2
ps).

(ii) Using the arguments similar to the proof of (i), we can obtain

Un =

√
n

n1

√
n1(Pn1 − P )ψ(Λ0;X)[h]

−
√

n

n2

√
n2(Pn2 − P )ψ(Λ0;X)[h] + op(1),

which yields the asymptotic normal distribution N(0, σ2).

(iii) The proof of this part is omitted since it is similar to those used in the

proof of Theorem 3.1 (iii) of Balakrishnan and Zhao (2009).



S3. PROOF OF THEOREM 4.115

References

Balakrishnan, N. and Zhao, X. (2009). New multi-sample nonparametric

tests for panel count data. Ann. Statist. 37, 1112–1149.

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function

with panel count data using monotone polynomial splines. Biometrika

94, 705–718.

Schick, A. and Yu, Q. (2000). Consistency of the GMLE with mixed case

interval-censored data. Scand. J. Statist. 27, 45–55.

Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates.

Ann. Statist. 18, 580–615.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and

Empirical Processes. New York: Springer-Verlag.


	SS-2014-0021_Supp.pdf
	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Proof of Theorem 4.1


