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In semiparametric hazard regression, nonparametric components may involve unknown regression param-
eters. Such intertwining effects make model estimation and inference much more difficult than the case in
which the parametric and nonparametric components can be separated out. We study the sieve maximum
likelihood estimation for a general class of hazard regression models, which include the proportional haz-
ards model, the accelerated failure time model, and the accelerated hazards model. Coupled with the cubic
B-spline, we propose semiparametric efficient estimators for the parameters that are bundled inside the non-
parametric component. We overcome the challenges due to intertwining effects of the bundled parameters,
and establish the consistency and asymptotic normality properties of the estimators. We carry out simula-
tion studies to examine the finite-sample properties of the proposed method, and demonstrate its efficiency
gain over the conventional estimating equation approach. For illustration, we apply our proposed method to
a study of bone marrow transplantation for patients with acute leukemia.

Keywords: accelerated failure time model; B-spline; proportional hazards model; semiparametric
efficiency bound; sieve maximum likelihood estimator; survival data

1. Introduction

The Cox [6] proportional hazards model has been routinely used in survival analysis. Under the
proportional hazards assumption, the Cox model takes the form of

A(t|Z) = ro(1)ePZ (1)

where Ao(-) is the unknown baseline hazard function, Z is the covariate vector, and B, is the re-
gression parameter of interest. Nevertheless, such constant proportionality between hazard func-
tions may not hold in practice. As a result, alternative modeling structures, such as the accelerated
failure time (AFT) model, have been proposed, which directly model the logarithm of the failure
time in a linear regression form,

log(T) = —BLZ + ¢, 2
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where T is the failure time, and the distribution of the error € is unspecified. In fact, model (2)
can be rewritten as

S(t|1Z) = So(tePo?), 3)

where S(#|Z) is the conditional survival function given covariate Z, and Sy(¢) is the baseline
survival function. The inference procedure for model (2) or (3) can typically be carried out us-
ing the least squares or rank methods (Prentice [14], Buckley and James [1], Ritov [15], Tsiatis
[20], Wei, Ying and Lin [22], Lai and Ying [13], and Jin et al. [10]), and the corresponding
variance are often estimated by resampling algorithm, such as bootstrap. Clearly, the nonpara-
metric function Sp(-) involves the parametric component eﬂEZ, which makes it difficult to derive
the nonparametric maximum likelihood estimator (NPMLE). Whereas, Zeng and Lin [24] de-
veloped an efficient estimator for the AFT model (3) by maximizing a kernel-smoothed profile
likelihood function for the regression parameter. However, their approach is restricted to the log-
transformed linear model (2). Recently, when the failure time 7 is subject to any completely
known and strictly increasing transformation, Ding and Nan [7] proposed a sieve maximum like-
lihood estimator (MLE) for the censored linear regression model where the bundled parameter
problem is involved. Owning to its flexibility, the sieve MLE method has been widely adopted
in various semiparametric models, such as the partly linear Cox model (Huang [8]), transformed
hazard models (Zeng, Yin and Ibrahim [25]), and the proportional odds model for survival data
under various interval censoring mechanisms (Rossini and Tsiatis [16], Huang and Rossini [9],
Shen [18]). Chen [2] provided a comprehensive review on the sieve method in the semiparametric
models.

Despite the popularity of the Cox model, it assumes the treatment effect to take place imme-
diately after patients are randomized to different treatment groups; that is, the hazards for differ-
ent groups are different from time t = 0. However, in a randomized clinical trial, the treatment
groups are essentially identical at + = 0 due to randomization. Randomization makes different
groups alike except for treatments. Particularly in oncology, it often takes some time to observe
efficacy effects of the treatment, for example, tumor shrinkage. In other words, it may take a
certain period of lag time for the treatment to fully exert the therapeutic effect instead of being
immediately effective. Along this direction, Chen and Wang [4] proposed the accelerated haz-
ards model by replacing the survival functions in (3) with the corresponding hazard functions,
and thus the conditional hazard function of failure time 7" given covariate Z takes the form of

M(H|Z) = 2o (1eP0?). 4)

This model is intuitive in the sense that the hazard functions for different values of Z in (4) are
the same at time ¢ = 0. As time goes by, the hazards in different groups would gradually change
due to different treatment effects. In a more general framework, Chen and Jewell [3] proposed a
class of hazards regression model,

A(H1Z) = ho(tePi%)er0Z, (5)

where B and p are vectors of regression parameters. Based on different parametrization, model
(5) includes the proportional hazards model (8, = 0), the AFT model (8, = y), and the acceler-
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ated hazards model (¥ = 0) as special cases. Chen and Jewell [3] developed martingale estimat-
ing equations for parameter estimation and inference, which may not be semiparametric efficient.
Due to the discontinuity of estimating equations with respect to the regression parameters, the
estimation procedure may suffer from potential multiple roots. Furthermore, the variance esti-
mation depends on the derivation of the baseline function, which makes it difficult to calculate
in practice.

To enhance the estimation efficiency and modeling flexibility, we study the sieve maximum
likelihood estimation for a general class of accelerated hazards regression models in the form of

A(t|Z, X) = Ao(tePi%)e?oX, ©6)

where Ag(-) is an unknown baseline cumulative hazards function, and 8 and y are unknown
vectors of regression parameters. Covariates Z and X are allowed to share some common com-
ponents. It is easy to see that model (6) reduces to the proportional hazards model when 8y, =0
and to the AFT model when y, = 0. In the case where Z is the same as X, model (6) reduces to
the accelerated hazards model when B + y( = 0 and to model (5) by reparameterizing B, + »
as a new parameter. Hence, model (6) has great flexibility and, more importantly, is able to si-
multaneously investigate the time-accelerated effect of covariate Z and the proportional hazards
effect of covaraite X. Noting that the parametric and nonparametric components are bundled

together in Ao(teﬂgz), the theoretical development and numerical implementation of model (6)
are very challenging. In contrast to the conventional martingale-based estimating equations pro-
posed by Chen and Wang [4] and Chen and Jewell [3], we propose an intuitive spline-based sieve
maximum likelihood estimation procedure for model (6) to improve the estimation efficiency.
The numerical implementation of the proposed method can be achieved through the conven-
tional gradient-based search algorithm, such as the Newton—Raphson algorithm. The variance
estimates can be obtained from the inverse of Fisher’s information matrix, and thus achieves
semiparametric efficiency.

The main contributions of this paper are threefold. First, we proposed a sieve MLE method for
the general accelerated hazards model in which the nonparametric function and the regression
parameter are entangled with each other. The asymptotic properties of the resulting estimators are
established and the estimator for the regression parameter achieves the semiparametric efficiency
bound. Second, compared with the weighted estimating equation approach where the optimal
weight depends on the form of the baseline function and thus it is challenging to find such an
optimal weight and difficult to implement in practice, the proposed sieve MLE method is easier
to be carried out. Third, the standard error estimates are obtained directly by either inverting the
observed information matrix of all the parameters or inverting the efficient information matrix of
the regression parameters, and both methods are more computationally tractable compared with
the resampling techniques.

The rest of this article is organized as follows. We propose the sieve maximum likelihood esti-
mating procedure in Section 2 and establish the asymptotic properties of the resultant estimators
in Section 3, while proofs are presented in Section 7. We conduct simulation studies to assess the
proposed method with finite samples in Section 4. As an illustration, a real data set is analyzed
in Section 5. Some concluding remarks are provided in Section 6.
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2. Sieve maximum likelihood estimation

Let T be the failure time, let C be the censoring time, denote a A b as the minimum of a and b, and
let I (-) be the indicator function. We observe the data {Y; =T; A C;, A; = [(T; < Cy), Z;, X},
i =1,...,n,which are independent and identically distributed (i.i.d.) copiesof {Y =T AC, A =
I(T <C),Z,X}. Covariates Z and X may share the same components. Assume that 7 and C
are conditionally independent given covariates Z and X. Under model (6), the conditional sur-
vival and density functions of T given both Z and X are S(¢|Z, X) = exp{—Ao(teﬂgZ)e"gX} and
fZ,X) = S(t|Z, X)Ao(teﬂgz)eﬂgzﬂ'gx, respectively, where Ag(t) = dAo(¢)/dr is the base-
line hazard function. The likelihood function of parameters (8, y, A) based on the observed data
can be derived as
n
TTA(YieP %) B 2y X0V expl A (Y;eP %)e? X1,

i=1

where A(#) = dA(¢)/d¢. The log-likelihood function is given by

n
By 1)=n"" Z[Ai{ﬂTZi +r"X; + logA(YieﬂTZi)}
i=1

7

YieﬂTZi T ( )

—/ A(s)dse? Xf],
0
To overcome the nonnegative constraint on A(-), let g(¢) = logA(¢) and then (7) is recast as
. T
b(B.y.g)=n"" Z[Ai{ﬂTZi +yTXi+ g(YieB Zi)}

i=1

(®)

ieh'%i
fo

In what follows, we propose a spline-based method to estimate the function g. Denote b =
Supy, , gy exp(BTz), then 0 < b < oo under conditions C1 and C2 listed in Section 3. Let 0 =
fo <t <---<tg, <tg,+1 = bbeapartition of [0, b] with K, = O (n") and maxo<;<x, Itj+1 —
tjl = 0(n™?) for v € (0,0.5). Denote the set of partition points by Tk, = {t1,...,x,}, and
let S, (Tk,, K, p) be the space of polynomial splines of order p defined in Schumaker ([17],
page 108, Definition 4.1). According to Schumaker ([17], page 117, Corollary 4.10), there exists
a local basis {B; : 1 < j < g,} with g, = K,, + p such that for any s € S, (Tk,, K, p), we can
write

exp{g(s)} dseyTX"i|.

dn
s(t) =a'B() :Zaij(t),

j=1

where a = (ai, ..., a,,)" and B = (By,..., B,,)". Under some suitable smoothness assump-
tions, go, the true function of g, can be well approximated by some function in S, (Tx,,, K, p).
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Let B C R and T C R?%2 denote the parameter spaces of § and y, respectively, where d; and
d are their corresponding dimensions. As a result, we seek a member of S, (Tx,, p) along
with values of (8, y) € B x T that maximizes the log-likelihood function. Specifically, we define
(,/B\n, ¥, ay) to be the parameter values that maximize

In(B.y.a)=n" IZ[ [B7Z; +y™X; +a"B(v;ef %))
i=1

-,

3. Asymptotic properties

YieﬂTZi T
exp{a'B(s)} dse” Xz}.

Denote the true parameter 8¢ = («o, go) With o = (/30 rh 0 T_ To establish the asymptotic prop-

erties of the proposed estimator (&, g,) with &,, = (,B,,, yn T and g, gn(t) = aTB(t) we need the
following regularity conditions.

C1. The parameter spaces 13 and 7 are both compact and contain the true parameters B and
Yo as their interior points, respectively.

C2. The domain of the covariate V = (ZT, XT)T, denoted by V, is a bounded subset of R4,
where d = d| + d», and both E(ZZ7T) and E(XXT) are nonsingular.

C3. For i = 1,2, assume that 8; € B, y; € T, and log;(-) € G”, and denote A;(t) =
JEhi(s)ds. IF Ay (teB1%)e?1X = Ay (1eB2%)e?2™ for any 1 € [0, 5] and v = (2T, xD)T € V,
then B; = B,. ¥ =y, and A1 = 1s.

C4. Letey = Yeﬂgz. There exists a truncation time 7 < 0o such that, for some positive con-
stant §g, P(ep > 7|V) > §p almost surely with respect to the probability measure of V.

CS. The conditional density of C given V and its derivative are uniformly bounded for all
possible values of V.

C6. Let GP denote the collection of bounded functions g on [0, b] with bounded derivatives
g(j ), j=1,..., k, such that the kth derivative g(k) satisfies the following Lipschitz conti-
nuity condition,

18® ) —g® @] <Lls—1|™  fors,t€[0,b],

where k is a positive integer and m € (0, 1] such that p =m + k >3, and L < o0 is
a constant. The true log baseline hazard function go(-) = logAg(-) belongs to G”. For
notational simplicity, we may also use g’ and g” to denote the first and second derivatives
of g, respectively.

C7. For some 1 € (0, 1), uTVar(V]ey, A = Du > nuT E(VVT|€y, A = 1)u almost surely for
all u € R?. E(AWWT) is nonsingular, where W = ({1 + eogf)(eo)}ZT, XTHT,
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C8. Let M(1) = AI(YePoZ < 1) — [1 1(YePo? > 5)e800)e¥0X g,

b E(ZI(YePiZ > t)eygx}]
I (0) = 7 — — 14+1g,() dM (1),
7@ /o [ E{I(YeBoZ > 1)eroX) 1+ 500} M0

i} b E{XI(YePIZ > 1)e?0X)
I3 () =/ [X— - - }dM(t),
0 E{I(YePo? > 1)e?0X)

12,0) = (15, O, 1 ON)'. Z(ao) = E{I}, (0)%2},

where O = (Y, A, Z,X) and a® = aa” for a column vector a. Assume that Z(etg) is
nonsingular.

Conditions C1-C2 and C4-C5 are common assumptions in the context of survival analysis.
Condition C3 is required to guarantee the identifiability of model (6). Obviously, the model is
unidentifiable if and only if Ag(#) = c1¢? for some positive constants ¢ and ¢ (Chen and Jewell
[3]). Condition C6 requires p > 3 to guarantee the desirable control of the spline approximation
error rates of the first and second derivatives of gg. Condition C7 is a technical assumption and
can be justified in many applications. This assumption is also imposed by Wellner and Zhang
[23] for the panel count data model and Ding and Nan [7] for the censored linear regression
model. Condition C8 is a natural assumption that essentially requires the semiparametric effi-
ciency information matrix to be invertible.

Following Ding and Nan [7], we define

HP = (£, B): 61,2, B)=g(V(t,2. ). g €G", 1 €[0,b],z€ Z,B € B},
where
Y(t,z, B) = [e(ﬂ—ﬂo)Tz.

Here £ is a composite function of g composed with ¥, and &(¢,z, By) = g(z). We equip the
functional space H? with the norm || - ||2 defined as

b 1/2
¢, B, = [ /Z /0 [g(re®~P0™) 2 dAo(r) sz(zﬂ

for any &(-, ) € HP, where Fz(z) is the cumulative distribution function of Z. For any 6; =
B;,vi, &, B;),i=1,2,in the space OF =B x T x H?, define the distance,

d(01.62) = (1B, — B> + 1y — 2P + 61C. B — 526, B[ 3) ',
where | - | is the EBuclidean norm. Let G§ = S, (Tk,,, Ku, p),
Hy ={&C.B):£(t,2,B)=g(V(t.2.B)).g€Gr.1€[0,bl.2€ Z,B € B},

and ®F = B x T x H}. It is easy to see that ®F C ®5+1"' C ©7 for n > 1. Note that the
sieve estimator 0, = (B,,, ?,,,E,,(-, B,)) is the maximizer of the empirical log-likelihood over
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the sieve space ®F where En (t,z, :B\,,) =g, (te(ﬁn’ﬂO)Tz). The following theorem provides the
convergence rate of the proposed estimator @), to the true parameter 89 = (B, ¥, &0(-, Bo)) =
(Bo, Y0 80)-

Theorem 1. Suppose that conditions C1-C7 hold and 2p +2)~' <v < 2p)~!, then

d(/0\n, 0o) = OP (n_min{[’v,(l—v)/Z})'

The proof of Theorem 1 is provided in Section 7 by verifying the conditions of Theorem 1 in
Shen and Wong [19]. Theorem 1 implies that, if v = 2p + 1)~!, d(®,,00) = 0, (n~P/1+2P)),
which is the optimal convergence rate in the nonparametric setting. Although the overall conver-
gence rate is slower than n~!/2, the proposed estimator for the regression parameter a is still
asymptotically normal at the rate of n~!/? and attains the semiparametric efficiency bound. We
summarize these asymptotic results in the following theorem.

Theorem 2. Suppose that conditions C1-C8 hold and 2p+2)~' <v < 2p)~', then n'/* (&, —
o) converges in distribution to a mean zero normal random vector with covariance matrix
T~ Yag) equal to the semiparametric efficiency bound of ag.

The proof of Theorem 2 is also presented in Section 7 by checking the conditions in Theo-
rem 6.1 of Wellner and Zhang [23], which relies heavily on the empirical process theory. A con-
sistent estimator for the limiting covariance matrix is summarized by the following theorem.

Theorem 3. Let Iy (0) = (; (O)" Ty (O)N)T, where

b — _~ o~
5,0 = [ (2= 2B, 50} {1+ 50} i),

b — —~~ o~
5,0 = [ (X=X By 70}l

20.8.9) PAZI(YeP'Z > 1)e?™X)
) ) }’ = )
Po{I(YeB'Z > 1)er™X)

R0y Py (XI(YeP'Z > 1)er'X)
,PY) = N
P I (YeB'Z > 1)er™X)

A t = .
1) = A1(P ) [1reB ) expl )] 7 s,
0

and Py is the empirical measure with respect to O. Suppose that conditions in Theorem 2 hold,
then Py{ly, (0)®2} converges to I(ag) in probability.
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4. Simulation studies

We conducted simulation studies to assess the proposed sieve MLE for finite samples. We sim-
ulated covariates Z and X independently from the Bernoulli distribution with success proba-
bility 0.5 and then generated the survival times 7 from model (6). We set the true parame-
ter values B, = 1.5 and y; = 0.5 and considered four different baseline hazard functions for
Ao(0): () ro(1) = 1/(1 + 1); (i) Ao(r) = (¢ — 0.5)%; (iii) Ao(t) =log(l + 1); and (iv) Ao(1) =
14 cos(5¢ + 10). For each case, we generated censoring times C from Unif(cq, ¢p) with trunca-
tion at T = ¢ — 1 to achieve censoring rates of 20% and 40%, respectively. We considered the
sample size n = 200 and 400.

In the implementation of the sieve MLE, we chose the cubic B-spline and took the data-
adaptive interior knots as the median of {Y; ieﬂTZf :i=1,...,n} with a given B in cases (i)—(iii)
and the 20th, 40th, 60th, and 80th quantiles in case (iv). In particular, we adopted the following
procedure to obtain the sieve MLE.

(1) Choose initial values (E(O), 7@ 2©) and set k = 0.

(2) At step k + 1, obtain 2%+ by solving Bln(ﬁ(k), y® a)/da = 0 using the Newton—
Raphson algorithm with the initial value 2% until the maximum componentwise differ-
ence between the two consecutive values is less than 1073,

(3) Obtain (E(kH), y&+Dy by solving 3l,(8,y,a**tD)/a(B,¥) = 0 using the Newton—
Raphson algorithm with initial value (8", %®) until the maximum componentwise dif-
ference between the two consecutive values is less than 1073,

(4) Repeat steps (2) and (3) until the maximum componentwise differences of two consecutive
values are less than 1073, The resultant estimators, denoted by (B, ¥, an), are taken as
the sieve MLE.

Table 1 summarizes the estimates from 1000 replications for the censoring rate of 20% with
n = 200 and 400, respectively. The column labeled “EST” is the average value of the estimates,
“SE” is the sample standard error of the estimates, “ESE;” is the average of standard error esti-
mates by inverting the observed information matrix of all parameters including the basis spline
coefficients, and “CP;” is the corresponding coverage proportion of 95% confidence intervals.
We also present the column “ESE;”, which is the average of standard error estimates by invert-
ing the estimated information matrix of the regression parameter oy based on Theorem 3 and list
the column “CP,”, which is the corresponding coverage proportion of 95% confidence intervals.
The column “MSE” refers to the average value of the mean squared errors.

Clearly, the proposed sieve MLE method performs well under all of the four different baseline
hazard functions. The parameter estimates are virtually unbiased for both B and y, and the bias
decreases as the sample size increases. The estimated standard errors by inverting the observed
information matrix of all parameters or those by inverting the information matrix based on the
efficient score function agree well with the sample standard errors. The coverage probabilities
are around the nominal level 95% for all cases. The estimated baseline hazard function using
the B-spline approximation under n = 200 and n = 400 are presented in Figure 1. It can be
seen that the estimated baseline hazard functions are reasonably close to the corresponding true
curves. We also explored the situation with a censoring rate of 40%. The corresponding results of
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Table 1. Simulation results under the proposed accelerated hazards model with a censoring rate of 20%

Sieve MLE
Ao(+) n True value EST SE ESE; CP; ESE, CP, MSE, 2
@) 200 B(1.5) 1.496 0.238 0.232 0.939 0.225 0.936 5.657
y(0.5) 0.511 0.162 0.160 0.947 0.160 0.949 2.628
400 B(1.5) 1.503 0.162 0.163 0.948 0.161 0.944 2.606
y(0.5) 0.504 0.114 0.112 0.950 0.112 0.950 1.292
(i) 200 B(1.5) 1.505 0.046 0.043 0.935 0.040 0.922 0.210
y(0.5) 0.514 0.168 0.165 0.950 0.167 0.952 2.817
400 B(1.5) 1.506 0.031 0.030 0.932 0.028 0.915 0.099
y(0.5) 0.503 0.114 0.116 0.954 0.117 0.954 1.293
(iii) 200 B(1.5) 1.501 0.099 0.098 0.955 0.096 0.947 0.984
y(0.5) 0.514 0.166 0.163 0.945 0.166 0.950 2.774
400 B(1.5) 1.503 0.068 0.069 0.952 0.069 0.950 0.466
y(0.5) 0.498 0.111 0.114 0.961 0.115 0.962 1.236
>iv) 200 B(1.5) 1.493 0.115 0.115 0911 0.099 0.902 1.311
y(0.5) 0.515 0.169 0.162 0.944 0.163 0.942 2.865
400 B(1.5) 1.498 0.079 0.077 0.924 0.072 0.913 0.623
y(0.5) 0.504 0.117 0.114 0.954 0.114 0.951 1.358

*EST, the average value of the parameter estimates; SE, the sample standard error of the estimates; ESE{, the estimate
of the standard error by inverting the information matrix of all parameters; CPy, the corresponding coverage probability
of 95% confidence intervals; ESE,, the estimate of the standard error by inverting the information matrix based on
the efficient score function; CP;, the corresponding coverage probability of 95% confidence intervals; MSE, the mean
squared errors of the parameter estimates.

the estimates for the regression parameters based on 1000 replications are presented in Table 2,
from which similar conclusions can be drawn as before. Moreover, the estimated baseline hazard
functions are plotted in Figure 2, which deteriorate slightly compared with those in Figure 1.

5. Application

As an illustration, we applied the proposed general class of accelerated hazards models to a study
of bone marrow transplantation with 137 patients of acute leukemia (Copelan et al. [5] and Klein
and Moeschberger [11]). The disease-free survival time, including the time to relapse, death, or
the end of study, is of primary interest. Patients were followed for approximate 7.2 years, of
whom around 39.4% were censored. Several potential risk factors were measured at the time of
transplantation. Patients were classified into three risk categories based on their disease status:
38 patients with acute lymphoblastic leukemia (ALL), 54 patients with acute myeloctic leukemia
(AML) low risk, and 45 patients with AML high risk. Both patients and donors’ ages and the
waiting times from diagnosis to transplantation were recorded. The AML patients with their
French—American—British (FAB) classification of grade 4 or 5 based on standard morphological
criteria were also considered as a covariate in our regression model. Patients were either given
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Figure 1. True baseline hazard function (solid line) and its estimate (dashed line) using the B-spline ap-
proximation under n = 200 (left panel) and n = 400 (right panel) with a censoring rate of 20%. From top
to bottom, the plots correspond to cases (i) to (iv) for the baseline hazard functions.
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Table 2. Simulation results under the proposed accelerated hazards model with a censoring rate of 40%

Sieve MLE
Ao(+) n True value EST SE ESE; CP; ESE, CP, MSE, 2
@) 200 B(1.5) 1.501 0.258 0.262 0.952 0.250 0.949 6.625
y(0.5) 0.518 0.188 0.185 0.950 0.185 0.949 3.539
400 B(1.5) 1.504 0.180 0.180 0.942 0.178 0.936 3.241
y(0.5) 0.504 0.130 0.130 0.941 0.130 0.941 1.679
(i) 200 B(1.5) 1.501 0.069 0.063 0.921 0.061 0.916 0.472
y(0.5) 0.523 0.196 0.189 0.947 0.194 0.949 3.864
400 B(1.5) 1.498 0.048 0.044 0.925 0.042 0.913 0.235
y(0.5) 0.509 0.130 0.132 0.957 0.135 0.962 1.696
(iii) 200 B(1.5) 1.511 0.142 0.138 0.943 0.139 0.943 2.025
y(0.5) 0.520 0.196 0.189 0.952 0.191 0.953 3.843
400 B(1.5) 1.506 0.099 0.097 0.946 0.099 0.948 0.977
y(0.5) 0.501 0.129 0.132 0.956 0.133 0.958 1.666
@iv) 200 B(1.5) 1.504 0.127 0.146 0.936 0.117 0.935 1.605
y(0.5) 0.516 0.196 0.187 0.947 0.187 0.943 3.843
400 B(1.5) 1.508 0.090 0.097 0.948 0.086 0.933 0.811
y(0.5) 0.504 0.126 0.131 0.963 0.131 0.961 1.577

*EST, the average value of the parameter estimates; SE, the sample standard error of the estimates; ESE{, the estimate
of the standard error by inverting the information matrix of all parameters; CPy, the corresponding coverage probability
of 95% confidence intervals; ESE,, the estimate of the standard error by inverting the information matrix based on
the efficient score function; CP;, the corresponding coverage probability of 95% confidence intervals; MSE, the mean
squared errors of the parameter estimates.

a graft-versus-host prophylactic combining methotrexate (MTX) with cyclosporine and possibly
methlprednisolone or given only a combination of cyclosporine and methlprednisolone. In our
analysis, we used X; = 1 to indicate the patient with AML low risk and X; = 0 otherwise,
X, =1 to indicate the patient with AML high risk and X, = 0 otherwise, X3 to denote the
patient’s age centered by 28 years, X4 to denote the donor’s age centered by 28 years, X5 =1
to indicate the AML patient with FAB grade 4 or 5 and X5 = 0 otherwise, and X¢ to denote the
patient’s waiting time from diagnosis to transplantation centered by 9 months, and X7 =1 to
indicate the patient treated with MTX and X7 = 0 otherwise.

To make a preliminary investigation of whether the hazards of the patients within three dif-
ferent risk categories were identical at the beginning of study, we plotted the kernel-smoothed
hazard rate functions with bandwidth 100 days in Figure 3. It can be observed that the smoothed
hazards of patients with ALL and AML low risk are almost the same at the initiation of the study.
However, the smoothed hazard of patients with AML high risk appears to be slightly higher than
those of the other two at time # = 0, and increases to a higher level and then lies between those of
patients with ALL and patients with AML low risk during the later follow-up of the study. Fig-
ure 3 reveals that the hazards may not be proportional from the very beginning of the study, which
results in the usual proportional hazards assumption questionable. Intuitively, it is more appealing
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Figure 2. True baseline hazard function (solid line) and its estimate (dashed line) using the B-spline ap-
proximation under n = 200 (left panel) and n = 400 (right panel) with a censoring rate of 40%. From top
to bottom, the plots correspond to cases (i) to (iv) for the baseline hazard functions.
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Figure 3. Smoothed hazard rate functions for patients with ALL, AML high-risk, and AML low-risk,
respectively.

to consider the time scaled effects of risk status categories as well as the proportional effects of
all the risk factors by employing our proposed general accelerated hazards model through setting
7= (Xq, X2)T and X = (X1,..., X7)T. We applied the proposed sieve MLE with smoothing
splines to fit the data. For comparison, we fitted the Cox proportional hazards model to the data
without taking into consideration of the time scaled effects of risk status categories. The estima-
tion results are summarized in Table 3. For the regression parameters in the proportional hazards
component, all of the three considered methods agree in general: Patients without FAB grade 4
or 5 and those with AML low risk were associated with lower hazard risks and thus led to longer
progression-free survival times, while the effects of other covariates were not significant. For the
time scaled effects of risk status categories, the sieved MLE method shows that patients with
AML low risk had significant decelerated hazard risks while the scaled time effect of patients
with AML high risk was not significant.

Figure 4 exhibits the estimate of the baseline hazard function Ao (#) using the proposed sieve
MLE method. Clearly, patients at the beginning of post transplantation would suffer from the
drastically increasing risk due to the incompatibility between the donor and patient, and then the
hazard gradually decreased with time.
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Table 3. Analysis results of the bone marrow transplantation data

X. Zhao, Y. Wu and G. Yin

Z Zy X X5 X3 X4 Xs X6 X7

Estimation (AMLL) (AMLH) (AMLL) (AMLH) (PAge) (DAge) (FAB) (WaitT) (MTX)
Sieve MLE

EST —0.651 —-0.128 —-0.716  —0.033 0.009 0.000 0.804 —0.011 0.348
ESE; 0.045 0.214 0.370 0.380 0.020 0.018 0.276  0.012 0.252
p-value| <0.001 0.548 0.053 0.930 0.650 0.994 0.004 0329 0.166
ESE, 0.119 0.105 0.365 0.371 0.020 0.016 0.269 0.010 0.240
p-valuer <0.001 0.220 0.050 0.929 0.652 0.993 0.003 0.262 0.147
Cox model

EST —1.051 —0.188 0.012 —0.001 0.812 —0.011 0.294
ESE 0.368 0.359 0.020 0.018 0.275 0.011  0.250
p-value 0.004 0.600 0.530 0.940 0.003 0310 0.240

*EST, the parameter estimates; ESE{, the estimate of the standard error by inverting the information matrix of all param-
eters; ESE,, the estimate of the standard error by inverting the information matrix based on the efficient score function;
ESE, the estimate of the standard error by inverting the information matrix based on the Cox proportional hazards re-

gression model.

Estimate of A4(t)

0.0010 0.0015 0.0020
| | |

0.0005
|

0.0000
|

T
200

Days Post Transplantation

T
400

I
600

Figure 4. Estimated baseline hazard Ag(¢) using the proposed sieve MLE method for the bone marrow

transplantation data.
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6. Remark

The general accelerated hazards model enables us to evaluate the time scaled effects and the
proportional hazards effects of covariates simultaneously. However, it is difficult in practice to
classify the risk factors rigorously into either the time scaled or the proportional hazards compo-
nents of the model. It often depends on the objectives of the study, the interest of the investigator,
and the underlying biological process. If there is no such biological information as guidance,
some data-driven methods could be used for the classification of covariates. For example, when
the number of covariates is small, all the possible models from different combinations of co-
variates in the time scaled and the proportional hazards parts can be considered. To facilitate
the selection of the models, some criteria for evaluating the goodness of model fitting should be
considered. When the number of covariates is moderately large, this exhaustive method could be
time-consuming, while similar automatic structure discovery procedures as presented in Zhang,
Cheng and Liu [26] may warrant further research.

7. Proofs of theorems

Before proving the theorems presented in Section 3, we introduce some useful lemmas. Define

98, (. B)

Hz{h:h(~,ﬁ)= o

:w(w(~,ﬂ)),éne7{1’}.

n=0
Lemma 1. Denote
YeﬁTZ

1(B,y.6(.B); O) = A{B"Z + y X + g(YeP %)} — fo exp{g(s) + y X} ds.

Under conditions C1, C2, C4 and C6, [ has bounded and continuous first and second derivatives
with respectto B € B,y € T,and £(-, B) € HP.

Proof. After some algebraic calculations, we have

15(B.y.6¢. ) O) = AZ{1 + YeP 2 (YeF 7))
— 7Y explg(YeP' %) + 872 + y "X},
YeﬂTZ

1 (B.y.£C. B): O) = AX — X/o explg(s) + yTX) ds,

YeﬂTZ

1L(B.7.£C.B); O)[h(-, B)] = Aw(YeP ) — / exp{g(s) + " X}w(s)ds,

0
ll/g,ﬂ (ﬂ, ”, é(, ﬂ), O) — AZZTYzezﬁTZg”(YeﬂTZ) + AZZTYeﬂTZg/(YeﬂTZ)
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—ZZTng’(YeﬂTZ) exp{g(YeﬂTZ) +28"Z+ y"X}

—77%Y exp{g(YeﬂTZ) + 877 + yTX},

yeBTZ
lyy(B.y.6(.$): 0) = _XXT/O exp{g(s) +yTX]} ds,
lgy (B’ v.£C. B); O) =—yzX" exp{g(YeﬂTZ) ~|—ﬁTZ—|— }'TX},
Uy (B.7.6C.B): O)[1(-. )] = AYZeP P (veP %)
—YZu(veF ?)explg(vel %) + BT+ y"X),

YeﬂTZ

v (B.y.6¢.B): O)[hl = —X fo exp{g(s) + ¥ X}w(s) ds,

YeﬁTZ

e (B, v, 5, B); O)lh1, ha]l = —/O exp{g(s) + ¥ X}wi(s)wa(s) ds,

where A(-, B) = w (-, B)), h1 = wi (W (-, B)), ha(-, B) = wa(Y¥ (-, B)) € H. Under conditions
C1, C2, C4 and C6, all the above derivatives are continuous and bounded.

Employing Corollary 6.21 in Schumaker [17], we directly have the following lemma with its
proof omitted. ]

Lemma 2. For gy € GP, there exists a function go, € Gt such that

llgon — golloo = O(n—pv)7

where || - || is the sup-norm.

Lemma 3. Let 0o, = (Bg, Yo, Eon (-, By)) with &0, (-, Bo) = gon defined in Lemma 2, and F,, =
{(1(0; ©O) —1(00,; O) : 0 € OF). If conditions C1-C4 and C6 hold, then the s-bracketing number
associated with || - ||« for F,, denoted by Ny|(e, Fn, || - lloo), is bounded by (1/e)antd je.,

N (8, Fs Il - lloo) S (1)t

for a constant c. Hereafter, we use the symbol < to denote that the left-hand side is bounded
above by a constant times the right-hand side.

Proof. Denote the ceiling of x by [x7]. By the calculation in Shen and Wong ([19], page 597),
for any ¢ > 0, there exists a set of brackets

{[&L»giu]:i:l,..., [(1/e)°])

such that for any g € G7, gl (1) < g(t) < gV (r) over t € [0,b] for some 1 <i < [(1/e)%n7,
where ||gl.U — gl.L lloo <€ and c is a constant. Since 55 and T are both compact under condition
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Cl1, B and T can be covered by [ca(1 /€)% and [e3(1/€)%2] balls with radius ¢, respectively.
Thus, for any 8 € B and y € T, there exist 8, for some 1 < /£ < [ca(1/6)?17 and Y for some
1 <k < [e3(1/e)%2] such that |8 — B¢l <eand |y — y;| < e. Hence, 1872 — ﬂ{Z| < c4€ and
lyTX — yZX| < c4¢ for some constant ¢4 under condition C2. Define

mée’k(o) = A{ﬂgZ +yiX —2c4e + giL(yeﬂ}ZHn)}

Yelg{Z+C4£
U T .
_/ exp{gl () + yFX + cae} ds — [(Bon; U)
0
and
T .
mY, (O) = A{BTZ+ y X+ 2cse + g7 (YePiZHhin))
Yeﬂ{Z—Ms
- / exp{g/ () + i X — cae} ds — [(Bop; O),
0
where

gL (P12 = min gL (eP1Z+) and gl (P1Z+6i) = max gV (ePPZH).
[s|<cqe [s|<cqe

After some calculations, we have |mf’]gyk (0)— mfé’k(0)| < ¢ and for any m(0; O) € F,, there
exist some i, £, and k such that m(@; O) € [mfz’k((’)), mf’ji,k((’))]. Therefore, we have

N(es Fos I+ llo) S (/) (1/e) M1 (1/e)® = (1/e) 0
for a constant ¢, which completes the proof. a

Lemma 4. Let

E(ZI(YePoZ > 1)e?oX)
E{I(YePoZ > 1)e?oX)

(W), ... wh )" = {1+1g)1))

and
. ooT_ EXI(YePi? = eriX)
(Wi, 1 (@), .., wi(@) = 7 o
E{I(YePoZ > 1)e?oX)
If conditions C1-C6 hold, then there exist w;fn € g,% (j=1,...,d) such that |Iw7n — w;f||Oo =

Om=2),j=1,....,d.

Proof. Note that E{I(YefoZ > 1)|Z,X} = Sciz x(te %) expl—Ao(1) exp(yIX)}, where
Sciz,x(+) is the conditional survival function of C given Z and X. It can be shown that the
first and second derivatives of w* are bounded under conditions C1-C6. Thus, according to
Corollary 6.21 of Schumaker [17], the conclusion of this lemma follows. O
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Lemma 5. Let hj(-,ﬂ) = w;f(w(-,ﬁ)) with h’]‘f(t,z, Bo) = u);f(t) where w;‘ is defined in
Lemma4, j=1,...,d. For n > 0, denote

Fin(m) = {lz0; O)[15 —h;]:0 €O, hjeHy,d@,00) <n,

15— hjl o = n}-
If conditions C1-C6 hold, then Nyj(e, Fjn(m), || - lloc) S (n/a)cq"“‘d for a constant c.
Lemma 6. Define

Fho(my = {1, 8; 0) = I (B0; 0) : 6 € ©F,d(8,00) <,

j=1,...,d,

and
Fou) = {1L0: O[5, B)] — 1 (Bo: O)[15(-, Bp)] : 6 € O d(8.680) < n}.
ji=1,....d,

where l/’gj 0; O) and l;,j (0; O) are the jth element ofl”g 0; O) and l;, (0; O), respectively, and h“;
is defined in Lemma 5. Suppose that conditions C1-C6 hold, then

Niy(e. FE ). 1+ lloo) S (/) 19m+,
N[](gv]:}/n(n), I lloo) S (n/e)°2ntd,
N[](&ff‘n(ﬂ), Il - IIOQ) < (n/e)39nt,

for some constants c1, c2, and c3.

The proofs of Lemmas 5 and 6 are similar to that of Lemma 3 and thus omitted here for the
sake of space. The detailed proofs are available as supplementary materials from the authors.

Proof of Theorem 1. To obtain the convergence rate of the proposed estimator, we need to verify
conditions C1-C3 of Theorem 1 in Shen and Wong [19]. Some algebraic calculations yield that

E{l(B.y.£(.B); O)} = E[A{B"Z+y X + g(YeP %) }] — E[Aexp{(g(ve! %)
+B'Z+y"X) - {go(YeﬂgZ) +BoZ+yoX}}]
and

E{l(Bo, 0, &0(, Bo); O)) — E[1(B. v, £(, B); O)}
= E[Afexp({g(YeP %) + BZ + y"X) — {go(YePo?) + BIZ + p{X})
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|
—_
|

({g(ref %) + BZ+y"X} — {go(YePo? + Tz + y{X)D)}] ©)

E{A({g(YeP' ) + BTZ +y™X) — {g0(YePo?) + BIZ + yIX})*)

v

v

N = N =

E{A({g(Ye?"?) — go(YeHO?)) + (B — Bo)"Z+ (v — y9)"X)’}.
Using the Taylor expansion, we have
E{a({g(ve?™”) = go(YeP?)} + (B~ B)Z+ (v — 0)"X)’)
= E{A({g(reP'®) — g(vePo%)} + {g(vePo) — go(vefo%))
+ (B BY)Z+(y - y9)"X)’)
= E(A[g'(e0)e0(B — Bo)"Z+ O (1B — Bol*) + {2(e0) — go(0)}
+(B—B0)"Z+ (¥ —r9)"X]")
= E(A[{g(e0) — g0(e0)} + (@ — ag)TW]) + 0(d2(6, 60)),

where W = ({g((¢0)e0 + 1}ZT, XT)T. Obviously,

(10)

E(A[{g(e0) — g0(e0)} + (& — a0)TW]’)
> E[A{g(e0) — 0(e0)} ] + E[A{ (@ — ag)TW] (11)
—2|E[A{g(e0) — go(£0) } (@ — ag) "W].
On the other hand, it follows from the Cauchy—Schwarz inequality and condition C7 that
|E[A{g(20) — go(e0) } (o — atg)TW]|?
= |E[A{g(c0) — g0(e0) | E{ (@ — @) "Weo, A = 1}]|
< E[A{g(e0) — g0(e0) ) | E[E{ (@ — @0)"Wleg, A = 1}]’

< (1= NE[A{g(s0) — go(e0) ] E[Af (o — ) "W).

12)

Note that

d*8,00) S E[A{g(0e®B0") — go(e0) )]+ 1B — Bol> + 1y —vol> Sd26.00)  (13)

and
E[A{g(s0e® 0" %) — go(e0) )] + 18 — Bol> + Iy — vl
Ag(e0) — g0(e0) )]+ 1B — Bol> + 1y — vol? (14)

SE[
S E[A{g(c0e® PV 2) — go(e0) )]+ 1B — Bol2 + Iy — vol?
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under conditions C1-C4. Therefore, it follows from (10)—(14) that

E|A ({( "2) — go(YePiZ) ) + (B — B Z+ (¥ — ) X))
> {1— (1 ="} (E[a]ge0) — goe0) )] + E[A{ (e — 20)"W}?])

> E[A {8(80) 20(e0) )]+ 18 — Bol> + 1y — vol?
>d*(9.60).

~

5)

Hence, condition C1 in Theorem 1 of Shen and Wong [19] holds from (9) and (15).
Next, we verify their condition C2. Note that under our conditions C2 and C6,

{1(B,y.£C. B); O) = 1(Bo, y0 é0(-, Bo): O)
S{B-B0"ZY +{ -y "X}’ (16)
+ A{g(YeﬂTZ) - g(YeﬂgZ)}2 + A{g(yeﬁgz) — go(yeﬂEZ)}2

Y
+/ [exp{g(seﬂTZ) +8%2 + }'TX} — exp{go(seﬂg )+ BYZ +y! X}] ds.
0
Using the Taylor expansion, we have for any 6 € @7,

E[Alg(vef'?) — g(vePi?)) ] < 1B — Byl (17)

and
Y T
E/ [exp{g(se? £) + BTZ + y"X]) - exp{go(se 5+ ,BTZ—i—ng}] ds
0

Y
SE / exp{go(seP0%) + BLZ + y§X}{g(s¢P7) — go(seo”)} as
0 ) , (18)
+1B8—Bol"+ 1y —yol

= E[A{g(YePo?) — go(YePs2) V2] + 18 — Bol® + ¥ — ol? S d2(6, 00).

Thus, combining (16)—(18), we obtain that

E{I(B.7.£(, B): O) — (B, 70, £0(-» Bo); O)} < d2(6, 8),

which implies condition C2 in Theorem 1 of Shen and Wong [19].

As 0 maximizes the log-likelihood P,l(8; O) over the sieve space ©F, 0 satisfies inequal-
ity (1.1) in Shen and Wong [19] with 5, = 0. It follows from Lemma 2 that there exists a
Eon (-, Bo) € HE such that [|&y, — &ollcc = O(n~PY). The Kullback-Leibler distance between
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00 = (Bo, ¥, 0(-, Bp)) and Oo, = (By, ¥, Eon (-, By)) is given by
K (80.00n) = P{1(80; O) —(B0n: O)}
< J80C. Bo) — £ou - Bo) 3
< €0n (. Bo) = &0 Bo) |
= O(n_z‘”“).
Thus, it follows from Theorem 1 of Shen and Wong [19] that
d®,.00) = 0, (nfmin(pv,(lfv)/Z))’
which completes the proof of Theorem 1. (]

Proof of Theorem 2. Employing Theorem 2.1 of Ding and Nan [7], it suffices to verify the
following conditions to prove Theorem 2.

Al. d(8,,00) = 0,(n"") for some p > 0.
A2. Plg(ao, &0 (-, By); O) =0and Pl (ag, & (-, By); O)[h] =0forall h e H.
A3. There exists an h* = (h*, ..., hj)T, where hj € H for j=1,...,d, such that

Plys (a0, §0(-, Bo)s O)[h] — P (a0, §0(-, By); O)[h*, h] =0,

for all & € H. Furthermore, the matrix P{I,,(eo,&0(:, Bg); O) — lé’“(ao,éo(-,ﬂo);
O)[h*]} is non-singular.

A4, Pyl @ En (. B,): O) = 0p(n~"2) and Pyl @,.Ex(. B,): O)[h*] =0, (n~'12).

A5. Let G, =n'/2(P, — P). For any ¢ > 0,

sup |Gully (@, £(-, B); ©) — Gul'a (20, (-, Bo); O)| = 0,(1)
d(0,00)<cn—",0c@®

and

sup [ Gull (e, EC, B); O)[0* (-, B)] = Gull (0, &0, Bo): O)[1* (-, B)]]

d(6,80)<cn—",0c®Ff
=o0,(1).

A6. For some ¢ > 1 satisfying that p¢ > 1/2 and for any @ in a neighborhood of ¢, {6 :
d(8,00) <cn",0 € O]} say,

|P1, (o, £, B); O) — Pl (a0, &0 (-, Bo): O) — Plyg (a0, €0 (-, Bo): O) (e — axp)
- Pl‘;/s (“0, EO(" ﬂO), O)[S(’ ﬂ) - EO(" ﬂO):”
=0(d*(8.00))
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and
[Pl (e, 8); O)[0"C, )] = Pl (oo, &0, Bo); O)[" (-, )]
— Pl (0. &0(-. Bo): O)[0* (-, Bp) ] (@ — exo)
— Pl (@0, &0( Bo); O) [0 (-, B), £, B) — £o(-, Bo)]|
= 0(d*(8,00)).

We briefly discuss these conditions prior to verification of each of them. The convergence rate
in A1, established in Theorem 1, is a prerequisite while proving the asymptotic normality. Con-
dition A2 evaluates the score function (at the population level) at the true value, while A3 states
the least favorable direction and the nonsingular information matrix along such a direction; both
of them are standard in the maximum likelihood theory. Condition A4 assesses the score func-
tion (at the sample level) at the estimator and the stochastic equicontinuity in A5 can typically
be verified by either the Donsker property or the maximal inequality (van der Vaart and Wellner
[21]). Finally, the Taylor expansion results in A6.

First, Al holds by choosing p = min(pv, (1 — v)/2) from Theorem 1. Using the fact of zero-
mean score functions, it is easy to show A2 holds.

Next, we find h* = (h%, ..., h;‘;)T with h*(z, z, By) = w*(¢) such that A3 holds. Denote hz =
(B, )Ty = (e hDT W = (i wi DT and wh = (), w)) T For
any h € H,

Pl (a0, 0. Bo): O) 1] = Pl (oo, £o(-. Bo): O)[*. 4]

(1 (Bo. 0. §0C Bo): O) ] = I (Bo, ¥ o, §0(- Bo); O) [, h]
— \ B (Bo 70, (. B O)lh] = e (Bo, 70, 0 Bo): O[5, k] )

Some calculation entails that

= E{AYZeP % (YeP2)) — E[YZuw (Y eP0%) expgo(YePOZ) + BIZ + y2X]]

Yeﬂgz
+ E[/ exp{go(s) + ng}w;} (Hw(s) ds]
0

In what follows, we calculate the above expectations using the ordinary properties of con-
ditional expectation. We denote the conditional survival function of T given Z and X by
St1z,x(-|Z, X) and the corresponding conditional density function by f7|z x(:|Z, X). After some
tedious but straightforward calculations, we have

E{AYZeP %' (vePo%)|C, 2, X)

C
= 2Cw(CeP?) frizx(CIZ, X) — Z/ w(tePo%) friz x(t1Z, X) dt
0
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C
- Z/ tw(teﬂgz)[g(’) (teﬂgz)eﬂgz — exp{go(teﬂgz) +B0Z+ yiX)] frizx(tZ,X) dt,
0
E[YZw(YePo%) exp{go(YeP?) + BIZ + p X} IC, Z,X]
C
= Z/ 1w (tePo?) exp{go(teP%) + BYZ + X} friz.x(t1Z, X) dt
0

+ZCw(CePo?) frz x(C1Z,X),

and
Yeﬂgz
EU exp{go(s) + ¥oX}Wj (5)h(s) ds(c, /A X}
0

C
:/0 W;}(seﬁgz)w(seﬁgz)fT|Z’X(s|Z,X)ds.

Thus, we obtain that

Plje (Bo- 7o- €0C. Bo)s O)lh1 = PL (Bo. yo.60C- Bo)s O) [0 1]

C
=E / {W;;(seﬂgz) —-Z(1 +seﬂgzg(/)(seﬂgz))}w(seﬂgz)fﬂz,x(ﬂl, X) ds:|
0

T
- CePoZ

:E/o

{W5(0) = Z(1+ 1g50) yw(0) frizx(re %12, X) e Fo? dt:|

~+00
—E f 1(CePo% = 1) {wi(6) — Z(1 + 18 (1) }w(®) frizx (re P02 |Z, X)e P02 dti|
0

= +OO[E{I(C BZ > 1) exp{—Ag()e?0X }e?0X Jwh (1)
= A e > p o(®e e ]
— (14 1)) E{ZI(CePo? = 1) exp(—Ag(1)e?0X)e?0X w ()2 (1) dt.
Therefore, we take h;g with

{1 + 1) (N E[ZI (CePo% > 1) exp{— Ao (1)e? 0¥ }e?0X]

hg(t,z, Bp) =wi(t) =
g e Pol="g E[1(CeBYZ > 1) expl—Ao(1)e? 0 X}e?0X]

s

which makes Pl;;g(ﬂo, Yo, 80; O [h] — Plgg(ﬂo, V0> 80; O)[hl’g, h]=0forany h € H.

Based on similar but simpler calculations, we also have that

Ply o (Bo. ¥ 80: O)h1 = Pl (Bo. 7o, g0: O)[h. 1]

- +OOE1CﬂgZ>t Ao(1)e?0X)e?0X b w (¢
= [ e 2 Despl o) w0
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— E{XI(CePo? > 1) exp{—Aq(1)e?0X }e?0X  w (1)ho (1) dt.
Thus, we take h’; with

E[XI(CeBoZ > t)exp{—Ag(1)e?0X}e?0X]

hy(t,z, Bp) =w, (1) =
Y vy E[I1(CePIZ > 1) exp{—Ao(t)e?0X)e?0X]

such that PI},(Bo. 7o, 80; O)h] — Ply,(Bo. ¥, g0; O)[hy,, h] =0 forany h € H.
Note that

P(YePi? > 1|C, Z,X)
= P(TePo2 > 1, T < C|C.Z.X) + P(CePL > 1. T = C|C, Z.X)
= P(te P <T < CIC.Z,X)I(C > tePi%) + P(T > C|C, 2, X)1(C > 1e~F%)
= Srizx(te P |Z,X)1(C = 1e~B0%)
= 1(C > te Po%) exp{—Ao(1)e?0X).
Then, W} and W} can be simplified as

{1+ 1) (DY E{ZI (59 > 1)e?0X)

E{I(z0 > t)e?0X)

WZ t) =

and
. E{XI(eg>1)e?0X)
w, (t) =

i’ E{I(g0 > t)e?0X}

Hence, we have found h* = (%, ..., h("j‘)T such that for any h € H,
PIe (0. 50, Bo): O)[h] — Pl (o, & (-, Bo); O)[h*, h] = 0.
Furthermore, we obtain
and
1, (Bo 70: 60, Bo)s O) =1z (Bo, 0, £0(- Bo); O) [y ] =15 (O),
which are the efficient score functions for B and y, respectively. We can also show that

which is the negative information matrix for «g. Thus, it is invertible under condition C8. Hence,
A3 holds.
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Using Lemmas 4-6, the Taylor expansion, the maximal inequality in Lemma 3.4.2 of van der
Vaart and Wellner [21] or Theorem 11.3 of Kosorok [12], and the Markov inequality, we can
show that assumptions A4—A6 hold for p = min{pv, (1 — v)/2} and

.= min{Z(p —Dv,1/2+(p—5/2)v,1— v}/min{pv, a- v)/2} > 1.
Therefore, by Theorem 6.1 of Wellner and Zhang [23], we have
~ -1 —1
n'2@, —ao) = {Z(eo)}  n'P Pl (00; O) + 0, (1) >4 N (0, {Z(@o)} ),

where l;o (60; ©) =1,(80; O) — lé (6g; O)[h*] is the efficient score function for ey. This com-
pletes the proof of Theorem 2. O

Proof of Theorem 3. Define
wi) = ({[1+18,0)Z7 5 B 7.0, X515 B 7))
Then we have
1 00:0) =1,8,: 0) — 1,0, O)[].
Let
% (80) = P[{1;,,(80; 0) — 1 80; O)[ 15 ]}{11, B0; O) — 180 O)[1]}]
= PA%@0y; 0)
and
73" 80) = Pa[ {1, @13 O) = 1, @; O) I, 1Ly, B; O) — 1 B3 O) [ 15, 1]
= PnA{;k(’é\n; O)

for j,k=1,...,d. It suffices to show that P,,A,ik (0),; O) converges to PA/¥(0g; ©) in proba-
bility. Note that

P, AL 8,; 0) — PAT*(By; O)
= P{ A 8,; 0) — AT (80; O)) + (P, — PYAT*(8y; 0).

Clearly, (P, — P)A’*(09; O) = 0,,(1). On the other hand, under conditions C2 and C6, we
have

P{AJ8,: 0) — AT (00; 0))
S P, @0: 0) = 1, 00: O)} + P, B: O) =1, (B0; O
+ Pl @ O[5 — 13,1} + P @ O) [ — i, ]

+ P{IL0,: O)[15] — 1L (B0 0)[h;f]}2 + P{IL@,; O)[}] — 1} 80; o)[n]}).
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It is easy to show that
Pl 8 0) =1}, 00: O)}* < [, — 8o |3 + d*@n.00).  j=1.....d,
Pl 8 0) =1}, 00: O)}’ S d*@n.00),  j=di+1,....d,
P{l;@: O [ — 1%, ]}

P{IL@,: O)[15] = 1.(B0: O)[

AV Sd200,00)+1B-Bol,  j=1,....d,
IS0 00,  j=1.....d

Thus, it follows from Theorem 1 that P,,{A{;k (5,,; 0)— A% p; O)) =0 »(1), which completes
the proof of the theorem. O
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