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Abstract: This article discusses regression analysis of longitudinal data that often

occur in medical follow-up studies and observational investigations. For the analy-

sis of these data, most of the existing methods assume that observation times are

independent of recurrent events completely, or given covariates, which may not be

true in practice. We propose a joint modeling approach that uses a latent variable

and a completely unspecified link function to characterize the correlations between

the longitudinal response variable and the observation times. For inference about

regression parameters, estimating equation approaches are developed without in-

volving estimation for latent variables and the asymptotic properties of the resulting

estimators are established. Methods for model checking are also presented. The

performance of the proposed estimation procedures are evaluated through Monte

Carlo simulations, and a data set from a bladder tumor study is analyzed as an

illustrative example.
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1. Introduction

The analysis of longitudinal data has recently attracted considerable atten-
tion. These data frequently occur in medical follow-up studies and observational
investigations. For the analysis of longitudinal data, a number of methods have
been developed, mostly under the assumption that the longitudinal response pro-
cess and the observation process are independent completely, or given covariates.
For example, Diggle, Liang, and Zeger (1994) presented an excellent summary
about such commonly used methods as estimating equation and random-effect
model approaches, and Lin and Ying (2001) and Welsh, Lin, and Carroll (2002)
discussed general semiparametric regression analysis of longitudinal data when
both observation times and the censoring times may depend on covariates.

A common situation where informative observation times occur is that these
times are subject or response variable-dependent. For example, they may be
hospitalization times of subjects in the study (Wang, Qin and Chiang (2001)).
In a bladder cancer study, Sun and Wei (2000) and Zhang (2002) discussed a
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set of longitudinal data arising from a bladder cancer follow-up study conducted
by the Veterans Administration Cooperative Urological Research Group; in this
study, some patients had significantly more clinical visits than others and thus
the occurrence of bladder tumors of a patient and the visit times may be re-
lated. Lipsitz et al. (2002) presented a set of longitudinal data from a study
of children with acute lymphoblastic leukemia that involved correlated response
and observation processes. The same could be true for other medical follow-up
studies, but there is limited research on the analysis of longitudinal data when
the longitudinal response process of interest may be correlated with the observa-
tion process given covariates, that is, the observation times may be informative.
Sun et al. (2005) studied semiparametric models that allow observation times to
be correlated with the longitudinal process; Sun, Sun, and Liu (2007) proposed
a joint model for the longitudinal process and the observation process, where
both processes may be correlated through a shared latent variable or frailty, and
used the estimating equation approach to estimate the regression parameters;
Liang, Lu, and Ying (2009) discussed a joint model through two random effects,
where the relationship between the random effects is specified and a parametric
distribution assumption for a random effect is required. The aim of this paper
is to consider more general joint models for longitudinal data with dependent
observation times, to develop an estimating equation approach for estimation of
regression parameters, and to establish the asymptotic properties of the resulting
estimates.

The remainder of this paper is organized as follows. Section 2 introduces no-
tation and describes joint models for the longitudinal response process and the
observation time process, where a latent variable and a completely unspecified
link function are used to characterize the correlation between the two processes.
In Section 3, an estimating equation approach is proposed for estimation of re-
gression parameters and the asymptotic properties of the resulting estimates are
established. In Section 4, we discuss the assessment of the models described in
Section 2. Section 5 presents some results obtained from a simulation study of
the finite-sample properties of the proposed inference procedure. In Section 6,
we apply the proposed methods to a data set from a bladder tumor study. Some
concluding remarks are made in Section 7.

2. Joint Modeling

Consider a longitudinal study, with Y (t) as the longitudinal response variable
of interest. Let X be the p-dimensional vector of covariates, C be the follow-
up or censoring time, and N(t) be the counting process for the number of the
observation times before or at time t. The longitudinal process Y (t) is observed
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only at time points where N(t) jumps, for t ≤ C. Let Z be an unobserved
positive random variable that is independent of X. We assume that

E{Y (t)|X,Z} = µ0(t) + β′X + g(Z), (2.1)

where µ0(·) is an unspecified continuous function, g(·) is a completely unspecified
link function with E{g(Z)} = 0, and β is a vector of unknown regression param-
eters. For the observation process, we assume that N(t) is a Poisson process with
intensity function

λ(t|X,Z) = Zλ0(t) exp(γ′X), (2.2)

where λ0(·) is a completely unknown continuous baseline intensity function and
γ is a vector of unknown regression parameters. Let Λ0(t) =

∫ t
0 λ0(s)ds. Let τ

be the length of the study and take Λ0(τ) = 1 to avoid the identifiability issue.
In addition, we assume that the censoring time C is independent of X and Z,
and conditional on X and Z, Y (·) and N(·) are mutually independent.

Model (2.2) has been studied by several authors for the analysis of recurrent
event data (e.g., Huang and Wang (2004); Wang, Qin and Chiang (2001)). Sun,
Sun, and Liu (2007) discussed a special case of joint models (2.1) and (2.2) by
specifying g(Z) = Z − E(Z) or g(Z) = −{Z − E(Z)}. However, there does
not seem to be research on the general joint models (2.1) and (2.2). From the
proposed joint models it is obvious that, given covariates, the longitudinal re-
sponse process Y (t) and the observation process N(t) can be correlated and that
their relationship is partly determined by a link function of the latent variable
Z, while the link function and the distributional form of Z are left unspecified.
Our main goal here is to make inference about β. Toward this end, we develop
an estimating approach in the next section.

3. Estimation Procedures

Suppose that a longitudinal study involves n subjects and

{Yi(t), Xi, Zi, Ci, Ni(t), i = 1, . . . , n}

is a random sample of {Y (t), X, Z,C,N(t)}. Also, suppose that Ni(t) is observed
only at finite time points Ti1 < · · · < TiKi , where Ki denotes the total number
of observation before or at the censoring time Ci for subject i, i = 1, . . . , n.

For estimation of β, let

Ȳi =
∫ τ

0
Yi(t)I(Ci ≥ t)dNi(t).
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Now since

E(Ȳi|Xi, Zi) =
∫ τ

0
{µ0(t) + β′Xi + g(Zi)}P (Ci ≥ t)Zi exp(γ′Xi)dΛ0(t)

= β′XiZi exp(γ′Xi)E {Λ0(Ci)}

+Zi exp(γ′Xi)
∫ τ

0
µ0(t)P (Ci ≥ t)dΛ0(t)

+g(Zi)Zi exp(γ′Xi)
∫ τ

0
P (Ci ≥ t)dΛ0(t),

E(Ȳi|Xi) = E(Zi)E {Λ0(Ci)} exp(γ′Xi)β′Xi

+exp(γ′Xi)
∫ τ

0
[E(Zi)µ0(t) + E{g(Zi)Zi}]P (Ci ≥ t)dΛ0(t).

Let X1i = (1, X ′
i)
′, θ1 = log E(Z), θ = (θ1, γ

′)′, ψ = E {Λ0(C)}, and

α = [E {Λ0(C)}]−1
∫ τ

0

[
µ0(t) +

E{g(Z)Z}
E(Z)

]
P (C ≥ t)dΛ0(t).

Then, we have
E

{
ψ−1 exp(−θ′X1i)Ȳi − α − β′Xi

}
= 0. (3.1)

Motivated by (3.1), for given ψ and θ, we can consider the estimating function

U(β, α; ψ, θ) =
1
n

n∑
i=1

WiX1i

{
ψ−1 exp(−θ′X1i)Ȳi − α − β′Xi

}
,

where Wi’s are weights that could depend on the Xi’s and Ci’s. Let β̃ and α̃
denote the solution to U(α, β; ψ, θ) = 0. Then,(

α̃

β̃

)
=

{
n∑

i=1

WiX
⊗2
1i

}−1 n∑
i=1

WiX1iψ
−1 exp(−θ′X1i)Ȳi,

where a⊗2 = aa′ for vector a.
Of course ψ and θ are unknown and we cannot directly use the estimating

function U(β, α; ψ, θ). For this, we first consider inference about model (2.2).
Let {s`, ` = 1, . . . ,m} denote the ordered and distinct values of all observation
times {Tij , j = 1, . . . ,Ki, i = 1, . . . , n}, q` =

∑n
i=1 dNi(s`) be the number of

observations of s`, and N` =
∑n

i=1 I(s` ≤ Ci)Ni(s`) be the total number of
observations with observation times and censoring time satisfying Tij ≤ s` ≤ Ci.
Then we can derive the conditional likelihood function of the observed data on the
Ni’s conditional on {Ki, Ci, Xi, Zi}, and the nonparametric maximum likelihood
estimator Λ̂0(t) of Λ0(t) given by

Λ̂0(t) =
∏
s`>t

(1 − q`

N`
)
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(Wang, Qin and Chiang (2001)), where the product is taken to be 1 if there is no
s` with s` > t. Thus, a natural estimator of ψ is given by ψ̂ = n−1

∑n
i=1 Λ̂0(Ci).

It is easy to show that ψ̂ is consistent.
For estimation of θ, Wang, Qin and Chiang (2001) proposed using the esti-

mating equation

1
n

n∑
i=1

ηiX1i

{
KiΛ̂−1

0 (Ci) − exp(θ′X1i)
}

= 0, (3.2)

where ηi is a weight function that could depend on (Xi, θ, Λ̂0). The solution to
(3.2) is denoted by θ̂.

We propose estimating α and β by using estimating function U(α, β; ψ̂, θ̂).
Let α̂ and β̂ denote the solution to U(α, β; ψ̂, θ̂) = 0. Then,(

α̂

β̂

)
=

{
n∑

i=1

WiX
⊗2
1i

}−1 n∑
i=1

WiX1iψ̂
−1 exp(−θ̂′X1i)Ȳi.

It is easy to show from the Law of Large Numbers and the consistency of ψ̂, Λ̂0,
and θ̂ that the estimators α̂ and β̂ are consistent.

To establish the asymptotic normality of α̂ and β̂, let

Hn(t) =
1
n

n∑
i=1

Ki∑
j=1

I(Tij ≤ t),

Rn(t) =
1
n

n∑
i=1

Ki∑
j=1

I(Tij ≤ t ≤ Ci),

bin(t) =
Ki∑
j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)dHn(u)
R2

n(u)
− I(t < Tij ≤ τ)

Rn(Tij)

}
,

êin = − 1
n

n∑
j=1

ηjX1jKjbin(Cj){Λ̂0(Cj)}−1+ηiX1i[Ki{Λ̂0(Ci)}−1−exp(θ̂′X1i)],

f̂in =
{

n−1
n∑

j=1

ηjX
⊗2
1j exp(θ̂′X1j)

}−1

êin,

d̂in =
1
n

n∑
j=1

Λ̂0(Cj)bin(Cj) + Λ̂0(Ci) − ψ̂.

Let α0 and β0 be the true values of α and β, respectively. Then, as we show in
Appendix A, under some regularity conditions n1/2(α̂−α0, (β̂ − β0)′)′ converges
in distribution to a random normal variable with mean 0 and a covariance matrix
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that can be consistently estimated by D̂−1Σ̂D̂−1, where D̂ = n−1
∑n

i=1 WiX
⊗2
1i ,

Σ̂ = n−1
∑n

i=1 Φ̂⊗2
i , and

Φ̂i = WiX1i{ψ̂−1 exp(−θ̂′X1i)Ȳi − α̂ − β̂′Xi}

− 1
n

n∑
j=1

{
WjX1jψ̂

−2 exp(−θ̂′X1j)Ȳj

}
d̂in

− 1
n

n∑
j=1

{
WjX

⊗2
1j ψ̂−1 exp(−θ̂′X1j)Ȳj

}
f̂in.

4. Model Diagnostics

For the checking of model (2.2), one has complete recurrent event data and
can find some discussion and simple approaches in Huang and Wang (2004).
Here we consider the assessment of model (2.1) and describe some graphical and
numerical procedures for checking its adequacy. Let

A(t) =
∫ t

0

[
µ0(u) +

E{g(Z)Z}
E(Z)

]
dΛ0(u),

which can be estimated by

Â(t) =
n∑

i=1

∫ t

0

{Yi(u) − β̂′Xi}∆i(u)dNi(u)∑n
i=1 ∆i(u) exp(θ̂′X1i)

,

where ∆i(u) = I(Ci ≥ u). For each i, following Lin et al. (2000) and Pan and
Lin (2005), we define the residual

M̂i(t) =
∫ t

0

[{
Yi(u) − β̂′Xi

}
∆i(u)dNi(u) − ∆i(u) exp(θ̂′X1i)dÂ(u)

]
,

i = 1, . . . , n. First we check the functional form for the kth component of X and
plot M̂i(t) against Xik, where Xik is the kth component of Xi. For a more formal
procedure, let

Fk(x) = n−1/2
n∑

i=1

I(Xik ≤ x)M̂i(τ),
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the cumulative sum of M̂i(t) over the values of Xik. Let

S0(t) = n−1
n∑

i=1

∆i(t) exp(θ̂′X1i),

Sk(t, x) = n−1
n∑

i=1

I(Xik ≤ x)∆i(t) exp(θ̂′X1i),

B1(t, x) = n−1
n∑

i=1

∫ t

0

{
I(Xik ≤ x) − Sk(u, x)

S0(u)

}
Xi∆i(u)dNi(u),

B2(t, x) = n−1
n∑

i=1

∫ t

0

{
I(Xik ≤ x) − Sk(u, x)

S0(u)

}
Xi∆i(u) exp(θ̂′X1i)dÂ(u).

To apply the statistic Fk(x), we show in Appendix B that its null distribution
can be approximated by the zero-mean Gaussian process

F̃k(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(Xik ≤ x) − Sk(u, x)

S0(u)

}
dM̂i(u)

−B1(τ, x)′(0p, Ip×p)D̂−1n−1/2
n∑

i=1

Φ̂i − B2(τ, x)′n−1/2
n∑

i=1

f̂in, (4.1)

where 0p is a p-dimensional vector of zeros, and Ip×p is a p × p identity matrix.
It is not possible to evaluate this distribution analytically because the lim-

iting process of Fk(x) does not have an independent increments structure. For
this, we propose using the simulation approach discussed in Cheng, Wei, and
Ying (1997) and Lin et al. (2000). Let (G1, . . . , Gn) be independent standard
normal variables independent of the data. Then it can be shown, see Cheng,
Wei, and Ying (1997) and Lin et al. (2000), that the distribution of the process
Fk(x) can be approximated by that of the zero-mean Gaussian process

F̂k(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(Xik ≤ x) − Sk(u, x)

S0(u)

}
dM̂i(u)Gi

−B1(τ, x)′(0p, Ip×p)D̂−1n−1/2
n∑

i=1

Φ̂iGi − B2(τ, x)′n−1/2
n∑

i=1

f̂inGi. (4.2)

From (4.1) and (4.2), to approximate the distribution of Fk(x) one can obtain
a large number of realizations from F̂k(x) by repeatedly generating the standard
normal random sample (G1, . . . , Gn) given the observed data. To assess the
functional form of the jth component of covariates, one can plot a few realizations
from F̂k(x) along with the observed Fk(x) to see if they can be regarded as
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arising from the same population. More formally, we can apply the supremum
test statistic supx |Fk(x)|, where the p-value can be obtained by comparing the
observed value of supx |Fk(x)| to a large number of realizations of supx |F̂k(x)|.

An omnibus test for checking the overall fit of model (2.1) can be constructed
from the process F0(t, x) = n−1/2

∑n
i=1 I(Xi ≤ x)M̂i(t), where the event I(Xi ≤

x) means that each of the components of Xi is no larger than the corresponding
component of x. As with Fk(x), we can show that the null distribution of F0(t, x)
can be approximated by that of the zero-mean Gaussian process F̂0(t, x), which
is obtained from the expression (4.2) by replacing I(Xik ≤ x) with I(Xi ≤ x),
τ in the first integral with t, and Bl(τ, x) with Bl(t, x) (l = 1, 2). An omnibus
test statistic is then given by supt,x |F0(t, x)|, based on which a p-value can be
obtained as with supx |Fk(x)|.

5. Simulation Study

We conducted a simulation study to assess the estimation procedure pro-
posed in the previous sections under different situations. In the study, the covari-
ates Xi’s were assumed to follow a Bernoulli distribution with success probability
0.5, or a normal distribution with mean zero and variance 0.25. To generate the
simulated data, we first generated Zi from the gamma distribution with mean
10 and variance 50, g(Zi) = ρ(Zi − 10)/

√
50, and the follow-up time Ci from the

uniform distribution on [τ/2, τ ] with τ = 18, respectively. Here ρ characterizes
the relationship between the observation process and the longitudinal response
process. When ρ > 0, the two processes are positively correlated; when ρ = 0,
the two processes have no correlation given the covariates; when ρ < 0, the two
processes are negatively correlated. Here, three situations with ρ = −0.5, 0, and
0.5 were considered.

For the observation process, we considered Ni as a homogeneous Poisson
process with λ0(t) = τ−1 or as a nonhomogeneous Poisson process with λ0(t) =
(t + 1)/{τ(τ/2 + 1)}. For the first case, given Xi, Zi, and Ci, Ki, the number of
observation times for subject i, is Poisson with mean

Λ(Ci|Xi, Zi) = ZiΛ0(Ci) exp(Xiγ) =
ZiCi exp(γXi)

τ
,

i = 1, 2, . . . , n, where γ = 1 was considered. The observation times (Ti1, . . . , Ti,Ki)
were the order statistics of a random sample of size Ki from the uniform distri-
bution over (0, Ci).

For the second case, given Xi, Zi, and Ci, Ki, the number of observation
times for subject i, is Poisson with mean

Λ(Ci|Xi, Zi) = ZiΛ0(Ci) exp(γXi) =
Zi(C2

i /2 + Ci) exp(γXi)
τ(τ/2 + 1)

.



ANALYSIS OF LONGITUDINAL DATA 325

The observation times (Ti1, . . . , Ti,Ki) were the order statistics of a random sam-
ple of size Ki from the density function

t2/2 + t

C2
i /2 + Ci

I(0 ≤ t ≤ Ci),

i = 1, 2, . . . , n. Here γ = 1 was considered again.
For the response variable, it was assumed that

Yi(t) = µ0(t) + βXi + g(Zi),

where µ0(t) = 1 + t sin(t). We took β = −1, 0, 1, representing different effects
of the covariate X on the response variable. For each setting, we considered
n = 100 and 200. All the results reported here were based on 1,000 Monte Carlo
replications.

Tables 1-4 present the simulation results on estimation of β for the different
situations. The tables include the biases (BIAS) given by the sample means of the
proposed estimates of β minus the true values, the sample standard errors of the
estimates (SSE) of β̂, the means of the estimated standard errors (ESE) of β̂, and
the empirical 95% coverage probabilities (CP) for β. The results indicate that
the biases of β̂ are small and that the proposed variance estimation procedure
provides reasonable estimates; empirical coverage probabilities indicate that the
normal approximation seems to be appropriate. Note that β tends to be slightly
underestimated for small sample sizes; this may be due to the use of the “borrow-
strength estimation procedure” for estimation of θ. In addition, the variance
seems underestimated; a possible reason is that the simulated data were generated
from the joint model including random effects, and the estimating equation only
involves the means of random effects. This does not seem to be a problem for
large sample size. As seen in Tables 1-4, the estimated standard errors and
the sample standard errors are quite close to each other, and the empirical 95%
coverage probabilities are close to the nominal level.

We also carried out simulation studies to assess the robustness of the pro-
posed approach compared with Sun, Sun, and Liu’s approach. Here we took
g(Zi) = ρ log(Zi/10 + 1) − E(ρ log(Zi/10 + 1)). For generating Xi, Zi, and Ci,
we used the same setups as above. For generating the observation process, we
let λ0(t) = 1/τ and, given Xi, Zi and Ci, Ki as Poisson with mean Λ(Ci|Xi, Zi)
when Z ≤ 10, and Ki as Poisson with mean 4 otherwise. To compare the per-
formance with the estimators of Sun, Sun, and Liu (2007), we report the BIAS
and SSE in Table 5 for the case that Xi is Bernoulli with success probability 0.5.
Table 5 shows that our proposed estimators all had the smaller BIAS. Moreover,
they were more efficient based on the SSEs. Our estimators perform well with
the choice of g, but the estimators of Sun, Sun, and Liu (2007) had large bias
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Table 1. Estimation of β with λ0(t) = τ−1 when the Xi ∼ Bernoulli(0.5).

ρ = 0.5: Y and N are positively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS 0.0062 0.0284 0.0066 0.0065 0.0230 0.0204
SSE 0.2589 0.2420 0.2429 0.1770 0.1749 0.1778
ESE 0.2419 0.2386 0.2437 0.1737 0.1702 0.1758
CP 0.9360 0.9420 0.9470 0.9410 0.9460 0.9560

ρ = 0: Y and N have no correlation
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0115 -0.0066 -0.0081 -0.0195 -0.0097 -0.0125
SSE 0.2143 0.2228 0.2276 0.1541 0.1559 0.1608
ESE 0.2137 0.2137 0.2279 0.1523 0.1526 0.1620
CP 0.9430 0.9400 0.9360 0.9520 0.9410 0.9540

ρ = −0.5: Y and N are negatively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0286 -0.0475 -0.0289 -0.0378 -0.0388 -0.0281
SSE 0.2532 0.2600 0.2797 0.1775 0.1767 0.1939
ESE 0.2403 0.2474 0.2613 0.1739 0.1779 0.1915
CP 0.9340 0.9340 0.9350 0.9430 0.9400 0.9390

because of the misspecification of the link function. The proposed method is
robust, while Sun, Sun, and Liu’s method is sensitive to the relationship between
the longitudinal response process and the observation process.

6. An Application

To illustrate the proposed methodology, we consider a bladder cancer
study conducted by the Veterans Administration Cooperative Urological Re-
search Group (Andrews and Herzberg (1985); Byar (1980); Sun and Wei (2000);
Wellner and Zhang (2000); Zhang (2002)). In the study, the patients with super-
ficial bladder tumors were randomly assigned to one of three treatment groups:
placebo, thiotepa, or pyridoxine. During the study, many patients had multi-
ple recurrences of the bladder tumors and all recurrences between visits were
recorded and removed at clinical visits; the number of visits and visit time points
varied greatly from patient to patient. At the beginning of the study, for each
patient, two important baseline covariates were reported; the number of initial
tumors and the size of the largest initial tumor. Following Sun and Wei (2000),
we restrict our attention to the patients in the placebo (47) and the thiotepa (38)
groups.
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Table 2. Estimation of β with λ0(t) = (t + 1)/{τ(τ/2 + 1)} when the Xi ∼
Bernoulli(0.5).

ρ = 0.5: Y and N are positively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0063 0.0136 0.0407 -0.0132 -0.0010 0.0398
SSE 0.3526 0.3455 0.3401 0.2543 0.2329 0.2352
ESE 0.3344 0.3213 0.3245 0.2451 0.2311 0.2310
CP 0.9340 0.9380 0.9340 0.9470 0.9540 0.9420

ρ = 0: Y and N have no correlation
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0608 -0.0329 -0.0172 -0.0609 -0.0317 -0.0011
SSE 0.3112 0.3133 0.3269 0.2227 0.2160 0.2298
ESE 0.3072 0.3025 0.3153 0.2212 0.2155 0.2248
CP 0.9410 0.9380 0.9380 0.9400 0.9540 0.9450

ρ = −0.5: Y and N are negatively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0945 -0.0832 -0.0598 -0.0852 -0.0800 -0.0458
SSE 0.3325 0.3328 0.3471 0.2364 0.2321 0.2561
ESE 0.3221 0.3247 0.3469 0.2339 0.2343 0.2508
CP 0.9260 0.9330 0.9320 0.9400 0.9430 0.9520

For the analysis, we took Yi(t) to be the logarithm of the number of ob-
served tumors at time t, plus 1 to avoid 0, i = 1, . . . , 85. We set the first
component of Xi to 1 if the ith patient was given the thiotepa treatment and
0 otherwise, the second and the third components of Xi to the number of ini-
tial tumors and the size of the largest initial tumor of the ith patient, respec-
tively, i = 1, . . . , 85. The longitudinal process of the bladder tumors Yi(t) and
the clinical visit process were described by models (2.1) and (2.2). The pro-
posed application of the estimation procedure with ηi = 1 and Wi = 1 gave
γ̂ = (0.4808,−0.0358, 0.0156)′ and β̂ = (−0.7787, 0.1994,−0.0231)′ with esti-
mated standard errors (0.128, 0.5767, 0.5287)′ and (0.2146, 0.0536, 0.0596)′, and
thus p-values (0.0002, 0.9505, 0.9766)′ and (0.0003, 0.0002, 0.6987)′, respectively.
These results suggest that the thiotepa treatment significantly reduced the occur-
rence rate of the bladder tumors and the number of initial tumors has a significant
positive effect on the tumor recurrence rate but no significant effect on the visit
process. However, both the occurrence rate of the bladder tumors and the visit
times did not seem to be significantly related to the size of the largest initial
tumor. Sun, Sun, and Liu (2007) analyzed the same data and concluded that the
thiotepa treatment had a significant effect in reducing the recurrence of bladder
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Table 3. Estimation of β with λ0(t) = τ−1 when the Xi ∼ N(0, 0.25).

ρ = 0.5: Y and N are positively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0105 0.0240 -0.0203 -0.0101 -0.0235 -0.0091
SSE 0.2825 0.2694 0.2907 0.2058 0.1906 0.2062
ESE 0.2639 0.2507 0.2855 0.1945 0.1782 0.1948
CP 0.9320 0.9490 0.9410 0.9530 0.9380 0.9430

ρ = 0: Y and N have no correlation
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0123 -0.0155 -0.0232 -0.0117 -0.0218 -0.0229
SSE 0.2427 0.2312 0.2686 0.1672 0.1606 0.1909
ESE 0.2218 0.2121 0.2514 0.1608 0.1544 0.1833
CP 0.9400 0.9340 0.9460 0.9500 0.9470 0.9480

ρ = −0.5: Y and N are negatively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0323 -0.0256 -0.0237 -0.0206 -0.0327 -0.0346
SSE 0.2708 0.2558 0.3060 0.1792 0.1897 0.2064
ESE 0.2377 0.2359 0.2766 0.1748 0.1733 0.2053
CP 0.9360 0.9320 0.9350 0.9480 0.9380 0.9510

tumors, but the initial number of bladder tumors had no significant effect in pre-
dicting the recurrence rate of the bladder tumor. There is a difference between
our results and theirs. One possible reason is the misspecification of the rela-
tionship between the longitudinal response process and the observation process.
As shown in Table 5, Sun, Sun, and Liu’s approach is sensitive to the link func-
tion. Liang, Lu, and Ying (2009) also applied their method to the bladder tumor
data, and their results showed that both the treatment indicator and the initial
tumor number had significant effects on tumor recurrence rate. These results are
consistent with those obtained by our proposed approach.

Consider the application of the model-checking procedures given in Section
4 to the data. Treating the three covariates separately, we found supx |F1(x)| =
1.5269 with the p-value 0.377, supx |F2(x)| = 0.2230 with the p-value 0.899, and
supx |F3(x)| = 2.4113 with the p-value 0.121. All three p-values suggest that
we cannot reject model (2.1). We also checked the overall fit of model, and
found supt,x |F0(t, x)| = 35.6916 with the p-value 0.187, which yields the same
conclusion.

7. Concluding Remarks

A key advantage of the proposed approach over existing methods for longitu-
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Table 4. Estimation of β with λ0(t) = (t + 1)/{τ(τ/2 + 1)} when the Xi ∼
N(0, 0.25).

ρ = 0.5: Y and N are positively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0103 -0.0337 -0.0233 -0.0052 -0.0066 -0.0343
SSE 0.4058 0.3280 0.3725 0.2818 0.2394 0.2671
ESE 0.3658 0.3144 0.3455 0.2685 0.2284 0.2481
CP 0.9390 0.9420 0.9320 0.9450 0.9440 0.9370

ρ = 0: Y and N have no correlation
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.03563 -0.0374 -0.0183 -0.0336 -0.0363 -0.0348
SSE 0.34630 0.3142 0.3593 0.2574 0.2163 0.2593
ESE 0.32520 0.2966 0.3391 0.2438 0.2132 0.2482
CP 0.93600 0.9400 0.9340 0.9420 0.9470 0.9370

ρ = −0.5: Y and N are negatively correlated
β 1 0 -1 1 0 -1

n = 100 n = 200
BIAS -0.0471 -0.0480 -0.0614 -0.0413 -0.0457 -0.0631
SSE 0.3677 0.3556 0.4010 0.2678 0.2464 0.2907
ESE 0.3350 0.3189 0.3797 0.2499 0.2348 0.2767
CP 0.9380 0.9320 0.9320 0.9320 0.9370 0.9360

Table 5. Simulation results of BIAS (SSE) of the proposed estimators and
SSL’s.

n = 100 n = 200
ρ β Proposed method SSL’s method Proposed method SSL’s method

1 -0.0426(0.286) -0.2229(0.3232) -0.0449(0.2062) -0.2302(0.2245)
0.5 0 -0.0336(0.2791) -0.2301(0.3116) -0.0239(0.1957) -0.2249(0.2203)

-1 -0.0293(0.2634) -0.2354(0.3078) -0.0130(0.1959) -0.2233(0.2237)
1 -0.0069(0.3033) -0.1792(0.3111) 0.0056(0.2006) -0.1768(0.2299)

0 0 0.0124(0.2821) -0.1842(0.3096) 0.0080(0.2025) -0.1797(0.2463)
-1 0.0251(0.2632) -0.1763(0.3029) 0.0097(0.1863) -0.1918(0.2255)
1 0.0452(0.3043) -0.1397(0.3181) 0.0329(0.2052) -0.1412(0.2287)

-0.5 0 0.0551(0.2918) -0.1444(0.3063) 0.0380(0.1983) -0.1578(0.2282)
-1 0.0720(0.2601) -0.1282(0.2912) 0.0592(0.1902) -0.1528(0.2236)

SSL’s method stands for the one in Sun, Sun, and Liu (2007).

dinal data is that it allows the observation process to be related to the response
process of interest through any unspecified link function of a latent variable. An-
other advantage is that the parameter estimates and the estimated covariance
matrix do not involve estimation of the latent variables and the link function,
while estimation of the latent variables are required by Sun, Sun, and Liu (2007),
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while the parametric distribution of the frailty variable and the link function are
specified by Liang, Lu, and Ying (2009). In addition, our estimation procedure
is more easily implemented. Simulations suggest that the proposed inference
procedures perform well and an illustrative example is provided.

We have assumed that the follow-up process is independent of covariates for
simplicity of presentation, and the proposed method can be generalized to the
case where the censoring times may depend on covariates. For this case, following
Sun and Wei (2000) assume that for subject i, the hazard function of Ci has the
form

λC(t|Xi) = λ0C(t) exp(φ′Xi), (7.1)

where λ0C(t) is a completely unspecified baseline hazard function and φ is a p-
dimensional vector of unknown regression parameters. To estimate β, motivated
by (3.1) and U(α, β; ψ, θ), consider the estimating function

U1(α1, β;φ, θ, S0)

=
1
n

n∑
i=1

WiX1i

{
exp(−θ′X1i)

∫ τ

0

Yi(t)I(Ci ≥ t)dNi(t)
{S0(t)}exp(φ′Xi)

− α1 − β′Xi

}
for given φ, θ and S0, where X1i, Wi and θ are defined as before, S0(t) =
exp{−

∫ t
0 λ0C(s)ds} denotes the baseline survival function of C, and

α1 =
∫ τ

0

[
µ0(t) +

E{g(Z)Z}
E(Z)

]
dΛ0(t).

In practice, φ, θ, and S0(t) are unknown, and we need to estimate them.
Clearly, θ can be estimated by θ̂ as before. For estimation of φ and S0(t), we
consider inference for the proportional hazards model (7.1) based on complete
data. Then, following Kalbfleisch and Prentice (2002), one can estimate φ and
S0(t) by the solution φ̂ to the estimating equation

1
n

n∑
i=1

∫ τ

0

{
Xi −

∑n
l=1 I(Cl ≥ t) exp(φ′Xl)Xl∑n

l=1 I(Cl ≥ t) exp(φ′Xl)

}
dI(Ci ≤ t) = 0,

and

Ŝ0(t) = exp

{
−

∫ t

0

∑n
i=1 dI(Ci ≤ s)∑n

i=1 I(Ci ≥ s) exp(φ̂′Xi)

}
,

respectively. Given φ̂, θ̂, and Ŝ0(t), we propose to estimate α1 and β by the
solution α̂1 and β̂ to the estimating equation U1(α1, β; φ̂, θ̂, Ŝ0) = 0. As before,
one can show that α̂1 and β̂ are consistent and are asymptotically joint normal.

In the estimating equation approach, an important issue is how to choose
the weights to improve the efficiency of estimation. The proposed estimation
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procedure involves the weight functions ηi and Wi. One can first choose the
weight function ηi to improve the efficiency of the estimator of θ, and then choose
the weight function Wi to improve the efficiency of the estimator of β. Further
research is needed on this.

In the joint models, we assumed that the covariates are time-independent,
but in some applications it would be desirable to develop estimation procedures
that allow for both time-invariant and time-dependent covariates. For this, con-
sider the joint models for the longitudinal response process Y (t) and the obser-
vation process N(t) as

E{Y (t)|X(t), ξ} = µ0(t) + β′X(t) + a′ξ + g(Z), (7.2)

λ(t|X(t), ξ, Z) = λ0(t)Z exp(γ′X(t) + ϕ′ξ), (7.3)

where λ(t) is the intensity function of N(t), λ0(t) is an unknown baseline in-
tensity function, X(t) is a vector of time-dependent covariates, ξ is a vector of
time-independent covariates, Z is an unobserved random variable, and g(·) is an
unknown link function. To estimate β and a in (7.2), we let

X̄i(ψ, S, Λ0) =
∫ τ

0
Xi(t)S(t)

dΛ0(t)
ψ

and propose the estimating function

U2(α, β, a; ψ, γ, θ, S, Λ0)

=
1
n

n∑
i=1

Wi(X̄ ′
i, ξ

′
1i)

′
{∫ τ

0

Yi(t)I(Ci ≥ t)dNi(t)
ψ exp(γ′Xi(t) + θ′ξ1i)

− α − β′X̄i − a′ξi

}
for given ψ, γ, θ, S, and Λ0, where ξ1i = (1, ξ′i)

′, θ = (θ1, ϕ
′)′, Wi’s are the weight

functions, S(t) = P (C ≥ t), with ψ = E{Λ0(C)}, θ1 = log(E(Z)), and

α = ψ−1

∫ τ

0

[
µ0(t) +

E{g(Z)Z}
E(Z)

]
P (C ≥ t)dΛ0(t).

In practice, ψ, γ, θ, S(t), and Λ0(t) are unknown, and need to be estimated. Note
that S(t) can be estimated by its empirical survival function Sn(t) =

∑n
i=1 I(Ci ≥

t)/n. For estimation of γ, θ, and Λ0(t), we consider inference for the intensity
model (7.3) based on recurrent event data. Using the approach of Huang, Qin,
and Wang (2010), one can obtain the estimators γ̂, θ̂, and Λ̂0(t), and ψ can be
estimated by ψ̂ =

∑n
i=1 Λ̂0(Ci)/n. Given ψ̂, γ̂, θ̂, Sn(t), and Λ̂0(t), we propose

to estimate α, β and a by the solution α̂, β̂ and â to the estimating equation
U2(α, β, a; ψ̂, γ̂, θ̂, Sn, Λ̂0) = 0. As before, one can establish the consistency and
the asymptotic normality of α̂, β̂ and â. However, it seems not to be straight-
forward to generalize the proposed approach to the situation where the latent
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variables are also time-dependent, and further research is needed. It would also
be of great interest to develop estimating procedures for the longitudinal regres-
sion model with time-varying coefficients when the longitudinal process depends
on the observation process.

At (2.2), we assumed that a Poisson observation process N(t). Further
research is to replace (2.2) by the model

E{N(t)|X,Z} = Λ0(t)Z exp(γ′X),

where Λ0(t) is a completely unknown continuous baseline mean function. An
estimation procedure needs to be developed for the joint mean models of a lon-
gitudinal response process and a general counting process.
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Appendix A: Asymptotic Normality of α̂ and β̂

To study the asymptotic distribution of the proposed estimates, we need the
following regularity conditions.

(C1) P (C ≥ τ, Z > 0) > 0 and E(Z2) < ∞.

(C2) X is bounded and G(t) = E{Z exp(γ′
0X)I(C ≥ t)} is a continuous function

for t ∈ [0, τ ].

Let R(t) = G(t)Λ0(t), H(t) =
∫ t
0 G(u)dΛ0(u),

bi(t) =
Ki∑
j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)dH(u)
R2(u)

− I(t < Tij ≤ τ)
R(Tij)

}
,

ei(θ) = −
∫

ηxkbi(c)dP1(η, x, c, k)
Λ0(c)

+ ηiX1i[Ki{Λ0(Ci)}−1 − exp(θ′X1i)],
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where P1(η, x, c, k) is the joint probability measure of (ηi, X1i, Ci,Ki). Let

fi(θ) =
{

E
(
− ∂ei(θ)

∂θ

)}−1
ei(θ).

Under conditions (C1) and (C2), it follows from Wang, Qin and Chiang (2001)
that

n1/2{Λ̂0(t) − Λ0(t)} = n−1/2Λ0(t)
n∑

i=1

bi(t) + op(1), (A.1)

n1/2(θ̂ − θ0) = n−1/2
n∑

i=1

fi(θ0) + op(1), (A.2)

where θ0 is the true value of θ. Note that n1/2(ψ̂ − ψ0) = I1 + I2, where I1 =
n−1/2

∑n
i=1{Λ̂0(Ci) − Λ0(Ci)} and I2 = n−1/2

∑n
i=1{Λ0(Ci) − ψ0}. Let FC(c)

be the cumulative distribution function of C and F̂C(c) be the corresponding
empirical distribution based on Ci, i = 1, . . . , n. It follows from (A.1) that

I1 = n1/2

∫
{Λ̂0(c) − Λ0(c)}dF̂C(c)

= n1/2

∫
{Λ̂0(c) − Λ0(c)}dFC(c) + op(1)

= n−1/2
n∑

i=1

∫
Λ0(c)bi(c)dFC(c) + op(1).

Thus, we have

n1/2(ψ̂ − ψ0) = n−1/2
n∑

i=1

di + op(1), (A.3)

where
di =

∫
Λ0(c)bi(c)dFC(c) + {Λ0(Ci) − ψ0}.

Note that

−∂U(α, β; ψ, θ)
∂ψ

= n−1
n∑

i=1

WiX1iψ
−2 exp(−θ′X1i)Ȳi,

−∂U(β, α; ψ, θ)
∂θ

= n−1
n∑

i=1

WiX
⊗2
1i ψ−1 exp(−θ′X1i)Ȳi.

It follows from the Law of Large Numbers that ∂U(α, β; ψ, θ)/∂ψ|ψ=ψ0,θ=θ0

converges in probability to −E{WiX1iψ
−2
0 exp(−θ′0X1i)Ȳi}, and ∂U(α, β; ψ, θ)

/∂θ|ψ=ψ0,θ=θ0 converges in probability to −E{WiX
⊗2
1i ψ−1

0 exp(−θ′0X1i)Ȳi}.
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Now, using (A.2), (A.3), and a Taylor series expansion, we have

n1/2U(α0, β0; ψ̂, θ̂) = n1/2U(α0, β0; ψ0, θ0)

−E{WiX1iψ
−2
0 exp(−θ′0X1i)Ȳi}n−1/2

n∑
i=1

di

−E{WiX
⊗2
1i ψ−1

0 exp(−θ′0X1i)Ȳi}n−1/2
n∑

i=1

fi(θ0) + op(1),

which converges in distribution to a normal random vector with mean 0 and
covariance matrix Σ = E(ΦiΦ′

i), where

Φi = WiX1i{ψ−1
0 exp(−θ′0X1i)Ȳi − α0 − β0Xi}

−E{WiX1iψ
−2
0 exp(−θ′0X1i)Ȳi}di

−E{WiX
⊗2
1i ψ−1

0 exp(−θ′0X1i)Ȳi}fi(θ0).

Note that −(∂Û(α, β; ψ̂, θ̂)/∂α,U(α, β; ψ̂, θ̂)/∂β) converges in probability to D =
E

{
WiX

⊗2
1i

}
. Also note that a Taylor expansion of U(α̂, β̂; ψ̂, θ̂) at U(α0, β0; ψ̂, θ̂)

yields

n1/2

(
α̂ − α0

β̂ − β0

)
= D−1n1/2U(α0, β0, ψ̂, θ̂) + op(1). (A.4)

Therefore, n1/2(α̂−α0) and n1/2(β̂−β0) have an asymptotic joint normal distri-
bution with mean 0 and covariance matrix D−1ΣD−1, which can be consistently
estimated by D̂−1Σ̂D̂−1.

Appendix B: Asymptotic Properties of Fk(x) and F0(t, x)

In the following, we only sketch the proof for the weak convergence of Fk(x)
under models (2.1) and (2.2); the weak convergence of F0(t, x) can be similarly
derived. Assume that the limits of Sk(t, x), S0(t), B1(t, x), and B2(t, x) exist and
denote them by sk(t, x), s0(t), b1(t, x), and b2(t, x), respectively. Let

Mi(t) =
∫ t

0

[{
Yi(u) − β′

0Xi

}
∆i(u)dNi(u) − ∆i(u) exp(θ′0X1i)dA(u)

]
.

For the weak convergence of Fk(x), using Lemma A.1 of Lin and Ying (2001)
and the functional version of a Taylor expansion, we have

Fk(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(Xik ≤ x) − sk(u, x)

s0(u)

}
dMi(u)

−b1(τ, x)′n1/2(β̂ − β0) − b2(τ, x)′n1/2(θ̂ − θ0) + op(1). (B.1)
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The tightness of the first term on the right-hand side of (B.1) follows directly
from the arguments in Appendix A.5 of Lin et al. (2000). The last two terms
are also tight because n1/2(β̂ − β0) and n1/2(θ̂− θ0) converge in distribution and
b1(τ, x) and b2(τ, x) are some deterministic functions. It follows that Fk(x) is
tight.

Based on (A.2) and (A.4), we can write Fk(x) as

Fk(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(Xik ≤ x) − sk(u, x)

s0(u)

}
dMi(u)

−b1(τ, x)′(0p, Ip×p)D−1n−1/2
n∑

i=1

Φi − b2(τ, x)′n−1/2
n∑

i=1

fi(θ0) + op(1).

From the Multivariate Central Limit Theorem and tightness, Fk(x) converges
weakly to a zero-mean Gaussian process which can be approximated by the zero-
mean Gaussian process F̃ (t, z) given in (4.1).
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