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a b s t r a c t

Panel count data usually occur in longitudinal follow-up studies that concern occurrence
rates of certain recurrent events and their analysis involves two processes. One is the
underlying recurrent event process of interest and the other is the observation process that
controls observation times. In some situations, the twoprocessesmay be correlated and, for
this, several estimation procedures have recently been developed (He et al., 2009; Huang
et al., 2006; Sun et al., 2007b; Zhao and Tong, 2011). Thesemethods, however, rely on some
restrictive models or assumptions such as the Poisson assumption. In this work, a more
general and robust estimation approach is proposed for regression analysis of panel count
data with related observation times. The asymptotic properties of the resulting estimates
are established and the numerical studies conducted indicate that the approachworkswell
for practical situations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This work considers regression analysis of panel count data when the observation times or process may be related to
the underlying recurrent event process of interest governing the panel count data. By panel count data, we mean the data
that concern occurrence rates of certain recurrent events and give only the numbers of the events that occur between the
observation times, but not their occurrence times. Such data naturally occur in longitudinal follow-up studies on recurrent
events in which study subjects can be observed only at discrete time points rather than continuously (Cai and Schaubel,
2004; Cook and Lawless, 2007; Sun, 2006).

Many authors have discussed the analysis of panel count data when the recurrent event process of interest and the
observation process are independent completely or conditional on covariates. In this case, the inference can be made
conditional on the observation process. For example, Sun and Kalbfleisch (1995), Wellner and Zhang (2000) and Hu et al.
(2009) studied nonparametric estimation of the mean function of the underlying counting process yielding panel counts.
The same problemwas also considered by Zhang and Jamshidian (2003) and Lu et al. (2007). The former employed a gamma
frailty variable to account for the correlation among panel counts and developed a maximum pseudo-likelihood approach,
while the latter also gave some likelihood-based estimators of the mean functions by using monotone polynomial splines.
In addition, Sun and Fang (2003), Zhang (2006) and Balakrishnan and Zhao (2009) constructed some nonparametric tests
for nonparametric comparison of the mean functions of counting processes. Cheng and Wei (2000), Sun and Wei (2000)
and Hu et al. (2003) proposed some semiparametric models for regression analysis of panel count data and developed some
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Fig. 1. Plot of the residuals for fitted model (2) with the bladder tumor data.

estimating equation-based approaches. Zhang (2002), Wellner and Zhang (2007) and Lu et al. (2009) discussed the same
regression problem and gave some semiparametric likelihood-based approaches.

Sometimes the recurrent event process of interest and the observation process may be related. A well-known example
of such panel count data is the bladder cancer data discussed in He et al. (2009), Huang et al. (2006), Wellner and Zhang
(2007), Liang et al. (2009), Lu et al. (2009) and Sun et al. (2007b), among others. The data concern the occurrence rate of
bladder tumors and during the study giving rise to the data, study patients were observed periodically and at different time
points. Some patientswere observedmore often than others and several authors have showed that the occurrence process of
bladder tumors seems to be correlated with the observation process. More details about the example are given in Section 5.
For the analysis of such panel count data, several methods have been developed (He et al., 2009; Huang et al., 2006; Sun
et al., 2007b; Zhao and Tong, 2011). A common and key assumption behind these methods is that the observation process
is a Poisson process.

To be more specific about this, consider a recurrent event study and suppose that only panel count data are available. Let
N(t) and O(t) denote the process of interest and the observation process, respectively, and X a vector of the covariates of
interest. Then N(t) is observed only at the times where O(t) jumps. Suppose that N(t) and O(t) may be related even given
X . For inference, Sun et al. (2007b) assumed that given X and a latent variable Z , the mean function of N(t) has the form

E{N(t)|X, Z} = Zα µ0(t) exp(X ′β) (1)

and O(t) is a non-homogeneous Poisson process with the intensity function

λ(t|X, Z) = Z λ0(t) exp(X ′γ ). (2)

In the above, β , α and γ are unknown parameters, andµ0(t) and λ0(t) are unknown baseline mean and intensity functions,
respectively. To examine the Poisson process assumption for the bladder cancer data, we fitted the data on the observation
times to model (2) and present the residuals in Fig. 1. Also we developed a simple Kolomogorov–Smirnov test statistic
procedure (Gibbons andChakraborti, 2011) and obtained the p-value of 0.07 for testing the Poisson process assumption. Both
the figure and the test suggest that the Poisson process assumption with model (2) may be questionable. In the following,
we will relax this and other assumptions and develop a general and robust inference approach.

Note that a number of methods have been developed for regression analysis of longitudinal data, mostly under the
assumption that the longitudinal response and the observation process are independent completely or given covariates. For
example, Diggle et al. (1994) provided a comprehensive summary about the commonly used methods such as estimating
equation and random effect model approaches, and Lin and Ying (2001) and Welsh et al. (2002) discussed general
semiparametric regression analysis of longitudinal data. In contrast, limited research exists for regression analysis of
longitudinal data where measurement times may be informative or still related to the underlying longitudinal process even
given covariates, a problem similar to that discussed here (Sun et al., 2007a; Liu et al., 2008; Liang et al., 2009). Although
panel count data can be regarded as a special type of longitudinal data, the use of the methods developed for longitudinal
data may not be valid or efficient as they do not take into account the special structure of panel count data.
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The remainder of this work is organized as follows. In Section 2, we will begin with introducing the notation and
assumptions and then presenting the models that will be used below. The models include models (1) and (2) above as
special cases. In particular, for the observation process, we employ a rate function model instead of model (2) and do
not require O(t) to be a Poisson process. A robust estimation procedure is presented in Section 3 for the parameters of
interest and the asymptotic properties of the resulting estimators are established. Also amodel check procedure is presented.
Section 4 reports some simulation results obtained for assessing the finite sample properties of the proposed estimates and
an illustrative example is given in Section 5.

2. Notation, assumptions and models

Consider a recurrent event study that consists of n independent subjects and let Ni(t) denote the number of occurrences
of the recurrent event of interest before or at time t for subject i. Suppose that for each subject, there exists a p-dimensional
vector of covariates denoted by Xi. Given Xi and an unobserved positive random variable Zi that is independent of Xi, the
mean function of Ni(t) has the form

E{Ni(t)|Xi, Zi} = µ0(t) g(Zi) exp(X ′

iβ). (3)

Zhao and Tong (2011). Here as in model (1), µ0(t) is a completely unknown continuous baseline mean function, β is a
vector of unknown regression parameters, and g(·) is a completely unspecified link function. It is easy to see that this model
includes model (1) as a special case.

For subject i, suppose that Ni(·) is observed only at finite time points Ti1 < · · · < TiKi , where Ki denotes the potential
number of observation times, i = 1, . . . , n. That is, only the values of Ni(t) at these observation times are known and we
have panel count data on the Ni(t)’s. Let Ci denote the follow-up time associated with subject i and thus Ni(t) is observed
only at these Tij’s with Tij ≤ Ci, i = 1, . . . , n. Define Õi(t) = Oi(min(t, Ci)), where Oi(t) =

Ki
j=1 I(Tij ≤ t), i = 1, . . . , n.

Then Õi(t) is a point process characterizing the ith subject’s observation process and jumps only at the observation times.
For the observation process, instead of model (2), we will assume that Oi(t) satisfies the following rate function model

E{dOi(t)|Xi, Zi} = Zi h(Xi) dΛ0(t), (4)

where h(·) is a completely unspecified positive function as g and Λ0(·) is a completely unknown continuous baseline
function. It is easy to see that model (2) implies

E{dOi(t)|Oi(s), 0 ≤ s < t, Xi, Zi} = E{dOi(t)|Xi, Zi}

corresponding to the independent increment structure of the Poisson process. Under model (4), one does not need this
assumption anymore. In the following, it will be assumed that given (Xi, Zi), Ni(t) and Oi(t) are independent. Also Ci is
independent of {Ni,Oi, Xi, Zi} and {Ni(t),Oi(t), Ci, Xi, 0 ≤ t ≤ τ }

n
i=1 are independent and identically distributed, where τ

denotes the length of the study. Suppose that the main goal is to estimate regression parameter β .

3. Inference procedure

To estimate β , note that if the latent variables Zi’s are known, model (3) would become the usual proportional means
model and several methods such as that given in Cheng and Wei (2000) can be used. Unfortunately, the Zi’s are unknown
in practice. One natural way for this is to estimate the Zi’s first and then treat them as known. In the following, we take a
different approach motivated by that proposed in Sun and Wei (2000) among others.

Specifically, define

N̄i =

mi
j=1

Ni(Tij)I(Tij ≤ Ci) =

 τ

0
Ni(t)dÕi(t),

wheremi = Õi(Ci), the total number of observations on subject i, i = 1, . . . , n. Then, we have

E

N̄i|Xi


= exp(β ′Xi)h(Xi)E{g(Zi)Zi}

 τ

0
P(Ci ≥ t)µ0(t)dΛ0(t)

and

E(mi|Xi) = E(Zi)E{Λ0(Ci)}h(Xi).

These yield

E(N̄i|Xi) = E(mi|Xi) exp(β ′Xi + θ),

where

θ = log


E{g(Zi)Zi}
E(Zi)E{Λ0(Ci)}

 τ

0
P(Ci ≥ t)µ0(t)dΛ0(t)


,
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an unknown parameter. For estimation of β , motivated by the equation above, we propose to use the following class of
estimating functions

U(β1) =

n
i=1

WiX1i{N̄i − mi exp(β ′

1X1i)} = 0, (5)

where theWi’s are some weights that could depend on Xi, X ′

1i = (X ′

i , 1) and β ′

1 = (β ′, θ).
Let β̂1 = (β̂ ′, θ̂ )′ denote the solution to Eq. (5) and β10 = (β ′

0, θ0)
′ the true value of β1. Then, we will show in the

Appendix A.1 that under some regularity conditions, the estimator β̂1 is consistent and
√
n(β̂1 − β10) has asymptotically a

normal distribution with mean zero and the covariance matrix that can be consistently estimated by Γ̂ −1Σ̂Γ̂ −1, where

Γ̂ =
1
n

n
i=1


WimiX1iX ′

1i exp(β̂
′

1X1i)


and Σ̂ = n−1 n
i=1 φ̂iφ̂

′

i with

φ̂i = WiX1i{N̄i − mi exp(β̂ ′

1X1i)}.

In practice, in addition to the estimation of β , one may also be interested in checking the adequacy of models (3) and (4)
given the observed data. To develop a procedure for this, define

A(t) =

 t

0

E{g(Z)Z}

E(Z)
P(C ≥ u)µ0(u)dΛ0(u),

and note that under models (3) and (4),

E
 t

0
Ni(t)dÕi(t)|Xi


= E(mi|Xi) exp(β ′Xi)A(t).

Then, A(t) can be estimated by

Â(t) =

n
i=1

 t

0

Ni(u)dÕi(u)
n

i=1
mi exp(X ′

i β̂)

.

Furthermore, for each i, define the residual

R̂i(t) =

 t

0
Ni(u)dÕi(u) − mi exp(X ′

i β̂) Â(t),

i = 1, . . . , n. Then to test the goodness-of-fit of models (3) and (4), we propose to apply the statistic

Φ(t, x) = n−1/2
n

i=1

I(Xi ≤ x) R̂i(t),

where the event I(Xi ≤ x) means that each of the components of Xi is not larger than the corresponding component of x. It
is easy to see that Φ(t, x) is the cumulative sum of R̂i(t) over the values of Xi’s.

To apply the statistic Φ(t, x), we need to know its distribution. For this, define

S0 = n−1
n

i=1

mi exp(X ′

i β̂),

S(x) = n−1
n

i=1

I(Xi ≤ x)mi exp(X ′

i β̂),

and

B(t, x) = n−1
n

i=1


I(Xi ≤ x) −

S(x)
S0


X ′

imi exp(X ′

i β̂)Â(t).

In the Appendix A.2, we will show that the null distribution of Φ(t, x) can be approximated by the zero-mean Gaussian
process

Φ̂(t, x) = n−1/2
n

i=1


I(Xi ≤ x) −

S(x)
S0


R̂i(t)Gi − B(t, x)′n−1/2

n
i=1

d̂iGi,

where d̂i is the vector Γ̂ −1φ̂i without the last entry and (G1, . . . ,Gn) are independent standard normal variables independent
of the data. This suggests that one can approximate the distribution of Φ(t, x) by the empirical distribution of a large
number of realizations of Φ̂(t, x) given by repeatedly generating the standard normal random sample (G1, . . . ,Gn) given
the observed data. Thus for checking the overall fit of models (3) and (4) based on Φ(t, x), the p-value of the omnibus test
can be obtained by comparing the observed value of supt,x |Φ(t, x)| to a large number of realizations of supt,x |Φ̂(t, x)|.
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Table 1
Estimation of β under the observation process (a).

α = −0.5
β0 1 0 −1 1 0 −1

n = 100 n = 200

BIAS 0.007 −0.011 0.000 0.016 0.005 −0.002
SSE 0.299 0.296 0.311 0.213 0.210 0.211
ESE 0.267 0.265 0.277 0.205 0.206 0.201
CP 0.921 0.923 0.911 0.939 0.949 0.932
α = 0

BIAS −0.011 0.005 0.005 −0.001 −0.003 0.005
SSE 0.237 0.232 0.240 0.173 0.167 0.172
ESE 0.222 0.216 0.221 0.162 0.162 0.162
CP 0.932 0.920 0.925 0.935 0.934 0.939
α = 0.5

BIAS 0.004 0.003 0.014 0.006 0.011 −0.004
SSE 0.198 0.186 0.215 0.137 0.145 0.135
ESE 0.176 0.176 0.199 0.131 0.144 0.131
CP 0.917 0.934 0.922 0.936 0.938 0.940

4. Simulation studies

We conducted two simulation studies to assess the performances of the proposed inference procedure with the focus on
the estimation of β . The purpose of the first one was to evaluate the final sample properties of the proposed estimate, while
in the second study we compared the proposed estimate to that given in Sun et al. (2007b). For the first study, the covariate
Xi’s were assumed to follow a Bernoulli distribution with success probability 0.5 and the latent variable Zi’s were generated
from the gamma distribution with mean 10 and variance 50. Also we took g(Zi) = Zα

i + εi where εi ∼ Gamma (1, 2), and
generated the follow-up time Ci from the uniform distribution over [2, τ +1]with τ = 8. It is easy to see that the parameter
α represents the relationship between the observation process and the underlying recurrent event process of interest. Given
the covariate Xi, α > 0, α = 0 and α < 0 mean that the two processes are positively correlated, have no correlation, and
are negatively correlated, respectively.

With respect to the observation process Oi(t), two set-ups were considered as follows:

(a) The number of observation times mi was assumed to follow the Poisson distribution with mean ZiCi exp(Xi)/τ and the
observation times (Ti1, . . . , Timi) were taken to be the order statistics of a random sample of size mi from the uniform
distribution over (0, Ci).

(b) mi was assumed to follow the uniform distribution over {0, 1, 2, 3} if Zi ≤ 10 and {3, 4, 5, 6} otherwise, and the
observation times (Ti1, . . . , Timi) were generated in the same way as in set-up (a).

Given Xi, Zi, mi and (Ti1, . . . , Timi), we generated Ni(Tij) by using the formula

Ni(Tij) = Ni(Ti1) + {Ni(Ti2) − Ni(Ti1)} + · · · + {Ni(Tij) − Ni(Ti,j−1)}

and assuming that Ni(t) − Ni(s) followed the Poisson distribution with mean

{µ0(t) − µ0(s)} g(Zi) exp(Xiβ0)

and µ0(t) = t2/2. All of the results given below are based on 1000 replications.
Tables 1 and 2 present the simulation results obtained on the estimation of β with the sample size n = 100 or 200, the

true value of β equal to−1, 0 or 1, and α = 0.5, 0, or−0.5. Table 1 corresponds to set-up (a) for the observation process and
the results in Table 2 were obtained under set-up (b). Both tables include the estimated bias (BIAS) given by the average of
the proposed estimates ofβ minus the true value, the sample standard error (SSE) of the proposed estimates, themean of the
estimated standard error (ESE), and the empirical 95% coverage probabilities (CP). These results indicate that the proposed
estimate seems to be unbiased and the proposed variance estimation procedure provides reasonable estimates. Also the
results on the empirical coverage probabilities indicate that the normal approximation seems to be appropriate.

To further investigate the robustness of the proposed estimate and also why one may need to use the proposed estimate
instead of the estimates developed under restricted models such as that given in Sun et al. (2007b), we performed another
simulation study to compare the estimates given here and in Sun et al. (2007b). In the study, the Xi’s were assumed to
follow the normal distribution with mean zero and variance 4, and we generated the latent variable Zi’s from the gamma
distribution with mean 10 and variance 50. The follow-up times Ci’s were generated from the uniform distribution over
[2, τ + 1] with τ = 8 as before. For the observation process, we assumed that mi ∼ Poisson (ZiΛ0(Ci) exp(Xi)) when
Zi <= 10 and mi ∼ Poisson (4) otherwise with letting λ0(t) = 1/τ or (t + 1)/(0.5τ 2

+ τ). For the case with λ0(t) = 1/τ ,
the observation times (Ti1, . . . , Timi) were taken to be the order statistics of a random sample of size mi from the uniform
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Table 2
Estimation of β under the observation process (b).

α = −0.5
β0 1 0 −1 1 0 −1

n = 100 n = 200

BIAS 0.002 0.024 −0.010 0.002 0.003 0.003
SSE 0.317 0.332 0.332 0.225 0.233 0.237
ESE 0.299 0.304 0.305 0.219 0.223 0.225
CP 0.931 0.931 0.929 0.946 0.933 0.938
α = 0

BIAS 0.002 0.006 −0.004 −0.003 0.0029 0.0061
SSE 0.295 0.302 0.310 0.196 0.216 0.207
ESE 0.273 0.272 0.273 0.196 0.197 0.199
CP 0.925 0.921 0.933 0.950 0.948 0.943
α = 0.5

BIAS 0.004 0.010 −0.012 0.008 −0.007 −0.006
SSE 0.236 0.252 0.257 0.177 0.179 0.173
ESE 0.236 0.235 0.241 0.172 0.172 0.173
CP 0.940 0.930 0.927 0.933 0.936 0.952

Table 3
Estimation of β based on the proposed method and STH.

α = −0.5
λ0(t) µ0(t) n = 100 n = 200

Proposed STH Proposed STH
1
τ

t −0.0045 −0.1995 0.0054 −0.1928
t2/2 −0.0359 −0.2266 −0.0122 −0.2033

t+1
τ(1+0.5τ)

t −0.0073 −0.2314 −0.0060 −0.2280
t2/2 −0.0318 −0.2460 −0.0224 −0.2417

α = 0
1
τ

t 0.0016 −0.2008 −0.01402 −0.2104
t2/2 −0.0358 −0.2287 −0.0235 −0.2205

t+1
τ(1+0.5τ)

t −0.0096 −0.2326 −0.0116 −0.2375
t2/2 −0.0366 −0.2629 −0.0342 −0.2571

α = 0.5
1
τ

t 0.0251 −0.2158 −0.0295 −0.228
t2/2 −0.0522 −0.2432 −0.0416 −0.2380

t+1
τ(1+0.5τ)

t −0.0306 −0.2537 −0.0211 −0.2433
t2/2 −0.0522 −0.2783 −0.0449 −0.2773

distribution over (0, Ci). For the case with λ0(t) = (t + 1)/(0.5τ 2
+ τ), we let the observation times (Ti1, . . . , Timi) to be

the order statistics of a random sample of sizemi from the probability density function

0.5t2 + t
0.5C2

i + Ci
I(0 ≤ t ≤ Ci).

Given the Xi’s, Zi’s, mi’s and Tij’s, the panel count data were generated in the same way as in the first simulation study with
µ0(t) = t or µ0(t) = t2/2 and g(z) = 3 log(zα/10 + 3). Here again α determines the correlation structure between the
observation process and the underlying recurrent event process.

Table 3 gives the estimated bias (BIAS), the average of the estimates minus the true value, obtained for the two estimates
of β proposed here and given in Sun et al. (2007b) based on the simulated data. The results are for β0 = 1, n = 100 and 200,
α = 0.5, 0, and −0.5, and based on 1000 replications and in the table we use STH to denote the estimate proposed in Sun
et al. (2007b). It is apparent that the estimate proposed here seems to be unbiased, while the estimate given in Sun et al.
(2007b) is clearly biased. In other words, in general, the estimate proposed in the previous section seems to be robust.

5. An illustrative example

To illustrate the proposed inference procedure, we apply the proposedmethodology to the bladder cancer data analyzed
by Sun and Wei (2000) and Sun et al. among others. The data include 85 patients with bladder tumors in two treatment
groups, a placebo group (47) and a thiotepa treatment group (38). During the study, each patient was observed only at
discrete time points and at each time point, only the numbers of bladder tumors that had occurred since the previous
observation were recorded. That is, only panel count data are available for the underlying recurrent process of bladder
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Table 4
The analysis results of the bladder tumor data by different methods.

Proposed SW HSW STH ZT

β1 −1.3862 (0.3282) −1.9712 (0.4423) −1.364 (0.45) −1.3565 (0.4387) −1.4815 (0.3795)
β2 0.3282 (0.0668) 0.6604 (0.2247) 0.275 (0.09) 0.2417 (0.0918) 0.2641 (0.067)
β3 0.0000 (0.0956) −0.1230 (0.2043) −0.07 (0.12) 0.0134 (0.1181) −0.0216 (0.1032)

SW: the method given in Sun and Wei (2000); HSW: Approach I with weight function 1 proposed by Hu et al. (2003); STH:
the method given in Sun et al. (2007b); ZH: the method given in Zhao and Tong (2011).

tumors. For each patient, two covariates were also recorded and they are the number of initial bladder tumors and the size
of the largest initial bladder tumor. Among others, Sun et al. (2007b) suggested that for the data, the underlying recurrent
process and the observation process seem to be correlated. One objective of the studywas to determine the treatment effect
on the tumor occurrence as well as the covariate effects.

For the analysis, define Xi = (Xi1, Xi2, Xi3)
′ with Xi1 = 1 if subject iwas in the thiotepa treatment group and 0 otherwise

and Xi2 and Xi3 denoting the number of initial tumors and the size of the largest initial tumor of the ith patient, respectively.
The application of the estimation procedure proposed in the previous sections gave β̂ = (−1.3862, 0.3282, 0.0000)′ with
the estimated standard errors of 0.3282, 0.0668 and 0.0956, respectively. They indicate that the thiotepa treatment had a
significant effect in reducing the occurrence rate of the bladder tumor and the occurrence rate was significantly positively
related to the number of initial tumors. On the other hand, the occurrence rate did not seem to be significantly related to
the size of the largest initial tumor. The data considered here were also analyzed by Sun and Wei (2000), Hu et al. (2003),
Sun et al. (2007b) and Zhao and Tong (2011) among others and, for comparison, the results given by these authors are
summarized in Table 4. It can be seen that the conclusion obtained here is similar to those given by others.

To check the goodness-of-fit of the models (3) and (4), we used the omnibus test procedure given in Section 3 and
obtained the p-value of 0.768. This suggests that thesemodels seem to be appropriate for the bladder cancer data considered
here.
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Appendix. Proofs

In this appendix, wewill sketch the proofs for the consistency and asymptotic normality of the proposed estimate β̂1 and
also for the asymptotic properties of the goodness-of-fit test statistic Φ(t, x). For this, we will employ the notation defined
in the previous sections and assume that P(C ≥ τ) > 0. Define Γ = E{WmX1X ′

1 exp(β
′

10X1)} and assume that Γ is positive
definite.

A.1. Proof of the asymptotic properties of β̂1

First we will consider the consistency of β̂1. For this, note the two facts:
(i) It can be easily verified that U(β10) tends to 0 in probability as n tends to infinity;
(ii)

∂

∂β1
U(β1) = −

1
n

n
i=1

WimiX1iX ′

1i exp(X
′

1iβ1)

converges uniformly to a negative matrix −E{WmX1X ′

1 exp(X
′

1β10)} over β1 in a neighborhood around the true value
β10.

Therefore the solution β̂1 of the estimating equation U(β1) = 0 is unique and consistent. Now we turn to prove the
asymptotic normality of the proposed estimator β̂1. For this, note that by the Taylor series expansion, we have

n1/2(β̂1n − β10) = Γ −1n−1/2U(β10) + op(1) = Γ −1n−1/2
n

i=1

φi + op(1),

where

φi = WiX1i{N̄i − mi exp(β ′

10X1i)}.
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It thus follows that n1/2(β̂1n − β10) has an asymptotically normal distribution with mean zero and covariance matrix
Γ −1Σ(Γ −1)′ that can be consistently estimated by Γ̂ −1Σ̂(Γ̂ −1)′, whereΣ = E(φiφ

′

i ) and Γ̂ and Σ̂ are given as in Section 3.

A.2. Proof of the asymptotic property of Φ(t, x)

In the following, we will sketch the proof for the weak convergence of Φ(t, x) under models (3) and (4). Assume that the
limits of S(x), S0, and B(t, x) exist and are denoted by s(x), s0, and b(t, x), respectively. Define

Ri(t) =

 t

0


Ni(u)dÕi(u) − mi exp(β ′

0Xi) dA(u)


.

To prove the weak convergence of Φ(t, x), first using Lemma A.1 of Lin and Ying (2001) and the functional version of the
Taylor expansion, we have

Φ(t, x) = n−1/2
n

i=1


I(Xi ≤ x) −

s(x)
s0


Ri(t) − b(t, x)′n1/2(β̂ − β0) + op(1).

The tightness of the first term on the right-hand side of the above follows directly from the arguments in Appendix A.5 of
Lin et al. (2000). The second term is also tight because n1/2(β̂ − β0) converge in distribution and b(t, x) is a deterministic
function. Thus Φ(t, x) is tight.

Let di be the vector Γ −1φi without the last entry. Then, we can further write Φ(t, x) as

Φ(t, x) = n−1/2
n

i=1


I(Xi ≤ x) −

s(x)
s0


Ri(t) − b(t, x)′n−1/2

n
i=1

di + op(1).

It thus follows from the multivariate central limit theorem and the tightness of Φ(t, x) that Φ(t, x) converges weakly to a
zero-mean Gaussian process that can be approximated by the zero-mean Gaussian process

Φ̃(t, x) = n−1/2
n

i=1


I(Xi ≤ x) −

S(x)
S0


R̂i(t) − B(t, x)′n−1/2

n
i=1

d̂i.

Thus, using the simulation approach presented in Lin et al. (2000), the null distribution of Φ(t, x) can be approximated by
that of Φ̂(t, x).

References

Balakrishnan, N., Zhao, X., 2009. New multi-sample nonparametric tests for panel count data. Annals of Statistics 37, 1112–1149.
Cai, J., Schaubel, D.E., 2004. Analysis of recurrent event data. Handbook of Statistics 23, 603–623.
Cheng, S.C., Wei, L.J., 2000. Inferences for a semiparametric model with panel data. Biometrika 87, 89–97.
Cook, R.J., Lawless, J.F., 2007. The Statistical Analysis of Recurrent Events. Springer-Verlag, New York.
Diggle, P.J., Liang, K.Y., Zeger, S.L., 1994. The Analysis of Longitudinal Data. Oxford University Press, Oxford.
Gibbons, J.D., Chakraborti, S., 2011. Nonparametric Statistical Inference, fifth ed. Chapman & Hall.
He, X., Tong, X., Sun, J., 2009. Semiparametric analysis of panel count data with correlated observation and follow-up times. Lifetime Data Analysis 15,

177–196.
Huang, C.Y., Wang, M.C., Zhang, Y., 2006. Analysing panel count data with informative observation times. Biometrika 93, 763–775.
Hu, X.J., Lagakos, S.W., Lockhart, R.A., 2009. Generalized least squares estimation of themean function of a counting process based on panel counts. Statistica

Sinica 19, 561–580.
Hu, X.J., Sun, J., Wei, L.J., 2003. Regression parameter estimation from panel counts. Scandinavian Journal of Statistics 30, 25–43.
Liang, Y., Lu, W., Ying, Z., 2009. Joint modeling and analysis of longitudinal data with informative observation times. Biometrics 65, 377–384.
Lin, D.Y., Wei, L.J., Yang, I., Ying, Z., 2000. Semiparametric regression for the mean and rate function of recurrent events. Journal of the Royal Statistical

Society B 69, 711–730.
Lin, D.Y., Ying, Z., 2001. Semiparametric and nonparametric regression analysis of longitudinal data. Journal of the American Statistical Association 96,

103–126.
Liu, L., Huang, X., O’Quigley, J., 2008. Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with

application to medical cost data. Biometrics 64, 950–958.
Lu, M., Zhang, Y., Huang, J., 2007. Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94, 1–14.
Lu, M., Zhang, Y., Huang, J., 2009. Semiparametric estimation methods for panel count data using monotone B-splines. Journal of the American Statistical

Association 104, 1060–1070.
Sun, J., 2006. The Statistical Analysis of Interval–Censored Failure Time Data. Springer, New York.
Sun, J., Fang, H.B., 2003. A nonparametric test for panel count data. Biometrika 90, 199–208.
Sun, J., Kalbfleisch, J.D., 1995. Estimation of the mean function of point processes based on panel count data. Statistica Sinica 5, 279–290.
Sun, J., Sun, L., Liu, D., 2007a. Regression analysis of longitudinal data in the presence of informative observation and censoring times. Journal of theAmerican

Statistical Association 102, 1397–1406.
Sun, J., Tong, X., He, X., 2007b. Regression analysis of panel count data with dependent observation times. Biometrics 63, 1053–1059.
Sun, J., Wei, L.J., 2000. Regression analysis of panel count data with covariate-dependent observation and censoring times. Journal of the Royal Statistical

Society B 62, 293–302.
Wellner, J.A., Zhang, Y., 2000. Two estimators of the mean of a counting process with panel count data. Annals of Statistics 28, 779–814.
Wellner, J.A., Zhang, Y., 2007. Two likelihood-based semiparametric estimation methods for panel count data with covariates. Annals of Statistics 35,

2106–2142.
Welsh, A.H., Lin, X., Carroll, R.J., 2002. Marginal longitudinal nonparametric regression: locality and efficiency of spline and kernel methods. Journal of the

American Statistical Association 97, 482–493.
Zhang, Y., 2006. Nonparametric k-sample tests for panel count data. Biometrika 93, 777–790.
Zhang, Y., 2002. A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89, 39–48.
Zhang, Y., Jamshidian, M., 2003. The gamma-frailty Poisson model for the nonparametric estimation of panel count data. Biometrics 59, 1099–1106.
Zhao, X., Tong, X., 2011. Semiparametric regression analysis of panel count data with information observation times. Computational Statistics and Data

Analysis 55, 291–300.


	Robust estimation for panel count data with informative observation times
	Introduction
	Notation, assumptions and models
	Inference procedure
	Simulation studies
	An illustrative example
	Acknowledgments
	Proofs
	Proof of the asymptotic properties of  hat β1 
	Proof of the asymptotic property of  Φ (t, x) 

	References


