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a b s t r a c t

This paper discusses regression analysis of panel count data that arise naturally when

recurrent events are considered. For the analysis of panel count data, most of the

existing methods have assumed that observation times are completely independent of

recurrent events or given covariates, which may not be true in practice. We propose

a joint modeling approach that uses an unobserved random variable and a completely

unspecified link function to characterize the correlations between the response variable

and the observation times. For inference about regression parameters, estimating equation

approaches are developed without involving any estimation for latent variables, and the

asymptotic properties of the resulting estimators are established. In addition, a technique

is provided for assessing the adequacy of the model. The performance of the proposed

estimation procedures are evaluated by means of Monte Carlo simulations, and a data set

from a bladder tumor study is analyzed as an illustrative example.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of panel count data has recently attracted considerable attention. Panel count data include the number of
observations, discrete observation times, the counts of recurrent events and the censoring or follow-up times for each study
subject. Furthermore, both observation and follow-up times may vary from subject to subject. Such data frequently occur
in medical periodic follow-up studies, reliability experiments, AIDS clinical trials, animal tumorgenicity experiments, and
sociological studies (Kalbfleisch and Lawless, 1985; Thall and Lachin, 1988).

For the analysis of panel count data, several nonparametric and semiparametricmethods have been developed, andmost
previous research has been done under the assumption that the recurrent event process and the observation process are
completely independent or given covariates. For example, Sun and Kalbfleisch (1995) andWellner and Zhang (2000) studied
nonparametric estimation of themean function of the underlying counting process arising from panel counts assuming that
the counting process is independent of the number of observations and the observation times, while Sun and Fang (2003),
Zhang (2006), and Balakrishnan and Zhao (2009, 2010) presented nonparametric tests for the problem of nonparametric
comparison of the mean function of counting processes with panel count data. Zhang and Jamshidian (2003) introduced
the gamma frailty variable to account for correlation among the panel counts and used the maximum pseudo-likelihood
approach to estimate the mean function. Sun and Wei (2000) proposed a semiparametric regression model for the mean
function of the cumulative number of recurrent events over time and used estimating equation-based methods when both
observation times and the censoring timesmay depend on covariates. Zhang (2002) andWellner and Zhang (2007) discussed
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regression analysis of panel count data by using the semiparametric likelihood-based approach under the assumption that
the observation times are independent of occurrences of the recurrent event under study given covariates. Lu et al. (2007)
studied nonparametric likelihood-based estimators of themean function of counting processes with panel count data, using
monotone polynomial splines. Cheng and Wei (2000) investigated estimating equation approaches when observation and
censoring times are independent of the event process. Hu et al. (2003) also investigated estimating equation approaches for
the casewhen the event process, the observation process, and the censoring time are independent conditional on covariates.

In practice, the independence assumption between the recurrent event process and the observation process may not be
true. For example, in the bladder cancer study, the occurrence of bladder tumors of a patient and the clinical visit times
may be related, as discussed by Sun and Wei (2000), Huang et al. (2006) and Sun et al. (2007). In the AIDS study described
in Wang et al. (2001), suppose that one is interested in some symptoms related to AIDS, such as CD4 counts or the time at
which the patient’s CD4 counts cross some threshold. Then the response process may be correlated with the observation
process. Lipsitz et al. (2002) presented a set of longitudinal data from a study of children with acute lymphoblastic leukemia
which involves correlated response and observation processes. The same could be appropriate for other medical follow-up
studies. Thus, one could have to deal with two related processes. However, there exists limited research on the analysis of
panel count data for the situations where the recurrent event process may be correlated with the observation process given
covariates, that is, the observation times may be informative. The random effects are used to link the two processes. Huang
et al. (2006) studied nonparametric and semiparametricmodels that allow observation times to be correlatedwith the event
process through a frailty variable, and used the conditional likelihood approach to estimate the baseline function and the
regression parameters. Furthermore, Sun et al. (2007) investigated semiparametric models for the observation process and
the event process, where both processes may be correlated through a latent variable or frailty. He et al. (2009) proposed
some shared frailty models and developed the estimating equations for estimation of regression parameters. However, we
notice that the estimators obtained from the estimating equation approach proposed by Sun et al. (2007) are not consistent
and they do not have asymptotic normality. The reason for this will be discussed in the next section. The main objective of
this paper is to consider more general joint models for panel count data with informative observation times and develop an
estimating equation approach for estimation of regression parameters such that the asymptotic properties of the resulting
estimates can be established.

The remainder of this paper is organized as follows. Section 2 introduces notation and describes joint models for
the recurrent event and observation processes, where an unobserved random variable and a completely unspecified
link function are used to characterize the correlation between the two processes. In Section 3, estimating equation
approaches are proposed for estimation of regression parameters and the asymptotic properties of the resulting estimates
are established. In Section 4, we develop a technique for checking the adequacy of the general joint model. Section 5
presents some results obtained from simulation studies for assessing the finite-sample properties of the proposed inference
procedure and comparing it with some existing methods in the literature. In Section 6, we apply the proposed methods to
a data set from a bladder tumor study. Some concluding remarks are made in Section 7.

2. Joint models

Consider a recurrent event study that consists of n independent subjects and let Ni(t) denote the number of occurrences
of the recurrent event of interest before or at time t for subject i. Suppose that for each subject, there exists a p-dimensional
vector of covariates denoted by xi. Given xi and an unobserved positive random variable zi that is independent of xi, themean
function of Ni(t) has the form

E{Ni(t)|xi, zi} = μN(t)g(zi) exp(x
′
iβ). (1)

Here μN(·) is a completely unknown continuous baseline mean function, g(·) is a completely unspecified function, and β is
a vector of unknown regression parameters.

For subject i, suppose that Ni(·) is observed only at finite time points Tij < · · · < TiKi , where Ki denotes the potential
number of observation times, i = 1, . . . , n. That is, only the values of Ni(t) at these observation times are known and we
have panel count data on the Ni(t)’s. Let Ci be the censoring time and thus Ni(t) is observed only at these Tij’s with Tij ≤ Ci,

i = 1, . . . , n. Define H̃i(t) = Hi{min(t, Ci)}, where Hi(t) = ∑Ki
j=1 I(Tij ≤ t), i = 1, . . . , n. Then H̃i(t) is a point process

characterizing the ith subject’s observation process and jumps only at the observation times.
In the following, we assume that given xi and zi, Hi(·) is a non-homogeneous Poisson process with the intensity function

λh(t|xi, zi) = λ0h(t)zi exp(x
′
iγ ). (2)

In model (2), λ0h(t) is a completely unknown continuous baseline intensity function and γ denotes the vector of regression

parameters. Let Λ0h(t) = ∫ t

0
λ0h(s)ds. We assume that Λ0h(τ ) = 1 for identifiability, where τ denotes the length of study.

In addition, we assume that Ni’s and Hi’s are independent conditional on (xi, zi), Ci’s are independent of (Ni,Hi, xi, zi)’s, and
{Hi(t),Ni(t), Ci, x

′
i, ui, zi, 0 ≤ t ≤ τ }, i = 1, . . . , n, are independent and identically distributed.

There exists a great deal of research on each of the twomodels (1) and (2) and their special cases individually. For example,
model (1) with g(zi) = 1was considered by Sun andWei (2000), Zhang (2002) andWellner and Zhang (2007) for regression
analysis of panel count data; model (2) with zi = 1 is commonly used for regression analysis of recurrent event data.
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Wang et al. (2001) andHuang andWang (2004) considered amodel similar tomodel (2) for recurrent event data. In contrast,
there exists limitedwork on the joint analysis of the twomodels. For the jointmodels, Sun et al. (2007) studied a special case
by assuming that g(zi) = zα

i where α is an unknown parameter, and provided an inference procedure by using a moment-
based estimator ẑi instead of zi in the estimating function for β . However, the estimators for regression parameters obtained
in such way are not consistent because the estimating function involves estimation of z1+α

i , which is nonlinear on zi. In the
following, we study the joint analysis of the two models together with the focus on estimation of regression parameters β
along with γ . Conditional on xi, the correlation of two processes N(·) and H(·) is characterized by a completely unknown
function of zi, while the distributional form of zi is left unspecified.

3. Estimation of regression parameters

In this section, we consider estimation of β along with other parameters. For this, note that if the random effects zi’s are
known, then model (1) becomes the usual proportional means model and several methods, such as that given in Cheng and
Wei (2000), can be used. Unfortunately they are unknown in practice. To deal with this, following Sun and Wei (2000) and
Sun et al. (2007), we define

N̄i =
K∗
i∑

j=1

Ni(Tij)I(Tij ≤ Ci) =
∫ τ

0

Ni(t)dH̃i(t),

where K ∗
i = H̃i(Ci), the total number of observations on subject i, i = 1, . . . , n. Then conditional on xi, we have

E
(
N̄i|xi

) = exp{x′
i(β + γ )}E{g(zi)zi}

∫ τ

0

λ0h(t)P(Ci ≥ t)μN(t)dt. (3)

For estimation of β , motivated by Eq. (3), one can use the following estimating function

U(β1|γ ) = 1

n

n∑
i=1

x1i
{
N̄i − exp(x′

1iβ1 + x′
iγ )

}
,

where x′
1i = (x′

i, 1) and β ′
1 = (β ′, ν) with

ν = log

[
E{g(zi)zi}

∫ τ

0

λ0h(t)P(Ci ≥ t)μN(t)dt

]
.

The U(β1|γ ) is an unbiased estimating function, that is, the expected value of U(β1|γ ) is 0. Thus, it is natural to estimate β
by the solution to U(β1|γ ) = 0.

Of course, γ is unknown and U(β1|γ ) is not available. For this, we first consider inference about model (2), for which we
have recurrent event data. Let the sl’s denote the ordered and distinct time points of all the observation times {Tij}, dl the
number of the observation times equal to sl, and nl the number of the observation times satisfying Tij ≤ sl ≤ Ci among all
subjects. Set γ ′∗ = (γ ′, γ1), where γ1 = log{E(zi)}. Then following Huang and Wang (2004), one can first estimate Λ0h(t)
and γ∗ by

Λ̂0h(t) =
∏
sl>t

(
1 − dl

nl

)
and the estimating equation

n∑
i=1

x1i
{
K ∗
i Λ̂−1

0h (Ci) − exp(γ ′
∗x1i)

} = 0, (4)

respectively. Denote the solution to Eq. (4) as γ̂ ∗
n . A key fact used in deriving the above estimating equation is that conditional

on (xi, Ci, zi, K
∗
i ), the observation times {Ti1, . . . , TiK∗

i
} are the order statistics of a simple random sample of size K ∗

i from the

density function

λ0h(t)zi exp(γ
′xi)

Λ0h(Ci)zi exp(γ ′xi)
I(0 ≤ t ≤ Ci) = λ0h(t)

Λ0h(Ci)
I(0 ≤ t ≤ Ci).

Let γ̂n be γ̂ ∗
n without the last entry. Then we can use the estimating function U(β1|γ̂n) to estimate regression parameters in

model (1). Let β̂1n denote the solution to equation U(β1|γ̂n) = 0 and let β10 = (β ′
0, ν)′ be the true value of β1. To establish

the asymptotic properties of β̂1n, we need the following regularity conditions, which are similar to those given in Huang and
Wang (2004).

C.1. P(C ≥ τ , Z > 0) > 0.
C.2. X is uniformly bounded.
C.3. G(s) = E{ZI(C ≥ s)} is continuous for s ∈ [0, τ ].
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Theorem 1. Assume that Conditions C.1–C.3 hold. Then, the estimator β̂1n of β10 is consistent and
√
n(β̂1n − β10) has an

asymptotic normal distributionwithmean zero and the covariancematrixφ−1Σ(φ−1)′, whereφ andΣ are given in the Appendix.

The proof of the above theorem is sketched in the Appendix. To derive the estimation of the covariance, we introduce
some notation. Let

Qn(t) = 1

n

n∑
i=1

K∗
i∑

j=1

I(Tij ≤ t),

Rn(t) = 1

n

n∑
i=1

K∗
i∑

j=1

I(Tij ≤ t ≤ Ci),

and

bin(t) =
K∗
i∑

j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)

R2
n(u)

dQn(u) − I(t ≤ Tij ≤ τ)

Rn(Tij)

}
for t ∈ [0, τ ] and i = 1, . . . , n. Also define

f̂ih = −1

n

n∑
j=1

x1jK
∗
j bin(Cj){Λ̂0h(Cj)}−1 + x1i[K ∗

i {Λ̂0h(Ci)}−1 − exp(x′
1iγ̂

∗
n )]

and define f̂i as the vector { 1
n

∑n
j=1 x1jx

′
1j exp(x

′
1jγ̂

∗
n )}−1 f̂ih without the last entry.

Then φ and Σ can be, respectively, consistently estimated by

φ̂ = −1

n

n∑
i=1

x1ix
′
1i exp(x

′
1iβ̂1n + x′

iγ̂n),

and

Σ̂ = 1

n

n∑
i=1

[
x1i

{
N̄i − exp(x′

1iβ̂1n + x′
iγ̂n)

}
− 1

n

n∑
j=1

{
x1j exp(x

′
1jβ̂1n + x′

jγ̂n)x
′
j

}
f̂i

]⊗2

,

where a⊗2 = aa′ for any vector a.

4. Model diagnostics

For the checking of model (2), one has complete recurrent event data and can find some approaches presented in Huang
andWang (2004). Herewe consider the assessment ofmodel (1) withmodel (2), and describe some graphical and numerical
procedures for checking the adequacy of the proposed joint model. Let

A(t) =
∫ t

0

E{g(Z)Z}μN(u)dΛ0(u),

which can be estimated by

Â(t) =
n∑

i=1

∫ t

0

Δi(u)Ni(u)dHi(u)
n∑

i=1

Δi(u) exp(x
′
i θ̂ )

,

where Δi(u) = I(Ci ≥ u) and θ̂ = β̂n + γ̂n, with β̂n being β̂1n without the last entry. For each i, following Lin et al. (2000),
we define the residual

M̂i(t) =
∫ t

0

[
Δi(u)Ni(u)dHi(u) − Δi(u) exp(x

′
i θ̂ )dÂ(u)

]
,

i = 1, . . . , n. First, we consider checking the functional form for the kth component of X and we may plot M̂i(t) against xik,
where xik is the kth component of xi. To develop a more formal procedure, we let

Φk(x) = n−1/2
n∑

i=1

I(xik ≤ x)M̂i(τ ),
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which is the cumulative sum of M̂i(τ ) over the values of xik. Define

S0(t) = n−1
n∑

i=1

Δi(t) exp(x
′
i θ̂ ),

Sk(t, x) = n−1
n∑

i=1

I(xik ≤ x)Δi(t) exp(x
′
i θ̂ ),

and

B(t, x) = n−1
n∑

i=1

∫ t

0

{
I(xik ≤ x) − Sk(u, x)

S0(u)

}
xiΔi(u) exp(x

′
i θ̂ )dÂ(u).

To use the statisticΦk(x), we show in the Appendix that its null distribution can be approximated by the zero-meanGaussian
process

Φ̃k(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(xik ≤ x) − Sk(u, x)

S0(u)

}
dM̂i(u) − B(τ , x)′n−1/2

n∑
i=1

(f̂i + ĝi), (5)

where ĝi is the vector φ̂−1Ui(β̂1n) without the last entry.
Following the simulation approach presented in Lin et al. (2000), we let (G1, . . . ,Gn) be independent standard normal

variables independent of the data. Then it can be shown that the distribution of the process Φk(x) can be approximated by
that of the zero-mean Gaussian process

Φ̂k(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(xik ≤ x) − Sk(u, x)

S0(u)

}
dM̂i(u)Gi − B(τ , x)′n−1/2

n∑
i=1

(f̂i + ĝi)Gi. (6)

It follows from (5) and (6) that to approximate the distribution of Φk(x), one can obtain a large number of realizations

from Φ̂k(x) by repeatedly generating the standard normal random sample (G1, . . . ,Gn) given the observed data. To assess

the functional form of the jth component of covariates, one can plot a few realizations from Φ̂k(x) along with the observed
Φk(x) and see if they can be regarded as arising from the same population. More formally, we can apply the supremum test
statistic supx |Φk(x)|, where the p-value can be obtained by comparing the observed value of supx |Φk(x)| to a large number

of realizations from supx |Φ̂k(x)|.
An omnibus test for checking the overall fit of model (1) with model (2) can be constructed from the process

Φ0(t, x) = n−1/2
n∑

i=1

I(xi ≤ x)M̂i(t),

where the event I(xi ≤ x) means that each of the components of xi is no larger than the corresponding component of x.
As with Φk(x), we can similarly show that the null distribution of Φ0(t, x) can be approximated by that of the zero-mean

Gaussian process Φ̂0(t, x), which is obtained from the expression (6) by replacing I(xik ≤ x) with I(xi ≤ x), τ in the first
integral with t , and B(τ , x) with B(t, x). An omnibus test statistic is then given by supt,x |Φ0(t, x)|, where the p-value can be
obtained as that of supx |Φk(x)|.
5. Simulation study

First we conducted a simulation study to assess the performance of the estimation procedure proposed in the previous
sections under different situations. In the study, the covariate xi’s were assumed to follow a Bernoulli distribution with
success probability 0.5. To generate the simulated data, we first generated zi from the gamma distribution with mean 10
and variance 50, g(zi) = zα

i + �(1, 2), and the follow-up time Ci from the uniform distribution on [τ/2, τ ] with τ = 18,
respectively. Here the symbol of α characterizes the relationship between the observation process and the recurrent event
process.When α > 0, a subject withmore frequent observationswould have a higher occurrence rate of the recurrent event
and the two processes are positively correlated; when α = 0, the two processes have no correlation given the covariates;
when α < 0, a subject with more frequent observations would have a lower occurrence rate of the recurrent event and the
two processes are negatively correlated.

For the observation process, we assumed that Hi follows the homogeneous Poisson process with λ0h(t) = τ−1. Then
given xi, zi, and Ci, K

∗
i , the number of real observation times for subject i, follows the Poisson distribution with mean

Λh(Ci|xi, zi) = Λ0h(Ci)zi exp(xiγ ) = Cizi exp(xiγ )

τ
,

i = 1, 2, . . . , n. Furthermore, the observation times (Ti1, . . . , TiK∗
i
) are the order statistics of a random sample of size K ∗

i

from the uniform distribution over (0, Ci). Given K ∗
i and (Ti1, . . . , TiK∗

i
), we generated Ni(Tij) using the formula

Ni(Tij) = Ni(Ti1) + {Ni(Ti2) − Ni(Ti1)} + · · · + {Ni(Tij) − Ni(Ti,j−1)}
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Table 1
Estimation of β under the homogeneous Poisson observation process.

α = −0.5:H and N are negatively correlated

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 0.9965 −0.0107 −0.9912 1.0060 0.0067 −1.0030

SSD 0.2716 0.2874 0.2832 0.1663 0.1709 0.2107

ESD 0.2654 0.2652 0.2690 0.1663 0.1687 0.2012

CP 0.9360 0.9240 0.9310 0.9460 0.9410 0.9430

α = 0:H and N have no correlation

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 0.9961 −0.0004 −0.9994 0.9985 0.0024 −0.9935

SSD 0.2443 0.2392 0.2444 0.1698 0.1749 0.1723

ESD 0.2244 0.2234 0.2294 0.1644 0.1658 0.1679

CP 0.9290 0.9210 0.9240 0.9410 0.9320 0.9320

α = 0.5:H and N are positively correlated

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 1.0080 0.0021 −0.9899 1.0030 0.0094 −1.0080

SSD 0.1982 0.1978 0.1979 0.1389 0.1396 0.1372

ESD 0.1851 0.1878 0.1882 0.1365 0.1365 0.1380

CP 0.9280 0.9300 0.9370 0.9340 0.9380 0.9550

for j = 1, . . . , K ∗
i and i = 1, . . . , n. Here the random variable Ni(t) − Ni(s)(t > s) can be generated from the Poisson

distribution with mean

0.5(t2 − s2)g(zi) exp(xiβ).

Set γ = 1 and β = −1, 0, 1, representing the different effect of the covariate X on the panel count. For each setting, we
consider two sample sizes, n = 100 and 200, respectively. We also performed Monte Carlo studies when the observation
process Hi follows the nonhomogeneous Poisson process with λ0h(t) = (t + 1)/(τ (τ/2 + 1)). All the results reported here
are based on 1000 Monte Carlo replications using MATLAB software.

Tables 1 and 2 present the simulation results on estimation of β for the different situations. The tables include the
averages of proposed estimates of β based on the simulated data, the sample standard deviations of the estimates (SSD),
the means of the estimated standard deviations (ESD), and the empirical 95% coverage probabilities (CP) for β . These results

indicate that the estimate β̂ seems to be unbiased and the proposed variance estimation procedure provides reasonable
estimates. Also the results on the empirical coverage probabilities indicate that the normal approximation seems to be
appropriate.

Also we carried out a simulation study to compare the performance of the proposed estimator of β with those obtained

by Hu et al. (2003) and Sun et al. (2007). Let β̂HSW denote the estimator of β based on the estimation conditional on the

observational process, and let β̂STH denote the estimator ofβ presented by Sun et al. (2007).We use the efficiency tomeasure

the gain by our joint model, where the efficiency is defined by Eff = SSD(β̂HSW)/SSD(β̂). For simplicity, we assume that
μN(t) = t , zi’s follow the uniform distribution U[0, 1], and g(z) = zα . Since the two estimators are both unbiased, we
just presented the efficiency results. The simulation results are shown in Tables 3 and 4. The two tables show that all the
efficiencies are greater than one, which indicates that our estimators are more efficient than those obtained by Hu et al.
(2003) and Sun et al. (2007).

6. An application

In this section, we use the proposed methodology to analyze the data set from a bladder cancer study conducted by the
Veterans Administration Cooperative Urological Research Group (Andrews and Herzberg, 1985; Byar, 1980; Sun and Wei,
2000; Wellner and Zhang, 1998). In this study, the patients with superficial bladder tumors were randomly assigned to one
of three treatment groups: placebo, thiotepa, and pyridoxine. Following Sun andWei (2000), we restrict our attention to the
patients in the placebo (47) and the thiotepa (38) groups. For each patient, two other important baseline covariates were
reported; they are the number of initial tumors and the size of the largest initial tumor.

For the analysis, we define the first component xi1 of xi to be equal to 1 if the ith patient was given the thiotepa treatment
and 0 otherwise. We also let xi2 and xi3 be the number of initial tumors and the size of the largest initial tumor of the
ith patient, respectively. Assume that the occurrence process of the bladder tumors and the clinical visit process can be
described bymodels (1) and (2), respectively. The application of the estimation procedure proposed in the previous sections
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Table 2
Estimation of β under the nonhomogeneous Poisson observation process.

α = −0.5:H and N are negatively correlated

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 1.0200 0.0166 −1.0010 1.0160 0.0159 −0.9997

SSD 0.2715 0.2780 0.2608 0.1874 0.1963 0.1956

ESD 0.2494 0.2517 0.2515 0.1831 0.1837 0.1843

CP 0.9210 0.9270 0.9420 0.9340 0.9380 0.9520

α = 0:H and N have no correlation

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 1.0170 0.0184 −0.9825 1.0240 0.0112 −0.9863

SSD 0.2524 0.2606 0.2608 0.1835 0.1844 0.1926

ESD 0.2422 0.2422 0.2430 0.1772 0.1773 0.1773

CP 0.9290 0.9220 0.9260 0.9400 0.9300 0.9350

α = 0.5:H and N are positively correlated

β0 1 0 −1 1 0 −1

n = 100 n = 200

β̂ 1.0160 0.0033 −0.9779 1.0040 0.0053 −0.9911

SSD 0.2387 0.2438 0.2446 0.1705 0.1653 0.1737

ESD 0.2223 0.2240 0.2229 0.1651 0.1647 0.1653

CP 0.9260 0.9250 0.9340 0.9400 0.9460 0.9310

Table 3
Efficiency results of the proposed estimators with those by Hu et al. (2003).

β0 1 0 −1 1 0 −1

α n = 100 n = 200

−0.5 1.1361 1.0482 1.1848 1.1946 1.1765 1.2550

0 1.2067 1.0664 1.0228 1.0941 1.0111 1.0156

0.5 1.0582 1.0912 1.1866 1.2636 1.0908 1.1058

Table 4
Efficiency results of the proposed estimators with those by Sun et al. (2007).

β0 1 0 −1 1 0 −1

α n = 100 n = 200

−0.5 1.4444 1.4297 1.381 1.4509 1.5452 1.4122

0 1.1624 1.1748 1.1514 1.2409 1.2285 1.1771

0.5 1.0557 1.1046 1.1063 1.0993 1.0694 1.1033

Table 5
Estimates and their estimated standard error by different methods.

Proposed SW HSW STH

β1 −1.4815 (0.3795) −1.9712 (0.4423) −1.364 (0.45) −1.3565 (0.4387)

β2 0.2641 (0.067) 0.6604 (0.2247) 0.275 (0.09) 0.2417 (0.0918)

β3 −0.0216 (0.1032) −0.1230 (0.2043) −0.07 (0.12) 0.0134 (0.1181)

SW: proposed by Sun and Wei (2000); HSW: Approach I with weight function 1 proposed by Hu et al. (2003); STH: proposed by Sun et al. (2007).

gave γ̂1 = 0.4808, γ̂2 = −0.0358, γ̂3 = 0.0155, β̂1 = −1.4815, β̂2 = 0.2641, and β̂3 = −0.0216 with the estimated
standard errors being 0.1231, 0.0352, 0.0377, 0.3795, 0.0670 and 0.1032, which correspond to p-values of 0.0001, 0.3091,
0.6810, 0.0001, 0.0001, and 0.8345, respectively. Here γ1 and β1, γ2 and β2, and γ3 and β3 represent regression coefficients
corresponding to the treatment indicator, the number of initial tumors, and the size of the largest initial tumor, respectively.
These results suggest that the thiotepa treatment significantly reduces the occurrence rate of the bladder tumors and the
number of initial tumors has a significant positive effect on the tumor recurrence rate but no significant effect on the visit
process. However, both the occurrence rate of the bladder tumors and the visit times do not seem to be significantly related
to the size of the largest initial tumor. Sun andWei (2000) and Hu et al. (2003) also analyzed the same data. Their results are
summarized in Table 5. In addition, the estimation results are shown in Table 5 by using the approach of Sun et al. (2007) to
the these data. From Table 5, one can obtain similar conclusions from all the fourmethods. Furthermore, one can see that our
proposed approach yields the smallest sample standard deviations and thismeans that our approach has the best efficiency.
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We also use the proposed model checking techniques described in the previous section to check the functional form for
the kth (k = 1, 2, 3) component of X and the overall fit of model (1) with model (2). Using the approaches, we computed
the test statistics and their corresponding p-values. The p-values are: 0.930 for supx |Φ1(x)|, 0.855 for supx |Φ2(x)|, 0.786
for supx |Φ3(x)|, and 0.952 for supt,x |Φ0(t, x)|. All the p-values are significantly greater than 0.05, which shows that our
proposed models are appropriate to analyze the bladder cancer data.

7. Concluding remarks

In this article, we have considered regression analysis of panel count data when the observation times may carry
information about the recurrent event process and proposedmore general jointmodels, where the relation between the two
processes is characterized through a latent variable and a completely unspecified link function. For estimation of regression
parameters representing covariate effects, we have developed an estimating equation approach that yields consistent and
asymptotically normal parameter estimates. A key advantage of the proposed approach over existing methods for panel
count data is that it allows the observation process to be relatedwith the response process of interest through an unspecified
link function of an unobserved random variable, while the link function in the joint model considered by Sun et al. (2007) is
specified. Another advantage of the proposed method is that the parameter estimates and the estimated covariance matrix
do not involve estimation of the latent variables, while the estimating function proposed by Sun et al. (2007) does involve
estimation of the latent variables and their estimation procedure does not lead to consistency of estimators for regression
parameters. The simulation results suggest that the proposed inference procedures performwell and an illustrative example
is provided.

Note that in the foregoing we have assumed that the follow-up or censoring time is independent of covariates for
simplicity of presentation, and the proposed method can be generalized to the dependent case by using the approach of
Sun et al. (2007). Also note that we can use the weighted estimating function for inference, and it would be of great interest
to investigate the weight function selection for optimal estimates.

Although themethods proposedby Sun andWei (2000) andHuet al. (2003) are for the case of noninformative observation
times, the estimating function for β given in Section 4 of Sun andWei (2000) and Approach II given in Section 2.3 of Hu et al.
(2003) can be extended to the case of informative observation times. That is, to estimate β , motivated by (3) and Sun and
Wei (2000) as well as Hu et al. (2003), we propose two other estimating functions

U1(β|γ ) = 1

n

n∑
i=1

(xi − x̄) exp{−x′
i(β + γ )}N̄i

or

U2(β|γ ) = 1

n

n∑
i=1

∫ τ

0

I(Ci ≥ t)

⎡⎢⎢⎣xi −

n∑
k=1

I(Ck ≥ t)xk exp{x′
k(β + γ )}

n∑
k=1

I(Ck ≥ t) exp{x′
k(β + γ )}

⎤⎥⎥⎦Ni(t)dHi(t),

where x̄ = 1
n

∑n
i=1 xi. Clearly, the estimators of β obtained from U1(β|γ̂ ) = 0 and U2(β|γ̂ ) = 0 have the same asymptotic

properties as those given in Sun and Wei (2000) and Hu et al. (2003), respectively. A simulation study indicates that
estimators of β have similar performance by using the three estimating equations. In summary, we have three methods
available for estimation of β under the joint model (1) and (2) and all of them work well.

It is of main interest in this article to estimate the regression parameter β from the panel count data with the observed
covariates. It is hard to estimate the baseline mean function μN(t) in the current setting. Further research is needed to
address this issue.

In the joint models, we have assumed that the covariates and the latent variables are time-independent. In some
situations, one may want to consider the joint models for the recurrent event process N(t) and the observation process
H(t) as follows

E{N(t)|x(t), z(t)} = μN(t)g(z(t)) exp(x(t)′β)

and

λh(t|x(t), z(t)) = λ0h(t)z(t) exp(x(t)
′γ ),

where λh(t) is the intensity function of H(t), x(t) is a vector of covariates that may depend on time, z(t) is an unobserved
stochastic process, and g is a completely unknown function.

In model (2), we have assumed that the observation process H(t) is a Poisson process, which may not be true in practice.
Further research is to replace model (2) by the following mean model

E{H(t)|x, z} = μ0h(t)z exp(x
′γ ),

whereμ0h(t) is a completely unknown continuous baseline mean function. An estimation procedure needs to be developed
for the joint mean models of the two counting processes.
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Appendix

Proof of Theorem 1. In this Appendix, we show the consistency and the asymptotic normality of β̂1n. Using the same
notation as in Wang et al. (2001), define

Q (u) =
∫ u

0

G(v)dΛ0h(v),

R(u) = G(u)Λ0h(u),

bi(t) =
K∗
i∑

j=1

{∫ τ

t

I(Tij ≤ u ≤ Ci)dQ (u)

R2(u)
− I(t ≤ Tij ≤ τ)

R(Tij)

}
,

and

fih = −E
{
X1K

∗bi(C)/Λ0h(C)
} + x1i{K ∗

i Λ−1
0h (Ci) − ex

′
1i

γ∗ },
where the expectation is taken with respect to (X1, C, K ∗). Then we have

γ̂n − γ0 = n−1
n∑

i=1

fi + op(n
−1/2),

where fi is the vector function E(−∂ fih/∂γ∗)−1fih without the last entry (Wang et al., 2001; Huang and Wang, 2004).

The consistency of β̂1 follows from the two facts:

(i) It can be easily verified that U(β10|γ̂n) tends to 0 in probability as n tends to infinity;
(ii)

d

dβ1

U(β1|γ̂n) = −1

n

n∑
i=1

x1ix
′
1ie

x′
1i

β1+x′
i
γ̂n

converges uniformly to a negative matrix −E(X ′
1X1e

X ′
1
β1+X ′γ0) over β1 in a neighborhood around the true value β10.

Therefore the solution of the estimating function β̂1n is unique and consistent. Now we turn to prove the asymptotical

normality of the proposed estimator β̂1n.
Taylor expansion yields that

U(β1|γ̂n) = 1

n

n∑
i=1

x1i(N̄i − ex
′
1i

β1+x′
i
γ̂n)

= 1

n

n∑
i=1

x1i

{
(N̄i − ex

′
1i

β1+x′
i
γ0) − ex

′
1i

β1+x′
i
γ0x′

i(γ̂n − γ0)
}

+ op(n
−1/2)

= 1

n

n∑
i=1

x1i(N̄i − ex
′
1i

β1+x′
i
γ0) − E(X1e

X ′
1
β1+X ′γ0X ′)

1

n

n∑
i=1

fi + op(n
−1/2).

Define

Ui(β1) = x1i(N̄i − ex
′
1i

β1+x′
i
γ0) − E(X1e

X ′
1
β1+X ′γ0X ′)fi,

then

U(β1|γ̂n) = 1

n

n∑
i=1

Ui(β1) + op(n
−1/2).

By the standard procedure, one can obtain that the unique solution β̂1n to U(β1|γ̂n) = 0 satisfies the asymptotic

normality. Specifically,
√
n(β̂1n − β10) converges in distribution to a normal random variable with mean zero and the

covariance matrix φ−1Σ(φ−1)′, where φ = −E

{
∂Ui(β1)

∂β1

∣∣∣
β1=β10

}
and Σ = Cov{Ui(β10)}. This completes the proof. �



300 X. Zhao, X. Tong / Computational Statistics and Data Analysis 55 (2011) 291–300

Proof of asymptotic properties of Φk(x) and Φ0(t, x). In the following, we will only sketch the proof for the weak
convergence of Φk(x) under models (1) and (2). The weak convergence of Φ0(t, x) can be similarly derived. Assume that
the limits of Sk(t, x), S0(t), and B(t, x) exist and are denoted by sk(t, x), s0(t), and b(t, x), respectively. Define

Mi(t) =
∫ t

0

{
Δi(u)Hi(u)dNi(u) − Δi(u) exp(θ

′
0Xi)dA(u)

}
where θ0 = β0+γ0. To prove theweak convergence ofΦk(x), first using LemmaA.1 of Lin and Ying (2001) and the functional
version of the Taylor expansion, we have

Φk(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(xik ≤ x) − sk(u, x)

s0(u)

}
dMi(u) − b(τ , x)′n1/2(θ̂ − θ0) + op(1).

The tightness of the first term on the right-hand side of the above follows directly from the arguments in Appendix A.5 of Lin

et al. (2000). The second term is also tight because n1/2(θ̂ − θ0) converge in distribution and b(τ , x) are some deterministic
functions. Thus Φk(x) is tight.

Let gi be the vector φ−1Ui(β10) without the last entry. Then, we can further write Φk(x) as

Φk(x) = n−1/2
n∑

i=1

∫ τ

0

{
I(xik ≤ x) − sk(u, x)

s0(u)

}
dMi(u) − b(τ , x)′n−1/2

n∑
i=1

(fi + gi) + op(1).

It thus follows from the multivariate central limit theorem and the tightness of Φk(x) that Φk(x) converges weakly to a
zero-mean Gaussian process which can be approximated by the zero-mean Gaussian process Φ̃k(x) given in (5). �
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