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Summary. In this article, we propose a family of semiparametric transformation models with time-varying coefficients for
recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating
the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on
the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are
established. In addition, a lack-of-fit test is provided for assessing the adequacy of the model, and some tests are presented for
investigating whether or not covariate effects vary with time. The finite-sample behavior of the proposed methods is examined
through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.
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1. Introduction
In many longitudinal studies, the event of interest can be
experienced more than once per subject. Medical examples
of recurrent events include, among others, multiple infection
episodes and tumor recurrences. Other examples include re-
peated breakdowns of a certain machinery in reliability testing
and repeated purchases of a certain product in marketing re-
search. The investigators are often interested in assessing the
effects of covariates on certain features of the recurrent event
process. In many situations, the follow-up of recurrent
event could be stopped by a terminal event such as death,
which precludes further recurrent events. For example, pa-
tients may experience recurrent hospitalizations that are ter-
minated by death.

For recurrent event data in the absence of a terminal event,
there are several estimating procedures proposed in the lit-
erature, including conditional models (Prentice, Williams,
and Peterson, 1981; Andersen and Gill, 1982; Chang and
Wang, 1999; Zeng and Lin, 2006), marginal intensity models
(Wei, Lin, and Weissfeld, 1989; Lee, Wei, and Amato, 1992),
marginal mean and rate models (Pepe and Cai, 1993; Lawless
and Nadeau, 1995; Lin et al., 2000), and the frailty model
approach (Nielsen et al., 1992; Murphy, 1994, 1995; Zeng and
Lin, 2007). To allow nonproportional means and rates, some
other semiparametric regression methods have been studied.
For example, Lin, Wei, and Ying (1998) proposed an ac-
celerated failure time model to formulate the effects of co-
variates on the mean function of the counting process. Lin,
Wei, and Ying (2001) suggested a class of semiparametric
transformation models for point processes with positive jumps

of arbitrary sizes. Ghosh (2004) presented the accelerated rate
model and Schaubel, Zeng, and Cai (2006) proposed a semi-
parametric additive rate model for counting processes. Cook
and Lawless (2007) provided an excellent review of methods
for recurrent event data.

Some efforts have been made recently on the analysis of re-
current events in the presence of a terminal event (e.g., Cook
and Lawless, 1997; Ghosh and Lin, 2000, 2002, 2003; Huang
and Wang, 2004; Liu, Wolfe, and Huang, 2004; Schaubel and
Cai, 2005; Ye, Kalbfleish, and Schaubel, 2007). For example,
Cook and Lawless (1997) and Ghosh and Lin (2002) stud-
ied the mean and rate functions of recurrent events among
survivors at a given time. Ghosh and Lin (2003) presented
an accelerated failure time model for recurrent events. Huang
and Wang (2004) discussed joint models of the recurrent and
terminal events, where the inference was focused on the fre-
quency of recurrent events at the failure time of the terminal
event. Ye et al. (2007) proposed a joint semiparametric model
in which the correlation between the recurrent and terminal
events is incorporated through the frailty.

The aforementioned semiparametric regression models as-
sume that regression coefficients are constant over time. In re-
ality, however, the regression parameters may vary over time,
and it is important to know the temporal effects of the covari-
ates on the recurrent event times. The time-varying coefficient
models provide a nice graphical summary of time dynamics
of covariates and further allow for inference about covariate
effects. In addition, making inference on recurrent event pro-
cesses for subjects who are currently alive is of interest in
many studies, and some authors have studied the conditional
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recurrent event rate given survival (e.g., Cook and Lawless,
1997; Liu et al., 2004; Schaubel and Cai, 2005; Ye et al.,
2007; Pan and Schaubel, 2009). In this article, we propose
a family of semiparametric transformation models with time-
varying coefficients for the mean functions of the recurrent
events among survivors at a given time. The new model of-
fers great flexibility in formulating the effects of covariates on
the conditional mean functions while leaving the stochastic
structure completely unspecified. For the sake of exposition,
we will focus on time-invariant covariates and address the
time-dependent covariate issue in the discussion.

The remainder of the article is organized as follows. In
Section 2, we introduce relevant notation and formulate the
model. By using the technique of inverse probability weight-
ing after adjusting possibly time-dependent covariates (Ghosh
and Lin, 2002), an estimating procedure is proposed for the
model parameters. Section 3 studies the asymptotic proper-
ties of the resulting estimators. In Section 4, we develop a
technique for checking the adequacy of the general model,
and provide some tests for investigating whether or not co-
variate effects vary with time. Section 5 reports some results
from simulation studies conducted for evaluating the proposed
methods. In Section 6, we apply the methodology to a data
set from a bladder cancer study, and some concluding remarks
are made in Section 7.

2. Model and Estimation Procedures
Let N ∗(t) denote the number of recurrent events that occur
over the interval [0, t], and X and Z be vectors of covariates
of dimensions p and q, respectively. In most applications, the
subject is followed for a limited period of time so that N ∗(·)
may not be fully observed. Let C denote the follow-up or
censoring time, and let D be the time of the terminating event,
where the terminal event may stop the further occurrence
of recurrent events in that N ∗(t) is constant after D. It is
assumed that N ∗(·) is independent of C conditional on X and
Z. Note that N ∗(·) can only be observed up to C and that
in general only the minimum of D and C is known. Write
T = D ∧ C, Δ = I(D � C), and N (t) = N ∗(t ∧ C), where a ∧
b = min(a, b) and I(·) is the indicator function.

Let E{N ∗(t) |X, Z, D � t} denote the mean function of the
recurrent events conditional on the terminal event not occur-
ring before t. Our proposed transformation models with time-
varying coefficients take the form

E{N ∗(t) |X, Z, D � t} = g{β0(t)′X + γ ′
0Z}, (1)

where g(·) � 0 is pre-specified and assumed to be twice con-
tinuously differentiable, β0(t) is a p-dimensional vector of
unknown time-varying regression coefficients, and γ0 is a
q-dimensional vector of unknown time-independent regres-
sion parameters. Model (1) is marginal in the sense that it
does not condition on the event history. Here we allow the
first component of X to be 1, which gives a baseline mean
function. When there is no dependent terminal event and
X ≡ 1, model (1) reduces to the transformation models stud-
ied by Lin et al. (2001). Model (1) defines a very rich fam-
ily of models through the link function g(·). The exponen-
tial link function g(x) = exp(x) is an obvious choice. It also
encompasses the Box–Cox transformations, in which g(·) is
given by g(x) = {(x + 1)ρ − 1}/ρ(ρ ≥ 0), where ρ = 0 means

that g(x) = log(x + 1). Another useful class is the logarithmic
transformations, which are given by g(x) = log(1 + rx)/r(r �
0), where r = 0 means that g(x) = x.

For a random sample of n subjects, the data consist of
{Ni (t), Ti , Δi , Xi , Zi ; t � Ti , i = 1, . . . , n}. We specify the pro-
portional hazards model for the time of the terminating event
Di as

λ(t |Wi ) = λ0(t) exp(α′
0Wi ), (2)

where λ0(t) is an unspecified baseline hazard function, Wi is
a r-dimensional covariate vector that is a part of (X ′

i , Z
′
i )

′,
and α0 is an r-dimensional vector of unknown parameters.
It is assumed that Di and Ci are conditionally independent
given Wi . We denote the survival function of Di as S(t |Wi ) =
P {Di � t |Wi}. Define Yi (t) = I(Ti � t), and

Mi (t) =
Yi (t)

S(t |Wi )
[Ni (t) − g{β0(t)′Xi + γ ′

0Zi}], i = 1, . . . , n.

Under model (1), Mi (t)’s are zero-mean stochastic processes.
In practice, the survival function S(t |Wi ) is unknown, but

it can be estimated by the fit of model (2). Specifically, let α̂
be the maximum partial likelihood estimator of α0, which is
defined as the solution to

Uα (α) =
n∑

i=1

∫ τ

0

{Wi − W̄ (t; α)} dND
i (t) = 0, (3)

where ND
i (t)= I(Ti � t, Δi =1), W̄ (t; α)=S(1)(t; α)/S(0)(t; α),

S(k )(t; α) = n−1
n∑

i=1

Yi (t)W ⊗k
i exp(α′Wi ) for k = 0, 1, 2,

and, for a vector v, v⊗0 = 1, v⊗1 = v and v⊗2 = vv′. Let Λ̂0(t)
be the Breslow estimator of Λ0(t) =

∫ t

0 λ0(u) du, that is,

Λ̂0(t) =
n∑

i=1

∫ t

0

dND
i (u)

n∑
j=1

Yj (u) exp(α̂′Wj )

.

Then S(t |Wi ) can be estimated by Ŝ(t |Wi ) = exp{−exp
(α̂′Wi )Λ̂0(t)}. To estimate the regression coefficient function
β(t) and the regression parameter γ, using the generalized
estimating equation approach (Liang and Zeger, 1986) and
the inverse probability weighting technique, we propose the
following two estimating functions for β0(t) and γ0 :

U1(t, β, γ) =
n∑

i=1

Yi (t)

Ŝ(t |Wi )
Xi

× [Ni (t) − g{β(t)′Xi + γ ′Zi}], 0 � t � τ, (4)

and

U2(τ, β, γ) =
n∑

i=1

∫ τ

0

Yi (t)

Ŝ(t |Wi )
Zi

× [Ni (t) − g{β(t)′Xi + γ ′Zi}] dH(t), (5)

where τ is a pre-specified constant such that P (Ti � τ ) > 0,
and H(t) is an increasing and known weight function on [0, τ ].
Let β̂(t) and γ̂ denote the solutions to U1(t, β, γ) = 0 and
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U2(τ, β, γ) = 0. The estimate β̂(t) will be a piecewise constant
function with jumps only at the observed event times.

Let ġ(x) = dg(x)/dx. To solve the estimating equations (4)
and (5) simultaneously, we proceed by a Taylor expansion
of g{β(t)′Xi + γ ′Zi} around the current value of estimates
β(k )(t) and γ(k ) to get approximated estimating equations

U1(t, β, γ) ≈
n∑

i=1

Yi (t)

Ŝ(t |Wi )
Xi

×
[
Ni (t) − g

{
β(k )(t)′Xi + γ(k )′Zi

}
− ġ

{
β(k )(t)′Xi + γ(k )′Zi

}
X ′

i{β(t) − β(k )(t)}
− ġ

{
β(k )(t)′Xi + γ(k )′Zi

}
Z ′

i{γ − γ(k )}
]
, (6)

and

U2(τ, β, γ) ≈
n∑

i=1

∫ τ

0

Yi (t)

Ŝ(t |Wi )
Zi

×
[
Ni (t) − g

{
β(k )(t)′Xi + γ(k )′Zi

}
− ġ

{
β(k )(t)′Xi + γ(k )′Zi

}
X ′

i{β(t) − β(k )(t)}
− ġ

{
β(k )(t)′Xi + γ(k )′Zi

}
Z ′

i{γ − γ(k )}
]

dH(t).
(7)

Define

E(k )
xx (t) = n−1

n∑
i=1

Yi (t)

Ŝ(t |Wi )
ġ
{
β(k )(t)′Xi + γ(k )′Zi

}
XiX

′
i ,

E(k )
z z (t) = n−1

n∑
i=1

Yi (t)

Ŝ(t |Wi )
ġ
{
β(k )(t)′Xi + γ(k )′Zi

}
ZiZ

′
i ,

E(k )
z x (t) = n−1

n∑
i=1

Yi (t)

Ŝ(t |Wi )
ġ
{
β(k )(t)′Xi + γ(k )′Zi

}
ZiX

′
i ,

and E
(k )
xz (t) = E

(k )
z x (t)′. Solving (6)for β(t) and inserting it into

(7), we get the (k + 1)th iterative estimator for γ0 :

γ(k+1) = γ(k ) + n−1(A(k ))−1

×
n∑

i=1

∫ τ

0

Yi (t)

Ŝ(t |Wi )

{
Zi − E(k )

z x (t)E(k )
xx (t)−1Xi

}
×

[
Ni (t) − g

{
β(k )(t)′Xi + γ(k )′Zi

}]
dH(t), (8)

where

A(k ) =
∫ τ

0

[
E(k )

z z (t) − E(k )
z x (t)E(k )

xx (t)−1E(k )
xz (t)

]
dH(t).

Using the updated version γ(k+1) and solving (6)for β(t), we
have

β(k+1)(t) = β(k )(t) + n−1E(k )
xx (t)−1

n∑
i=1

Yi (t)

Ŝ(t |Wi )
Xi

×
[
Ni (t) − g

{
β(k )(t)′Xi + γ(k )′Zi

}
− ġ

{
β(k )(t)′Xi + γ(k )′Zi

}
Z ′

i{γ(k+1) − γ(k )}
]
. (9)

This iteration is continued until convergence and the esti-
mates β̂(t) and γ̂ are obtained at convergence. For the conver-
gence, also several criteria can be applied and in the numer-
ical studies below, we used the absolute differences between
the iterative estimates of the parameters. The algorithm con-
verges most times in general, but nonconvergence could occur
occasionally depending on the setups.

3. Asymptotic Results
In this section, we establish the asymptotic properties of the
estimates given in the previous section. First we consider the
existence, uniqueness, and strong consistency of β̂(t) and γ̂.
The results are summarized in the following theorem with the
proof given in the Web Appendix.

Theorem 1: Under the regularity conditions (C1)–(C5)
stated in the Web Appendix, β̂(t) and γ̂ exist and are unique.
Moreover, γ̂ is strongly consistent to γ0, and β̂(t) → β0(t) al-
most surely uniformly in t ∈ [0, τ ].

Let Êxx (t), Êz z (t), Êxz (t), Êz x (t), and Â denote the quan-
tities defined in the previous section with all unknown param-
eters replaced by their estimates. Define

M̂i (t) =
Yi (t)

Ŝ(t |Wi )
[Ni (t) − g{β̂(t)′Xi + γ̂ ′Zi}].

The asymptotic distributions of β̂(t) and γ̂ are given in the
next theorem.

Theorem 2: Under the regularity conditions (C1)–(C5)
stated in the Web Appendix, we have

(i) n1/2(γ̂ − γ0) is asymptotically normal with mean zero and
a variance–covariance matrix that can be consistently es-
timated by Â−1Σ̂Â−1, where Σ̂ = n−1

∑n

i=1 ξ̂⊗2
i ,

ξ̂i =
∫ τ

0

M̂i (t)
[
Zi − Êz x (t)Êxx (t)−1Xi

]
dH(t)

+
∫ τ

0

Q̂(t)
S(0)(t; α̂)

dM̂D
i (t)

+ B̂Ω̂−1

∫ τ

0

{Wi − W̄ (t; α̂)} dM̂D
i (t),

Q̂(t) = n−1
n∑

i=1

∫ τ

t

exp(α̂′Wi )M̂i (u)

×
{
Zi − Êz x (u)Êxx (u)−1Xi

}
dH(u),

B̂ = n−1
n∑

i=1

∫ τ

0

M̂i (t)

×
{
Zi − Êz x (t)Êxx (t)−1Xi

}
V̂i (t)′ dH(t),

V̂i (t) =
∫ t

0

exp(α̂′Wi ){Wi − W̄ (u; α̂)} dΛ̂0(u),

and

Ω̂ = n−1
n∑

i=1

{
S(2)(t; α̂)
S(0)(t; α̂)

− W̄ (t; α̂)⊗2

}
dND

i (t).
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(ii) n1/2{β̂(t) − β0(t)} (0 � t � τ ) converges weakly to a
zero-mean Gaussian process whose covariance function at
(s, t) can be consistently estimated by

Γ̂(s, t) = n−1
n∑

i=1

φ̂i (s)φ̂i (t)′,

where

φ̂i (t) = Êxx (t)−1

[∫ t

0

R̂(t)
S(0)(u; α̂)

dM̂D
i (u)

+ P̂ (t)Ω̂−1

∫ τ

0

{
Wi − W̄ (u; α̂)

}
dM̂D

i (u)

+ XiM̂i (t) − Êxz (t)Â−1ξ̂i

]
, (10)

R̂(t) = n−1
n∑

i=1

exp(α̂′Wi )M̂i (t)Xi ,

and

P̂ (t) = n−1
n∑

i=1

Mi (t)Xi V̂i (t)′.

The asymptotic normality for β̂(t), together with the con-
sistent covariance estimator Γ̂, enables us to construct point-
wise confidence intervals for β0(t). To construct simultaneous
confidence bands for β0(t) over a time interval [a, b] of inter-
est, where 0 < a < b � τ , we need to evaluate the distribution
of the supremum of a related process over [a, b]. It is not pos-
sible to evaluate such distributions analytically because the
limiting process of n1/2{β̂(t) − β0(t)} does not have an in-
dependent increment structure. To handle this problem, we
can use a resampling scheme to approximate the distribution
of n1/2{β̂(t) − β0(t)}. Define Ξ̂(t) = n−1/2

∑n

i=1 φ̂i (t)Gi , where
(G1, . . . , Gn ) are independent standard normal variables that
are independent of the data {Ni (t), Ti , Δi , Xi , Zi ; t � Ti , i =
1, . . . , n}. According to the arguments of Lin et al. (2000), the
distribution of the process n1/2{β̂(t) − β0(t)} can be approxi-
mated by that of the zero-mean Gaussian process Ξ̂(t). To ap-
proximate the distributions of n1/2{β̂(t) − β0(t)}, we need to
obtain a large number of realizations from Ξ̂(t) by repeatedly
generating the normal random sample (G1, . . . , Gn ) while fix-
ing the data {Ni (t), Ti , Δi , Xi , Zi ; t � Ti , i = 1, . . . , n} at their
observed values. Using this simulation method, we can deter-
mine an approximate 1 − α simultaneous confidence band for
β0(t) over a time interval [a, b] of interest.

4. Model Checking
In this section, we propose a formal lack-of-fit test for assess-
ing the adequacy of model (1). Following Lin, Wei, and Ying
(1993), we consider the following cumulative sums of resi-
duals:

F(t, x, z) = n−1/2
n∑

i=1

I(Xi � x, Zi � z)M̂i (t),

where I(Xi � x, Zi � z) means that each component of Xi

and Zi is no larger than the corresponding component of x

and z (e.g., Lin et al., 2000). We show in the Web Appendix
that the null distribution of F(t, x, z) can be approximated
by the zero-mean Gaussian process

F̃(t, x, z) = n−1/2
n∑

i=1

[∫ t

0

R̂∗(t, x, z)
S(0)(u; α̂)

dM̂D
i (u) + Υ̂1(t, x, z)′Ω̂−1

×
∫ τ

0

{Wi − W̄ (u; α̂)} dM̂D
i (u)

+ I(Xi � x, Zi � z)M̂i (t)

− Υ̂2(t, x, z)′φ̂i (t) − Υ̂3(t, x, z)′Â−1ξ̂i

]
,

(11)

where

R̂∗(t, x, z) = n−1
n∑

i=1

exp(α̂′Wi )I(Xi � x, Zi � z)M̂i (t),

Υ̂1(t, x, z) = n−1
n∑

i=1

I(Xi � x, Zi � z)Mi (t)Vi (t),

Υ̂2(t, x, z) = n−1
n∑

i=1

Yi (t)

Ŝ(t |Wi )
I(Xi � x, Zi � z)g

×{β̂(t)′Xi + γ̂ ′Zi )}Xi ,

and

Υ̂3(t, x, z) = n−1
n∑

i=1

Yi (t)

Ŝ(t |Wi )
I(Xi � x, Zi � z)g

×{β̂(t)′Xi + γ̂ ′Zi )}Zi .

As in the case of β̂(t), it is difficult to estimate the asymp-
totic covariance function of F(t, x, z) analytically. We again
appeal to the resampling approach and show that the null dis-
tribution of F(t, x, z) can be approximated by the conditional
distribution of F̂(t, x, z), where

F̂(t, x, z) = n−1/2
n∑

i=1

[∫ t

0

R̂∗(t, x, z)
S(0)(u; α̂)

dM̂D
i (u) + Υ̂1(t, x, z)′Ω̂−1

×
∫ τ

0

{
Wi − W̄ (u; α̂)

}
dM̂D

i (u)

+ I(Xi � x, Zi � z)M̂i (t)

− Υ̂2(t, x, z)′φ̂i (t)− Υ̂3(t, x, z)′Â−1ξ̂i

]
Gi.

Thus, one can obtain a large number of realizations from
F̂(t, x, z) by repeatedly generating the standard normal ran-
dom sample (G1, . . . , Gn ) while fixing the observed data, and
plot F(t, x, z) along with a few realizations of F̂(t, x, z). Since
the validity of approximating F(t, x, z) by F̂(t, x, z) depends
on the correct specification of model (1), an unusual pat-
tern of F(t, x, z) compared to the realizations of F̂(t, x, z)
would suggest a lack-of-fit of model (1). Since F(t, x, z) is
expected to fluctuate randomly around 0 under model (1),
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a formal lack-of-fit test can be constructed based on the
supremum statistic sup0�t�τ ,x ,z | F(t, x, z) | , with which the
p-value can be obtained by comparing the observed value
of sup0�t�τ ,x ,z | F(t, x, z) | to a large number of realizations
from sup0�t�τ ,x ,z | F̂(t, x, z) | .

In regression analysis, it is usually of interest to test co-
variate effects and to test if some covariate effects are indeed
time-varying. The test of γ0 = 0 is apparently straightforward
by using the Wald test. To test if a time-varying covariate ef-
fect is significant, say β0k (t) ≡ 0 for the kth element of β0(t),
one can consider the statistic

F (1)
k = sup

0�t�τ

∣∣∣∣ β̂k (t)
σ̂k (t)

∣∣∣∣ ,

and reject the β0k (t) ≡ 0 if F (1)
k is away from zero, where

β̂k (t) is the kth elements of β̂(t) and σ̂k (t) is an estimate of
the standard error of β̂k (t). The percentile of the observed test
statistic can be computed by resampling technique as above.

To check if the coefficient, β0k (t), is significantly time-
varying, we test

H0 : β0k (t) ≡ β0k

for some constant β0k . Let Ψk (t) = β0k (t) − ∫ τ

0 β0k (u)du/τ

and Ψ̂k (t) = β̂k (t) − ∫ τ

0 β̂k (u) du/τ . Then under the hypoth-
esis H0, we have Ψk (t) ≡ 0 and this suggests the following two
test statistics. One is the Kolmogorov–Smirnov type statistic
defined as

F (2)
k = sup

0�t�τ

∣∣n1/2Ψ̂k (t)
∣∣

and the other is the Cramér-von Mises type statistic

F (3)
k =

∫ τ

0

nΨ̂k (t)2 dt.

Thus, the null hypothesis H0 is rejected if both statistics are
away from zero.

To obtain the distributions of F (2)
k and F (3)

k , first we note
that it follows from Theorem 2 that the asymptotic distri-
bution of n1/2{Ψ̂k (t) − Ψk (t)} is asymptotically equivalent to
the zero-mean Gaussian process

Υ̂k (t) = n−1/2
n∑

i=1

{
φ̂ij (t) −

∫ τ

0

φ̂ij (u)du/τ

}
,

where φ̂ik (t) is the kth element of φ̂i (t) defined in (10). Sim-
ilarly, using the resampling technique, we can determine ap-
proximate critical values of the two tests.

5. Simulation Studies
We conducted simulation studies to examine the finite sam-
ple properties of the proposed estimators. In the study, we
first generated a nonhomogeneous Poisson process with the
following marginal model:

E{N ∗∗(t) |X, Z, ω} = ωg{β1(t) + β2(t)X + γZ}, (12)

where X is a Bernoulli random variable with success prob-
ability 0.5, Z is a uniform random variable on (0, 1), and
ω is an independent gamma random variable with mean 1
and variance σ2. We considered two choices for g: an ex-
ponential link function g1(x) = 0.3 exp(x) and a Box–Cox

transformation g2(x) = [{1 + 0.1 exp(x)}2 − 1]/1.4. In the se-
quel, we set β1(t) = 0.5 + log(t), β2(t) = 0.2t, γ = 0, 0.5, or 1,
and σ2 = 0, 0.25, 0.5, or 1. The censoring time was taken
as C = C1 ∧ τ , with C1 generated from a uniform distri-
bution U (0, 20) and τ = 5 representing the largest follow-
up time. For given W = X , the terminating event time D
was generated from an exponential distribution with hazards
0.05 exp(0.6W ), which yielded about 74% of subjects censored
(i.e., C � D).

The recurrent event process was defined as N ∗(t) = N ∗∗(t ∧
D). Since D is independent of N ∗∗(·) conditional on X and Z, it
can be verified that N ∗(t) satisfies model (1). Under the pre-
ceding settings, the average number of observed events per
subject ranged from 2.7 to 6.4 for different model param-
eters. In all simulations, we considered two choices for the
weight functions: H1(t) = t, for which the integral in (5) be-
comes the area under the curve, and H2(t) = n−1

∑n

i=1 Ni (t),
for which the integral in (5) is a weighted sum of the integrand
over all the jump points of {Ni (t); i = 1, . . . , n}. The results
presented below are based on 1000 replications with sample
sizes n = 100 and 200, and final estimates were reached at
convergence.

Tables 1 and 2 present the simulation results on the es-
timate of γ under g1(x) and g2(x), respectively. In these ta-
bles, Bias is the sample mean of the estimate minus the true
value; SE is the sampling standard error of the estimate; SEE
is the sampling mean of the standard error estimate of the
estimate; and CP is the 95% empirical coverage probability
for γ based on a normal approximation. It can be seen from
Tables 1 and 2 that the proposed estimation procedures per-
form well for the situations considered here. It appears that
the estimates are unbiased and there is a good agreement be-
tween the estimated and empirical standard errors. The em-
pirical coverage probabilities are reasonable and the results
become better when the sample size increases from 100 to
200. In addition, for these situations, the results are similar
for the two weight functions H1(t) and H2(t).

In the same simulation studies as reported in Tables 1 and
2 with H1(t), we assessed the behaviors of the estimates for
time-varying regression coefficients β1(t) and β2(t). Tables 3
and 4 give the simulation results on the estimates of β1(t)
and β2(t) at time points t = 1, 3, and 5 under g1(t) and g2(t),
respectively. We also computed pointwise biases and point-
wise coverage probabilities for β1(t) and β2(t) with 100 grid
points 0 + 0.05k, k = 1, . . . , 100. The pointwise biases and
pointwise coverage probabilities for some settings were de-
picted. Our simulation results suggest that the proposed
estimators perform quite well and essentially provide un-
biased estimates of the time-varying regression coefficients.
The asymptotic standard errors present an excellent descrip-
tion of the variability for the estimates of β1(t) and β2(t),
and the estimation procedures are reliable. We also consid-
ered other setups and the results were similar to those given
above.

6. An Application
In this section, we apply the proposed methods to a set of
recurrent event data arising from cancer clinical trial con-
ducted by the Veterans Administration Cooperative Urologi-
cal Research Group (Byar, 1980). These data have been an-
alyzed extensively in the literature (Ghosh and Lin, 2000,
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Table 1
Simulation results for the estimation of γ under g1(x)

H1(t) H2(t)

n γ σ2 Bias SE SEE CP Bias SE SEE CP

100 0 0.00 −0.0051 0.2410 0.2331 0.936 −0.0009 0.2431 0.2298 0.935
0.25 0.0090 0.3314 0.3131 0.920 −0.0064 0.3434 0.3123 0.925
0.50 −0.0276 0.4074 0.3804 0.932 −0.0019 0.4019 0.3793 0.922
1.00 −0.0053 0.5222 0.4779 0.925 0.0349 0.5290 0.4810 0.923

0.5 0.00 0.0059 0.2186 0.2049 0.931 0.0068 0.2113 0.2045 0.937
0.25 −0.0073 0.3170 0.2966 0.927 −0.0073 0.3170 0.2966 0.927
0.50 0.0040 0.3782 0.3625 0.932 −0.0058 0.3885 0.3626 0.923
1.00 −0.0002 0.5061 0.4665 0.926 0.0189 0.5055 0.4714 0.924

1 0.00 0.0047 0.1899 0.1821 0.937 0.0034 0.1855 0.1793 0.926
0.25 −0.0065 0.2935 0.2827 0.932 0.0101 0.3002 0.2867 0.934
0.50 −0.0236 0.3732 0.3538 0.932 −0.0043 0.3906 0.3563 0.902
1.00 0.0087 0.4770 0.4576 0.933 0.0134 0.5208 0.4680 0.915

200 0 0.00 0.0069 0.1705 0.1666 0.947 0.0032 0.1664 0.1645 0.943
0.25 0.0039 0.2332 0.2254 0.940 0.0083 0.2265 0.2268 0.940
0.50 0.0038 0.2856 0.2722 0.934 −0.0094 0.2790 0.2713 0.937
1.00 −0.0040 0.3545 0.3418 0.942 0.0036 0.3624 0.3492 0.941

0.5 0.00 0.0003 0.1477 0.1461 0.941 −0.0024 0.1471 0.1452 0.943
0.25 0.0086 0.2232 0.2132 0.932 0.0086 0.2232 0.2132 0.932
0.50 0.0048 0.2779 0.2651 0.940 −0.0008 0.2761 0.2630 0.935
1.00 −0.0104 0.3570 0.3372 0.934 0.0031 0.3574 0.3421 0.928

1 0.00 −0.0048 0.1323 0.1299 0.939 0.0079 0.1301 0.1288 0.932
0.25 0.0002 0.2134 0.2042 0.928 −0.0025 0.2170 0.2049 0.929
0.50 −0.0039 0.2598 0.2583 0.940 −0.0105 0.2660 0.2587 0.945
1.00 0.0054 0.3471 0.3400 0.950 0.0087 0.3645 0.3392 0.931

Table 2
Simulation results for the estimation of γ under g2(x)

H1(t) H2(t)

n γ σ2 Bias SE SEE CP Bias SE SEE CP

100 0 0.00 0.0052 0.1984 0.1928 0.932 −0.0100 0.1946 0.1803 0.921
0.25 0.0137 0.2749 0.2553 0.928 0.0032 0.2631 0.2488 0.932
0.50 −0.0137 0.3387 0.3042 0.915 −0.0029 0.3146 0.2986 0.932
1.00 0.0044 0.4047 0.3751 0.924 0.0107 0.4236 0.3730 0.906

0.5 0.00 0.0020 0.1704 0.1560 0.934 −0.0051 0.1481 0.1445 0.934
0.25 −0.0093 0.2412 0.2255 0.924 0.0089 0.2401 0.2190 0.919
0.50 −0.0033 0.3014 0.2750 0.918 0.0056 0.2936 0.2736 0.921
1.00 −0.0029 0.3838 0.3505 0.911 0.0119 0.3989 0.3548 0.915

1 0.00 −0.0000 0.1332 0.1242 0.925 0.0025 0.1221 0.1145 0.921
0.25 −0.0006 0.2300 0.2068 0.923 −0.0144 0.2071 0.2013 0.931
0.50 0.0018 0.2760 0.2590 0.919 −0.0349 0.2548 0.2547 0.939
1.00 −0.0009 0.3662 0.3423 0.926 −0.0777 0.3184 0.3343 0.936

200 0 0.00 −0.0025 0.1412 0.1377 0.945 0.0022 0.1354 0.1285 0.938
0.25 −0.0050 0.1960 0.1845 0.928 0.0062 0.1866 0.1792 0.935
0.50 0.0058 0.2337 0.2193 0.922 0.0035 0.2292 0.2161 0.933
1.00 −0.0059 0.2869 0.2760 0.939 −0.0013 0.2971 0.2735 0.922

0.5 0.00 0.0027 0.1146 0.1107 0.940 0.0003 0.1048 0.1022 0.945
0.25 0.0106 0.1700 0.1631 0.927 −0.0038 0.1649 0.1584 0.931
0.50 −0.0001 0.2113 0.2011 0.936 0.0073 0.2127 0.1996 0.939
1.00 −0.0104 0.2738 0.2562 0.924 0.0028 0.2762 0.2585 0.935

1 0.00 −0.0064 0.0902 0.0887 0.950 0.0004 0.0858 0.0817 0.935
0.25 −0.0115 0.1536 0.1491 0.935 −0.0058 0.1524 0.1470 0.933
0.50 −0.0090 0.2045 0.1892 0.936 −0.0235 0.1910 0.1880 0.935
1.00 −0.0022 0.2646 0.2496 0.940 −0.0263 0.2483 0.2513 0.942
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Table 3
Simulation results for the estimations of β1(t) and β2(t) under g1(x)

β1(t) β2(t)

n γ σ2 t Bias SE SEE CP Bias SE SEE CP

100 0 0 1 −0.0264 0.2557 0.2435 0.938 0.0038 0.3057 0.2918 0.937
3 −0.0116 0.1861 0.1781 0.938 0.0092 0.1823 0.1722 0.935
5 −0.0106 0.1720 0.1651 0.940 0.0101 0.1485 0.1405 0.935

1 1 −0.0537 0.3842 0.3541 0.927 0.0046 0.3708 0.3593 0.944
3 −0.0405 0.3411 0.3183 0.932 0.0098 0.3104 0.2911 0.930
5 −0.0394 0.3457 0.3206 0.927 0.0052 0.3216 0.3006 0.927

0.5 0 1 −0.0183 0.2271 0.2178 0.931 0.0063 0.2671 0.2534 0.950
3 −0.0048 0.1731 0.1624 0.931 −0.0033 0.1542 0.1500 0.934
5 −0.0053 0.1583 0.1515 0.940 −0.0061 0.1277 0.1234 0.939

1 1 −0.0396 0.3571 0.3434 0.933 −0.0029 0.3516 0.3306 0.931
3 −0.0411 0.3318 0.3169 0.934 0.0021 0.2838 0.2817 0.940
5 −0.0407 0.3350 0.3202 0.935 −0.0061 0.3077 0.2945 0.926

1 0 1 −0.0176 0.2010 0.1945 0.947 0.0003 0.2259 0.2204 0.944
3 −0.0118 0.1550 0.1483 0.938 0.0053 0.1355 0.1309 0.937
5 −0.0075 0.1433 0.1390 0.943 0.0010 0.1096 0.1076 0.942

1 1 −0.0386 0.3457 0.3375 0.943 0.0007 0.3065 0.3091 0.946
3 −0.0310 0.3259 0.3183 0.937 0.0025 0.2905 0.2739 0.934
5 −0.0298 0.3335 0.3231 0.938 −0.0025 0.3136 0.2898 0.918

200 0 0 1 −0.0184 0.1716 0.1728 0.960 −0.0019 0.2011 0.2053 0.958
3 −0.0082 0.1268 0.1273 0.951 0.0003 0.1203 0.1225 0.952
5 −0.0051 0.1203 0.1181 0.949 −0.0011 0.1012 0.1007 0.950

1 1 −0.0207 0.2609 0.2504 0.939 −0.0002 0.2546 0.2525 0.948
3 −0.0164 0.2378 0.2276 0.953 0.0017 0.2127 0.2072 0.941
5 −0.0185 0.2436 0.2289 0.938 0.0034 0.2225 0.2148 0.935

0.5 0 1 −0.0026 0.1597 0.1532 0.945 −0.0071 0.1812 0.1789 0.942
3 0.0020 0.1175 0.1149 0.939 −0.0038 0.1133 0.1068 0.934
5 0.0029 0.1083 0.1071 0.945 −0.0014 0.0893 0.0876 0.946

1 1 −0.0104 0.2570 0.2448 0.936 0.0027 0.2414 0.2332 0.949
3 −0.0039 0.2396 0.2282 0.932 −0.0016 0.2029 0.2012 0.942
5 −0.0105 0.2492 0.2316 0.928 0.0049 0.2256 0.2121 0.930

1 0 1 −0.0084 0.1399 0.1371 0.945 0.0054 0.1604 0.1559 0.937
3 −0.0028 0.1068 0.1048 0.950 0.0045 0.0926 0.0928 0.948
5 −0.0024 0.1016 0.0985 0.940 0.0029 0.0762 0.0763 0.956

1 1 −0.0200 0.2469 0.2441 0.949 −0.0013 0.2188 0.2192 0.948
3 −0.0178 0.2372 0.2323 0.941 −0.0022 0.1984 0.1980 0.939
5 −0.0200 0.2387 0.2364 0.946 −0.0031 0.2177 0.2131 0.939

2002; Sun and Wei, 2000; Zhang, 2002). In the study, the pa-
tients with stage I bladder cancer were randomly assigned to
placebo, pyridoxine, or intravesical thiotepa and followed for
recurrences of superficial bladder tumors. Following previous
authors, we focus our attention on the comparison between
thiotepa and placebo. There are 85 bladder cancer patients,
47 in the placebo group, and 38 in the thiotepa treatment
group. At the beginning of the study, for each patient, two
baseline covariates were measured—the number of initial tu-
mors that the patients had before entering the study and the
size of the largest initial tumor. Since the size of the largest
initial tumor had been shown to have no effect on the recur-
rence rate (Sun and Wei, 2000; Zhang, 2002), here we focus
on the effects of thiotepa treatment and the number of initial
tumors on the mean functions of the recurrent events given
survival.

For the analysis, we defined the covariates as Xi = 0 if the
patient was in the placebo group and 1 if the patient was in
the thiotepa group and Zi as the number of initial tumors,

i = 1, . . . , 85. First, we assumed that the data can be de-
scribed by the following marginal model:

E
{
N ∗

i (t)
∣∣Xi , Zi , D � t

}
= 0.3 exp{β1(t) + β2(t)Xi + γZi},

(13)

and model (2) with Wi = (Xi , Zi )′. Let τ be the last ob-
served event time being 53 months. Then, the application
of the proposed method in previous sections to the data
yielded γ̂ = 0.2029 with estimated standard error of 0.0611
for H1(t) = t, and γ̂ = 0.1679 with estimated standard error
of 0.0573 for H2(t) = n−1

∑n

i=1 Ni (t), which show that the
number of initial tumors has a significant positive effect on
the mean functions of the recurrent events given survival.
Table 5 gives the estimates of β1(t) and β2(t) at some time
points. Figure 1 displays the estimates of β1(t) and β2(t) with
the pointwise 95% confidence band based on 530 grid points
0.1k, k = 1, . . . , 530. This means that the treatment effect
seems to change with time.
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Table 4
Simulation results for the estimations of β1(t) and β2(t) under g2(x)

β1(t) β2(t)

n γ σ2 t Bias SE SEE CP Bias SE SEE CP

100 0 0 1 −0.0559 0.3162 0.2987 0.948 0.0171 0.4012 0.3824 0.956
3 −0.0240 0.1838 0.1772 0.943 0.0119 0.1845 0.1776 0.945
5 −0.0186 0.1510 0.1475 0.945 0.0129 0.1272 0.1223 0.949

1 1 −0.0602 0.3903 0.3644 0.942 −0.0035 0.4425 0.4256 0.945
3 −0.0402 0.2924 0.2748 0.937 0.0178 0.2632 0.2563 0.948
5 −0.0405 0.2739 0.2598 0.937 0.0165 0.2394 0.2250 0.930

0.5 0 1 −0.0340 0.2678 0.2539 0.938 0.0141 0.3395 0.3199 0.937
3 −0.0096 0.1550 0.1495 0.944 0.0040 0.1426 0.1434 0.945
5 −0.0098 0.1316 0.1254 0.938 0.0075 0.1032 0.0972 0.930

1 1 −0.0514 0.3582 0.3337 0.937 −0.0126 0.4077 0.3738 0.935
3 −0.0339 0.2816 0.2608 0.933 0.0023 0.2481 0.2319 0.933
5 −0.0313 0.2652 0.2509 0.939 0.0002 0.2213 0.2079 0.939

1 0 1 −0.0179 0.2233 0.2105 0.944 −0.0034 0.2746 0.2625 0.945
3 −0.0051 0.1278 0.1235 0.949 0.0018 0.1178 0.1116 0.936
5 −0.0041 0.1099 0.1044 0.939 0.0045 0.0769 0.0742 0.928

1 1 −0.0407 0.3253 0.3104 0.935 0.0065 0.3349 0.3206 0.949
3 −0.0243 0.2731 0.2592 0.932 −0.0035 0.2215 0.2117 0.934
5 −0.0239 0.2639 0.2536 0.926 −0.0045 0.2129 0.1962 0.922

200 0 0 1 −0.0233 0.2097 0.2079 0.956 0.0019 0.2645 0.2652 0.953
3 −0.0054 0.1269 0.1250 0.950 0.0049 0.1302 0.1251 0.943
5 −0.0040 0.1073 0.1048 0.944 0.0030 0.0891 0.0868 0.940

1 1 −0.0331 0.2630 0.2596 0.947 0.0154 0.2957 0.2997 0.967
3 −0.0164 0.2042 0.1980 0.954 0.0046 0.1795 0.1844 0.954
5 −0.0122 0.1934 0.1875 0.936 0.0040 0.1628 0.1618 0.946

0 0 1 −0.0291 0.1818 0.1796 0.949 0.0143 0.2206 0.2250 0.962
3 −0.0086 0.1083 0.1056 0.955 0.0056 0.1038 0.1014 0.945
5 −0.0053 0.0928 0.0892 0.939 0.0036 0.0722 0.0692 0.941

1 1 −0.0069 0.2483 0.2356 0.937 −0.0036 0.2629 0.2604 0.944
3 −0.0053 0.1954 0.1886 0.933 0.0025 0.1678 0.1648 0.943
5 −0.0091 0.1869 0.1819 0.943 0.0085 0.1506 0.1486 0.946

1 0 1 −0.0122 0.1507 0.1485 0.945 0.0059 0.1903 0.1837 0.947
3 −0.0008 0.0880 0.0877 0.953 0.0025 0.0793 0.0792 0.959
5 0.0016 0.0726 0.0745 0.957 0.0014 0.0528 0.0527 0.961

1 1 −0.0203 0.2303 0.2228 0.941 0.0017 0.2318 0.2290 0.948
3 −0.0147 0.1917 0.1876 0.949 −0.0009 0.1490 0.1517 0.952
5 −0.0155 0.1901 0.1842 0.955 −0.0015 0.1448 0.1420 0.946

Table 5
Regression analysis for the bladder cancer data

H1(t) H2(t)

t β̂1(t) SE(β̂1(t)) β̂2(t) SE(β̂2(t)) β̂1(t) SE(β̂1(t)) β̂2(t) SE(β̂2(t))

5 −0.4185 0.2922 −0.0627 0.3520 −0.3302 0.2830 −0.0291 0.3495
10 0.2506 0.2728 −0.4081 0.3970 0.3411 0.2597 −0.3857 0.3930
15 0.6843 0.2661 −0.7147 0.4070 0.7706 0.2518 −0.6835 0.4006
20 0.9437 0.2609 −0.9406 0.3594 1.0363 0.2431 −0.9172 0.3519
25 1.0760 0.2779 −0.7570 0.3576 1.1724 0.2594 −0.7304 0.3476
30 1.4985 0.2471 −0.8551 0.3084 1.5737 0.2376 −0.7877 0.3064
35 1.5451 0.2723 −0.7417 0.3068 1.6276 0.2624 −0.6794 0.3079
40 1.7398 0.2600 −0.9261 0.3704 1.8240 0.2507 −0.9109 0.3854
45 1.9089 0.3210 −1.8659 0.5536 1.9757 0.3156 −1.8538 0.5608
50 2.0953 0.3390 −1.4803 0.6244 2.1727 0.3360 −1.4664 0.6376
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Figure 1. Estimates of time-varying coefficients and their pointwise 95% confidence bands for the bladder cancer data. (a)
Plots under H1(t) = t; (b) Plots under H2(t) = n−1

∑n

i=1 Ni (t). The solid lines are the estimates of β1(t), the dash-dotted lines
are the estimates of β2(t), and the dashed lines are their pointwise 95% confidence bands.
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To test whether the treatment effect is constant or varying
over time, that is, H0 : β2(t) is a constant, we computed the
Kolmogorov-Smirnov type statistic F (2)

2 and the Cramér-von
Mises type statistic F (3)

2 by the simulation technique described
in Section 4, based on 5000 realizations. The p-values of the
test statistics F (2)

2 and F (3)
2 are found to be 0.0300 (0.0258)

and 0.0256 (0.0252), respectively, with the weight function
H1(t)(H2(t)). These small p-values indicate that the treat-
ment effect is varying over time in model (13). We further
test the significance of the time-varying treatment effect by
calculating the test statistic F (1)

2 defined in Section 4. The p-
values of F (1)

2 are 0.0132 and 0.0092 under H1(t) and H2(t),
respectively. This confirms that the thiotepa treatment has
a significant time-varying effect in reducing the recurrence of
bladder tumor among survivors at a given time.

Finally, we apply the model checking techniques intro-
duced in Section 4 to assess the adequacy of models (1)
and (2) for these data. Since the two covariates are time-
invariant, we used the following supremum test statistic
sup1< t�τ ,x ,z | F(t, x, z) | . We calculated the statistic F(t, x, z)
and obtained sup1< t�τ ,x ,z | F(t, x, z) | = 1.3131 and 1.5314
with p-values of 0.3184 and 0.1706 under H1(t) and H2(t),
respectively, based on 5000 realizations of the corresponding
statistic sup1< t�τ ,x ,z | F̂ (t, x, z) | . This result indicates that
model (13) fits the data adequately.

7. Concluding Remarks
In this article, we proposed a family of semiparametric trans-
formation models with time-varying coefficients for recurrent
event data in the presence of a terminal event, which includes
the semiparametric transformation models studied by Lin
et al. (2001) as special cases when there is no dependent ter-
minal event. The new model is more versatile and flexible
as it can summarize effects more clearly and is more use-
ful as a diagnostic tool for time-varying coefficients in the
mean functions of the recurrent events given survival. An es-
timation procedure was proposed for the parametric as well
as the nonparametric components of the model, and asymp-
totic properties of the proposed estimators were established.
A lack-of-fit test was provided for assessing the adequacy of
the model, and some tests were also presented for investigat-
ing whether or not covariate effects vary with time. Simulation
results showed that the proposed methods work well for the
situations considered. The methodology was illustrated by the
analysis of the bladder cancer data from a clinic trial.

Note that for recurrent event data in the absence of a
terminal event, E{N ∗(t) |X, Z} =

∫ t

0 E{dN ∗(u) |X, Z}, that
is, the rate function is the derivative of the mean func-
tion. Thus, a marginal mean model is associated with
a marginal rate model, and vice versa. But for recur-
rent event data in the presence of a terminal event, the
conditional mean function E{N ∗(t) |X, Z, D � t} is usu-
ally not equal to

∫ t

0 E{dN ∗(u) |X, Z, D � u} and the lat-
ter does not lead to anything interpretable unless the
recurrent events are independent of the terminal event
(e.g., Cook and Lawless, 1997). Hence a conditional mean
model is different from a conditional rate model in this
situation. The conditional rate model can be used to
yield the marginal mean model since E{N ∗(t) |X, Z} =

∫ t

0 P {Di � u |X, Z}E{dN ∗(u) |X, Z, Di � u}, while the con-
ditional mean model is more intuitive than the conditional
rate model, especially to practitioners, since the mean num-
ber of events is a more interpretable quantity than any other
quantities in the context of recurrent event data. However,
the proposed estimation procedure for model (1) cannot be
extended in a straightforward manner to deal with a condi-
tional rate model with time-varying coefficients.

For the case of time-dependent covariates, let X(t) =
{X(s); s ∈ [0, t]} and Z(t) = {Z(s); s ∈ [0, t]}. An obvious ex-
tension of model (1) would be

E{N ∗(t) |X(t), Z(t), D � t} = g{β0(t)′X(t) + γ ′
0Z(t)}. (14)

All time-dependent covariates are assumed to be external as
defined by Kalbfleisch and Prentice (2002, p. 196). The pro-
posed estimation procedure can be extended in a straightfor-
ward manner to deal with time-dependent covariates.

Since estimating functions (4) and (5) were given in a some-
what ad hoc fashion using the generalized estimating equation
and the technique of inverse probability weighting, it would
be worthwhile to further investigate the efficiency of the pro-
posed estimators. If N ∗

i (·) is a Poisson process, then it might
be possible to estimate β0(t) and γ0 more efficiently by the
nonparametric maximum likelihood approach, and the result-
ing inference procedure would be much more complicated.

The proposed estimation procedure requires modeling the
survival distribution, and we have used the Cox proportional
hazards model for the survival time. Other competing models,
such as the additive hazards model, the accelerated failure
time model, and the linear transformation model may be used
as well. It would be worthwhile to investigate the potential
bias due to misspecification for each of these models.

In practice, the choice of an appropriate link function g
may be based on prior data or the desiring interpretation of
the regression parameters (e.g., Lin et al., 2001). Notice that
the magnitudes of the parameter estimates are quite different
for various choices of g. This is because the parameters have
different interpretations for different g. If some covariate has a
nonzero and time-independent effect for one choice of g, then
it would appear that its effect would be time-dependent for
any other link function. Further research is needed to provide
a method for selecting or comparing different link functions.

Another interesting issue is the effect of the weight H(t).
Ideally, we would choose H(t) to minimize the variances of β̂(t)
and γ̂. However, it does not appear to be possible to derive
an optimal weight without specification of the dependence
structure on the increments of N ∗(t), and the selection of
weight functions is usually a complicated problem (Lin et al.,
2001). Development of a simple but more efficient inference
procedure merits future research.

8. Supplementary Materials
The Web Appendix referenced in Sections 3 and 4 is available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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