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Abstract

This article discusses statistical inference for the proportional hazards model when there exists
interval-censoring on both survival time of interest and covariates (J. Roy. Statist. Soc. B 34 (1972)
187; Encyclopedia of Biostatistics. Wiley, New York, 1998, pp. 2090-2095). In particular, we consider
situations where observations on the survival time are doubly censored and observations on covari-
ates are interval-censored. For inference about regression parameters, a general estimating equation
approach is proposed. The proposed estimate of the parameter is a generalization of the maximum
partial-likelihood estimate for right-censored failure time data with known or exactly observed co-
variates (The Statistical Analysis of Failure Time Data. Wiley, New York, 1980). The asymptotic
properties of the proposed estimate are established and its finite sample properties are investigated
through a simulation study.
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1. Introduction

The proportional hazards model is the most commonly used regression model in survival
analysis and is defined as

M) =Y (t)Ao(t) exp(f' Z) (1)

given a vector of covariates(Cox, 1972Andersen and Gill, 1982In the above/o(z) is an
unknown baseline hazard functighdenotes the vector of regression coefficients, Aol

is a predictable process taking value 0 or 1 indicating (by the value 1) if a subject is under
observation at timé. When right-censored failure time data are available, many authors
have studied the inference problem abgKalbfleisch and Prentice, 1980n this paper,

we consider a more general situation where the survival time of interest is doubly censored
(De Gruttola and Lagakos, 1988nd covariates are interval-censor&dif, 1998

By doubly censored survival time, we mean that the survival time of interest is defined
as the elapsed time between two related events, originating and end events. Furthermore,
observations on the occurrences of the two events are interval- and right-censored, re-
spectively. By interval-censoring, we mean that the occurrence time of the originating
event is observed only to belong to an interval. Note that if the occurrence of the originat-
ing event is observed exactly, we would have right-censored observations on the survival
time. By interval-censored covariates, we mean that the covariates are scalar variables or
times to certain events and their values are known or observed only to belong to some
intervals instead of being exactly known. Our goal is to make inference about regression
parameters.

One field in which doubly censored failure time data often occur is epidemiological
studies, where the originating and end events may represent infection and onset of certain
diseases, respectively. In particular, many authors have discussed such data in the context of
AIDS studies De Gruttola and Lagakos, 198@m et al., 1993Sun etal., 199P In this case,
the two events correspond, respectively, to HIV infection and AIDS diagnosis. The survival
time of interest, the time from HIV infection to the diagnosis of AIDS, is often referred to
as AIDS incubation time and plays an important role in the study of AIDS epidemic. HIV
infection time is usually interval-censored in these studies because HIV status can only be
checked periodically. In the meantime, AIDS diagnosis times are commonly right-censored
due to patient drop-out from the study or the end of the study.

Goggins et al. (1999liscussed an example about interval-censored covariates arising
from an AIDS clinical trial. In the example, the problem of interest is to predict the onset
of active cytomegalovirus (CMV) using CMV shedding assuming that they are related
by the proportional hazards model. However, the exact time to CMV shedding is usually
unobservable since its determination is through clinical screen of blood or urine, which
can only be performed periodically. In other words, only interval-censored CMV shedding
times are availableGémez et al (2000)lescribed a similar example also from an AIDS
clinical trial.

Several methods have been proposed for inference glwchen interval-censoring occurs
only on either survival time of interesKim et al., 1993 Sun et al., 199Por covariates
(Goggins et al., 19990ne shortcoming of these methods is that their asymptotic properties
are unknown. There seems no existing method in the literature for the situation considered
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here: interval-censoring on both the survival time of interest and the covariates. It includes
as special cases the situations consideré&biggins et al. (199956mez et al (2000Kim
et al. (1993@ndSun et al. (1999)

The remainder of the paper is organized as follows. We begin in Section 2 with introducing
some notation and briefly reviewing the partial-likelihood methgallfleisch and Prentice,
1980 and the approach proposedSan et al. (1999)Section 3 considers inference about
f when only doubly censored data and interval-censored data are available for survival
time and covariates, respectively. To estimate regression parafhetgeneral estimating
equation approach is proposed. The proposed method involves only regression parameter
p and is a generalization of that givenSun et al. (1999)The asymptotic consistency and
normal distribution of the proposed estimate are established. In Section 4, we report some
results from a simulation study conducted to assess finite sample properties of the proposed
estimate and Section 5 contains some concluding remarks. As other authors, we assume that
the survival time of interest is independent of the occurrence time of the originating event
and that the mechanism yielding interval-censoring is independent of related variables.

2. Notation and review

Consider a survival study that involvesndependent subjects and in which each subject
experiences an originating event and an end event as before. For sulgedt; and S;*
denote the times at which the originating and end events occur, respectively, and define
T; = S — X;, the survival time of interest, for = 1,...,n. Suppose that the hazard
function of theT;’s is given by model (1). For simplicity of presentation, we will assume
that theZ;’s are scalars and some comments on this will be given below.

To describe observed data, suppose that for each subject, there exists a censoring time
C; which is independent of}, i =1, ..., n. For S}, suppose that we observe ojl§; =
min( 87, C;), 0;=1(S;=S7); i=1, ..., n},wherel (-) is the indicator function. Fax; and
Z;, suppose that only interval&;, R;] and[U;, V;] are observed such that e [L;, R;]
andZ; e [U;, V;]. That is, we have right-censored data for 8fés and interval-censored
data for theX;'sandZ;’s. If L; = R;, we then have usual right-censored failure time data
on theT;’s and the situation reduces to that discusse@aggins et al. (199%99ndGdémez
et al (2000) On the other hand/; = V; corresponds to situations discusseiy et al.
(1993)andSun et al. (1999)

For givenX;, defineY; (¢|X;) = I(S; — X; >1t) andN; (¢t|X;) = I1(S; — X; <t,6; = 1),
i=1....n.LetX=(X1,...,Xn),Z=(Z1,...,Zy), and

) 1 & .
SOPB.11X, 2)== 3 Yitl, Xzl e,
i=1

j=0,1,wherez? =1 andz} = Z;. Also letH andG denote the cumulative distribution
functions of theX;’s andZ;’s, respectively. Note thaf; is a predictive process amd (| X;)
is a counting process.

Suppose that; = R; andU; = V;,i =1, ...,n. That is, we have right-censored data
on theT;’s. In this case, the most commonly used estimateSfa the partial-likelihood
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estimate defined as the solution to the partial score equation

[Tx - SDB, 11X, Z) e
U(ﬁIX,Z)—/O ;izz—m dN;(t1X;) =0 (2

(Kalbfleisch and Prentice, 198@vheret denotes the longest possible follow-up time. On
the other hand, if we only havg; = V; with L; < R;, motivated by the marginal-likelihood
idea,Sun et al. (1999proposed to estimate using the following estimating equation:

R n R1 R, n R
U, HIZ) = (]_[ &;1> / / U(Blxjs. 2) [ [ (dH () =0. ©)
=1 L1 Ln =1

In the aboveg; = fLI? dl(x),l=1,...,n, andH denotes the nonparametric maximum-
likelihood estimate oH based on interval-censored data on &, which will be com-
mented below. Note that the functi@n(f | X, Z) in (2) can be regarded as a conditional
score function giverX andZ or as a score function about both paramefeend X if we
treatX as nuisance parameters. The functioeg, H|Z) in (3) is simply the integration of
U(p| X, Z) with respect to the unknowx conditional on observed data. It is apparent that
if L; = R;, EqQ. (3) reduces to Eq. (2).

Note that a major advantage of Egs. (2) and (3) is that they are independent of the un-
known baseline hazard functidg(z), which makes the study of the asymptotic properties of
the resulting estimates relatively easy compared to the maximum full-likelihood estimates.
Also they can be easily solved. For the estimate given by Eq. (2), it has been shown to be ef-
ficient and its asymptotic properties have been establigtatfleisch and Prentice, 1980
Sun et al. (19994discussed the asymptotic properties of the estimate resulting from
Eq. (3) without rigorous proofs. In the next section, we generalize the above methods to the
situation where both th&;’s andZ;’s are interval-censored and the asymptotic properties
of the generalized estimate are rigorously studied.

3. Estimation of

Now we consider estimation ¢f assuming that both th&;’'s and Z;’s are interval-
censored. That is, observations on s and Z;'s are doubly and interval-censored, re-
spectively. LetG denote the nonparametric maximume-likelihood estimat& difased on
interval-censored data on tie’s, on which some comments will be given below. Note that
for current situation, the estimating functiéh(f, H|Z) is not fully defined since th&;’s
are not observed. To estimgiewe propose to use the following estimating equation:

. . n . Vl Vn R n R
U, H.G)= (H b,‘l> /U /U U, Hizs) [ [ @Gy =0, 4
=1 1 n

=1

whereb, = [} dG(2), [ =1.....n.

The functionU (8, H, G) can be regarded as an estimate of the funatiof, H|Z) with
missingZ;’s. It is obvious that if usual right-censored data are observed and all covariates
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are known, it reduces to the partial-likelihood score funclio@f| X, Z) given in (2). As
UBIX, Z) andU (B, H|Z), U(B, H, G) has an advantage that it does not involve the
baseline hazard functioiy(7), which makes both implementation of the method and the
study of the properties of the resulting estimaté o€latively easier.

Let 3, denote the true value ¢f and[? the estimator off, given by the solution to
Eg. (4). Then it can be shown thAtis a consistent estimate ¢f. Furthermore, under
mild regularity conditionsy/2( — By) has an asymptotic normal distribution with mean

zero and covariance matrix that can be consistently gstimateﬁﬁby“(ﬁ)A’(Zf), where
Ay ={-n"t0U (B, H,G)/0py"  and () = n~*3_[_h?(B), where

~ T Vi Vo R1 Ry S(l)(ﬁ7 tles, Z/-S)
I’l[ = .. ce . i — N e le ;
» /0 /;’1 /n /Ll /Ln {Z SO, t|x!s, z}s) i (11xi)
Yl expBz) AN @) | - dA (x) 5 dG(z)
nSO B, tIxls, zis) } 1_[ 1_[

=1 a =1 bl

andN (7]x) = >'_1 Ni(t]x;). The proofs of the above results are given in the appendix.

To obtainthe estimatq&, one way is to directly solve the estimating Eq. (4) using existing
optimization algorithms, which are available in most statistical software. This is usually
feasible for small data sets and some large data sets for which the resulting estithators
andG do not have many jumps. For general situations, we propose to apply the following
simple Monte Carlo method. L&f; and K> be given integers.

Stepl: For eachk;1 = 1,..., K1 andi =1, ..., n, randomly sampIeXl.(kl) from H

conditional on observed mtervEL,, ], that is, X(kl) € [L;, R;].

Step2: Foreachko, =1,..., K> andz =1,...,n,randomly sampIéZl.(kZ) from G con-
ditional on observed interval;, V;], that is,Zl.(kZ) e [U;, V;].

Step3: Let X0 = (x{ . x) and z*2 = (z{? ..., z%?) and calculate

UPIX*k), 722y kg =1,... K1, ko=1,..., Ko.
Step4: Solve the equation

K
Xl: Z U(ﬁ|X(kl) Z(kz))_

K]_K =1 e

If K1 and K> are large, we should expect that the left-hand side of the above equation
will give a good approximation té/(f, H, G). In the above, we need to determine the
maximum-likelihood estimated andG. For this, a few algorithms have been proposed in
the literature. For exampl&urnbull (1976)gave a simple self-consistency algorithm for
the problem andsentleman and Geyer (199dgveloped a procedure using combination
and optimization theory. In the simulation study reported below, the Turnbull’s algorithm
is used.
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Sometimes, one may also be interested in estimating the cumulative baseline hazard
function Ag(¢) = fé Ao(s) ds. Given 3, an estimate is given by

A @) " /Rﬂ /V /Vn 1dN (sx)
o(t)= gy
L1 L, Ju 0 nSOQ, s|x, 2)

<[ bt dG ) ]_[ a7 Y dA (x),

k=1 =1

which reduces to Breslow’s estimate 4§ (¢) if exact observations on botki; andZ; are
observed.

4. Simulation study

A simulation study was conducted to evaluate finite sample properties of the proposed
estimatq@. In the study, for simplicity, we assume that all concerned variables are discrete
and take integer values aigd = R;. In the study, we mimicked clinical trials and generated
the true covariateg;’s from the discretized exponential distribution with the hazard rate of
0.25. For eacly;, the censoring interval was constructed/as=- max{1, min(Z; —al 10)}
andV; =min{Z; + a , 10}, Wherea anda were generated from the uniform dlstr|but|0n
U{0,1,...,b}, whereb is a constant G|verZ,, T; was generated from the discretized
Weibull distribution with the hazard function given in (1) and the common censoring time
C; = 20. In the study, we se€ly(r) = 2r/225. The results reported below are based on the
sample size of = 100, K = 100 and 1000 replications.

In the study, we mainly focused on the comparison of the proposed point estimate and the
maximum partial-likelihood estimaté,p say, off that would be obtained if the covariate
was exactly observed. Also we were interested in investigating the approximation of the
asymptotic normal distribution given in the previous section to the finite distribution of the
proposed estimatdable 1presents the means ﬁfbased on simulated data for different
true values of3 with » = 1. It also gives the 95% empirical coverage probabilities and the
estimated size or power for testifig=0 using the standardizéihs the test statistic based on
simulated data. For the comparison, assuming that exact values of covariates are known, we
also obtained the corresponding resultsﬁprand included them ifiable 1 It can be seen

Table 1
Simulation results for the proposed estimate of regression parameter
B Bp
Truef Mean Size or power 95% CP Mean Size or power 95% CP
000 0.0013 0.052 0.948 0.0015 0.041 0.959
010 0.0945 0.774 0.941 0.0963 0.763 0.963

—010 —0.0955 0.578 0.951 —0.0969 0.584 0.952
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Fig. 1. Quantile plot with exact covariates and beta.0.
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Fig. 2. Quantile plot with interval-censored covariates and be@e0.

from the table that the results based on interval-censored covariates and exact covariates
are quite close to each other for most cases considered, indicating that the proposed method
works reasonably well.

For the assessment of the asymptotic normal distribution derived for the proposed esti-
mate, the probability plots of the standardiz&égainst the standard normal distribution
were studied and compared to the corresponding plots of the standafi’qizﬁ'cgs. 24
and 6 display the quantile plots of the standardiﬁ’e‘dr the case off = 0, 0.1, —0.1,
respectively and the corresponding plots for the standard?;edre given inFigs. 1 3

and 5. It seems that the approximation to the finite sample distributiﬁriso{;atisfactory.

In the simulation study, we also triekb = 200, 500 and no significant differences were
observed igs. 1-§. We also considered other set ups for generating data and obtained
similar results.

5. Concluding remarks

This paper considered statistical inference about the proportional hazards model when
there exists interval-censoring on observations on both survival time of interest and covari-
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ates. There is no existing research for the situation discussed here except that a few authors
have discussed some special cases. To estimate regression parameters, we proposed an es-
timating equation approach and the proposed estimate is generalizations of the maximum
partial-likelihood estimateKalbfleisch and Prentice, 1988nd the estimate given fBun

et al. (1999) In addition to the simplicity of the method, the asymptotic properties of the
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g. 6. Quantile plot with interval-censored covariates and keta0.1.

proposed estimate are established, while no rigorous asymptotic study was given in the
studies that discussed these special caSegdins et al., 199Kim et al., 1993Sun et al.,
1999.

In the preceding sections, we have assumed that the covariate is a scalar. The proposed
method can be easily generalized to the case where covariates are a vector. In this situation,
U (B, H, G) will be avector and the integral in Eq. (4) will be with respect to all components
of the covariates. A similar method could also be developed for the case where only some
components of the covariates are interval-censored and others are exactly observed.

A direction for future research is to generalize the proposed estimating Eq. (4) by incor-
porating a weight process. By this, we mean that instead of @s{gX, Z) in U (S, H|Z)
andU (f, H, G), one can use the following weighted partial-likelihood score function

5 S (B, 11X, 2) |
Uw(PIX, Z)—/O ; Wi() :Zz —W dn; (t1X;),

where W; is a weighting process. It is apparent that this will give more choices on the
estimates off and if bothX; andZ; are exactly observed, the resulting weighted estimates
of  will become weighted partial-likelihood estimates.

Appendix. Proofs

Let o, fi U(BIX, Z), andU (B, H, G) be defined as before and use the notation given
in the previous sections. Assume that the regularity conditions givAndersen and Gill
(1982)for the case of known covariates andvimet al. (1998)or the strong consistency
of H andG hold.
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Consistency oﬁ: Define
n t
An(B. 11X, Z)=n"" [Z fo (B — Po)' Zi dN; (u] X;)
i=1

_/lIOQ i Yi(ul Xl % dN (uX;)
0 S Yi(u| X;)efoZ )

t
B,(B, 11X, Z) = /O {(ﬂ— Bo)' S (Bo, ulX, 2)

©
~log| S0B.ux.2)
SOBo. ulX. 2)

} SO (Bo, u|X, Z):| Jo(u) du,
and
t
M;(t|X;, Z;) = N;i(t|X;) —/ 20(8)Yi(s1X;) exp(foZ;) ds,
0

i=12,...,n. Then we have

An(B. 11X, Z)—B (B, 11X, Z)
S<°>(ﬁ ulX, Z)
nt 'Zi — | dM; (u|X;, Z;
which is a locally square integrable martingale. Note that

(An(B. 11X, Z) — By (B. 11X, Z), An(B, 11X, Z) — Bu(B, 11X, Z))

o [ , SOp.ux.2) ||’ 2
~12 [ =o'z —ton | St B i

t
—nt fo [Uﬁ — Bo)'S® (Bo. ulX. Z)(B — o) — 2( — Bo)'

SO, ulX, z

T log? { SOB. ulX. Z)

[ A 0)
SO By, ulX, Z) } S (Po, ulX, Z)i| Zo(u) du,

where

1o )
SAB.1IX. 2)==>" 2%, (1| X))l 4.
n i=1
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Thus we have that asymptotically,
A,(p.t|1X,Z)— B,(p,t|1X,Z) — O

in probability.
Also note that asymptotically,

By (11X, Z) — A(B. D)

in probability, where

sOPB, u)
5O (B, u)

ands©@ ands® are the asymptotic limits of© ands®, respectively. Thus, we have

AB.1) = /0 [(ﬂ — Bo)'s P (Bo, u) — Iog: }S(O)(ﬁov u)} Jo(u) du

An(B.7IX, Z) — A(B, D)

V]_ Vn Rl Rn
An(ﬁ»f):/ / / / Ail(ﬁ7T|Xv Z)
U]_ n Ll Ln
n

x ]_[ a A (X)) ]_[ bytdG(z)) — AB, 1)
=1 =1

and

bothin probability due to the strong consistencyiodndG (Yu etal., 1998. The consistency
of  therefore follows from the above second equation and the fact thatd@th ) and
A(f, ©) are concave functions @fwith a unique maximum gt=f andf = 8, respectively.

Asymptotic normality qﬁ?: To prove the asymptotic normality, first note that the applica-
tion of Taylor series expansion (f3, H, G) yields, asymptotically,

_10UB .G
op

wheref* is on the segment betwegp and[?. Following Anderson and Gill (1982), we can
easily show thatt ~1(f*) = —n 10U (8*, H, G)/p converges in probability as — oo.
Thus, for the proof, itis sufficient to show that¥2U (B, H, G)is asymptotically normally
distributed with mean zero and covariance matrix that can be estimatEdﬁb;given in
Section 3.

To see the asymptotic distribution @f /2U (8, H, G), note that

n_%U(ﬁoaﬁ,é)={ }{n%([}—ﬁo)},

1 1 [T SO By, t1X, Z)
n2U( |X,Z):n_?/ Zi— —— 2
o 0 ; SO (fo. 11X, 2)
s{dM; (11Xi, Zi) + J0(0)Y; (1] X;)ePo% dr)

T I D)

S X, Z

Zi — M dM; (1| X;, Z)),
o 27 SO0 1% 2)

NI

:n_
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which is asymptotically equivalent to
1 & T
n-2 Z/o ui(Po, t1Zi) dM; (11X;, Zi),
i=1

where

S(l)(lg07 1)

ui(Po.t1Zi) =27Z; — m .

Hence asymptotically,

1 A Vi Vi Ry R1
e o= [ [ [
Ul n Ll Ln

n T

" n—%z/ wi (Bo. 112Z:) dM; (1| X, Zi)
i=170

<[a;*dAx) []b7 dG(z)

=1 =1
. n . Vi 1 R; T
:nfzzbi_/ ai_/ /ui(ﬁovﬂzi)
i=1 Ui Li 0

xdM; (t|X;, Z;) dH (X;) dG(Z))

iy 1fVi 1fRi/T (Bo. 112

=n 2 - a.; u;i(Po, t1Z;

i—1 ' U; ! L; 0 0 '
xdM;(t|X,Z;) dH (X;) dG(Z)),

which can be easily shown to converge in distribution to the normal distribution with mean
zero and covariance matrix that can be consistently estimatedtywherez; = | L’f” dH (x)

andb; = fU,-i dG(z). This completes the proof.[]
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