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1. Introduction

The proportional hazards model is the most commonly used regression model in survival
analysis and is defined as

�(t)= Y (t)�0(t) exp(�′Z) (1)

given a vector of covariatesZ (Cox, 1972,Andersen andGill, 1982). In the above,�0(t) is an
unknown baseline hazard function,� denotes the vector of regression coefficients, andY (t)

is a predictable process taking value 0 or 1 indicating (by the value 1) if a subject is under
observation at timet. When right-censored failure time data are available, many authors
have studied the inference problem about� (Kalbfleisch and Prentice, 1980). In this paper,
we consider a more general situation where the survival time of interest is doubly censored
(De Gruttola and Lagakos, 1989) and covariates are interval-censored (Sun, 1998).
By doubly censored survival time, we mean that the survival time of interest is defined

as the elapsed time between two related events, originating and end events. Furthermore,
observations on the occurrences of the two events are interval- and right-censored, re-
spectively. By interval-censoring, we mean that the occurrence time of the originating
event is observed only to belong to an interval. Note that if the occurrence of the originat-
ing event is observed exactly, we would have right-censored observations on the survival
time. By interval-censored covariates, we mean that the covariates are scalar variables or
times to certain events and their values are known or observed only to belong to some
intervals instead of being exactly known. Our goal is to make inference about regression
parameters�.
One field in which doubly censored failure time data often occur is epidemiological

studies, where the originating and end events may represent infection and onset of certain
diseases, respectively. In particular, many authors have discussed such data in the context of
AIDSstudies (DeGruttolaandLagakos, 1989,Kimetal., 1993,Sunet al., 1999). In this case,
the two events correspond, respectively, to HIV infection andAIDS diagnosis. The survival
time of interest, the time from HIV infection to the diagnosis of AIDS, is often referred to
as AIDS incubation time and plays an important role in the study of AIDS epidemic. HIV
infection time is usually interval-censored in these studies because HIV status can only be
checked periodically. In the meantime,AIDS diagnosis times are commonly right-censored
due to patient drop-out from the study or the end of the study.
Goggins et al. (1999)discussed an example about interval-censored covariates arising

from an AIDS clinical trial. In the example, the problem of interest is to predict the onset
of active cytomegalovirus (CMV) using CMV shedding assuming that they are related
by the proportional hazards model. However, the exact time to CMV shedding is usually
unobservable since its determination is through clinical screen of blood or urine, which
can only be performed periodically. In other words, only interval-censored CMV shedding
times are available.Gómez et al (2000)described a similar example also from an AIDS
clinical trial.
Severalmethodshavebeenproposed for inferenceabout�when interval-censoringoccurs

only on either survival time of interest (Kim et al., 1993, Sun et al., 1999) or covariates
(Goggins et al., 1999). One shortcoming of thesemethods is that their asymptotic properties
are unknown. There seems no existing method in the literature for the situation considered
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here: interval-censoring on both the survival time of interest and the covariates. It includes
as special cases the situations considered inGoggins et al. (1999), Gómez et al (2000), Kim
et al. (1993)andSun et al. (1999).
The remainder of thepaper is organizedas follows.Webegin inSection2with introducing

somenotation andbriefly reviewing thepartial-likelihoodmethod (KalbfleischandPrentice,
1980) and the approach proposed inSun et al. (1999). Section 3 considers inference about
� when only doubly censored data and interval-censored data are available for survival
time and covariates, respectively. To estimate regression parameter�, a general estimating
equation approach is proposed. The proposed method involves only regression parameter
� and is a generalization of that given inSun et al. (1999). The asymptotic consistency and
normal distribution of the proposed estimate are established. In Section 4, we report some
results from a simulation study conducted to assess finite sample properties of the proposed
estimate and Section 5 contains some concluding remarks.As other authors, we assume that
the survival time of interest is independent of the occurrence time of the originating event
and that the mechanism yielding interval-censoring is independent of related variables.

2. Notation and review

Consider a survival study that involvesn independent subjects and in which each subject
experiences an originating event and an end event as before. For subjecti, letXi andS∗

i

denote the times at which the originating and end events occur, respectively, and define
Ti = S∗

i − Xi , the survival time of interest, fori = 1, . . . , n. Suppose that the hazard
function of theTi ’s is given by model (1). For simplicity of presentation, we will assume
that theZi ’s are scalars and some comments on this will be given below.
To describe observed data, suppose that for each subject, there exists a censoring time

Ci which is independent ofS∗
i , i = 1, . . . , n. ForS∗

i , suppose that we observe only{Si =
min( S∗

i , Ci), �i=I (Si=S∗
i ); i=1, . . . , n}, whereI (·) is the indicator function. ForXi and

Zi , suppose that only intervals[Li, Ri] and[Ui, Vi] are observed such thatXi ∈ [Li, Ri]
andZi ∈ [Ui, Vi]. That is, we have right-censored data for theS∗

i ’s and interval-censored
data for theXi ’s andZi ’s. If Li = Ri , we then have usual right-censored failure time data
on theTi ’s and the situation reduces to that discussed inGoggins et al. (1999)andGómez
et al (2000). On the other hand,Ui = Vi corresponds to situations discussed byKim et al.
(1993)andSun et al. (1999).
For givenXi , defineYi(t |Xi) = I (Si − Xi� t) andNi(t |Xi) = I (Si − Xi� t, �i = 1),

i = 1, . . . , n. LetX = (X1, . . . , Xn), Z = (Z1, . . . , Zn), and

S(j)(�, t |X,Z)= 1

n

n∑
i=1

Yi(t |, Xi)Zji e�Zi ,

j = 0,1, whereZ0i = 1 andZ1i = Zi . Also letH andG denote the cumulative distribution
functions of theXi ’s andZi ’s, respectively. Note thatYi is a predictive process andNi(t |Xi)
is a counting process.
Suppose thatLi = Ri andUi = Vi , i = 1, . . . , n. That is, we have right-censored data

on theTi ’s. In this case, the most commonly used estimate for� is the partial-likelihood
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estimate defined as the solution to the partial score equation

U(�|X,Z)=
∫ �

0

n∑
i=1

{
Zi − S(1)(�, t |X,Z)

S(0)(�, t |X,Z)

}
dNi(t |Xi)= 0 (2)

(Kalbfleisch and Prentice, 1980), where� denotes the longest possible follow-up time. On
the other hand, if we only haveUi =Vi with Li�Ri , motivated by the marginal-likelihood
idea,Sun et al. (1999)proposed to estimate� using the following estimating equation:

U(�, Ĥ |Z)=
(
n∏
l=1

â−1
l

) ∫ R1

L1

· · ·
∫ Rn

Ln

U(�|x′
i s, Z)

n∏
l=1
(dĤ (xl))= 0. (3)

In the above,̂al =
∫ Rl
Ll
dĤ (x), l = 1, . . . , n, andĤ denotes the nonparametric maximum-

likelihood estimate ofH based on interval-censored data on theXi ’s, which will be com-
mented below. Note that the functionU(� |X,Z) in (2) can be regarded as a conditional
score function givenX andZ or as a score function about both parameters� andX if we
treatX as nuisance parameters. The functionU(�, Ĥ |Z) in (3) is simply the integration of
U(� |X,Z) with respect to the unknownX conditional on observed data. It is apparent that
if Li = Ri , Eq. (3) reduces to Eq. (2).
Note that a major advantage of Eqs. (2) and (3) is that they are independent of the un-

knownbaseline hazard function�0(t), whichmakes the studyof theasymptotic properties of
the resulting estimates relatively easy compared to the maximum full-likelihood estimates.
Also they can be easily solved. For the estimate given by Eq. (2), it has been shown to be ef-
ficient and its asymptotic properties have been established (Kalbfleisch and Prentice, 1980).
Sun et al. (1999)discussed the asymptotic properties of the estimate resulting from
Eq. (3) without rigorous proofs. In the next section, we generalize the above methods to the
situation where both theXi ’s andZi ’s are interval-censored and the asymptotic properties
of the generalized estimate are rigorously studied.

3. Estimation of �

Now we consider estimation of� assuming that both theXi ’s andZi ’s are interval-
censored. That is, observations on theTi ’s andZi ’s are doubly and interval-censored, re-
spectively. LetĜ denote the nonparametric maximum-likelihood estimate ofG based on
interval-censored data on theZi ’s, on which some comments will be given below. Note that
for current situation, the estimating functionU(�, Ĥ |Z) is not fully defined since theZi ’s
are not observed. To estimate�, we propose to use the following estimating equation:

U(�, Ĥ , Ĝ)=
(
n∏
l=1

b̂−1
l

) ∫ V1

U1

· · ·
∫ Vn

Un

U(�, Ĥ |z′ls)
n∏
l=1
(dĜ(zl))= 0, (4)

whereb̂l =
∫ Vl
Ul
dĜ(z), l = 1, . . . , n.

The functionU(�, Ĥ , Ĝ) can be regarded as an estimate of the functionU(�, Ĥ |Z)with
missingZi ’s. It is obvious that if usual right-censored data are observed and all covariates
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are known, it reduces to the partial-likelihood score functionU(�|X,Z) given in (2). As
U(�|X,Z) andU(�, Ĥ |Z), U(�, Ĥ , Ĝ) has an advantage that it does not involve the
baseline hazard function�0(t), which makes both implementation of the method and the
study of the properties of the resulting estimate of� relatively easier.
Let �0 denote the true value of� and �̂ the estimator of�0 given by the solution to

Eq. (4). Then it can be shown that�̂ is a consistent estimate of�0. Furthermore, under
mild regularity conditions,n1/2(�̂ − �0) has an asymptotic normal distribution with mean
zero and covariance matrix that can be consistently estimated byA(�̂)�(�̂)A′(�̂), where
A(�)= {−n−1�U(�, Ĥ , Ĝ)/��}−1 and�(�)= n−1∑n

i=1ĥ2i (�), where

ĥi (�)=
∫ �

0

∫ V1

U1

· · ·
∫ Vn

Un

∫ R1

L1

· · ·
∫ Rn

Ln

{
zi − S(1)(�, t |x′

i s, z
′
i s)

S(0)(�, t |x′
i s, z

′
i s)

}
{dNi(t |xi)

− Yi(t |xi)exp(�′zi)dN̄(t)
nS(0)(�, t |x′

i s, z
′
i s)

}
n∏
l=1

dĤ (xl)

âl

n∏
l=1

dĜ(zl)

b̂l

andN̄(t |x)=∑n
i=1Ni(t |xi). The proofs of the above results are given in the appendix.

To obtain the estimator̂�, oneway is to directly solve the estimatingEq. (4) using existing
optimization algorithms, which are available in most statistical software. This is usually
feasible for small data sets and some large data sets for which the resulting estimatorsĤ

andĜ do not have many jumps. For general situations, we propose to apply the following
simple Monte Carlo method. LetK1 andK2 be given integers.
Step1: For eachk1 = 1, . . . , K1 and i = 1, . . . , n, randomly sampleX(k1)i from Ĥ

conditional on observed interval[Li, Ri], that is,X(k1)i ∈ [Li, Ri].
Step2: For eachk2 = 1, . . . , K2 andi = 1, . . . , n, randomly sampleZ(k2)i from Ĝ con-

ditional on observed interval[Ui, Vi], that is,Z(k2)i ∈ [Ui, Vi].
Step3: Let X(k1) = (X

(k1)
1 , . . . , X

(k1)
n ) and Z(k2) = (Z

(k2)
1 , . . . , Z

(k2)
n ) and calculate

U(�|X(k1), Z(k2)), k1= 1, . . . , K1, k2= 1, . . . , K2.
Step4: Solve the equation

1

K1K2

K1∑
k1=1

K2∑
k2=1

U(�|X(k1), Z(k2))= 0.

If K1 andK2 are large, we should expect that the left-hand side of the above equation
will give a good approximation toU(�, Ĥ , Ĝ). In the above, we need to determine the
maximum-likelihood estimateŝH andĜ. For this, a few algorithms have been proposed in
the literature. For example,Turnbull (1976)gave a simple self-consistency algorithm for
the problem andGentleman and Geyer (1994)developed a procedure using combination
and optimization theory. In the simulation study reported below, the Turnbull’s algorithm
is used.
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Sometimes, one may also be interested in estimating the cumulative baseline hazard
function�0(t)=

∫ t
0 �0(s)ds. Given�̂, an estimate is given by

�̂0(t)=
∫ R1

L1

· · ·
∫ Rn

Ln

∫ V1

U1

· · ·
∫ Vn

Un

∫ t

0

∑n
i=1 dNi(s|xi)

nS(0)(�̂, s|x, z)
×

n∏
k=1

b−1
k dĜ(zk)

n∏
l=1
a−1
l dĤ (xl),

which reduces to Breslow’s estimate of�0(t) if exact observations on bothXi andZi are
observed.

4. Simulation study

A simulation study was conducted to evaluate finite sample properties of the proposed
estimate�̂. In the study, for simplicity, we assume that all concerned variables are discrete
and take integer values andLi =Ri . In the study, we mimicked clinical trials and generated
the true covariatesZi ’s from the discretized exponential distribution with the hazard rate of
0.25. For eachZi , the censoring interval was constructed asUi=max{1,min(Zi−a1i ,10)}
andVi =min{Zi + a2i ,10}, wherea1i anda2i were generated from the uniform distribution
U{0,1, . . . , b}, whereb is a constant. GivenZi , Ti was generated from the discretized
Weibull distribution with the hazard function given in (1) and the common censoring time
Ci = 20. In the study, we set�0(t) = 2t/225. The results reported below are based on the
sample size ofn= 100,K2= 100 and 1000 replications.
In the study, wemainly focused on the comparison of the proposed point estimate and the

maximum partial-likelihood estimate,�̂p say, of� that would be obtained if the covariate
was exactly observed. Also we were interested in investigating the approximation of the
asymptotic normal distribution given in the previous section to the finite distribution of the
proposed estimate.Table 1presents the means of�̂ based on simulated data for different
true values of� with b = 1. It also gives the 95% empirical coverage probabilities and the
estimated size or power for testing�=0 using the standardized�̂ as the test statistic based on
simulated data. For the comparison, assuming that exact values of covariates are known, we
also obtained the corresponding results for�̂p and included them inTable 1. It can be seen

Table 1
Simulation results for the proposed estimate of regression parameter

�̂ �̂p

True� Mean Size or power 95% CP Mean Size or power 95% CP

000 0.0013 0.052 0.948 0.0015 0.041 0.959
010 0.0945 0.774 0.941 0.0963 0.763 0.963

−010 −0.0955 0.578 0.951 −0.0969 0.584 0.952
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Fig. 1. Quantile plot with exact covariates and beta= 0.0.

Fig. 2. Quantile plot with interval-censored covariates and beta= 0.0.

from the table that the results based on interval-censored covariates and exact covariates
are quite close to each other for most cases considered, indicating that the proposedmethod
works reasonably well.
For the assessment of the asymptotic normal distribution derived for the proposed esti-

mate, the probability plots of the standardized�̂ against the standard normal distribution
were studied and compared to the corresponding plots of the standardized�̂p. Figs. 2, 4

and 6 display the quantile plots of the standardized�̂ for the case of� = 0, 0.1, −0.1,
respectively and the corresponding plots for the standardized�̂p are given inFigs. 1, 3

and 5. It seems that the approximation to the finite sample distribution of�̂ is satisfactory.
In the simulation study, we also triedK2 = 200, 500 and no significant differences were
observed (Figs. 1–6). We also considered other set ups for generating data and obtained
similar results.

5. Concluding remarks

This paper considered statistical inference about the proportional hazards model when
there exists interval-censoring on observations on both survival time of interest and covari-
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Fig. 3. Quantile plot with exact covariates and beta= 0.1.

Fig. 4. Quantile plot with interval-censored covariates and beta= 0.1.

Fig. 5. Quantile plot with exact covariates and beta= −0.1.

ates. There is no existing research for the situation discussed here except that a few authors
have discussed some special cases. To estimate regression parameters, we proposed an es-
timating equation approach and the proposed estimate is generalizations of the maximum
partial-likelihood estimate (Kalbfleisch and Prentice, 1980) and the estimate given inSun
et al. (1999). In addition to the simplicity of the method, the asymptotic properties of the
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Fig. 6. Quantile plot with interval-censored covariates and beta= −0.1.

proposed estimate are established, while no rigorous asymptotic study was given in the
studies that discussed these special cases (Goggins et al., 1999, Kim et al., 1993, Sun et al.,
1999).
In the preceding sections, we have assumed that the covariate is a scalar. The proposed

method can be easily generalized to the case where covariates are a vector. In this situation,
U(�, Ĥ , Ĝ)will be a vector and the integral in Eq. (4) will bewith respect to all components
of the covariates. A similar method could also be developed for the case where only some
components of the covariates are interval-censored and others are exactly observed.
A direction for future research is to generalize the proposed estimating Eq. (4) by incor-

porating a weight process. By this, we mean that instead of usingU(�|X,Z) inU(�, Ĥ |Z)
andU(�, Ĥ , Ĝ), one can use the following weighted partial-likelihood score function

UW(�|X,Z)=
∫ �

0

n∑
i=1

Wi(t)

{
Zi − S(1)(�, t |X,Z)

S(0)(�, t |X,Z)

}
dNi(t |Xi),

whereWi is a weighting process. It is apparent that this will give more choices on the
estimates of� and if bothXi andZi are exactly observed, the resulting weighted estimates
of � will become weighted partial-likelihood estimates.

Appendix. Proofs

Let �0, �̂, U(�|X,Z), andU(�, Ĥ , Ĝ) be defined as before and use the notation given
in the previous sections. Assume that the regularity conditions given inAndersen and Gill
(1982)for the case of known covariates and inYu et al. (1998)for the strong consistency
of Ĥ andĜ hold.
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Consistency of̂�: Define

An(�, t |X,Z)=n−1
[
n∑
i=1

∫ t

0
(� − �0)

′Zi dNi(u|Xi)

−
∫ t

0
log

{∑n
i=1Yi(u|Xi)e�

′Zi∑n
i=1Yi(u|Xi)e�

′
0Zi

}
dN̄(u|Xi)

]
,

Bn(�, t |X,Z)=
∫ t

0

[
(� − �0)

′S(1)(�0, u|X,Z)

− log
{
S(0)(�, u|X,Z)
S(0)(�0, u|X,Z)

}
S(0)(�0, u|X,Z)

]
�0(u)du,

and

Mi(t |Xi, Zi)=Ni(t |Xi)−
∫ t

0
�0(s)Yi(s|Xi)exp(�′

0Zi)ds,

i = 1,2, . . . , n. Then we have
An(�, t |X,Z)− Bn(�, t |X,Z)

= n−1
[
n∑
i=1

∫ t

0

{
(� − �0)

′Zi − log S
(0)(�, u|X,Z)

S(0)(�0, u|X,Z)

}
dMi(u|Xi, Zi)

]
,

which is a locally square integrable martingale. Note that〈
An(�, t |X,Z)− Bn(�, t |X,Z),An(�, t |X,Z)− Bn(�, t |X,Z)

〉
= n−2

n∑
i=1

∫ t

0

[
(�−�0)

′Zi − log
{
S(0)(�, u|X,Z)
S(0)(�0, u|X,Z)

}]2
Yi(u|Xi)e�′

0Zi�0(u)du

= n−1
∫ t

0

[
(� − �0)

′S(2)(�0, u|X,Z)(� − �0)− 2(� − �0)
′

× S(1)(�0, u|X,Z) log
{
S(0)(�, u|X,Z)
S(0)(�0, u|X,Z)

}

+ log2
{
S(0)(�, u|X,Z)
S(0)(�0, u|X,Z)

}
S(0)(�0, u|X,Z)

]
�0(u)du,

where

S(2)(�, t |X,Z)= 1

n

n∑
i=1
Z⊗2
i Yi(t |Xi)e�

′Zi .
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Thus we have that asymptotically,

An(�, t |X,Z)− Bn(�, t |X,Z) −→ 0

in probability.
Also note that asymptotically,

Bn(�, �|X,Z) −→ A(�, �)

in probability, where

A(�, �)=
∫ �

0

[
(� − �0)

′s(1)(�0, u)− log
{
s(0)(�, u)
s(0)(�0, u)

}
s(0)(�0, u)

]
�0(u)du

ands(0) ands(1) are the asymptotic limits ofS(0) andS(1), respectively. Thus, we have

An(�, �|X,Z) −→ A(�, �)

and

An(�, �)=
∫ V1

U1

· · ·
∫ Vn

Un

∫ R1

L1

· · ·
∫ Rn

Ln

An(�, �|X,Z)

×
n∏
l=1
â−1
l dĤ (Xl)

n∏
l=1
b̂−1
l dĜ(Zl)→ A(�, �)

both inprobability due to thestrongconsistencyofĤ andĜ (Yuetal., 1998).Theconsistency
of �̂ therefore follows from the above second equation and the fact that bothAn(�, �) and
A(�, �) are concave functions of�with a uniquemaximumat�=�̂ and�=�0, respectively.
Asymptotic normality of̂�: To prove the asymptotic normality, first note that the applica-

tion of Taylor series expansion toU(�, Ĥ , Ĝ) yields, asymptotically,

n− 1
2U(�0, Ĥ , Ĝ)=

{
−n−1�U(�

∗, Ĥ , Ĝ)
��

}
{n 12 (�̂ − �0)} ,

where�∗ is on the segment between�0 and�̂. FollowingAnderson and Gill (1982), we can
easily show thatA−1(�∗)= −n−1 �U(�∗, Ĥ , Ĝ)/�� converges in probability asn → ∞.
Thus, for theproof, it is sufficient to show thatn−1/2U(�0, Ĥ , Ĝ) is asymptotically normally
distributed with mean zero and covariance matrix that can be estimated by�(�̂) given in
Section 3.
To see the asymptotic distribution ofn−1/2U(�0, Ĥ , Ĝ), note that

n− 1
2U(�0|X,Z)=n− 1

2

∫ �

0

n∑
i=1

{
Zi − S(1)(�0, t |X,Z)

S(0)(�0, t |X,Z)

}

×{dMi(t |Xi, Zi)+ �0(t)Yi(t |Xi)e�′
0Zi dt}

=n− 1
2

∫ �

0

n∑
i=1

{
Zi − S(1)(�0, t |X,Z)

S(0)(�0, t |X,Z)

}
dMi(t |Xi, Zi),
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which is asymptotically equivalent to

n− 1
2

n∑
i=1

∫ �

0
ui(�0, t |Zi)dMi(t |Xi, Zi),

where

ui(�0, t |Zi)= Zi −
s(1)(�0, t)
s(0)(�0, t)

.

Hence asymptotically,

n− 1
2U(�0, Ĥ , Ĝ)=

∫ V1

U1

· · ·
∫ Vn

Un

∫ R1

L1

· · ·
∫ R1

Ln

×
{
n− 1

2

n∑
i=1

∫ �

0
ui(�0, t |Zi)dMi(t |Xi, Zi)

}

×
n∏
l=1
â−1
j dĤ (Xj )

n∏
l=1
b̂−1
l dĜ(Zl)

=n− 1
2

n∑
i=1
b̂−1
i

∫ Vi

Ui

â−1
i

∫ Ri

Li

∫ �

0
ui(�0, t |Zi)

×dMi(t |Xi, Zi)dĤ (Xi)dĜ(Zi)

=n− 1
2

n∑
i=1
b−1
i

∫ Vi

Ui

a−1
i

∫ Ri

Li

∫ �

0
ui(�0, t |Zi)

×dMi(t |X,Zi)dH(Xi)dG(Zi),
which can be easily shown to converge in distribution to the normal distribution with mean
zeroandcovariancematrix that canbeconsistently estimatedby�(�̂),whereai=

∫ Ri
Li
dH(x)

andbi =
∫ Vi
Ui
dG(z). This completes the proof.�
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