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Summary. This article considers nonparametric comparison of several treatment groups based on panel count data, which
often occur in, among others, medical follow-up studies and reliability experiments concerning recurrent events. For the
problem, most of the existing procedures require that observation processes are identical across different treatment groups
among other requirements. We propose a new class of nonparametric test procedures that allow different observation processes.
The new test statistics are constructed based on the integrated weighted differences between the estimated mean functions of
the underlying recurrent event processes. The asymptotic distributions of the proposed test statistics are established and their
finite-sample properties are examined through Monte Carlo simulations, which indicate that the proposed approach works
well for practical situations. An illustrative example is provided.
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1. Introduction
Panel count data commonly refer to the data arising from
studies concerning recurrent events in which each subject is
observed only at several distinct time points instead of contin-
uously (Kalbfleisch and Lawless, 1985). Examples of recurrent
events include disease infections and machine failures (Cook,
Lawless, and Nadeau, 1996; Cook and Lawless, 2007). For
panel count data, no information is available on subjects be-
tween observation time points and only the numbers of the
occurrences of the events between the observation times are
known. Also the number of observations and the observation
times may vary from subject to subject. The fields that of-
ten produce such data include clinical trials, medical follow-
up studies, reliability experiments, sociological studies, and
tumorgenicity experiments. In this article, we consider the
nonparametric comparison of several treatment groups based
on panel count data when the observation scheme or pro-
cess defining the total number of observations and observation
times may be different for different groups.

A well-known example of panel count data is given by a
bladder cancer study conducted by the Veterans Administra-
tion Cooperative Urological Research Group (Sun and Wei,
2000; Wellner and Zhang, 2000). The study consists of three
treatment groups: placebo, pyridoxine, and thiotepa, and a
main objective was to compare the effects of the three treat-
ments on the frequency of the bladder tumor recurrence. Sev-
eral authors have noticed that the patients in the thiotepa
group tended to visit the clinic centers more often than those
in the placebo group. That is, the observation process seems
to differ among the three treatment groups. Another more
general situation that gives different observation processes is

when observation times are hospitalization times of patients
at which the occurrences of some recurrent events are deter-
mined.

Several nonparametric comparison procedures for panel
count data have been developed in the literature. For exam-
ple, one of the early procedures was given by Thall and Lachin
(1988), who suggested transforming the problem to a multi-
variate comparison problem and then applying a multivari-
ate Wilcoxon-type rank test. Sun and Fang (2003) proposed
a nonparametric approach under the assumption that treat-
ment indicators can be regarded as independent and identi-
cally distributed random variables and observation times have
the same distribution for different groups. Also Zhang (2006)
and Balakrishnan and Zhao (2009) proposed some nonpara-
metric tests for the situation where the distributions of the to-
tal number of observations and observation times are identical
for different treatment groups. The literature that discussed
the analysis of panel count data also includes Hu, Lagakos,
and Lockhart (2009), Sun and Kalbfleisch (1995), and Well-
ner and Zhang (2000), who studied nonparametric estimation
of the mean function (MF) of the underlying recurrent event
process. In addition, Hu, Sun, and Wei (2003), Sun and Wei
(2000), Zhang (2002), Wellner and Zhang (2007), and Lu,
Zhang, and Huang (2009) considered regression analysis of
panel count data.

The remainder of the article is organized as follows. After
introducing some notations and briefly reviewing the isotonic
regression estimator for panel count data, Section 2 presents
a class of nonparametric test statistics for comparing sev-
eral treatment groups with respect to their MFs. The test
procedures allow different observation processes for different
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treatment groups and the test statistics are formulated as the
integrated weighted difference between the estimated MFs of
the underlying recurrent event processes. The asymptotic nor-
mality of the presented test statistics is also established in
Section 2. Section 3 presents some results obtained from a
simulation study performed to assess the finite-sample prop-
erties of the proposed test procedure. In Section 4, we apply
the proposed approach to the bladder tumor study discussed
above and Section 5 contains some concluding remarks.

2. Treatment Comparison Based on Panel Count Data
Consider a recurrent event study that involves n independent
subjects from k different treatment groups. Let nl denote the
number of subjects in the lth group and Sl the set of indices for
subjects in group l, where n1 + · · · + nk = n. Also let N

(l)
i (t)

denote the counting process representing the total number
of occurrences of the recurrent event of interest up to time
t from subject i in group l and Λl (t) = E{N (l)

i (t)}, the com-
mon mean function of N

(l)
i (t) for i ∈ Sl , l = 1, . . . , k. Suppose

that the goal is to test the hypothesis H0 : Λ1(t) = · · · = Λk (t).
Also suppose that each subject is observed only at discrete
time points and let 0 < T

(l)
i ,1 < · · · < T

(l)

i ,K
(l )
i

denote the obser-

vation time points for subject i in group l with K
(l)
i repre-

senting the total number of observation time points. That
is, only panel count data are available. In the following text,
we will assume that {(K (l)

i ; T (l)
i ,1 , . . . , T

(l)

i ,K
(l )
i

), i ∈ Sl} are inde-

pendent and identically distributed as {K (l); T (l)
1 , . . . , T

(l)
K (l )}

and are independent of the counting processes N
(l)
i ’s. Also

{N (l)
i , i ∈ Sl} are assumed to be identically distributed as

N (l). Let X(l) = (K (l),T(l),N(l)), where K (l) is a random
variable representing the number of observations for a
subject in group l in general, T(l) = (T (l)

1 , . . . , T
(l)
K (l ) ) and

N(l) = (N (l)(T (l)
1 ), . . . , N (l)(T (l)

K (l ) )). Then {X(l)
i = (K (l)

i ,T(l)
i ,

N(l)
i ), i ∈ Sl} is a random sample of size nl from the distri-

bution of X(l), l = 1, . . . , k.
Before constructing the test statistics for H0, we first in-

troduce the isotonic regression estimators of the MF Λl ’s
(Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). Let
s

(l)
1 , . . . , s

(l)
m l denote the ordered distinct observation times in

the set {T (l)
i ,j ; j = 1, . . . , K

(l)
i , i ∈ Sl} and w

(l)
� and N̄

(l)
� be

the number and mean value, respectively, of the observations
made at time s

(l)
� from subjects in group l, � = 1, . . . , ml . Then

the isotonic regression estimator Λ̂(l)
n (t) of Λl (t) is defined as a

nondecreasing step function with possible jumps at the s
(l)
� ’s

and has the form

Λ̂(l)
n

(
s

(l)
�

)
= max

r��
min
s��

s∑
v =r

w(l)
v N̄ (l)

v

s∑
v =r

w(l)
v

= min
s��

max
r��

s∑
v =r

w(l)
v N̄ (l)

v

s∑
v =r

w(l)
v

, � = 1, . . . , ml , (1)

which is the isotonic regression of the N̄
(l)
� ’s with weights w

(l)
� ’s

(Robertson, Wright, and Dykstra, 1988).
To present the test statistics for the hypothesis H0, let τ

denote the largest observation time, pl = nl/n, πl be the limit
of pl . Define

Gl (t) = E

⎡
⎣K (l )∑

j=1

I
{
T

(l)
j � t

}⎤⎦ , gl (t) = G′
l (t),

G(t) =
k∑

l=1

πlGl (t), g(t) = G′(t) =
k∑

l=1

πlgl (t),

νl (t) = g(t)/gl (t),

G(l)
n (t) =

1
nl

∑
i∈S l

K
(l )
i∑

j=1

I
(
T

(l)
i ,j � t

)
,

the empirical observation process from group l, and

Gn (t) =
k∑

l=1

plG
(l)
n (t),

the overall empirical observation process. Also define

Ψ(l)
n =

∫ τ

0

Wn (t)Λ̂(l)
n (t) dGn (t), (2)

a summary measure of the event history in group l, and

σ̂2
l =

1
nl

∑
i∈S l

⎡
⎢⎣

K
(l )
i∑

j=1

A(l)
n

(
T

(l)
i ,j

){
N

(l)
i

(
T

(l)
i ,j

)
− Λ̂(l)

n

(
T

(l)
i ,j

)}⎤⎥⎦
2

,

where the Wn (t)’s are bounded weight processes and

A(l)
n (t) =

k∑
r=1

nr

n
Wn (t)

G
(r )
n (t) − G

(r )
n (t−)

G
(l)
n (t) − G

(l)
n (t−)

,

l = 1, . . . , k. Then we propose to use the following test statistic

T =
k∑

l=1

cl

(
Ψ(l)

n − Ψ̄n

)2
,

where cl = nl/σ̂2
l and Ψ̄n =

∑k

l=1 αlΨ
(l)
n with αl = cl /C and

C =
∑k

l=1 cl .
It is easy to see that the test statistic T represents the inte-

grated weighted difference among the estimated MF Λ̂(l)
n and

the resulting test is analogous to Welch’s test in analysis of
variance with unequal variances. The similar statistics are also
commonly used in failure time data analysis (Kalbfleisch and
Prentice, 2002) and panel count data analysis (Sun and Fang,
2003; Zhang, 2006). In particular, when observation processes
are identical across different treatment groups, Zhang (2006)
proposed to use the test statistic

T
(l)
1Z =

√
n1nl

n

{
Ψ(1)

n − Ψ(l)
n

}
to test the hypothesis H0. For the situation where the ob-
servation process may differ across different groups, in the
discussion section, Zhang (2006) suggested the test statistic
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T
(l)
2Z =

√
n1nl

n

{∫
Λ̂(1)

n (t)
1

ĝ1(t)
dG(1)

n (t)−
∫

Λ̂(l)
n (t)

1
ĝl (t)

dG(l)
n (t)

}
,

where ĝl (t) represents a kernel-smoothed estimator of gl (t). It
should be noted that T

(l)
1Z and T

(l)
2Z do not give the same test

procedure when the observation processes are identical and
the latter involves estimation of some derivative functions.
More importantly, the properties of T

(l)
2Z are still unknown.

To derive the asymptotic distribution of the test statistic
T, first we need to define some new notations and establish
the asymptotic normality of the functional of the isotonic re-
gression estimator. Let Λ0(t) denote the common MFs of the
N

(l)
i (t)’s under H0 and Λ−1

0 the inverse function of Λ0. Also let
A ◦ Λ−1

0 denote the composition of two functions A and Λ−1
0 ,

Ψ(0)
n =

∫ τ

0

Wn (t)Λ0(t) dGn (t),

and Δ(l)
n =

√
nl (Ψ

(l)
n − Ψ(0)

n ). The following theorem gives the
asymptotic normality of the functional of the isotonic regres-
sion estimator.

Theorem 1: Suppose that Al (t) is a bounded weight pro-
cess with Al ◦ Λ−1

0 being a bounded Lipschitz function and define

V (l)
n =

√
nl

∫ τ

0

Al (t)
{
Λ̂(l)

n (t) − Λ0(t)
}

dGl (t)

and

V̄ (l)
n =

1
nl

∑
i∈S l

K
(l )
i∑

j=1

Al

(
T

(l)
i ,j

){
N

(l)
i

(
T

(l)
i ,j

)
− Λ0

(
T

(l)
i ,j

)}
.

Then under H0 and the Conditions 1–3 given in the Appendix
and as n → ∞, we have that V

(l)
n = V̄

(l)
n + op (1) and both V

(l)
n

and V̄
(l)

n converge in distribution to the normal random variable
Vl with mean zero and variance

σ2
l = E

⎡
⎢⎣
⎛
⎜⎝

K
(l )
i∑

j=1

Al

(
T

(l)
i ,j

){
N

(l)
i

(
T

(l)
i ,j

)
− Λ0

(
T

(l)
i ,j

)}⎞⎟⎠
2⎤
⎥⎦ . (3)

The theorem given above can be proved by using the same
techniques as those used in the proof of Theorem 2.1 of Bal-
akrishnan and Zhao (2009) and modifying the proof of Theo-
rem 2 of Zhang (2006). Thus the proof is omitted. It is worth
pointing out that here we do not need the monotone assump-
tion for the function Al ◦ Λ−1

0 required by Theorem 2 of Zhang
(2006). In the following theorem, we establish the asymptotic
distribution of Δ(l)

n .

Theorem 2: Assume that W(t) is a bounded function such
that ∫ τ

0

{Wn (t) − W (t)}2 dGl (t) = op (n−1/3) (4)

and Al ◦ Λ−1
0 is a bounded Lipschitz function with Al (t) =

W (t)νl (t), l = 1, . . . , k. Also assume that the Conditions 1–3
given in the Appendix hold and gl is bounded with a positive
lower bound on [τ0, τ ]. Then as n → ∞ and under H0, we have

Δ(l)
n = V̄ (l)

n + op (1)

with the V̄
(l)

n ’s defined in Theorem 1.

It follows from Theorems 1 and 2 that Δ(l)
n asymptotically

follows a normal distribution. We remark that if observation
processes are identical across different groups, then we have
Gl = G and gl = g for all l. In this case, the result described
above is the same as that given in Theorem 3 of Zhang (2006)
but without the monotone assumption for the weight process.
The next theorem shows that one can consistently estimate
σ2

l by σ̂2
l given above.

Theorem 3: Suppose that all conditions described in The-
orem 2 and the Condition A4 given in the Appendix hold. Also
suppose that the g′

l ’s are bounded and

max
i∈S l

E

⎡
⎢⎣

K
(l )
i∑

j=1

{
Wn

(
T

(l)
i ,j

)
− W

(
T

(l)
i ,j

)}2

⎤
⎥⎦→ 0. (5)

Then as n → ∞, we have that σ̂2
l →p σ2

l .

The proofs of Theorems 2 and 3 are sketched in the Ap-
pendix. These two theorems suggest that the testing of the
hypothesis H0 can be carried out by applying the statistic
T based on the central χ2-distribution with (k − 1) degrees
of freedom. Note that this test procedure is valid no mat-
ter whether observation processes are identical or not among
different treatment groups.

To employ the test procedure proposed above, one needs
to choose the weight process Wn (t). For this, a simple and
natural choice is clearly W

(1)
n (t) = 1. Another natural choice

is

W (2)
n (t) =

1
n

k∑
l=1

∑
i∈S l

I
(
t � T

(l)

i ,K
(l )
i

)
.

It is easy to see that the first weight function weights ev-
erything equally, whereas the second one assigns the weight
according to the number of subjects under observation. Of
course, one could also use W

(3)
n (t) = 1 − W

(2)
n (t). It is easy to

verify that all three weight processes satisfy the conditions
required in Theorem 3.

3. A Simulation Study
An extensive simulation study was conducted to assess the
finite-sample properties of the test procedure proposed in the
previous section. In the study, we focused on the two-sample
comparison problem with k = 2 and in this case, the test
statistic has the form

T =
n1

σ̂2
1

(
Ψ(1)

n − Ψ̄n

)2
+

n2

σ̂2
2

(
Ψ(2)

n − Ψ̄n

)2

with

Ψ̄n =

{
n1

σ̂2
1
Ψ(1)

n +
n2

σ̂2
2
Ψ(2)

n

}/{
n1

σ̂2
1

+
n2

σ̂2
2

}
.

For the generation of panel count data {K (l)
i , T

(l)
i ,j ,

N
(l)
i (T (l)

i ,j ), j = 1, . . . , K
(l)
i , i ∈ Sl , l = 1, 2}, we first generated
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the number of observation times K
(l)
i based on the uniform

distribution over {1, . . . , bl}, where b1 and b2 are some integers.
That is, Pr(K (l)

i = x) = 1/bl , x = 1, . . . , bl . Given K
(l)
i , the ob-

servation times T
(l)
i ,j ’s were generated as the order statistics of

K
(l)
i random variables from the probability density function

f (x; θl ) =
θl + 1

τ θl +1 − 1
xθl , 1 � x � τ,

where θ1 and θ2 are some constants. The constants bl ’s and
θl ’s are used to control the observation processes.

For given K
(l)
i ’s and T

(l)
i ,j ’s, the panel counts N

(l)
i (T (l)

i ,j )’s were
generated from the Poisson processes with one of the following
two different types of conditional MFs

MF 1. Λ(1)
i (t | ν(1)

i ) = ν
(1)
i t for i ∈ S1, Λ

(2)
i (t | ν(2)

i ) = ν
(2)
i t ×

exp(β) for i ∈ S2,
MF 2. Λ(1)

i (t | ν(1)
i ) = ν

(1)
i t for i ∈ S1, Λ

(2)
i (t | ν(2)

i ) = ν
(2)
i

√
βt

for i ∈ S2.

Here {ν(l)
i , i ∈ Sl , l = 1, 2} are latent variables that were set

to be equal to one or generated from the Gamma(2, 1/2) dis-
tribution. The former means that the N

(l)
i (t)’s are Poisson

processes, whereas the latter gives mixed Poisson processes.
Note that we can write N

(l)
i (T (l)

i ,j ) as

N
(l)
i

(
T

(l)
i ,j

)
= N

(l)
i

(
T

(l)
i ,1

)
+
{
N

(l)
i

(
T

(l)
i ,2

)
− N

(l)
i

(
T

(l)
i ,1

)}
+ · · · +

{
N

(l)
i

(
T

(l)
i ,j

)
− N

(l)
i

(
T

(l)
i ,j−1

)}
≡ ξ

(l)
i ,1 + · · · + ξ

(l)
i ,j

with {ξ(l)
i ,j , j = 1, . . . , K

(l)
i } being independent Poisson random

variables with means{
Λ(l)

i

(
T

(l)
i ,j

∣∣ ν(l)
i

)
− Λ(l)

i

(
T

(l)
i ,j−1

∣∣ ν(l)
i

)
, j = 1, . . . , K

(l)
i

}
.

Thus for given K
(l)
i ’s, T

(l)
i ,j ’s, and ν

(l)
i ’s, the panel counts

N
(l)
i (T (l)

i ,j )’s can be generated by generating the ξ
(l)
i ,j ’s.

To give an idea about the shapes of the conditional MFs
defined above, Figures 1 and 2 display them for the cases of
ν

(l)
i = 1 with three different values of β. It can be seen that

the functions in MF 1 do not overlap with each other, whereas
those in MF 2 cross over each other. The results given below
are based on 1000 replications and for the case of n1 = n2 = 50
or 100 except in Table 5.

Tables 1 and 2 give the estimated sizes and powers of the
proposed test procedures at the significance level α = 0.05
with different values of β, (b1, b2) and (θ1, θ2) and the use of
MF 1. The results in Table 1 are for situations where the
underlying recurrent event processes were Poisson processes
and Table 2 corresponds to situations where the panel count
data were generated from mixed Poisson processes. Here we
considered all three weight processes discussed in the previ-
ous section and took τ = 10. The results indicate that the
proposed test procedure seems to have proper size and good
power to detect treatment differences. In particular, the pro-
cedure with the weight process W

(1)
n (t) seems to uniformly

outperform the procedures with other two weight processes
although the power is quite close among them. Also as ex-
pected, the power increased when the sample size increased
and the power decreased in the presence of more variability.
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Figure 1. MF 1 with ν
(l)
i = 1 and β = 0.1, 0.2.
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Figure 2. MF 2 with ν
(l)
i = 1 and β = 3, 5.

Table 1
Estimated size and power of the proposed test procedure based on the panel count data generated

from Poisson processes with MF 1

n1 = n2 = 50 n1 = n2 = 100

(b1, b2) (θ1, θ2) β W
(1)
n W

(2)
n W

(3)
n W

(1)
n W

(2)
n W

(3)
n

(6,8) (0.0,0.1) 0.0 0.056 0.051 0.051 0.052 0.049 0.048
0.1 0.256 0.230 0.246 0.458 0.423 0.410
0.2 0.759 0.710 0.719 0.949 0.931 0.941
0.3 0.981 0.961 0.971 1.000 1.000 1.000

(0.0,0.5) 0.0 0.056 0.053 0.049 0.049 0.058 0.044
0.1 0.293 0.273 0.266 0.450 0.425 0.431
0.2 0.772 0.732 0.734 0.957 0.934 0.953
0.3 0.983 0.967 0.973 1.000 1.000 1.000

(8,6) (0.0,0.1) 0.0 0.050 0.046 0.059 0.051 0.049 0.049
0.1 0.275 0.262 0.251 0.455 0.422 0.441
0.2 0.750 0.716 0.733 0.961 0.938 0.934
0.3 0.980 0.965 0.979 1.000 1.000 1.000

(0.0,0.5) 0.0 0.052 0.056 0.055 0.055 0.051 0.056
0.1 0.271 0.249 0.256 0.456 0.438 0.452
0.2 0.737 0.700 0.726 0.957 0.941 0.942
0.3 0.975 0.958 0.968 1.000 1.000 1.000

The estimated powers of the proposed test procedures ob-
tained with the use of MF 2 are presented in Tables 3 and
4 with all other setups being the same as in Tables 1 and 2,
respectively. Note that for this situation, only the estimated
powers are given and it can be easily seen that as expected,
the power was lower than that for the situations considered

in Tables 1 and 2. In particular, the results suggest that the
power of the proposed test procedure depends on the weight
process when the underlying MFs cross over each other. In
other words, some knowledge about the shapes of the under-
lying MFs can be used or would be needed to select a better
weight process.



Nonparametric Comparison for Panel Count Data 775

Table 2
Estimated size and power of the proposed test procedure based on the panel count data generated

from mixed Poisson processes with MF 1

n1 = n2 = 50 n1 = n2 = 100

(b1, b2) (θ1, θ2) β W
(1)
n W

(2)
n W

(3)
n W

(1)
n W

(2)
n W

(3)
n

(6,8) (0.0,0.1) 0.0 0.054 0.050 0.058 0.053 0.052 0.053
0.1 0.089 0.092 0.095 0.130 0.133 0.113
0.2 0.209 0.196 0.188 0.335 0.325 0.305
0.3 0.387 0.387 0.339 0.642 0.633 0.554

(0.0,0.5) 0.0 0.057 0.054 0.049 0.046 0.048 0.051
0.1 0.099 0.095 0.099 0.112 0.104 0.103
0.2 0.217 0.208 0.189 0.352 0.353 0.307
0.3 0.429 0.427 0.383 0.654 0.652 0.568

(8,6) (0.0,0.1) 0.0 0.050 0.052 0.056 0.055 0.052 0.055
0.1 0.113 0.100 0.111 0.145 0.137 0.130
0.2 0.208 0.189 0.181 0.348 0.330 0.295
0.3 0.436 0.433 0.384 0.642 0.632 0.569

(0.0,0.5) 0.0 0.052 0.050 0.053 0.049 0.048 0.050
0.1 0.089 0.090 0.088 0.141 0.130 0.124
0.2 0.219 0.206 0.198 0.353 0.349 0.309
0.3 0.402 0.400 0.367 0.677 0.656 0.596

Table 3
Estimated power of the proposed test procedure based on the panel count data generated from Poisson processes with MF 2

n1 = n2 = 50 n1 = n2 = 100

(b1, b2) (θ1, θ2) β W
(1)
n W

(2)
n W

(3)
n W

(1)
n W

(2)
n W

(3)
n

(6,8) (0.0,0.1) 3 0.976 0.875 1.000 1.000 0.984 1.000
5 0.216 0.087 0.815 0.335 0.100 0.972
8 0.491 0.711 0.079 0.743 0.927 0.075

(0.0,0.5) 3 0.984 0.910 1.000 1.000 1.000 1.000
5 0.256 0.104 0.832 0.428 0.142 0.978
8 0.368 0.609 0.078 0.614 0.882 0.072

(8,6) (0.0,0.1) 3 0.963 0.835 1.000 1.000 0.986 1.000
5 0.202 0.084 0.804 0.345 0.094 0.984
8 0.467 0.683 0.075 0.710 0.939 0.069

(0.0,0.5) 3 0.977 0.908 1.000 1.000 0.995 1.000
5 0.284 0.124 0.842 0.412 0.126 0.983
8 0.391 0.626 0.085 0.664 0.897 0.070

As pointed out by a referee, a question of practical interest
is how the proposed test performs compared to that given in
Zhang (2006) for the situation where observation processes
are the same. Another natural question that one may ask is
if one could simply apply the test procedures developed un-
der the identical observation process assumption to unequal
observation process situations. To answer these, we also gen-
erated panel count data with equal and unequal observation
processes, respectively, and compared the sizes and powers
of Zhang’s test procedure (2006) and the test procedure pro-
posed here. Table 5 presents the estimated sizes and powers
of the two test procedures under the same setups as those in
Tables 1 and 3 and with n1 = 30 and n2 = 40. Here, suggested
by the associate editor, the sample sizes were chosen based on
the example discussed in the next section. The results indi-
cate that the two methods gave similar performance when the

observation processes are the same. However, when the ob-
servation processes differ between treatment groups, Zhang’s
procedure, which does not take into account the difference,
could overestimate the size.

In addition to assessing the size and power of the proposed
test procedure, we also studied the chi-square distribution ap-
proximation to the distribution of the proposed test statistics
by employing quantile plots of the test statistic T against the
χ2(1) distribution. The results suggest that the chi-square ap-
proximation is quite good under the situations considered in
Tables 1–4. In summary, the simulation results suggest that
the proposed test procedure seems to work well for practical
situations. With respect to the selection of weight processes,
W

(1)
n seems to be the best choice if the MFs of the underlying

counting processes do not cross over each other. On the other
hand, when the MFs cross over each other, some knowledge
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Table 4
Estimated power of the proposed test procedure based on the panel count data generated from mixed Poisson processes with MF 2

n1 = n2 = 50 n1 = n2 = 100

(b1, b2) (θ1, θ2) β W
(1)
n W

(2)
n W

(3)
n W

(1)
n W

(2)
n W

(3)
n

(6,8) (0.0,0.1) 3 0.487 0.349 0.698 0.727 0.557 0.937
5 0.097 0.066 0.252 0.123 0.068 0.408
8 0.147 0.221 0.069 0.228 0.396 0.061

(0.0,0.5) 3 0.477 0.380 0.687 0.778 0.633 0.925
5 0.095 0.070 0.240 0.133 0.087 0.424
8 0.109 0.167 0.062 0.171 0.300 0.058

(8,6) (0.0,0.1) 3 0.475 0.359 0.709 0.728 0.573 0.919
5 0.088 0.062 0.241 0.120 0.065 0.419
8 0.155 0.221 0.064 0.202 0.353 0.064

(0.0,0.5) 3 0.527 0.416 0.708 0.780 0.610 0.942
5 0.095 0.060 0.275 0.127 0.068 0.434
8 0.118 0.172 0.065 0.182 0.306 0.053

Table 5
Estimated sizes and powers of the proposed test procedure and Zhang (2006)’s procedure with n1 = 30, n2 = 40

Proposed procedure Zhang (2006)’s procedure

(b1, b2) (θ1, θ2) β W
(1)
n W

(2)
n W

(3)
n W

(1)
n W

(2)
n W

(3)
n

Equal observation processes
(6,6) (0.0,0.0) 0.0 0.053 0.053 0.058 0.052 0.052 0.057

0.1 0.190 0.179 0.198 0.180 0.171 0.169
0.2 0.568 0.530 0.549 0.563 0.520 0.536
0.3 0.895 0.867 0.895 0.895 0.866 0.896
3 0.855 0.640 0.982 0.867 0.657 0.990
5 0.140 0.066 0.608 0.143 0.062 0.630
8 0.361 0.595 0.067 0.333 0.574 0.062

Unequal observation processes
(6,8) (0.0,0.0) 0.0 0.047 0.048 0.052 0.069 0.072 0.075

(0.0,0.1) 0.048 0.051 0.050 0.076 0.071 0.089
(0.0,0.5) 0.059 0.055 0.058 0.081 0.081 0.082
(0.0,0.1) 0.1 0.187 0.177 0.182 0.180 0.169 0.170

0.2 0.560 0.542 0.551 0.555 0.518 0.540
0.3 0.898 0.864 0.874 0.910 0.875 0.877
3 0.860 0.648 0.986 0.875 0.687 0.993
5 0.135 0.062 0.609 0.154 0.066 0.648
8 0.331 0.502 0.061 0.304 0.473 0.060

(0.0,0.5) 0.1 0.193 0.186 0.183 0.197 0.182 0.178
0.2 0.584 0.547 0.518 0.578 0.548 0.525
0.3 0.912 0.890 0.873 0.904 0.890 0.881
3 0.902 0.769 0.992 0.914 0.802 0.997
5 0.173 0.082 0.616 0.193 0.090 0.701
8 0.273 0.445 0.050 0.243 0.416 0.057

about their shapes is needed for selecting a weight process
that gives the better power. In this case, if the main differ-
ence of the MF occurs at earlier time periods, the weight
process W

(2)
n tends to be a better choice. However, one may

want to employ W
(3)
n if the main difference lays over later time

periods.

4. An Application
In this section, we apply the proposed methodology to the
bladder tumor study discussed before. The study consists of

116 bladder cancer patients and three treatments: placebo
(47), pyridoxine (31), and thiotepa (38). All patients in the
study had superficial bladder tumors when they entered the
study and these tumors were removed before the start of
the treatments. At each follow-up visit to the clinic office,
the patient was examined and the number of recurrences
of the bladder tumors since the previous visit was recorded
with the tumors removed. Thus we have a set of panel count
data {K (l)

i , T
(l)
i ,j , N

(l)
i (T (l)

i ,j )} with k = 3, where K
(l)
i , T

(l)
i ,j and

N
(l)
i (T (l)

i ,j ) denote, respectively, the total number of clinic
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Figure 3. Estimates of the MFs for the bladder tumor study.

visits, the visit time, and the total number of recurrences of
the bladder tumors up to time T

(l)
i ,j for patient i in treatment

group l.
To compare the three treatment groups with respect to the

recurrence rates of bladder tumors, define Λ1(t), Λ2(t), and
Λ3(t) to be the MFs corresponding to the placebo, pyridoxine,
and thiotepa treatments, respectively. The application of the
test procedure proposed in the previous sections yielded T =
5.2805 and the p-value of 0.0713 for testing H0 with the use of
weight process W

(1)
n . If using the weight process W

(2)
n or W

(3)
n ,

we obtained T = 0.0379 or 21.7701 along with the p-value of
0.9812 or 0.00002, respectively. To understand these results,
we calculated and plotted in Figure 3 the isotonic regression
estimators of the three MFs. It can be seen from the figure
that there exists some crossing during the initial period and
this suggests that we should rely on the weight processes W

(1)
n

and W
(3)
n but not W

(2)
n . The results given by W

(1)
n and W

(3)
n

indicate that the recurrence rates of the bladder tumors were
significantly different among the three treatment groups. In
comparison, the test procedure proposed in Zhang (2006) gave
the p-values of 0.0851, 0.1445, and 0.0840, respectively, based
on the same three weight processes.

5. Concluding Remarks
This article discussed the problem of the multisample com-
parison of point processes when only panel count data are
available and observation processes may be different across
different samples. A class of nonparametric test procedures
was proposed for the problem and the asymptotic properties
of the test statistics were established. An extensive simula-

tion study was carried out and suggested that the proposed
approach works well for practical situations. As shown in both
the simulation study and the application, in the presence of
different observation processes, one needs to be careful in
choosing a nonparametric comparison procedure as many ex-
isting procedures apply only to situations where the observa-
tion processes are identical across different treatment groups
(Thall and Lachin, 1988; Sun and Fang, 2003; Zhang, 2006;
Balakrishnan and Zhao, 2009).

To construct the proposed test statistics, we employed the
isotonic regression estimators of the underlying MFs. As an
alternative, one could instead use the maximum likelihood
estimators. Wellner and Zhang (2000) showed that the non-
parametric maximum likelihood estimator of the MFs could
be more efficient than the isotonic regression or nonparamet-
ric maximum pseudo-likelihood estimator. Balakrishnan and
Zhao (2009) also showed that the tests based on the nonpara-
metric maximum likelihood estimator could be more powerful
than these based on the nonparametric maximum pseudo-
likelihood estimator for panel count data with identical ob-
servation processes. Thus as a future research direction, one
may develop test procedures similar to the one developed
here but by using the nonparametric maximum likelihood
estimator.
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Appendix

Proofs of Theorems 2 and 3

In this Appendix, we will use the same notation defined in
the previous sections. Before proving Theorems 2 and 3, we
need to describe four conditions.

Condition A1: The MF Λ0 is strictly increasing such that
Λ0(τ ) � M for some constant M ∈ (0,∞);

Condition A2: There exists a constant K0 such that
Pr{K (l) � K0} = 1 and that the random variables T

(l)
i ,j ’s take

values in a bounded set [τ0, τ ], where 0 < τ0 < τ < ∞;

Condition A3: Pr{lim supn→∞ maxi N
(l)
i (τ ) < ∞} = 1

and E((N (l)(t))4) � M1 for all t � τ , where M1 is a constant.

Condition A4: Pr{min1�l�k min1�j�K (l ) (T (l)
j − T

(l)
j−1) �

s0} = 1 for some fixed time point s0, where T
(l)
0 = 0 and s0 can

be considered as the smallest length of consecutive observation
times.

Proof of Theorem 2. To prove this theorem, first note that
we can rewrite it as

Δ(l)
n =

√
nl

∫
Wn (t)

{
Λ̂(l)

n (t) − Λ0(t)
} k∑

r=1

pr dG(r )
n (t)

=
k∑

r=1

pr

√
nl

∫
{Wn (t) − W (t)}

{
Λ̂(l)

n (t) − Λ0(t)
}

d

×
{
Gr

n (t) − Gr (t)
}

+
k∑

r=1

pr

√
nl

∫
{Wn (t) − W (t)}

{
Λ̂(l)

n (t)−Λ0(t)
}
dGr (t)

+
k∑

r=1

pr

√
nl

∫
W (t)

{
Λ̂(l)

n (t) − Λ0(t)
}

d

×
{
G(r )

n (t) − Gr (t)
}

+
k∑

r=1

pr

√
nl

∫
W (t)

{
Λ̂(l)

n (t) − Λ0(t)
}

dGr (t)

≡ Δ(l)
1n + Δ(l)

2n + Δ(l)
3n + Δ(l)

4n

for l = 1, . . . , k. Using the same techniques as those used in
the proof of Theorem 3.1 of Balakrishnan and Zhao (2009),
we can show that Δ(l)

1n = op (1), Δ(l)
2n = op (1), and Δ(l)

3n = op (1).
Note that

Δ(l)
4n =

√
nl

∫
Al (t)

{
Λ̂(l)

n (t) − Λ0(t)
}

dGl (t) + op (1).

Then it follows from Theorem 1 that we have

Δ(l)
n = V̄ (l)

n + op (1).

This proves Theorem 2.

Proof of Theorem 3. To prove σ̂2
l − σ2

l →p 0, we first show
that

sup
i∈S l

sup
1�j�K

(l )
i

∣∣∣∣∣ΔG
(r )
n

(
T

(l)
i ,j

)
ΔG

(l)
n

(
T

(l)
i ,j

) − gr

(
T

(l)
i ,j

)
gl

(
T

(l)
i ,j

)
∣∣∣∣∣→p 0, r, l = 1, . . . , k,

(A1)

where ΔG
(l)
n (t) = G

(l)
n (t) − G

(l)
n (t−). Set

A =

{
min

1�l�k
min
i∈S l

min
1�j�K

(l )
i

(
T

(l)
i ,j − T

(l)
i ,j−1

)
� s0

}
.
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From Condition A4, we have Pr(A) = 1. Choose 0 < ε0 < 1/2
and δ = n−ε0/2. Thus, for n > s

−2/ε0
0 and ω ∈ A, we have

ΔG(r )
n

(
T

(l)
i ,j

)
= G(r )

n

(
T

(l)
i ,j

)
− G(r )

n

(
T

(l)
i ,j − δ

)
,

j = 1, . . . , K
(l)
i , i ∈ Sl , l = 1, . . . , k.

Note that for r = 1, . . . , k and t ∈ [τ0, τ ],

G(r )
n (t)−G(r )

n (t− δ) =
{
G(r )

n (t)−Gr (t)
}

+ {Gr (t)−Gr (t− δ)}
+
{
Gr (t − δ) − G(r )

n (t − δ)
}

= op

(
n− 1

2 + ε 0
2
)

+ gr (t)δ + g′
r (ξ)δ

2,

where ξ ∈ (t − δ, t). Then, for r, l = 1, . . . , k, we have

ΔG
(r )
n

(
T

(l)
i ,j

)
δ

= op

(
n− 1

2 +ε0
)

+ gr

(
T

(l)
i ,j

)
+ g′

r (ξ)δ,

ξ ∈
(
T

(l)
i ,j − δ, T

(l)
i ,j

)
and

ΔG
(r )
n

(
T

(l)
i ,j

)
δ

− gr

(
T

(l)
i ,j

)
= op (n−c ), (A2)

where L0 is a positive constant and 0 < c < min(1/2 − ε0,
ε0/2). It follows from (A2) that

sup
i∈S l

sup
1�j�K

(l )
i

∣∣∣∣∣ΔG(r )
n

(
T

(l)
i ,j

)
ΔG(l)

n

(
T

(l)
i ,j

) − gr

(
T

(l)
i ,j

)
gl

(
T

(l)
i ,j

)
∣∣∣∣∣

= sup
i∈S l

sup
1�j�K

(l )
i

∣∣∣∣∣ΔG(r )
n

(
T

(l)
i ,j

)/
δ

ΔG(l)
n

(
T

(l)
i ,j

)/
δ
− gr

(
T

(l)
i ,j

)
gl

(
T

(l)
i ,j

)
∣∣∣∣∣

= op (n−c ).

Next we will show that σ̂2
l − σ2

l = op (1) for l = 1, . . . , k.
Define

φ(η, Λ,X(l)) =
K (l )∑
j=1

η
(
T

(l)
j

){
N
(
T

(l)
j

)
− Λ

(
T

(l)
j

)}
.

Then σ2
l = Plφ

2(Al , Λ0,X(l)) and σ̂2
l = P

(l)
n φ2(A(l)

n , Λ̂(l)
n ,X(l)),

where Pl is the probability measure of X(l), Pl f =
∫

f dPl , P
(l)
n

is the empirical measure corresponding to X(l), and P
(l)
n f =∑

i∈S l
f (X(l)

i )/nl . Note that

σ̂2
l − σ2

l = P (l)
n

{
φ2
(
A(l)

n , Λ̂(l)
n ,X(l)

)
− φ2

(
A(l)

n , Λ0,X(l)
)}

+ P (l)
n

{
φ2
(
A(l)

n , Λ0,X(l)
)
− φ2(Al , Λ0,X(l))

}
+
(
P (l)

n − Pl

)
φ2(Al , Λ0,X(l)).

It can be easily shown that

P (l)
n

{
φ2
(
A(l)

n , Λ̂(l)
n ,X(l)

)
− φ2

(
A(l)

n , Λ0,X(l)
)}

= op (1)

and (
P (l)

n − Pl

)
φ2(Al , Λ0,X(l)) = op (1).

Note that∣∣φ(A(l)
n , Λ0,X

(l)
i

)
− φ

(
Al , Λ0,X

(l)
i

)∣∣ =
∣∣φ(A(l)

n − Al , Λ0,X
(l)
i

)∣∣
�
{

N
(l)
i

(
T

(l)

i ,K
(l )
i

)
+ Λ0(τ )

} K
(l )
i∑

j=1

∣∣A(l)
n

(
T

(l)
i ,j

)
− Al

(
T

(l)
i ,j

)∣∣
� a1

{
N

(l)
i

(
T

(l)

i ,K
(l )
i

)
+ Λ0(τ )

}

×
K

(l )
i∑

j=1

{∣∣Wn

(
T

(l)
i ,j

)
− W (T (l)

i ,j )
∣∣

+ max
1�r�k

∣∣∣∣∣ΔG(r )
n

(
T

(l)
i ,j

)
ΔG(l)

n

(
T

(l)
i ,j

) − gr

(
T

(l)
i ,j

)
gl

(
T

(l)
i ,j

)
∣∣∣∣∣
}

with probability 1 for some constant a1 and∣∣φ(A(l)
n , Λ0,X

(l)
i

)
+ φ

(
Al , Λ0,X

(l)
i

)∣∣ =
∣∣φ(A(l)

n + Al , Λ0, X
)∣∣

� a2K
(l)
i

{
N

(l)
i

(
T

(l)

i ,K
(l )
i

)
+ Λ0(τ )

}
with probability 1 for some constant a2. These along with the
Cauchy–Schwarz inequality, Conditions 1–3 and (5) and (6)
give

E
∣∣φ2
(
A(l)

n , Λ0,X
(l)
i

)
− φ2(Al , Λ0,X

(l)
i )
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� a3E

⎡
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where a3 is a finite positive constant. This completes the
proof.


