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SUMMARY

Analyzing irregularly spaced longitudinal data often involves modeling possibly correlated response and
observation processes. In this article, we propose a new class of semiparametric mean models that allows
for the interaction between the observation history and covariates, leaving patterns of the observation
process to be arbitrary. For inference on the regression parameters and the baseline mean function, a
spline-based least squares estimation approach is proposed. The consistency, rate of convergence, and
asymptotic normality of the proposed estimators are established. Our new approach is different from the
usual approaches relying on the model specification of the observation scheme, and it can be easily used
for predicting the longitudinal response. Simulation studies demonstrate that the proposed inference pro-
cedure performs well and is more robust. The analyses of bladder tumor data and medical cost data are
presented to illustrate the proposed method.

Keywords: Asymptotic normality; Estimating equation; Informative observation process; Longitudinal medical costs;
Polynomial spline.

1. INTRODUCTION

Longitudinal data occur frequently in a wide variety of settings, including epidemiological studies, clinical
trials, and economic applications. While response variables are observed repeatedly at irregular time points
for different subjects under study, the observations are independent between different subjects and may be
correlated within each subject. Examples of such data include cancer recurrence and longitudinal medical
costs, which will be described below.
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2 X. ZHAO AND OTHERS

For the analysis of longitudinal data, parametric regression models have been studied by Laird and Ware
(1982) and Liang and Zeger (1986) among others, and an excellent review has been provided by
Diggle and others (2002). In addition, a number of semiparametric models with nice features have been
considered for modeling longitudinal data. Zeger and Diggle (1994) proposed a semiparametric mixed
model for longitudinal data and suggested a backfitting procedure for inference. Lin and Ying (2001)
developed a novel and simple semiparametric and non-parametric method for the regression analysis of
irregularly spaced longitudinal data by formulating the observation times within the framework of count-
ing processes. A basic assumption behind these methods is that observation times are independent of
the response variable, completely or given covariates. However, such an assumption can be violated in
many applications, such as an example given by a set of longitudinal data arising from a bladder cancer
follow-up study conducted by the Veterans Administration Cooperative Urological Research Group (Byar,
1980). All patients had superficial bladder tumors when they entered the study and these tumors were
removed transurethrally, and then patients were randomly allocated to one of the three treatments, placebo,
thiotepa, and pyridoxine. Many patients had multiple recurrences of new tumors during the study. One
problem with the data set is that some patients in the study had significantly more clinical visits than oth-
ers (Sun and others, 2005). This indicates that the number of clinical visits may contain some information
about the tumor occurrence rate. Another example can be found in the longitudinal (monthly) medical costs
of chronic heart failure (CHF) patients from the clinical data repository (CDR) at the University of Vir-
ginia Health System (Liu and others, 2008). One phenomenon from some preliminary analysis is that the
patients visiting hospital more often tended to pay more for each visit, that is, the level of medical costs is
associated with the frequency of observation times. Thus, an important question is how to take into account
or make use of this information for inference about the tumor recurrence rate. To investigate this problem,
two methods have been developed. One is the conditional modeling approach proposed by Sun and others
(2005); another is the frailty-based approach proposed by Sun and others (2007), Liang and others (2009),
Zhao and others (2012), among others. A common and key assumption in these two approaches is that the
observation process follows a Poisson or mixed Poisson with the proportional intensity function. However,
the fit of the Poisson model may be inadequate when the observation process displays under-dispersion or
over-dispersion. In addition, the relation between the observation and response processes may vary with
some covariates. For example, in the bladder cancer study, patients who received the thiotepa treatment
may have less superficial bladder tumors, and thus may visit the doctor less often than those in the placebo
group, which means that the correlation between the observation times and the tumor recurrence process
may be different for different treatment groups. In the medical cost data, non-white patients were more
likely to visit hospital, and paid more for their visits, which indicates that the patients’ medical costs and
visiting times are related with the race (Liu and others, 2008).

In this article, motivated by the characteristic of the two longitudinal data sets mentioned above, we pro-
pose a new class of semiparametric regression models that allows for the interaction between the observa-
tion history and some covariates, while leaving the patterns of the observation times to be arbitrary. For the
non-parametric estimation of the baseline mean function, a B-spline approximation will be used following
Huang (1999) and Lu and others (2007, 2009).

The remainder of this paper is organized as follows. We begin in Section 2 by introducing notation and
describing models for longitudinal data. In Section 3, a spline-based least squares method is proposed for
estimation of regression parameters and the baseline mean function. Section 3 also presents the asymptotic
properties of the proposed estimators, including the consistency, rate of convergence, and asymptotic nor-
mality. In order to assess the finite-sample performance of the proposed inference procedure, we present
some results obtained from simulation studies in Section 4. In Section 5, the proposed approaches are
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illustrated through the analysis of two data sets from a bladder tumor study and longitudinal medical costs.
Some concluding remarks are made in Section 6.

2. STATISTICAL MODEL

Consider a longitudinal study that consists of a random sample of n subjects. For subject i , let Yi (t) denote
the response variable and Xi denote a p-dimensional vector of covariates, i = 1, . . . , n. Suppose that Yi (t)
is observed at distinct time points TKi ,1 < TKi ,2 < · · · < TKi ,Ki , where Ki is the total number of observations
on subject i . In the following, we regard these observation times arising from an underlying counting
process N ∗

i (t) characterized by Ni (t) = ∑Ki
j=1 I (TKi , j � t) = N ∗

i (min(t, Ci )), where I (·) is the indicator
function, and Ci is the follow-up or censoring time with Ki = N ∗

i (Ci ) for subject i , i = 1, . . . , n. Then,
the process Yi (t) is observed only at the time points where Ni (t) jumps.

Define Fi t = {Ni (s), 0 � s < t}. For the analysis, we assume that Yi (t) follows the marginal model

E{Yi (t)|Xi , Wi ,Fi t } = μ0(t) + β ′Xi + α′ H(Fi t , Wi ), (2.1)

given Xi , Fi t , and the covariate Wi , which is allowed to be a component of the vector Xi , where μ0(t) is
an unspecified smooth function of t , β is a p-dimensional vector of unknown regression parameters, α is
a q-dimensional vector of regression coefficients, and H(·) is a vector of known functions of the counting
process Ni (t) up to t− and the covariate Wi , representing the interaction between the observation history
and some covariates. In particular, in longitudinal follow-up clinical studies with different treatments,
Wi ’s can be defined as the treatment indicators, and thus α represents the effect of interaction between
the frequency of observation times and treatment group on the longitudinal response variable. In fact,
our modeling approach is different from usual approaches. Here, the possible effect of the observation
process is directly incorporated into the conditional model about the longitudinal process, no additional
model assumption is needed for the observation process, and the fitted conditional model can be useful
for prediction in longitudinal medical cost studies.

The model (2.1) specifies that the process Yi (t) depends on the observation process Ni (t) through func-
tion H , which can be chosen according to situations. Following the discussion in Sun and others (2005),
a natural and simple choice for H may be H(Fi t , Wi ) = Ni (t−)Wi , which means that Yi (t) and Fi t are
related through the total number of observations made before time t and their relation may vary with
covariate Wi . An alternative is that Yi (t) depends on Fi t only through a recent number of observations,
say, in u time units, and this corresponds to H(Fi t , Wi ) = (Ni (t−) − Ni (t − u))Wi . One could define H
as a vector given by the forgoing two choices if both the total and recent numbers of observations may
contain information about Ni (t).

In addition, we assume that

E{Yi (t)|Xi , Wi , Ni (s), 0 � s � t} = E{Yi (t)|Xi , Wi ,Fi t },
which means that conditional on the covariates and the follow-up time, the mean of the response variable
at time point t is only related to the observation history before t . The observation for each individual
consists of O = (K , T̃K , ỸK , ÑK , X, W, C), with T̃K = (TK ,1, . . . , TK ,K ), ỸK = (Y (TK ,1), . . . , Y (TK ,K )),
ÑK = (N (TK ,1), . . . , N (TK ,K )). Throughout this paper, we will assume that we observe n i.i.d. copies,
O1, . . . , On of O. The main purpose here is to estimate the regression coefficients α, β and the smooth
baseline mean function μ0(t).
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3. ESTIMATION PROCEDURE

For inference about model (2.1), we define

Ln(β, α, μ) =
n∑

i=1

Ki∑
j=1

[Yi (TKi , j ) − μ(TKi , j ) − β ′Xi − α′ H(FiTKi , j , Wi )]
2

=
n∑

i=1

∫ τ

0
{Yi (t) − μ(t) − β ′Xi − α′ H(Fi t , Wi )}2 dNi (t). (3.1)

To make an inference about μ0(t), we propose to use B-splines to approximate it. For a finite closed
interval [0, τ ], let I = {ti }mn+2l

1 , with

0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ

be a sequence of knots that partition [0, τ ] into mn + 1 subintervals and mn = O(nv) for 0 < v < 1/2. Let
{Bil, 1 � i � qn} denote the B-spline basis functions with qn = mn + l. Let �l,I (with order l and knots I)
be the class linearly spanned by the B-spline functions, that is,

�l,I =
{

qn∑
i=1

γi Bil : γi ∈ R, i = 1, . . . , qn

}
.

Assume that μ0(t) has a bounded r th derivative. According to Schumaker (1981), there exists a smooth
spline μn(t) ∈ �l,I such that

‖ μn − μ0 ‖∞= sup
t∈[0,τ ]

|μn(t) − μ0(t)| = O(n−vr ).

Define μn(t) = γ ′ Bl(t), where γ = (γ1, . . . , γqn )
′ and Bl(t) = (B1l(t), . . . , Bqnl(t))′. We see that

Ln(β, α, μ) in (3.1) is approximate to

Ln(β, α, γ ) =
n∑

i=1

∫ τ

0
{Yi (t) − γ ′ Bl(t) − β ′Xi − α′ H(Fi t , Wi )}2 dNi (t).

The resulting estimating function for β, α, and γ has the form

U (β, α, γ ) =
n∑

i=1

∫ τ

0

⎛
⎝ Xi

H(Fi t , Wi )

Bl(t)

⎞
⎠ × {Yi (t) − γ ′ Bl(t) − β ′Xi − α′ H(Fi t , Wi )} dNi (t),

The solution to U (β, α, γ ) = 0 has a closed form

⎛
⎝β̂n

α̂n

γ̂n

⎞
⎠ =

⎡
⎢⎣ n∑

i=1

∫ τ

0

⎛
⎝ Xi

H(Fi t , Wi )

Bl(t)

⎞
⎠

⊗
2

dNi (t)

⎤
⎥⎦

−1 ⎡
⎣ n∑

i=1

∫ τ

0

⎛
⎝ Xi

H(Fi t , Wi )

Bl(t)

⎞
⎠ Yi (t) dNi (t)

⎤
⎦ .

Then the resulting estimator for μ0(t) is μ̂n(t) = γ̂ ′
n Bl(t).

Let θ0 = (β0, α0, μ0) be the true value of θ = (β, α, μ), and θ̂n = (β̂n, α̂n, μ̂n) be the estimator
of θ0. Then one can show that under conditions C1–C5 stated in the Appendix, θ̂n is consistent
with the n(1−v)/2 rate of convergence. When v = 1/(1 + 2r), then n(1−v)/2 = nr/(1+2r), and it follows
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from Stone (1980, 1982) that the rate of convergence of the estimator μ̂n is the optimal rate in non-
parametric regression. Furthermore, one can obtain that

√
n((β̂n − β0)

′, (α̂n − α0)
′)′ converges in distri-

bution to N (0, �), where � = A−1 B(A−1)′ with

A = E

⎡
⎣ K∑

j=1

{(
X

H(FTK , j , W )

)
− E

((
X

H(FTK , j , W )

) ∣∣∣∣K , TK , j

)}⊗2
⎤
⎦

and

B = E

⎡
⎣ K∑

j=1

K∑
j ′=1

{Y (TK , j ) − μ0(TK , j ) − β ′
0X − α′

0 H(FTK , j , W )}

× {Y (TK , j ′) − μ0(TK , j ′) − β ′
0X − α′

0 H(FTK , j ′ , W )}

×
{(

X
H(FTK , j , W )

)
− E

((
X

H(FTK , j , W )

) ∣∣∣∣K , TK , j

)}

×
{(

X
H(FTK , j ′ , W )

)
− E

((
X

H(FTK , j ′ , W )

) ∣∣∣∣K , TK , j ′

)}′]
.

Also, one can derive the asymptotic normality of linear functionals of μ̂n . The proofs are outlined in the
Appendix of supplementary material available at Biostatistics online.

4. SIMULATION STUDIES

In this section, simulation studies were conducted to assess the finite sample properties of the proposed
estimators. We generated the response variable from the following random-effects model:

Yi (t) = μ0(t) + β1 X1i + β2 X2i + αH(Fi t , Wi ) + εi (t), (4.1)

where X1i and X2i are generated from Bernoulli distribution with success probability 0.5 and the
uniform distribution over (−1, 1), respectively, εi (t)’s are independent standard normal variables, and
H(Fi t , Wi ) = Ni (t−)Wi with Wi = X1i . The follow-up time Ci is generated from the uniform distribution
over interval (τ/2, τ ) with τ = 6.

For the objective of the study, we considered two cases of the observation process as follows:
Case 1. The number of observation times Ki was assumed to follow the Poisson distribution with

mean Ci exp(−0.25X1i + 0.5X2i ) and the observation times (TKi ,1, . . . , TKi ,Ki ) were taken to be the order
statistics of a random sample of size Ki from the uniform distribution over (0, Ci ). That is, the observation
process satisfies the assumed model by Sun and others (2005).

Case 2. The Ki was assumed to follow the uniform distribution over {1, 2, 3} if X1i = 0 and the uniform
distribution over {4, 5, 6} otherwise, and the observation times (TKi ,1, . . . , TKi ,Ki ) were generated in the
same way as in Case 1.

The true parameter values used in our simulation studies are β0 = (β10, β20)
′ = (−1, 1)′,

α0 = −1.5,−1, 0, 1 or 1.5, and μ0(t) = log(1 + t). To estimate μ0(t), the cubic B-splines are used
in computing the spline estimators. To choose the number of interior knots, we partitioned the range
of v, (0, 0.5) into 20 equal subintervals and chose v to be the partition points. For each value of v,
we took mn = nv denoting the number of interior knots. For determining locations of knots, there
are two commonly used data-driven methods. One is the equally spaced knots, which are given by
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Tmin + k(Tmax − Tmin)/(mn + 1), k = 0, 1, . . . , mn + 1, with Tmin and Tmax being the respective minimum
and maximum values of distinct observation times. Another is the partitions according to quantiles of the
observation times, i.e. the k/(mn + 1) quantiles (k = 0, 1, . . . , mn + 1) of the distinct observation times
are chosen to be the knots. The value of v that minimizes the Bayesian information criteria (BIC) was
selected. Here BIC = 2 log(L) + log(n)(qn + 3) where L = Ln(β̂n, α̂n, μ̂n) as defined in (3.1) and qn is
the number of the B-spline basis functions. We carried out simulations for the different situations of the
number and placement of knots with W = X1, α = 1, μ0(t) = log(1 + t), and n = 50, and found that the
estimation results are very similar and the method is insensitive to the selection of number and placement
of knots, where the value of v was selected by the BIC as 1

8 . Thus, in the following, we took the number
of interior knots as n1/8 and equally spaced knots.

Tables 1 and 2 present the simulation results on estimation of β0 and α0 with the sample size n = 50 or
100 in the two cases. In the tables, we compared the proposed method with a competing method developed
by Sun and others (2005), to demonstrate the robustness of the proposed method. All the tables include the
estimated bias (BIAS) given by the average of the estimates minus the true value, the bootstrap standard
errors of the estimates (BSE), the sample standard deviation of the estimates (SSE), and the bootstrap
95% coverage probabilities (CP) obtained from 1000 independent runs. Here, we used 200 replications in
bootstrap to estimate the standard errors. Figure 1 shows the estimate of μ0(t) = log(1 + t) for case 2 of
the observation process with α = 1. In the figure, the solid line represents the true curve of μ0(t), and the
point line represents the estimated curve of μ0(t).

Based on our simulation results, we have the following findings: (i) In case 1 of the observation pro-
cess, it can be seen from Table 1 that the proposed method performs slightly better than the method
of Sun and others (2005). The possible reason is that the estimating function for β and α proposed by
Sun and others (2005) include the estimators of observation process model parameters and the approxi-
mated longitudinal outcomes as the measurement at the time point nearest to t . Our method is designed
for directly estimating the longitudinal model parameters and is easy to implement. So as a result, both
the estimated bias and standard error of our estimators may be slightly smaller than those obtained by the
method of Sun and others (2005). (ii) In case 2 of the observation process, both the proposed estimator
and the SPSZ’s estimator are approximately unbiased when α = 0. When α 
= 0, the proposed estimator is
approximately unbiased while the SPSZ’s estimator yields biased estimates and the bias could be larger
as α diverges from 0. In other words, the proposed estimation procedure seems to be more robust. The
possible reason is that our estimation method is model-free for the observation process, while their esti-
mation procedure relies on the model assumption about the observation process. (iii) The estimated curve
of μ0(t) is close to its true curve with the moderate sample size, indicating that the B-spline estimator for
μ0(t) works well. (iv) The sample standard errors and the bootstrap standard errors of the proposed esti-
mators are close to each other. Also, the bootstrap 95% coverage rates are close to the nominal level, that
is, the proposed spline semiparametric bootstrap procedure provides reasonable estimates and the normal
approximation seems to be appropriate.

We also conducted some sensitivity analysis to evaluate the performance of the proposed estima-
tors for β and μ0(t) when the interaction term is misspecified. Specifically, we generated Yi (t) from
model (4.1) with μ0(t) = log(1 + t) and the interaction term H(Fi t , Wi ) = (Ni (t−) − Ni (t − 4))X1i ,
where X1i , X2i , Ci , and the observation times were generated from the same set-up as given above. We con-
sidered the interaction term H as misspecified by three possible forms: (i) H (1)(Fi t , Wi ) = Ni (t−)X1i ; (ii)
H (2)(Fi t , Wi ) = (Ni (t−) − Ni (t − 3))X1i ; (iii) H (3)(Fi t , Wi ) = (Ni (t−) − Ni (t − 5))X1i . We applied
the proposed estimation procedure to the true and misspecified models by using the generated data from
the true model. The simulation results are summarized in Table 3. It can be seen from the table that the
estimators for β are still approximately unbiased for the misspecified situations considered here. We drew
the figure for the estimates of μ0(t), omitted here for the sake of space, and found that there are some
discrepancies between the estimated and true baseline mean functions at later times. The possible reason



Sieve estimation in semiparametric modeling of longitudinal data 7

Ta
bl

e
1.

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

Po
is

so
n

ob
se

rv
at

io
n

pr
oc

es
s

in
ca

se
1

β̂
1

β̂
2

α̂

n
α

M
et

ho
d

B
IA

S
S

S
E

B
S

E
C

P
B

IA
S

S
S

E
B

S
E

C
P

B
IA

S
S

S
E

B
S

E
C

P

50
−1

.5
P

ro
po

se
d

−0
.0

09
2

0.
33

16
0.

31
90

0.
94

10
−0

.0
19

3
0.

28
84

0.
27

71
0.

93
50

−0
.0

01
4

0.
09

56
0.

08
70

0.
92

80
S

P
S

Z
−0

.0
24

2
0.

33
30

−0
.0

20
5

0.
28

94
0.

01
72

0.
09

69
−1

P
ro

po
se

d
0.

00
28

0.
34

30
0.

31
97

0.
93

20
0.

00
11

0.
29

39
0.

28
00

0.
93

50
−0

.0
01

9
0.

10
14

0.
08

84
0.

91
20

S
P

S
Z

−0
.0

07
3

0.
34

54
0.

00
06

0.
29

46
0.

01
06

0.
10

17
0

P
ro

po
se

d
−0

.0
13

6
0.

32
56

0.
31

63
0.

94
60

0.
01

31
0.

29
69

0.
27

79
0.

93
90

−0
.0

02
1

0.
09

81
0.

08
59

0.
91

40
S

P
S

Z
−0

.0
11

4
0.

32
52

0.
01

39
0.

29
82

−0
.0

03
9

0.
09

66
1

P
ro

po
se

d
0.

00
97

0.
32

61
0.

32
19

0.
94

20
0.

01
07

0.
30

51
0.

28
37

0.
93

90
0.

00
11

0.
09

76
0.

08
92

0.
92

90
S

P
S

Z
0.

02
25

0.
33

02
0.

01
41

0.
30

60
−0

.0
13

8
0.

10
11

1.
5

P
ro

po
se

d
−0

.0
02

0
0.

32
58

0.
31

67
0.

94
30

0.
00

10
0.

29
22

0.
27

95
0.

94
20

0.
00

01
0.

09
63

0.
08

73
0.

92
60

S
P

S
Z

0.
02

06
0.

32
95

0.
00

64
0.

29
39

−0
.0

22
1

0.
09

82

10
0

−1
.5

P
ro

po
se

d
0.

00
27

0.
23

58
0.

22
67

0.
94

30
−0

.0
03

6
0.

20
32

0.
20

04
0.

94
40

0.
00

10
0.

06
90

0.
06

17
0.

92
20

S
P

S
Z

−0
.0

08
7

0.
23

84
−0

.0
05

8
0.

20
38

0.
01

24
0.

07
08

−1
P

ro
po

se
d

−0
.0

00
8

0.
22

57
0.

22
88

0.
95

80
0.

01
74

0.
20

76
0.

19
87

0.
93

70
0.

00
25

0.
06

89
0.

06
25

0.
92

40
S

P
S

Z
−0

.0
10

0
0.

22
66

0.
01

61
0.

20
76

0.
01

06
0.

06
83

0
P

ro
po

se
d

−0
.0

07
4

0.
23

81
0.

22
84

0.
94

20
0.

00
88

0.
20

64
0.

20
16

0.
94

30
0.

00
21

0.
06

92
0.

06
19

0.
92

80
S

P
S

Z
−0

.0
05

6
0.

24
05

0.
01

03
0.

20
63

0.
00

07
0.

06
90

1
P

ro
po

se
d

0.
00

22
0.

23
37

0.
22

68
0.

94
90

−0
.0

13
9

0.
20

86
0.

19
85

0.
93

80
−0

.0
01

0
0.

06
69

0.
06

22
0.

93
00

S
P

S
Z

0.
01

43
0.

23
78

−0
.0

09
4

0.
20

90
−0

.0
11

2
0.

06
82

1.
5

P
ro

po
se

d
0.

01
24

0.
22

78
0.

22
61

0.
95

20
0.

00
55

0.
20

72
0.

19
97

0.
93

40
−0

.0
01

1
0.

06
80

0.
06

23
0.

92
70

S
P

S
Z

0.
02

92
0.

23
31

0.
01

01
0.

20
90

−0
.0

15
6

0.
07

10

S
P

S
Z

,m
et

ho
d

in
S

un
an

d
ot

he
rs

(2
00

5)
.



8 X. ZHAO AND OTHERS

Ta
bl

e
2.

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

no
n-

Po
is

so
n

ob
se

rv
at

io
n

pr
oc

es
s

in
ca

se
2

β̂
1

β̂
2

α̂

n
α

M
et

ho
d

B
IA

S
S

S
E

B
S

E
C

P
B

IA
S

S
S

E
B

S
E

C
P

B
IA

S
S

S
E

B
S

E
C

P

50
−1

.5
P

ro
po

se
d

0.
00

57
0.

35
82

0.
33

27
0.

94
00

−0
.0

00
9

0.
27

85
0.

27
06

0.
94

90
0.

00
08

0.
08

98
0.

08
57

0.
93

30
S

P
S

Z
−0

.2
46

3
0.

36
81

−0
.0

01
0

0.
27

78
0.

13
41

0.
09

35
−1

P
ro

po
se

d
0.

01
09

0.
35

14
0.

33
48

0.
92

70
−0

.0
03

3
0.

28
19

0.
26

94
0.

93
70

−0
.0

00
5

0.
09

02
0.

08
56

0.
93

90
S

P
S

Z
−0

.1
46

6
0.

35
07

−0
.0

03
3

0.
28

21
0.

08
36

0.
09

00
0

P
ro

po
se

d
0.

00
39

0.
33

46
0.

33
56

0.
94

90
0.

00
27

0.
29

37
0.

26
89

0.
93

20
0.

00
12

0.
08

67
0.

08
58

0.
94

80
S

P
S

Z
0.

03
34

0.
33

41
0.

00
14

0.
29

37
−0

.0
13

0
0.

08
27

1
P

ro
po

se
d

−0
.0

13
0

0.
35

40
0.

33
69

0.
93

20
−0

.0
09

6
0.

28
42

0.
27

16
0.

94
90

−0
.0

00
5

0.
08

97
0.

08
53

0.
93

40
S

P
S

Z
0.

20
36

0.
35

08
−0

.0
11

0
0.

28
49

−0
.1

12
9

0.
08

74
1.

5
P

ro
po

se
d

0.
01

45
0.

34
46

0.
33

50
0.

93
80

−0
.0

03
6

0.
29

16
0.

27
07

0.
93

20
−0

.0
03

3
0.

09
39

0.
08

63
0.

93
50

S
P

S
Z

0.
32

39
0.

34
71

−0
.0

00
5

0.
29

16
−0

.1
65

8
0.

09
46

10
0

−1
.5

P
ro

po
se

d
0.

00
55

0.
25

42
0.

23
64

0.
94

00
0.

00
73

0.
19

20
0.

19
05

0.
95

40
−0

.0
01

1
0.

06
23

0.
06

11
0.

93
90

S
P

S
Z

−0
.2

51
1

0.
25

69
0.

00
78

0.
19

37
0.

12
92

0.
06

50
−1

P
ro

po
se

d
0.

00
04

0.
24

35
0.

23
71

0.
94

30
0.

00
58

0.
18

89
0.

18
87

0.
95

00
0.

00
12

0.
06

23
0.

06
10

0.
95

00
S

P
S

Z
−0

.1
59

6
0.

24
41

0.
00

52
0.

18
98

0.
08

29
0.

06
04

0
P

ro
po

se
d

−0
.0

04
7

0.
24

35
0.

23
57

0.
93

90
−0

.0
01

7
0.

20
10

0.
18

95
0.

93
50

0.
00

17
0.

06
56

0.
06

08
0.

92
40

S
P

S
Z

0.
02

35
0.

24
22

−0
.0

00
8

0.
20

20
−0

.0
12

4
0.

06
21

1
P

ro
po

se
d

−0
.0

10
8

0.
24

69
0.

23
59

0.
94

60
0.

00
63

0.
19

89
0.

18
99

0.
93

30
0.

00
11

0.
06

30
0.

06
06

0.
93

90
S

P
S

Z
0.

21
26

0.
24

69
0.

00
58

0.
19

85
−0

.1
10

8
0.

06
32

1.
5

P
ro

po
se

d
−0

.0
02

0
0.

24
04

0.
23

77
0.

94
60

0.
00

19
0.

19
68

0.
19

07
0.

94
30

−0
.0

01
3

0.
06

41
0.

06
10

0.
93

90
S

P
S

Z
0.

31
55

0.
24

11
0.

00
04

0.
19

69
−0

.1
60

8
0.

06
41

S
P

S
Z

,m
et

ho
d

in
S

un
an

d
ot

he
rs

(2
00

5)
.



Sieve estimation in semiparametric modeling of longitudinal data 9

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Time

E
st

im
at

e 
of

 m
u

True curve
B−spline estimate

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Time

E
st

im
at

e 
of

 m
u

True curve
B−spline estimate

(a) (b)

Fig. 1. Estimate of μ0(t) = log (1 + t) with α = 1 and H(Fi t , Wi ) = Ni (t−)X1i under non-Poisson observation pro-
cesses. (a) Sample size n = 50 and (b) Sample size n = 100.

is that less information can be available at times close to the end of study period. Thus, such misspecifi-
cations have a little influence on estimation of μ0. We also considered other misspecified situations and
obtained similar conclusions.

5. APPLICATIONS

5.1 Analysis of bladder cancer data

This subsection presents an analysis of the bladder cancer data by applying our proposed methods. There
were 116 subjects with superficial bladder tumors randomized into one of three treatment groups: placebo,
thiotepa, and pyridoxine. In the following, we restrict our attention to the placebo and thiotepa groups
with respective sizes of 47 and 38. For each patient, the observed information includes times when he
or she made clinical visits and the numbers of recurrent tumors between clinical visits. Two baseline
covariates were observed and they are the number of initial tumors and the size of the largest initial
tumor.

To analyze the data, for patient i , define x1i to be equal to 1 if the i th patient was given the thiotepa
treatment and 0 otherwise, x2i the number of initial tumors, and x3i the size of the largest initial tumor,
with i = 1, . . . , 85. We define the response Yi (t) to be the natural logarithm of the cumulated new tumor
numbers of patient i up to time t plus 1 to avoid 0. Let Ni (·) represent the accumulated observation numbers
of patient i over the study period. Assume that {Yi (t)} can be described by model (2.1) with H(Fi t , Wi ) =
Ni (t−)X1i , meaning that the relation between recurrence rate of bladder tumors and observation times
may vary with different treatments, i.e.

E{Yi (t)|X1i , X2i , X3i ,Fi t } = μ0(t) + β ′
1 X1i + β ′

2 X2i + β ′
3 X3i + α′Ni (t−)X1i .

Here, we took the last visit time of patient i as Ci in the analysis. For estimation of μ0(t), we use the cubic
B-spline approximation by taking the number of interior knots mn as nv with v = 0.1.

The application of the estimation procedure proposed in the previous sections gave β̂1 = −0.3445, β̂2 =
0.1730, β̂3 = −0.0325, and α̂ = −0.0288 with the bootstrap standard errors being 0.1369, 0.0450, 0.0470,
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and 0.0109, which correspond to p-values of 0.0118, 0.0001, 0.4888, and 0.0079, respectively, based on
the asymptotic results of the estimators. Here β̂1, β̂2, and β̂3 represent the estimated regression coeffi-
cients corresponding to the treatment indicator, the number of initial tumors, and the size of the largest
initial tumor, respectively, while α̂ represents the estimated effect of the interaction between the obser-
vation process and the treatment indicator on the tumor recurrence rate. These results indicate that the
response process and the interaction between the observation process and the treatment indicator are sig-
nificantly negatively correlated. Just as explained in Sun and others (2005), there are two reasons for this
finding. One is that the more often the patient visited the clinic, had tumors removed, and received treat-
ment, the lower was the tumor recurrence rate; another one is that more visits means less time for tumor
growth. Furthermore, the thiotepa treatment significantly reduces the occurrence rate of bladder tumors,
and the number of initial tumors has a significant positive effect on the tumor recurrence rate. However,
the occurrence rates of bladder tumors do not seem to be significantly related to the size of the largest
initial tumor. These conclusions are consistent with those presented in Sun and others (2005, 2007) and
Liang and others (2009). Compared with the models in Sun and others (2005, 2007) and Liang and others
(2009), our fitted model may provide more information about the correlation between the tumor recurrence
rate and observation times over treatment groups and also could be useful to estimate the future recurrence
rate based on the observation history.

5.2 Analysis of medical cost data

We also apply the proposed method to analyzing medical costs for CHF patients in the United States.
The data source is the CDR database from the University of Virginia Health System, available online at
http://cdr.virginia.edu/cdr. This study includes a total of 1475 patients who were at least 60 years old and
first diagnosed and treated in 2004 with heart failure (ICD9 diagnosis code beginning with 428). For each
patient, the information recorded in the CDR included clinical visiting times and the medical cost for each
hospital visit and some covariates, e.g. age, gender (male = 1, female = 0), race (white = 1, non-white =
0). The follow-up time was taken as patient’s last hospital admission (up to July 31, 2006), or date of death
extracted from Death Certificate Data at the Virginia Department of Vital Statistics.

Looking at the data, one can see that patients visiting hospital more often tended to pay more for
each visit, which implies that observation times are informative of medical costs, as pointed out by
Liu and others (2008). To analyze the data, following Liu and others (2008), for patient i , we define x1i

to be the square of the normalized age (centered at its mean of 72 years and divided by its standard error
7.7441), x2i gender, and x3i race, with i = 1, . . . , 1475. We define the response Yi (t) to be the natural log-
arithm of the medical cost of patient i at time t . Let Ni (·) represent the accumulated numbers of visiting
times for patient i over the study period. Define Ñi (t) = (Ni (t−) − 10)/8 and assume that {Yi (t)} can
be described by model (2.1) with H(Fi t , Wi ) = Ñi (t)X2i + Ñi (t)X3i , meaning that the relation between
medical cost and the clinical times may vary with different gender and race, i.e.

E{Yi (t)|X1i , X2i , X3i ,Fi t } = μ0(t) + β ′
1 X1i + β ′

2 X2i + β ′
3 X3i + α′

1 Ñi (t)X2i + α′
2 Ñi (t)X3i .

For estimation of μ0(t), we use the cubic B-spline approximation by taking the number of interior knots
mn as nv with v = 0.1.

By applying the estimation procedure proposed in the previous sections, we obtained that β̂1 =
−0.1335, β̂2 = 0.1655, β̂3 = −0.2598, and α̂1 = 0.2281, α̂2 = 0.1789 with the bootstrap standard errors
being 0.0347, 0.0788, 0.0867, 0.0599, and 0.0540, which correspond to p-values of 0.0001, 0.0357,
0.0027, 0.0001, and 0.0009, respectively, based on the asymptotic results of the estimators. Here β̂1, β̂2,
and β̂3 represent the estimated regression coefficients corresponding to the square of age, the gender indi-
cator, and the race indicator, respectively, while α̂1 and α̂2 represent the estimated effects of the interaction

http://cdr.virginia.edu/cdr
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between the observation process and the gender indicator on the medical cost, and the interaction between
the observation process and the race indicator on the medical cost, respectively. These results indicate that:
(i) each hospital medical cost is significantly decreasing with age2. This fact may be due to two reasons.
One is that the higher frequency of older patients to visit hospital diluted the medical cost for each visit;
another is that the less aggressive treatment for older CHF patients resulted in lower medical cost. (ii) The
gender effect is significant on the medical cost as males spent 18% more than females for each visit. (iii)
Significant lower costs were spent by white patients (−0.2598 in log scale, or 22% lower in dollar value).
(iv) The interaction effects between the visiting times and the gender or race indicator are significantly
positively correlated with the medical cost, which can be explained by the reason that patients visiting
hospital more often may have more serious conditions and thus may pay more for each visit no matter
gender or race. These results are consistent with those obtained by Liu and others (2008) using the joint
random-effects modeling approach. In fact, our fitted model can provide more insights into how the med-
ical cost and observation times are related and also be easily used to predict the future medical cost based
on the observation history.

6. CONCLUDING REMARKS

For the statistical analysis of longitudinal data, we have proposed a new semiparametric model for the
situations where the correlation between the response process and the observation process may vary with
the covariates, including the conditional model of Sun and others (2005) as a special case. The new model
allows for the interaction between the observation history and some components of the covariates, which is
different from the joint models of Sun and others (2007) and Liang and others (2009) through latent vari-
ables to characterize the correlation between the response process and the observation times. For inference
about model parameters, a spline-based least squares estimation procedure has been proposed, and the
asymptotic properties of the resulting estimators of both the regression parameters and the non-parametric
baseline mean function have been established. Another key difference between the approach developed
here and those presented in Sun and others (2005, 2007) and Liang and others (2009) is that our method
is designed for directly estimating the longitudinal model parameters but leaving the patterns of the obser-
vation times to be arbitrary and is easy to implement, whereas their estimation procedures rely on the
model specification for observation processes. As demonstrated in our simulation studies, the proposed
approaches are more flexible and robust. In particular, the proposed estimation procedure performs better
than the method of Sun and others (2005) for the situations of Poisson and non-Poisson observation pro-
cesses considered here. An important application of the proposed modeling approach is that the estimation
results can be easily used to make a prediction about the longitudinal response process such as forecasting
longitudinal medical costs. Further studies are needed to extend the proposed method to the analysis of
irregularly observed longitudinal data involving both an informative observation scheme and a dependent
terminal event and perform deep analysis an the medical cost data. Moreover, we can extend our model to
a class of conditional time-varying coefficient models as follows:

E{Yi (t)|Xi , Wi ,Fi t } = μ0(t) + β(t)′Xi + α(t)′ H(Fi t , Wi ).

For inference about the above model, B-spline function approximations can be used to estimate the time-
varying coefficients and the smooth baseline mean function simultaneously, and then the asymptotic prop-
erties of spline-based estimators could be established by using similar arguments.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.

http://biostatistics.oxfordjournals.org
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Appendix: Proofs of Asymptotic Properties of θ̂n

To establish the asymptotic properties of the estimators, we need the following regularity

conditions.

C1. The maximum spacing of the knots satisfies4 = maxl+1<i<mn+l+1 | ti−ti−1 |= O(n−v).

C2. The parameter spaces of (β′, α′)′, R is bounded and convex on Rp+q, and the true

parameter (β0, α0, µ0) ∈ R◦ ×Fr, where R◦ is the interior of R, and

Fr = {µ : [0,∞) −→ R

∣∣∣|µ(l)(s)− µ(l)(t)| ≤M |s− t|ζ , s, t ∈ [0, τ ]},

where r = l + ζ > 0.5, M is a positive constant and f (l) denotes the lth derivative of

function f .

C3. P (‖X‖ ≤M1) = 1 for a positive constant M1, that is, the covariate vector is uniformly

bounded.
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C4. There exists a positive integer M2 such that P (K ≤ M2) = 1, that is, the number of

the observation is finite.

C5. If with probability 1, h′1X + h′2H(Ft,W ) + h3(t) = 0 for some deterministic function

h3, and h1 ∈ Rp and h2 ∈ Rq, then h1 = 0, h2 = 0, h3(t) = 0.

Next, we introduce more notation. Let

F =

{
f : [0,∞) −→ R : ||f ||2 ≡

[
E

{∫ τ

0

|f(t)|2dN(t)

}]1/2
<∞

}
.

Let Z = {Z(t,W ) ≡ H(Ft,W ), 0 ≤ t ≤ τ} represent a q-dimensional bounded random

process index by t. Here, without loss of generality, we assume that W is one-dimensional.

Define

G ≡ {z(t, w) : [0, τ ]× [−M1,M1] −→M} ,

whereM is a bounded set on Rq, and for function f( x, z, t) : [−M1,M1]
p×G× [0, τ ] −→ R,

define

‖f‖2 ≡

[
E

{
K∑
j=1

|f(X, Z(TK,j,W ), TK,j)|2
}]1/2

.

Set Mn(g) = n−1Ln(β, α, µ) = Pnmg(O), where g(x, z, t) = β′x + α′z(t, w) + µ(t) and

mg(O) =
K∑
j=1

[Y (TK,j)− g(X, Z(TK,j,W ), TK,j)]
2,

and M(g) = Pmg(O), where Pf and Pnf represent
∫
fdP and n−1

∑n
i=1 f(Oi), respectively.

Since F is a Hilbert space, and Fr ⊂ F , by the Hilbert Projection Theorem (Stakgold,

1998, page 288), for xj ∈ F , there is a unique a∗j ∈ Fr, s.t. (xj − a∗j) ⊥ Fr, for j = 1, · · · , p.

Let zl(t, w) be the lth component of H(Ft,W ), l = 1, · · · , q. Then for zl(t, w) ∈ F , there

is a unique b∗l (t) ∈ Fr, s.t. (zl − b∗l ) ⊥ Fr, for l = 1, · · · , q. Let a∗ = (a∗1, · · · , a∗p)′ and

b∗ = (b∗1, · · · , b∗q)′. Furthermore, we need the following condition.

C6. E

∫ τ0
 X− a∗

H(Ft,W )− b∗(t)


⊗

2

dN(t)

 is nonsingular.



3

Here C1 is the same condition as required by Lu et al. (2007). C2 is a common assumption

in the nonparametric smoothing estimation problem. C3 and C4 are mild conditions. C5 is

needed to establish the identifiability of the model. C6 is a technical condition.

Proof of the consistency of θ̂n.

Let µn(t) be the B-spline function approximation of µ0(t) with ||µn − µ0||∞ = O(n−vr),

gn(x, z, t) = β′0x + α′0z(t, w) + µn(t), ĝn(x, z, t) = β̂′nx + α̂′nz(t, w) + µ̂n(t), and g0(x, z, t) =

β′0x + α′0z(t, w) + µ0(t). Without loss of generality, we assume that µn > µ0. Thus gn > g0,

and ‖gn−g0‖∞ = O(n−vr). Choose a φn ∈ Ψl,I and b1 and b2, such that hn ≡ b1
′x+b2

′z+φn,

and ‖hn‖22 = O(n−vr +n−
1−v
2 ). Then for any λ > 0, ‖gn−g0 +λhn‖22 = O(n−vr +n−

1−v
2 ). Let

Hn(λ) ≡Mn(gn + λhn)

=
1

n

n∑
i=1

Ki∑
j=1

[Yi(TKi,j)− (gn + λhn)(Xi, Zi(TKi,j,Wi), TKi,j)]
2,

then H ′n(λ) is a nondecreasing function. Therefore, to prove the convergence of ĝn to g0,

it is sufficient to show that ∀λ0 > 0, H ′n(λ0) > 0 and H ′n(−λ0) < 0 except on an event

with probability converging to zero. This can be proved by using the arguments similar to

those in the proof of Lemma 5.1 of Huang (1999). Thus ĝn must be between gn − λ0hn and

gn + λ0hn, and so ‖ĝn − gn‖22 ≤ λ20‖hn‖22 = O(n−vr + n−
1−v
2 ). Then we have ‖ĝn − g0‖2 ≤

‖ĝn − gn‖2 + ‖gn − g0‖2 = O((n−vr + n−
1−v
2 )1/2), and

‖ĝn − g0‖2

= ‖(β̂n − β0)′(x− a∗) + (α̂n − α0)
′(z − b∗)‖2 + ‖(β̂n − β0)′a∗ + (α̂n − α0)

′b∗ + (µ̂n − µ0)‖2.

By C6, we can get ‖β̂n − β0‖ −→ 0 and ‖α̂n − α0‖ −→ 0 almost surely from the first term

of the right hand side of the above equality and thus it follows that ‖µ̂n−µ0‖2 −→ 0 almost

surely. This completes the proof of the consitency.
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Proof of the rate of convergence of θ̂n.

For any η > 0, let

Fη ≡ {g = β′x + α′z + µ : ‖β − β0‖ ≤ η, ‖α− α0‖ ≤ η, µ ∈ Ψl,I , ‖µ− µ0‖2 ≤ η}.

Similar to Lemma A.2 in Huang (1999), for any ε ≤ η,

logN[ ](ε,Fη, ‖ · ‖2) ≤ c1qn log(η/ε)

for a constant c1. Thus, for ε > 0, there exists a set of brackets {[gli, gri ], i = 1, · · · , (η
ε
)c1qn}

such that, for each g ∈ Fη, there is a [gls, g
r
s ], s.t. gls(x, z, t) ≤ g(x, z, t) ≤ grs(x, z, t), for all

x, t ∈ [0, τ ] and z ∈ G, and ‖grs − gls‖22 ≤ ε2.

By the consistency of θ̂n, ĝn ∈ Fη, for any η > 0 and sufficiently large n.

Next, consider the class Mη ≡ {mg(O)−mg0(O) : g ∈ Fη}.

For i = 1, · · · , (η
ε
)c1qn , define

ml
i(O) =

K∑
j=1

{
[min{|gli(X, Z(TK,j,W )|, TK,j), |gri (X, Z(TK,j,W ), TK,j)|}]2

− 2Y (TK,j){gri (X, Z(TK,j,W ), TK,j)I(Y (TK,j) ≥ 0)

+ gli(X, Z(TK,j,W ), TK,j)I(Y (Tk,j) < 0)}

+ 2Y (TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)
}

and

mr
i (O) =

K∑
j=1

{
[max{|gli(X, Z(TK,j,W ), TK,j)|, |gri (X, Z(TK,j,W ), TK,j)|}]2

− 2Y (TK,j){gli(X, Z(TK,j,W ), TK,j)I(Y (TK,j) ≥ 0)

+ gri (X, Z(TK,j,W ), TK,j)I(Y (TK,j) < 0)}

+ 2Y (TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)
}
.
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It is easy to show that ||mr
i (O) −ml

i(O)||2P,B ≤ c2ε
2 with a positive constant c2, where

‖ · ‖P,B is the “Bernstein norm” defined as ‖f‖P,B = {2P (e|f |− 1− |f |)}1/2 by van der Vaart

and Wellner (1996). Thus {[ml
i(O),mr

i (O)], i = 1, · · · , (η
ε
)c1qn} is the set of brackets forMη,

which implies that

logN[ ](ε,Mη, || · ||P,B) ≤ c1qn log(η/ε).

Similarly, we can verify that ||mg(O)−mg0(O)||2P,B ≤ c3η
2 for any g ∈ Fη by C4. Therefore,

by Lemma 3.4.3 of van der Vaart and Wellner (1996), we obtain

E‖n1/2(Pn − P )‖Mη ≤ c4J[ ](η,Mη, || · ||P,B)

{
1 +

J[ ](η,Mη, || · ||P,B)

η2n1/2

}
, (A1)

where ‖n1/2(Pn − P )‖Mη = supf∈Mη
|n1/2(Pn − P )f |, and

J[ ](η,Mη, || · ||P,B) =

∫ η

0

{1 + logN[](ε,Mη, || · ||P,B)}1/2dε ≤ c5q
1/2
n η.

The right hand side of (A1) yields ϕn(η) = c5(q
1/2
n η + qn/n

1/2). It is easy to see that

ϕn(η)/η is decreasing in η, and

r2nϕn(
1

rn
) = rnq

1/2
n + r2nqn/n

1/2 ≤ 2n1/2, for rn = n
1−v
2 and 0 < v < 1/2.

Note that Pmg(O) − Pmg0(O) = ‖g − g0‖22. Thus, by Theorem 3.2.5 of van der Vaart and

Wellner (1996), n
1−v
2 ‖ĝn − g0‖2 = Op(1). Therefore by the similar arguments as those in the

proof of consistency of β̂n, α̂n, and µ̂n, we can get the rate of convergence of β̂n, α̂n, and µ̂n

as n(1−v)/2.

Proof of the asymptotic normality of θ̂n.

Let H ≡ {h = (h1, h2, h3) : (h′1,h
′
2)
′ ∈ R, h3 ∈ Fr, ‖h1‖ ≤ 1, ‖h2‖ ≤ 1, ‖h3‖∞ ≤ 1}. We

define a sequence of maps Sn mapping a neighborhood of (β0, α0, µ0), denoted by U , in the
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parameter space for (β, α, µ) into l∞(H) as

Sn(β, α, µ)[h1,h2, h3]

≡ n−1
d

dε
Ln(β + εh1, α + εh2, µ+ εh3)

∣∣∣
ε=0

= − 2

n

n∑
i=1

∫ τ

0

[Yi(t)− β′Xi − α′H(Fit,Wi)− µ(t)][h′1 Xi + h′2H(Fit,Wi) + h3(t)]dNi(t)

≡ Pnψ(θ;O)[h1, h2, h3],

where

ψ(θ;O)[h1, h2, h3] = −2

∫ τ

0

[Y (t)−β′X−α′H(Ft,W )−µ(t)][h′1 X+h′2H(Ft,W )+h3(t)]dN(t)

with θ = (β, α, µ).

Correspondingly, we define the limit map S : U −→ l∞(H) as

S(θ)[h1, h2, h3] = Pψ(θ;O)[h1, h2, h3],

where l∞(H) is the space of bounded functionals on H under the supermum norm ‖f‖∞ =

suph∈H |f(h)|. Also, we define the derivative of S(β, α, µ)[h1, h2, h3] at (β0, α0, µ0), denoted

by Ṡ(β0, α0, µ0)[h1, h2, h3], as a map from the space {(β−β0, α−α0, µ−µ0) : (β, α, µ) ∈ U}

to l∞(H) and

Ṡ(β0, α0, µ0)(β − β0, α− α0, µ− µ0)[h1,h2, h3]

=
d

dε
S(β0 + ε(β − β0), α0 + ε(α− α0), µ0 + ε(µ− µ0))[h1,h2, h3]

∣∣∣
ε=0

≡ σ1(h1,h2, h3)
′(β − β0) + σ2(h1,h2, h3)

′(α− α0) +

∫ τ

0

(µ− µ0)(t)dσ3(h1,h2, h3)(t),

where

σ1(h1,h2, h3) = 2P

∫ τ

0

[h′1 X + h′2H(Ft,W ) + h3(t)]XdN(t),

σ2(h1,h2, h3) = 2P

∫ τ

0

[h′1 X + h′2H(Ft,W ) + h3(t)]H(Ft,W )dN(t),
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and

σ3(h1,h2, h3)(t) = 2P

∫ t

0

[h′1 X + h′2H(Fs,W ) + h3(s)]dN(s).

To derive the asymptotic normality of the estimators (β̂n, α̂n, µ̂n), following the proof of

Theorem 3.3.1 of van der Vaart and Wellner (1996, page 310) and the proof of Theorem 2

in Zeng et al. (2005), we can show that

√
nṠ(β0, α0, µ0)(β̂n − β0, α̂n − α0, µ̂n − µ0)[h1,h2, h3]

= σ1(h1,h2, h3)
′√n(β̂n − β0) + σ2(h1,h2, h3)

′√n(α̂n − α0)

+

∫ τ

0

√
n(µ̂n − µ0)(t)dσ3(h1,h2, h3)(t)

= −
√
n(Sn − S)(β0, α0, µ0)[h1,h2, h3] + op(1), (A2)

for any (h1,h2, h3) ∈ H.

Next, we will derive the asymptotic normality of θ̂n from (A2).

(i) Note that

σ3(h1,h2, h3)(t)

= 2E

[∫ τ

0

I(s ≤ t) {h′1 X + h′2H(Fs,W ) + h3(s)} dN(s)

]
= 2E

[
K∑
j=1

I(TK,j ≤ t)
{
h′1 X + h′2H(FTK,j ,W ) + h3(TK,j)

}]

= 2E

[
K∑
j=1

E
{
I(TK,j ≤ t)

(
h′1 X + h′2H(FTK,j ,W ) + h3(TK,j)

)
|K
}]

= 2E

[
K∑
j=1

E
{
I(TK,j ≤ t)

(
E
(
h′1 X + h′2H(FTK,j ,W )|K,TK,j

)
+ h3(TK,j)

) ∣∣∣K}] .
Thus, we can take

h3(TK,j) = −E
{
h′1 X + h′2H(FTK,j ,W )

∣∣∣K,TK,j}
= −

 h1

h2

′E
 X

H(FTK,j ,W )

∣∣∣K,TK,j
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such that σ3(h1,h2, h3)(t) ≡ 0. Furthermore, for this h3, we have σ1(h1,h2, h3)

σ2(h1,h2, h3)

 = 2A

 h1

h2

 ,

and then it follows from (A2) that

2

 h1

h2

′A√n
 β̂n − β0

α̂n − α0

 −→ N(0, σ2),

where

σ2 = P [ψ(β0, α0, µ0;O)[h1,h2, h3]]
2 = 4

 h1

h2

′B
 h1

h2

 ,

and A and B are given in Section 3. Therefore, A
√
n

 β̂n − β0

α̂n − α0

 −→ N(0, B), which

implies
√
n

 β̂n − β0

α̂n − α0

 −→ N(0, A−1B(A−1)′).

(ii) Note that σ1(h1,h2, h3)

σ2(h1,h2, h3)

 = 2Γ

 h1

h2

+ 2E


K∑
j=1

 X

H(FTK,j ,W )

h3(TK,j)

 ,

where

Γ = E

 K∑
j=1

 X

H(FTK,j ,W )

⊗2
 .

Then, we can take h1

h2

 = −Γ−1E


K∑
j=1

 X

H(FTK,j ,W )

h3(TK,j)


such that σ1(h1,h2, h3) = 0 and σ2(h1,h2, h3) = 0. Thus it follows from (A2) that

√
n
∫ τ
0

(µ̂n(t)−
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µ0(t))dGg(t) converges in distribution to N(0, σ2
g), where for g ∈ Fr,

Gg(t)

= P

∫ t

0

g(s)−

 X

H(Fs,W )

′ Γ−1P
∫ τ

0

 X

H(Fu,W )

 g(u)dN(u)


 dN(s)

 ,
and

σ2
g = E

[
K∑
j=1

{
Y (TK,j)− µ0(TK,j)− β′0X− α′0H(FTK,j ,W )

}

×

g(TK,j)−

 X

H(FTK,j ,W )

′ Γ−1P
∫ τ

0

 X

H(Fu,W )

 g(u)dN(u)




2

.
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