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Abstract Panel count data usually refer to data arising from studies on recurrent
events in which the subjects under study are followed or observed only periodically
rather than continuously. In such situations, an objective of interest is about the oc-
currence of some events that can occur multiple times or repeatedly and the studies
resulting in this type of information are often referred to as event history studies.
There are many fields such as medical studies, reliability experiments and social sci-
ences wherein panel count data are encountered commonly. This article reviews basic
concepts about panel count data, some common issues and questions of interest re-
garding them as well as the corresponding statistical procedures that are suitable for
their analysis. In particular, we will discuss an estimation of the mean function of the
underlying counting process characterizing the occurrence of the events, comparison
of several processes and analysis of multiple state panel count data. Some discus-
sion is also presented of situations involving dependent or informative observation
processes.
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1 Introduction

This article discusses statistical analysis of panel count data arising from recurrent
event or event history studies regarding the occurrence of some recurrent events. The
data from these studies are often referred to as event history data and they are encoun-
tered commonly in many areas such as medical studies, reliability experiments and
social sciences (Nelson 2003; Vermunt 1997). The event history data can be generally
classified into two types. One is from the studies that monitor subjects under study
continuously and consequently provide information on the times of all occurrences
of recurrent events. These data are usually referred to as recurrent event data (Cook
and Lawless 2007). The other type is the so-called panel count data discussed here
and they arise when subjects under study are examined or observed only at discrete
time points and so provide only the numbers of occurrences of the events between
subsequent observation times.

Examples of recurrent event data include data on occurrences of the hospitaliza-
tions of intravenous drug users (Wang et al. 2001), occurrences of the same infection
such as recurrent pyogenic infections among inherited disorder patients (Lin et al.
2000), repeated occurrences of certain tumors, and warranty claims for an automo-
bile (Kalbfleisch et al. 1991). These situations provide examples of panel count data
if the continuous observation scheme is changed to a discrete observation scheme.
The panel count data could occur for various reasons. For example, they may arise
because the continuous observation may be too expensive or impossible, or when it
is not practical to conduct continuous follow-ups of subjects under study.

To give a specific example of panel count data, consider the data discussed in Thall
and Lachin (1988) and given in the data set IV of Appendix A in Sun (2006) among
others. They arose from a clinical trial on the use of the natural bile chenodeoxycholic
acid for the dissolution of cholesterol gallstones. The data include the observed infor-
mation on the incidence of nausea from the first year follow-up on 111 patients with
floating gallstones in high-dose and placebo groups. The original study involves 10-
year follow-ups and consists of three groups, viz., placebo, low dose and high dose.
Nausea is an unpleasant sensation vaguely referred to the epigastrium and abdomen,
often culminating in vomiting, and it is very commonly associated with gallstone dis-
ease. During the study, the patients were scheduled to return for clinical observations
at 1, 2, 3, 6, 9, and 12 months during the first year follow-up. At each visit, they were
asked to report the total number of incidences of nausea among other symptoms that
had occurred between successive visits. That is, the observed data include actual visit
times and the numbers of incidences or occurrences of nausea between the visits. As
expected, actual visit or observation times differ from patient to patient. Another ex-
ample of panel count data, which has been discussed by many authors, can be found
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in the data set V of Appendix A in Sun (2006). It arose from a bladder cancer study
consisting of patients with superficial bladder tumors and more discussion on it will
be provided later on.

A special case of panel count data that often occurs in practice is when each sub-
ject is observed only once and such data are usually referred to as current status data
(Sun and Kalbfleisch 1993). In this situation, only available information about the
recurrent event of interest is the total number of the occurrences of the event up to the
observation time. A common example of current status data arises in tumorgenicity
experiments that concern the occurrence rate of certain tumors and in these experi-
ments, it is often the case that only the number of tumors that have occurred before
the death or sacrifice of the animal is known. Another area that frequently produces
current status data is demographical studies (Diamond and McDonald 1991).

Many authors have discussed statistical analysis of recurrent event data (Cook
and Lawless 1996; Lawless and Nadeau 1995; Lin et al. 2000; Pepe and Cai 1993;
Wang and Chen 2000). For example, Andersen et al. (1993) have provided a compre-
hensive coverage of counting process approaches for the analysis of recurrent event
data. More recently, Cook and Lawless (2007) have given a relatively complete and
thorough review of the literature on recurrent event data wherein more references can
be found.

Comparatively, sparse literature exists on the analysis of panel count data. Among
the authors who considered this situation, Kalbfleisch and Lawless (1985) discussed
the fitting of Markov model to panel count data and Sun and Kalbfleisch (1995) and
Wellner and Zhang (2000) studied estimation of the mean function of the underly-
ing counting process that yields panel count data. For treatment comparison based
on panel count data, several approaches have been developed. For example, one of
the early papers on this was given by Thall and Lachin (1988), who suggested the
use of some data grouping method. Sun and Fang (2003) proposed a model-free ap-
proach assuming that the treatment indicators can be regarded as independent and
identically distributed random variables, wherein the isotonic regression estimator
is used for the mean function. Also Park et al. (2007) gave a class of nonparamet-
ric two-sample tests based on the isotonic regression estimator, while Zhang (2006)
and Balakrishnan and Zhao (2010b) developed some multi-sample nonparametric
procedures by using nonparametric maximum pseudo-likelihood approach. Instead
of using the isotonic regression estimator or the nonparametric maximum pseudo-
likelihood estimator, Balakrishnan and Zhao (2009) proposed two new classes of test
statistics by using the nonparametric maximum likelihood estimator. They showed
by means of Monte Carlo simulations that their tests are more powerful and robust
than those based on the nonparametric maximum pseudo-likelihood approach. Note
that the nonparametric maximum likelihood estimator is in general more efficient
but more complicated both theoretically and computationally. The authors who con-
sidered regression analysis of panel count data include Sun and Wei (2000), Zhang
(2002), and Wellner and Zhang (2007).

It is of interest and helpful to mention that in addition to the amount of relevant
information available being different between recurrent event data and panel count
data, yet another key difference is the observation process. In the case of the former,
the observation process means the length of the whole follow-up, while in the case
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of the latter, it also includes a sequence of consecutive observation times. Most of
the methods mentioned above or discussed in the literature assume the observation
process to be independent of the underlying counting process generating recurrent
event or panel count data. As will be discussed below, there are also some approaches
that allow dependent observation processes.

To analyze recurrent event data, it is common and convenient to characterize the
occurrences of recurrent events by counting processes and to model the intensity
process of the counting process (Andersen et al. 1993). On the other hand, for the
analysis of panel count data, it is usually more convenient to work directly on the
mean function of the counting processes conditional on covariate processes due to
the incomplete nature of the observed information. In this case, a natural and simple
approach is to fit the panel count data to parametric Poisson processes or mixed para-
metric Poisson processes. For example, Hinde (1982) and Breslow (1984) discussed
regression analysis of Poisson count data, while Thall (1988) suggested regression
approaches for mixed Poisson processes. An alternative parametric approach is to
treat the data as longitudinal count data and to use the generalized estimating equation
approach (Diggle et al. 1994). In this article, we focus our attention on nonparamet-
ric approaches that regard observed data as realizations of some underlying counting
processes.

In the following, first in Sect. 2, we briefly review some basic concepts on count-
ing processes and some nonparametric estimation procedures for recurrent event
data. Section 3 considers nonparametric estimation of the mean function of count-
ing processes giving rise to panel count data by assuming that subjects under study
come from a homogeneous population. For this specific problem, several inferential
procedures are discussed. In Sect. 4, we discuss the treatment comparison problem
based on panel count data. We formulate the problem through the comparison of
the mean functions of different counting processes and discuss some nonparamet-
ric procedures. Section 5 presents some numerical results comparing nonparametric
maximum likelihood-based and pseudo-likelihood-based treatment comparison pro-
cedures as well as two illustrative examples. In Sect. 6, the analysis of multiple state
panel count data is discussed with the focus on the data arising from the Markov
model.

Throughout Sects. 3 to 6, we will assume that the observation process is indepen-
dent of the underlying counting process of interest. Of course, this may not hold in
practice. Section 7 discusses some situations when the two processes may be related
with each other and two specific ideas are described for modeling the relationship
between the two processes. In Sect. 8, to make the article complete, we briefly con-
sider the situation when there are covariates and describe a few inferential procedures
with a focus on the marginal modeling approach for the underlying counting process.
Section 9 indicates some ideas about the use of Bayesian approaches for the analysis
of panel count data, and finally Sect. 10 contains some discussions and concluding
remarks. Note that in practice, one could regard panel count data as a special type
of longitudinal data and apply the methodology developed for general longitudinal
data. However, a major drawback in this approach is that one would miss the special
structure of panel count data. Moreover, some questions of interest in panel count
data cannot be answered from the longitudinal data viewpoint.
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2 Notation and review

In this section, we will first introduce some notation and review some basic concepts
about counting processes that will be used throughout the article. Some nonparamet-
ric estimation procedures for recurrent event data will then be discussed.

2.1 Counting processes

Counting processes have been playing an essential role in the development of statis-
tical models and inferential procedures for event history analysis. Some of the early
and significant contributions to this were given by Aalen (1975, 1978) and Andersen
and Borgan (1985). They and others established the connection between the count-
ing process and event history analysis and showed how the theory of multivariate
counting processes can provide a general framework and a useful tool for event his-
tory analysis. For detailed description and discussion of this, readers are referred to
Andersen et al. (1993) in addition to the references mentioned above.

Let (Ω, F ,P ) be a probability space and T = [0, τ ) be a continuous-time interval,
where τ is a given terminal time, 0 < τ ≤ ∞. A stochastic process X is a family of
random variables {X(t) : t ∈ T }. A filtration or history (Ft : t ∈ T ) is an increasing
right-continuous family of sub-σ -algebras of F such that Ft contains all the infor-
mation generated by the stochastic process X on [0, t]. The process X is said to be
adapted to the filtration if X(t) is Ft -measurable for every t ∈ T . A process X is
predictable with respect to Ft if X(t) is known given the history Ft−, where Ft− is
generated by (X(s),0 ≤ s < t).

A counting process is a stochastic process {N(t); t ≥ 0} with N(0) = 0 and
N(t) < ∞ almost surely such that the path is right-continuous with probability one,
piecewise constant, and has only jump discontinuities with jumps of size +1. To
model the counting process, one usually employs its intensity process defined as

λ(t) = lim
�t↓0

P {N(t + �t−) − N(t−) = 1|Ft−}
�t

and imposes some assumptions on its format. Given λ(t), one can obtain the so-
called cumulative intensity process Λ(t) = ∫ t

0 λ(s) ds and could directly model Λ(t)

too. Sometimes instead of the intensity or cumulative intensity process, it may be
more convenient to model the mean or rate function r(t) of N(t) defined as

E
{
�N(t)

}= r(t)�t + o(�t)

(Cook and Lawless 2007), where �N(t) = N(t + �t−) − N(t−) representing the
number of events in the short interval [t, t + �t). Given r(t), the mean function can
be calculated as

∫ t

0 r(s) ds. Note that it is easy to see that the mean or rate function
cannot completely specify the counting process N(t) and they are sometimes referred
to as the marginal cumulative intensity or intensity function. One major advantage of
dealing with the mean or rate function is that less assumptions are usually needed in
modeling them compared to modeling the intensity process, which can thus lead to
more robust inferential procedures.
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Among the counting processes, the most commonly used one is perhaps the Pois-
son process {N(t); t ≥ 0} usually defined by

P
{
N(t + dt) − N(t) = 1|Ft−

}= λ(t) dt + o(dt)

and

P
{
N(t + dt) − N(t) ≥ 2|Ft−

}= o(dt)

with λ(t) being a left-continuous function. In other words, the Poisson process N(t)

has at most one jump over a small time interval and does not depend on its history.
The Poisson process defined above is commonly referred to as a non-homogeneous
Poisson process. If λ(t) is constant, the process is usually called a homogeneous
Poisson process. For a Poisson process {N(t); t ≥ 0}, we have that, at each t , N(t)

follows the Poisson distribution with E{N(t)} = Λ(t) = ∫ t

0 λ(s) ds. That is, Λ(t) is
also the mean function of the Poisson process and in this situation, we have r(t) =
λ(t) = dΛ(t)/dt .

2.2 Nonparametric inference for recurrent event data

Consider a study consisting of a single type of recurrent event and n independent
subjects. Let Ni(t) denote the number of occurrences of the event over the interval
[0, t] for subject i and assume that each subject is observed continuously up to time
τi , denoting the time at the end of observation for subject i. That is, we have recurrent
event data. Define the left-continuous function Yi(t) = I (t ≤ τi), indicating whether
subject i is under observation at time t , i = 1, . . . , n. First we will assume that all sub-
jects come from a homogeneous population and the intensity process λi(t) for Ni(t)

has the form λi(t) = α(t)Yi(t), where α(t) is a non-negative deterministic function.
To estimate Λ(t) = ∫ t

0 α(s) ds, motivated by the fact that Ni(t) − ∫ t

0 α(s)Yi(s) ds

is a martingale, a commonly used estimate is given by the so-called Nelson–Aalen
estimator,

Λ̂(t) =
∫ t

0

J (s) dN.(s)

Y.(s)

(Andersen et al. 1993). In the above, N.(t) =∑n
i=1 Ni(t), Y.(t) =∑n

i=1 Yi(t) and
J (t) = I (Y.(t) > 0). It is easy to see that N.(t) and Y.(t) denote the total number of
occurrences of the event up to time t and the number of subjects still under observa-
tion at time t , respectively.

Let t1 < t2 < · · · denote the sequence of all distinct occurrence times; then the
Nelson–Aalen estimator can be rewritten as

Λ̂(t) =
∑

j :tj ≤t

�N.(tj )

Y.(tj )
,

where �N.(tj ) = N.(tj ) − N.(tj−1).
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Given Λ̂(t), it is obvious that one can estimate α(t) by

α̂(t) = �N.(t)

Y.(t)

or more generally by a kernel estimate

α̂K(t) = 1

b

∫ t+b

t−b

K

(
t − s

b

)

dΛ̂(s),

where K(t) is a kernel function and b is a positive constant called the bandwidth.
Now suppose that all subjects come from two different populations with n1 and n2

denoting the numbers of subjects from the first and second populations, respectively,
where n1 +n2 = n. Also suppose that for the subjects in population l, we have λi(t) =
αl(t)Yi(t) and one is interested in testing H0 : α1(t) = α2(t). That is, we have a two-
sample comparison problem. To test H0, let Λ̂1(t) and Λ̂2(t) denote the estimates
of Λ1(t) = ∫ t

0 α1(s) ds and Λ2(t) = ∫ t

0 α2(s) ds, respectively, defined as Λ̂(t) with
subjects only from each individual population. Then a natural test statistic can be
constructed as

∫ τ

0
W(t) d

{
Λ̂1(t) − Λ̂(t)

}

or
∫ τ

0
W(t) d

{
Λ̂1(t) − Λ̂2(t)

}
,

where W(t) is a bounded predictable weight process and τ denotes the longest
follow-up time (Andersen et al. 1993).

3 Nonparametric estimation with panel count data

In this section, we discuss nonparametric estimation for panel count data. For this,
our focus will be on the estimation of the mean function of the underlying counting
process since it is impossible in general to deal with the intensity or cumulative inten-
sity process. To introduce the notation, consider an event history study that involves
n independent subjects from a homogeneous population and wherein each subject
gives rise to a counting process Ni(t), representing the total number of occurrences
of the recurrent event of interest from subject i up to time t , i = 1, . . . , n. In the fol-
lowing, to follow the literature, we will use Λ(t) to denote the mean function of the
Ni(t)’s. That is, Λ(t) = E{Ni(t)}, i = 1, . . . , n. For subject i, suppose that Ni(·) is
observed only at finite time points Ti,1 < · · · < Ti,Ki

, where Ki denotes the number
of observation times, i = 1, . . . , n. Then the observed panel count data on the Ni(t)’s
have the form

{(
Ki,Ti,j ,Ni(Ti,j )

); j = 1, . . . ,Ki, i = 1, . . . , n
}
.
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Note here that different subjects can have different numbers of observations and also
different observation times.

For nonparametric estimation of Λ(t), in the following, we will first describe a
general and simple estimator of Λ0(t) commonly called the isotonic regression es-
timator. Two likelihood function-based estimation procedures will then be presented
along with some other estimates proposed in the literature.

3.1 Isotonic regression estimator (IRE)

To present the IRE, we first consider a simple situation in which Ti,j = sj for all
i = 1, . . . , n with Ki = K ; that is, all subjects have the same observation time points
and the same numbers of observations. This can be the case in a follow-up study
with pre-specified observation time points and in which all subjects follow the pre-
specified observation schedule. It is evident that for this situation, a natural estimate
of Λ(t) at the observation time sl is given by the sample mean

∑n
i=1 Ni(sl)∑n

i=1 I (sl ≤ Ti,Ki
)

=
l∑

j=1

∑n
i=1 I (sj ≤ Ti,Ki

)[Ni(sj ) − Ni(sj−1)]∑n
i=1 I (sj ≤ Ti,Ki

)
.

Note that it is clear that one can estimate Λ(t) only at the observation times sl and
for any time point between sl−1 and sl , the mean function Λ(t) can take on any value
between the estimated values of Λ(t) at sl−1 and sl , where s0 = 0. Assume that Λ(t)

is a step function with jumps only at the sl’s. Then, the sample mean estimate at these
sl’s given above can be rewritten as

∫ t

0

∑n
i=1 dNi(s)∑n

i=1 I (s ≤ Ti,Ki
)
,

which is the Nelson–Aalen estimator described above for recurrent event data.
Now consider the general situation wherein subjects may have different observa-

tion times as well as different numbers of observations. In this case, it is clear that
one can still estimate Λ(t) by using the sample mean based on the observed values at
each individual observation time. However, the resulting estimate may not be valid as
it may not have the non-decreasing property that Λ(t) possesses. To fix this, Sun and
Kalbfleisch (1995) proposed the following IRE. Let s1 < · · · < sm denote the ordered
and different time points of all observation time points {Ti,j }, and wl and N̄l be the
number and mean value, respectively, of the observations made at sl , l = 1, . . . ,m.
Then, the isotonic regression estimator, denoted by Λ̂I = (Λ̂I,1, . . . , Λ̂I,m), of Λ(t)

at the sl’s is defined as ΛI = (Λ1, . . . ,Λm) = (Λ(s1), . . . ,Λ(sm)) that minimizes the
weighted sum of squares

m∑

l=1

wl(N̄l − Λl)
2 (1)

subject to the order restriction Λ1 ≤ · · · ≤ Λm. It can be easily seen that if N̄1 ≤ · · · ≤
N̄m, then we have Λ̂I,l = N̄l , l = 1, . . . ,m. Also for the simple situation discussed
above, the IRE reduces to the sample mean estimator presented earlier.
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By definition, the IRE defined above is the isotonic regression of {N̄1, . . . , N̄m}
with weights {w1, . . . ,wm} (Robertson et al. 1988). Thus, Λ̂I (s	) has a closed-form
expression given by

Λ̂I (s	) = max
r≤	

min
s≥	

∑s
v=r wvN̄v∑s

v=r wv

= min
s≥	

max
r≤	

∑s
v=r wvN̄v∑s

v=r wv

, 	 = 1, . . . ,m

using the max-min formula for the isotonic regression (Robertson et al. 1988). Also
it can be shown that for current status data, the IRE is actually the nonparametric
maximum likelihood estimate of Λ(t) if the Ni(t)’s are Poisson processes (Sun and
Kalbfleisch 1995).

3.2 Nonparametric likelihood-based estimation

It is clear that the IRE does not depend on any distributional assumption. Some-
times it may be reasonable to assume that the Ni(t)’s are non-homogeneous Poisson
processes and in this case, it is apparent that one may want to use the likelihood-
based estimates. More specifically, let Λ(t) be defined as before and assume that
{(Ki;Ti,1, . . . , Ti,Ki

)} are independent of Ni . By ignoring the dependency of the
events within a subject, one can construct a pseudo-log-likelihood function for Λ(t)

as

l
ps
n (Λ) =

n∑

i=1

Ki∑

j=1

{
Ni(Ti,j ) log

(
Λ(Ti,j )

)− Λ(Ti,j )
}
, (2)

omitting the parts independent of Λ.
Let s1 < · · · < sm denote the ordered distinct observation time points in the set of

all observation time points {Ti,j , j = 1, . . . ,Ki, i = 1, . . . , n}. Then, a nonparametric
maximum pseudo-likelihood estimator (NPMPLE) of Λ can be defined as a non-
decreasing step function with possible jumps only at the sl’s that maximizes l

ps
n (Λ).

Note that the pseudo-log-likelihood function can be rewritten as

l
ps
n (Λ) =

m∑

l=1

wl(N̄l logΛl − Λl).

It can be shown that the maximization of the above pseudo-log-likelihood function
is equivalent to the minimization of (1) (Robertson et al. 1988; Wellner and Zhang
2000). That is, the NPMPLE is the same as the IRE and hence can be computed by
using the max-min formula for the IRE presented in the preceding subsection.

Instead of using the pseudo-log-likelihood function l
ps
n , to estimate Λ(t), one can

also apply the full log-likelihood function of the mean function Λ given by

ln(Λ) =
n∑

i=1

Ki∑

j=1

(
Ni(Ti,j ) − Ni(Ti,j−1)

)
log
(
Λ(Ti,j ) − Λ(Ti,j−1)

)

−
n∑

i=1

Λ(Ti,Ki
),
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after omitting the parts independent of Λ, where Ti,0 = 0 and Ni(0) = 0. Let s1 <

· · · < sm be defined as above. Also let wl =∑n
i=1 I (Ti,Ki

= sl) for l = 1, . . . ,m as
before, and

Ñl,l′ =
n∑

i=1

Ki∑

j=1

(
Ni(Ti,j ) − Ni(Ti,j−1)

)
I (Ti,j = sl, Ti,j−1 = sl′),

for 0 ≤ l′ < l ≤ m. Then the log-likelihood function ln(Λ) can be rewritten as

ln(Λ) =
m−1∑

l′=0

m∑

l=l′+1

Ñl,l′ log
[
Λ(sl) − Λ(sl′)

]−
m∑

l=1

wlΛ(sl). (3)

As the NPMPLE, we can define the nonparametric maximum likelihood estimate
(NPMLE) of Λ to be the non-decreasing, non-negative step function with possible
jumps only at the sl’s that maximizes ln(Λ).

It can be easily seen that the maximization of the log-likelihood function ln(Λ)

over Λ(t) or the m-dimensional parameter vector Λ = (Λ1, . . . ,Λm) with Λ1 ≤
· · · ≤ Λm does not have a closed-form solution. Both Wellner and Zhang (2000) and
Hu et al. (2009a) studied this maximization problem. The former gave a modified
iterative convex minorant (MICM) algorithm, while the latter proposed a simpler and
faster alternative algorithm. The former also investigated the asymptotic properties of
both NPMPLE and NPMLE. In particular, they derived the asymptotic distribution
of the NPMPLE, which can be used to construct confidence bands of the estimate.
Sun and Kalbfleisch (1995) also provided some discussion of the construction of the
confidence bands for the IRE.

In the case of current status data, it is easy to see that the pseudo-log-likelihood
function and the log-likelihood function given in (2) and (3) become the same and
have the form

l
ps
n (Λ) = ln(Λ) =

n∑

i=1

{
Ni(Ti,1) log

(
Λ(Ti,1)

)− Λ(Ti,1)
}
.

That is, the NPMPLE and NPMLE are identical. For the determination of the two
estimates and also the IRE, one can use the algorithms described above and the sim-
plification occurs only when all subjects have the same observation times. In this
case, we have m = 1 and the value of all three estimates at s1 = Ti,1 is given by the
sample mean of the Ni(Ti,1)’s.

In comparing the IRE and NPMLE of Λ(t), it is easy to see that the latter could
be more efficient than the former. Wellner and Zhang (2000) studied this by simula-
tion and suggested that this is true for both non-homogeneous Poisson processes and
some other counting processes. A disadvantage of the latter is that its determination
is much more involved in terms of computation and requires much more computing
time than that of the IRE. In general, the IRE provides a general idea about the shape
of the mean function Λ(t), especially for the case in which the number of obser-
vations for each subject is small. The NPMLE should be used, for example, if the
non-homogeneous Poisson assumption seems reasonable.
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We remark that the focus of this paper is on the event that can occur repeatedly.
A related case is that the event can occur only once and the corresponding literature
is commonly referred to as failure time data analysis. In this case, N(t) is a one-
jump counting process and the type of data discussed here is usually called interval-
censored data (Sun 2006). Although the estimates of the mean function discussed
above can be applied to the interval-censored data in theory, there exist some estima-
tion procedures specifically developed for interval-censored failure time data that one
may prefer as the objectives of interest between the two fields often differ.

3.3 Some other estimation procedures

For estimation of the mean function Λ(t), in addition to the approaches discussed
above, several other procedures are available. Among these, one procedure, which is
similar to the IRE, is to minimize the generalized least-squares function

n∑

i=1

Ki∑

j=1

Ki∑

l=1

W(Ti,j , Ti,l)
{
Ni(Ti,j ) − Λ(Ti,j )

}{
Ni(Ti,l) − Λ(Ti,l)

}

subject to the non-decreasing property of Λ(t), where (W(Ti,j , Ti,l)) is a known
Ki ×Ki symmetric weight matrix. It is obvious that this can give a class of estimates
depending on the choice of the weight matrix. It can be easily shown that by using
the identity weight matrix, the procedure yields the IRE. In other words, the estimates
defined above can be seen as generalizations of the IRE. Hu et al. (2009b) discussed
this approach and suggested some other choices for the weight matrix. Furthermore,
they showed using a simulation study that the generalized least-squares estimates de-
fined above can have its efficiency close to that of the NPMLE for Poisson processes
and better efficiency than the NPMLE for non-Poisson processes.

Note that both the IRE and the NPMLE of Λ(t) discussed above are non-
parametric in the sense that they make no assumption about the dependence of
{Ni(Ti,j ), j = 1, . . . ,Ki}. Sometimes, it may be reasonable to impose some struc-
tures on the dependence for estimation of Λ(t). Zhang and Jamshidian (2003) con-
sidered this and assumed that, given a latent variable Zi , E[Ni(t)|Zi] = ZiΛ(t) and
{Ni(Ti,j ), j = 1, . . . ,Ki} are independent, i = 1, . . . , n. Furthermore, by assuming
that the Zi ’s follow a gamma distribution, they developed an EM-algorithm for the
estimation of Λ(t). As the NPMLE, this estimate could be more efficient than the
IRE, but its determination is also much more involved numerically than that of the
IRE. Also it may be difficult to verify in practice the assumed latent variable model.

Other authors who considered the estimation problem discussed here include Lu
et al. (2007) and Hu and Lagakos (2007). The former studied both pseudo-likelihood
and likelihood-based approaches when the mean function Λ(t) can be approximated
by the monotone cubic I -splines, while the latter investigated the problem for a gen-
eral response process that includes the counting process as a special case. Note that
all approaches described so far focus on estimating the mean function Λ(t), for which
one has to take into account the monotone property of Λ(t). Sometimes as mentioned
before, one may want to estimate the rate function or could estimate the mean func-
tion by first estimating the rate function. Thall and Lachin (1988) considered this and
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proposed to estimate the rate function by the empirical estimate and then to estimate
Λ(t) by the integral of the obtained rate function estimate.

4 Nonparametric comparison with panel count data

It is well known that treatment comparison is one of the common objectives in data
analysis and in this section we will consider this problem in the context of panel
count data with respect to mean functions. Consider an event history study giving
only panel count data, and let the Ni(t)’s, Ki and Ti,j ’s be defined as in the last sec-
tion. Also, let Λi(t) = E{Ni(t)}, i = 1, . . . , n, and suppose now our goal is to test the
null hypothesis H0 : Λ1(t) = · · · = Λn(t). That is, all subjects in the study have iden-
tical mean functions. In the following, we will first discuss the two-sample situation.
That is, all subjects in the study come from two different treatment groups. We will
subsequently discuss the situation when there are k different treatment groups.

4.1 Two-sample comparison

In this subsection, we will discuss several procedures for comparing two populations
in terms of the mean functions of the underlying counting processes. For this, suppose
that all subjects come from two different populations or groups and define Zi to be
the binary (0 or 1) group indicator for subject i, i = 1, . . . , n. Let Λ̂I (t) denote the
IRE of the Λi(t)’s under the null hypothesis H0. To test H0, motivated by the t-test
statistic, Sun and Kalbfleisch (1993) and Sun and Fang (2003) proposed to apply the
test statistic

USF =
n∑

i=1

Zi

Ki∑

j=1

{
Ni(Ti,j ) − Λ̂I (Ti,j )

}
, (4)

representing the summation of the differences between the observed numbers of the
event of interest and the estimated numbers of the event over the group with Zi = 1.
It is easy to see that if all subjects have only one observation at the same time point
t0 (Ki = 1, Ti,1 = t0), we have

USF =
∑

i:Zi=1

Ni(t0) −
∑n

i=1 Zi

n

n∑

i=1

Ni(t0).

Let Λ̂
(u)
I (t), {s(u)

l } and {w(u)
l } be defined as Λ̂I (t), {sl} and {wl} in the definition

of the IRE, but based only on subjects with Zi = u, u = 0,1. Then, the test statistic
USF in (4) can be expressed as

USF =
∫

w(1)(t)
[
Λ̂

(1)
I (t) − Λ̂I (t)

]
dN̄(1)(t), (5)

where w(1)(t) is a step function with jumps only at the s
(1)
l ’s, w(1)(s

(1)
l ) = w

(1)
l and

N̄ (1)(t) =∑l I (t ≥ s
(1)
l ). That is, USF is the integrated weighted difference between
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an individual group estimator Λ̂
(1)
I (t) and the overall estimator Λ̂I (t). Sun and Fang

(2003) showed that under some regularity conditions and H0, one can approximate
the distribution of n−1/2USF by the normal distribution with mean zero and variance

σ̂ 2
SF = 1

n

n∑

i=1

[

(Zi − Z̄)

Ki∑

j=1

{
Ni(Ti,j ) − Λ̂I (Ti,j )

}
]2

,

where Z̄ = ∑n
i=1 Zi/n. Hence one can test the hypothesis H0 using the statistic

TSF = USF/(n1/2σ̂SF) based on the standard normal distribution.
To apply the test procedure described above, one requirement is that the treatment

or group indicators Zi ’s can be regarded as independent and identically distributed
random variables. Of course, this may not hold in practice. To relax this, Park et al.
(2007) presented an alternative class of nonparametric tests also based on the IRE.
Let Λ1 and Λ2 be the common mean functions of two groups, respectively. To test
the hypothesis H0 : Λ1(t) = Λ2(t), let Λ̂

ps
1 and Λ̂

ps
2 be the IREs or NPMPLEs of Λ1

and Λ2 based on the data from the subjects in each individual group, respectively.
Motivated by the idea commonly used in survival studies (Pepe and Fleming 1989),
Park et al. (2007) suggested to use the statistic

UPSZ =
√

n1n2

n

∫ τ

0
ξ(t)

{
Λ̂

ps
1 (t) − Λ̂

ps
2 (t)

}
dGn(t). (6)

Here n1 and n2 are the numbers of subjects in the two groups with n1 + n2 = n, τ

denotes the largest observation time, ξ(t) is a bounded weight process, and

Gn(t) = 1

n

n∑

i=1

Ki∑

j=1

I (Ti,j ≤ t).

The statistic UPSZ is the integrated weighted difference between Λ̂
ps
1 and Λ̂

ps
2 and

is sensitive especially to stochastically ordered mean functions. Statistics similar to
UPSZ are commonly used in survival analysis. For two-sample survival comparison
with right-censored data, for example, Pepe and Fleming (1989) proposed some test
statistics that have the same form as UPSZ with the estimated survival functions in the
place of Λ̂

ps
1 and Λ̂

ps
2 . Petroni and Wolfe (1994) and Zhang et al. (2001) used similar

statistics for the same comparison problem based on interval-censored data. Also it
can be easily shown that the test statistic UPSZ can be rewritten as

UPSZ =
√

n1n2

n3

n∑

i=1

Ki∑

j=1

ξ(Ti,j )
{
Λ̂

ps
1 (Ti,j ) − Λ̂

ps
2 (Ti,j )

}
.

That is, UPSZ is a Wilcoxon-type statistic. Similar procedures are often used in the
analysis of repeated measurement data (Davis and Wei 1988).

For the selection of the weight process ξ(t) in UPSZ, a simple and natural choice
is ξ1(t) = 1. Another natural choice is ξ2(t) = Y(t) =∑n

i=1 I (t ≤ Ti,Ki
)/n, in which
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case, the weights are proportional to the number of subjects under observation. One
could also use

ξ3(t) = Y1(t)Y2(t)

Y (t)
,

where Y1(t) and Y2(t) are defined as Y(t) with the summation being over subjects
only in each of the two groups, respectively. Weight processes similar to ξ3 are com-
monly used when recurrent event data are observed (Andersen et al. 1993). Under
some regularity conditions and H0, Park et al. (2007) showed that UPSZ has an as-
ymptotic normal distribution with mean zero and variance that can be consistently
estimated by

σ̂ 2
PSZ = n2

n
σ̃ 2

1 + n1

n
σ̃ 2

2 ,

where

σ̃ 2
l = 1

nl

∑

iεSl

[
Ki∑

j=1

ξ(Ti,j )
{
Ni(Ti,j ) − Λ̂

ps
l (Ti,j )

}
]2

,

with Sl denoting the set of indices for subjects in group l, l = 1,2. Thus, the test of
the hypothesis H0 can be carried out using the statistic TPSZ = UPSZ/σ̂PSZ based on
the standard normal distribution.

As mentioned above, the statistic UPSZ represents the integrated weighted, general
difference between Λ̂

ps
1 and Λ̂

ps
2 . In practice, one may be more interested in different

types of the difference between Λ1(t) and Λ2(t) such as the absolute difference. In
this case, one can construct the alternative test statistic

∫ τ

0
ξ(t)

{
Λ̂

ps
1 (t) − Λ̂

ps
2 (t)

}2
dGn(t)

or
∫ τ

0
ξ(t)

∣
∣Λ̂ps

1 (t) − Λ̂
ps
2 (t)

∣
∣dGn(t)

for testing H0. Of course, one then needs to derive the asymptotic null distributions
for these statistics.

Note that in the test procedures discussed above, the IRE or NPMPLE was em-
ployed for the estimation of the mean functions. In practice, one can develop similar
test procedures by replacing the IRE with the NPMLE. Among others, Balakrishnan
and Zhao (2010a) considered this approach and proposed the following test statistic:

UBZ = 1√
n

n∑

i=1

Zi

[
Ki−1∑

j=1

Λ̂(Ti,j )

{
�Ni(Ti,j+1)

�Λ̂(Ti,j+1)
− �Ni(Ti,j )

�Λ̂(Ti,j )

}

+ Λ̂(Ti,Ki
)

{

1 − �Ni(Ti,Ki
)

�Λ̂(Ti,Ki
)

}]

.
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In the above, �Λ(Ti,j ) = Λ(Ti,j )−Λ(Ti,j−1), �N(Ti,j ) = N(Ti,j )−N(Ti,j−1) and
Λ̂(t) denotes the NPMLE of the common mean function Λ(t) under the hypothesis
H0. Under some regularity conditions and H0, they showed that UBZ has an asymp-
totic normal distribution with mean zero and variance

σ 2
BZ = E

[
(
Z − E(Z)

)
{

K−1∑

j=1

Λ0(T1,j )

(
�N(T1,j+1)

�Λ0(T1,j+1)
− �N(T1,j )

�Λ0(T1,j )

)

+ Λ0(T1,K)

(

1 − �N(T1,K)

�Λ0(T1,K)

)}]2

.

Also they gave a consistent estimate of σ 2
BZ as

σ̂ 2
BZ = 1

n

n∑

i=1

[

(Zi − Z̄)

{
Ki−1∑

j=1

Λ̂(Ti,j )

(
�Ni(Ti,j+1)

�Λ̂(Ti,j+1)
− �Ni(Ti,j )

�Λ̂(Ti,j )

)

+ Λ̂(Ti,Ki
)

(

1 − �Ni(Ti,Ki
)

�Λ̂(Ti,Ki
)

)}]2

,

where Z̄ =∑n
i=1 Zi/n. Hence one can perform the testing of the hypothesis H0 by

using the statistic TBZ = UBZ/σ̂BZ based on the standard normal distribution.

4.2 k-sample comparison

Now we consider the more general treatment comparison problem in which the n

study subjects come from k different populations or treatment groups. In the follow-
ing, we will let Λl(t) to denote the common mean function for the subjects in the lth
group and nl the number of subjects in the group, l = 1, . . . , k, where n1 +· · ·+nk =
n. Suppose that one is interested in testing the hypothesis H0 : Λ1(t) = · · · = Λk(t).
For the problem, we will first discuss several procedures that can be regarded as gen-
eralization of the approaches considered in the previous section for the two-sample
comparison and were developed based on the IRE or NPMPLE. A few other methods
based on the NPMLE will then be presented.

4.2.1 NPMPLE-based tests procedures

Let Λ̂
ps
l (t) denote the IRE or NPMPLE of the mean function Λl(t) based on the

subjects only in the lth group. To test H0, it is natural to generalize the test statistic
defined in (6) as

UZ = (U1,2,U1,3, . . . ,U1,k)
T ,

where

U1,l =
(

n1nl

n

)1/2 ∫ τ

0
η(t)

{
Λ̂

ps
1 (t) − Λ̂

ps
l (t)

}
dGn(t)
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with Gn(t) = n−1∑n
i=1
∑Ki

j=1 I (Ti,j ≤ t) as before and η(t) being a bounded weight
process.

The statistic UZ compares each mean function Λl(t) (l > 1) to the same mean
function Λ1(t). For the selection of the weight function η(t), Zhang (2006) suggested
to use η(t) = 1, η(t) = n−1∑n

i=1 I (t ≤ Ti,Ki
) or η(t) =∑n

i=1 I (t > Ti,Ki
). Also

he showed that under some regularity conditions and the hypothesis H0, one can
approximate the distribution of UZ by the multivariate normal distribution with mean
vector 0 and covariance matrix

Σ̂Z = σ̃ 2
Z

⎡

⎢
⎢
⎢
⎢
⎣

n1+n2
n

(
n2n3
n2 )1/2 · · · (

n2nk

n2 )1/2

(
n2n3
n2 )1/2 n1+n3

n
(
n3n4
n2 )1/2 · · ·

...
...

...
...

(
n2nk

n2 )1/2 (
n3nk

n2 )1/2 · · · n1+nk

n

⎤

⎥
⎥
⎥
⎥
⎦

,

where

σ̃ 2
Z = 1

n

n∑

i=1

[
Ki∑

j=1

η(Ti,j )
{
Ni(Ti,j ) − Λ̂ps(Ti,j )

}
]2

,

with Λ̂ps being the NPMPLE (IRE) of the common mean function under H0 based on
all samples combined together. Thus the test of the null hypothesis H0 can be carried
out by using TZ = UT

ZΣ̂ZUZ which has asymptotically a central χ2-distribution with
(k − 1) degrees of freedom.

For the test statistic given above, one requirement is that the weight function is the
same for each component. To relax this, following Zhang (2006), Balakrishnan and
Zhao (2010b) proposed a class of test statistics Ups

BZ = (U
ps
2 , . . . ,U

ps
k )T with

U
ps
l = √

n

∫ τ

0
Wl(t)

{
Λ̂

ps
1 (t) − Λ̂

ps
l (t)

}
dGn(t), l = 2, . . . , k. (7)

Furthermore, they established its asymptotic normality under H0. Note that both test
statistics UZ and Ups

BZ used group 1 or an individual group as the baseline group for
comparison. Instead, one can compare each individual group to the overall average
group, which is commonly used in, for example, failure time data analysis (Pepe and
Fleming 1989; Cook et al. 1996; Zhang et al. 2001). More specifically, for testing the
hypothesis H0, one can apply the statistic Vps

BZ = (V
ps
1 , . . . , V

ps
k )T , where

V
ps
l = √

n

∫ τ

0
Wl(t)

{
Λ̂ps(t) − Λ̂

ps
l (t)

}
dGn(t), l = 1, . . . , k. (8)

Balakrishnan and Zhao (2010b) studied this statistic and derived its asymptotic nor-
mality under some regularity conditions and H0.

With respect to the selection of the weight process Wl(t), a simple and natural
choice is W

(1)
l (t) = 1, l = 1, . . . , k. Another natural choice is W

(2)
l (t) = Y(t) =∑n

i=1 I (t ≤ Ti,ki
)/n, l = 1, . . . , k, and in this case the weights are proportional to



Nonparametric inference based on panel count data 17

the number of subjects under observation. Also one can use

W
(3)
l (t) = g

(
Yl(t), Y (t)

)
,

where g is a fixed function and Yl(t) is defined as Y(t) with the summation being
only over subjects in the lth group.

4.2.2 NPMLE-based test procedures

As discussed for the two-sample comparison problem, to test H0, one can easily con-
struct some test statistics similar to those described in the previous subsection by
simply replacing the NPMPLE with the NPMLE. In this subsection, we will intro-
duce several other available test procedures based on the NPMLE. To this end, in
this subsection, we will let Λ̂l(t) to denote the NPMLE of the mean function Λl(t)

based on the subjects only in group l and Λ̂(t) the NPMLE of the common mean
function based on the data from all n subjects. Also for subject i, define Zi to be the
k-dimensional vector of treatment or group indicators whose lth element is equal to
one if the subject is from group l and zero otherwise.

To test the hypothesis H0 : Λ1(t) = · · · = Λk(t), similar to the test statistic UBZ
for the two-sample problem, one could use the test statistic

U = 1√
n

n∑

i=1

Zi

[
Ki−1∑

j=1

Λ̂(Ti,j )

{
�Ni(Ti,j+1)

�Λ̂(Ti,j+1)
− �Ni(Ti,j )

�Λ̂(Ti,j )

}

+ Λ̂(Ti,Ki
)

{

1 − �Ni(Ti,Ki
)

�Λ̂(Ti,Ki
)

}]

.

Note that the only difference between UBZ and U defined above is that Zi is a vector
here, while Zi is scaler in UBZ. As with UBZ, one can prove that under some reg-
ularity conditions and H0, U has an asymptotic normal distribution with mean zero
(Balakrishnan and Zhao 2010a). It should be noted that the asymptotic covariance
matrix has only the rank of (k − 1) as the summation of all components of U is equal
to 0.

In addition to the test statistic U described above, for testing H0, Balakrishnan and
Zhao (2009) proposed to use the test statistics UBZ1 = (U2, . . . ,Uk)

T with

Ul = 1√
n

n∑

i=1

[
Ki−1∑

j=1

Wl(Ti,j )Λ̂(Ti,j )

×
{(

�Λ̂1(Ti,j+1)

�Λ̂(Ti,j+1)
− �Λ̂1(Ti,j )

�Λ̂(Ti,j )

)

−
(

�Λ̂l(Ti,j+1)

�Λ̂(Ti,j+1)
− �Λ̂l(Ti,j )

�Λ̂(Ti,j )

)}

+Wl(Ti,Ki
)Λ̂(Ti,Ki

)
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×
{(

1 − �Λ̂1(Ti,Ki
)

�Λ̂(Ti,Ki
)

)

−
(

1 − �Λ̂l(Ti,Ki
)

�Λ̂(Ti,Ki
)

)}]

(9)

for l = 2, . . . , k. Here as before, the Wl(t)’s are some bounded weight processes.
Furthermore, they showed that under some regularity conditions and H0, UBZ1 has
an asymptotic normal distributions with mean vector 0 and covariance matrixes �BZ1
that can be consistently estimated by

�̂BZ1 = H diag
(
σ̂ 2

1 , σ̂ 2
2 , . . . , σ̂ 2

k

)
H′.

Here

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−
√

n
n1

√
n
n2

0 · · · 0

−
√

n
n1

0
√

n
n3

· · · 0

· · · · · · · · · · · · · · ·
−
√

n
n1

0 0 · · ·
√

n
nk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

σ̂ 2
l = 1

n

n∑

i=1

[
Ki−1∑

j=1

Wl(Ti,j )Λ̂(Ti,j )

×
{

�Ni(Ti,j+1)

�Λ̂(Ti,j+1)
− �Ni(Ti,j )

�Λ̂(Ti,j )

}

+ Wl(Ti,Ki
)Λ̂(Ti,Ki

)

{

1 − �Ni(Ti,Ki
)

�Λ̂(Ti,Ki
)

}]2

.

Thus one can perform the testing of the hypothesis H0 based on TBZ1 =
UT

BZ1�̂
−1
BZ1UBZ1 with the central χ2-distribution with (k − 1) degrees of freedom.

Similar to UBZ1, one can consider the statistics VBZ = (V1, . . . , Vk)
T , where

Vl = 1√
n

n∑

i=1

[
Ki−1∑

j=1

Wl(Ti,j )Λ̂(Ti,j )

×
{

�Λ̂l(Ti,j+1)

�Λ̂(Ti,j+1)
− �Λ̂l(Ti,j )

�Λ̂(Ti,j )

}

+ Wl(Ti,Ki
)Λ̂(Ti,Ki

)

{

1 − �Λ̂l(Ti,Ki
)

�Λ̂(Ti,Ki
)

}]

(10)

for l = 1, . . . , k (Balakrishnan and Zhao 2009). The statistic Vl represents the inte-
grated weighted difference between the rates of increase of Λ̂ and Λ̂l over the ob-
servation period and Ul has a similar interpretation. For the selection of the weight
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process Wl(t), in addition to the choices discussed above, one could also use

Yl(t),
Yl(t)

Y (t)
,
Y1(t)Yl(t)

Y (t)
,

or

1 − Yl(t),
1 − Yl(t)

1 − Y(t)
,
(1 − Y1(t))(1 − Yl(t))

1 − Y(t)
.

It is easy to see that all test procedures described above base the comparison on the
estimated mean functions and they all are nonparametric or distribution-free. In some
situations, it may be reasonable to specify some models for the underlying counting
processes and in this case, the comparison can be performed based on regression
techniques that will be briefly discussed below. As another alternative, for large data
sets, one could also apply the grouping comparison procedure proposed by Thall
and Lachin (1988). This procedure first partitions the entire study period into several
fixed, consecutive intervals and transforms the observed numbers of events on each
subject over each interval into vectors of variables. The comparison is then conducted
by using the procedure given in Wei and Lachin (1984) for multivariate non-negative-
valued random vectors. A shortcoming of this procedure is that the test result could
depend on the selection of the intervals.

5 Some numerical results and illustrative examples

In this section, we will present some numerical results to compare and illustrate the
inferential procedures discussed in the previous sections. First some simulation re-
sults will be given with the focus on the comparison of the NPMPLE-based and
NPMLE-based test procedures and the inferential procedures will then be illustrated
by using two sets of real panel count data. As commented before, the major advantage
of NPMPLE-based test procedures is that they can be easily implemented, while the
NPMLE-based test procedures are expected to be more efficient. Thus one question
of interest is how much efficiency or power that one may lose by using the former
ones in addition to the assessment of the overall performance of each procedure.

5.1 Some simulation results

To evaluate the test procedures discussed above, following Balakrishnan and Zhao
(2009), we will focus on the two-sample comparison problem and consider the four
test statistics TSF, TPSZ, TZ and TBZ given in the previous section. Note that for k = 2,
we have TZ = TPSZ and TBZ = TBZ1. The test procedures based on TSF, TPSZ and TZ

make use of the IRE or NPMPLE, while the one based on TBZ relies on the NPMLE.
Balakrishnan and Zhao (2009) investigated the performance of these procedures for
the study with the same numbers of subjects in both samples or the balanced design.
Here we will consider the situation where the sample sizes differ between the two
samples.
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Fig. 1 True mean functions for
Case 1 with ν = 1 and
β = 0.1,0.2

To generate panel count data, let {νi, i = 1, . . . , n} be independent and identically
distributed random variables and assume that, given νi , Ni(t) is a Poisson process
with the mean function Λi(t |νi) = E(Ni(t)|νi). We first generate the number of ob-
servation times Ki from the uniform distribution U{1, . . . ,10} and then given Ki , we
generate the observation times Ti,j ’s as the order statistics of Ki random variables
from U{1, . . . ,10} for simplicity. Also let Sl denote the set of indices for subjects in
group l as before, l = 1,2. For the two mean functions, we will consider the following
two cases:

Case 1. Λi(t |νi) = νi t for i ∈ S1, Λi(t |νi) = νi t exp(β) for i ∈ S2.

Case 2. Λi(t |νi) = νi t for i ∈ S1, Λi(t |νi) = νi

√
βt for i ∈ S2.

To give an idea about the shapes of the mean functions, Figs. 1 and 2 display them
with νi = 1 and different values of β . It can be seen that in Case 1, the two mean
functions do not overlap, while they cross over in Case 2.

For the random variables νi ’s, two situations will be studied. One is that νi = 1 for
all i and the other is to assume that νi ∼ Gamma(2,1/2). For the former, the Ni(t)’s
are Poisson processes and for the latter, the Ni(t)’s are mixed Poisson processes. To
calculate the test statistics, we consider the following four weight processes:

W(1)(t) = 1, W(2)(t) = Y(t) = 1

n

n∑

i=1

I (t ≤ Ti,Ki
),

W(3)(t) = Y1(t)Y2(t)

Y (t)
, and W(4)(t) = 1 − Y(t) = 1

n

n∑

i=1

I (t > Ti,Ki
).
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Fig. 2 True mean functions for
Case 2 with ν = 1 and β = 3,5

Table 1 Estimated size and power for Poisson processes in Case 1

β TBZ TPSZ & TZ TSF

W(1) W(2) W(3) W(4) W(1) W(2) W(3) W(4)

n1 = 40, n2 = 60

0.0 0.049 0.048 0.047 0.047 0.048 0.050 0.049 0.046 0.045

0.1 0.348 0.233 0.233 0.162 0.248 0.236 0.235 0.289 0.252

0.2 0.850 0.659 0.652 0.428 0.716 0.688 0.688 0.762 0.718

0.3 0.997 0.954 0.951 0.762 0.969 0.959 0.960 0.985 0.970

n1 = 80, n2 = 120

0.0 0.053 0.051 0.052 0.052 0.057 0.054 0.054 0.046 0.055

0.1 0.558 0.386 0.377 0.225 0.413 0.388 0.388 0.453 0.417

0.2 0.994 0.933 0.934 0.725 0.962 0.947 0.946 0.966 0.961

0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The results given below are based on 1000 replications with the total sample size
n = 100 or 200 and the sample size n1 = 40 or 80 for the first sample.

Tables 1 and 2 give the estimated sizes and powers of the test procedures based
on TSF, TPSZ, TZ and TBZ at significance level α = 0.05 under Case 1 for the mean
functions with different β values. The results in Table 1 correspond to the situation
where the Ni(t)’s are Poisson processes and the results in Table 2 are for the mixed
Poisson processes Ni(t)’s. In both tables, the first part is for the situation with the
total sample size of 100 and the second part is for the situation with the total sample
size of 200. It can be seen that all four procedures perform reasonably well and that
the performance does not seem to depend on the weight process. In particular, as
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Table 2 Estimated size and power for mixed Poisson processes in Case 1

β TBZ TPSZ & TZ TSF

W(1) W(2) W(3) W(4) W(1) W(2) W(3) W(4)

n1 = 40, n2 = 60

0.0 0.050 0.057 0.053 0.050 0.049 0.047 0.048 0.048 0.045

0.1 0.109 0.090 0.090 0.107 0.069 0.069 0.068 0.080 0.090

0.2 0.246 0.213 0.213 0.174 0.154 0.153 0.155 0.160 0.191

0.3 0.447 0.411 0.414 0.334 0.309 0.302 0.302 0.297 0.357

n1 = 80, n2 = 120

0.0 0.052 0.051 0.050 0.052 0.044 0.041 0.041 0.046 0.042

0.1 0.140 0.138 0.138 0.124 0.097 0.094 0.095 0.093 0.112

0.2 0.377 0.358 0.355 0.280 0.282 0.282 0.283 0.282 0.320

0.3 0.735 0.687 0.691 0.578 0.620 0.616 0.615 0.605 0.643

Table 3 Estimated power for Poisson processes in Case 2

β TBZ TPSZ & TZ TSF

W(1) W(2) W(3) W(4) W(1) W(2) W(3) W(4)

n1 = 40, n2 = 60

3 1.000 0.677 0.634 1.000 0.953 0.894 0.893 1.000 0.952

5 0.974 0.077 0.085 1.000 0.182 0.098 0.099 0.882 0.169

8 0.116 0.722 0.725 0.994 0.419 0.560 0.558 0.070 0.429

n1 = 80, n2 = 120

3 1.000 0.899 0.876 1.000 1.000 0.994 0.994 1.000 1.000

5 1.000 0.074 0.087 1.000 0.305 0.135 0.131 0.987 0.297

8 0.200 0.944 0.946 1.000 0.678 0.827 0.826 0.068 0.697

expected, the performance becomes better when the sample size increases and the
NPMLE-based procedures show better power than the NPMPLE-based procedures
for all situations considered here except for W(j) (j = 2,3,4) in Case 1 with νi = 1.
Also the power decreases from the Poisson processes to the mixed Poisson processes,
that is, when more variability exists.

The results obtained under Case 2 for the mean functions are presented in Tables 3
and 4 with all other set-up being the same as in Tables 1 and 2. Note that here we only
presented the results on the estimated power. It is clear that when the underlying mean
functions cross, the performance or selection of a test procedure is much more com-
plicated. One difference between this and the situation considered in Tables 1 and 2
is that the NPMPLE-based procedures could have better power in some situations
although the NPMLE-based procedures still perform better in most cases. Another
difference is that the power can heavily depend on the choice of the weight process
and the specific shapes of the mean functions. This will make the selection of the
weight process and thus the test procedure more difficult since it may not be possi-
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Table 4 Estimated power for mixed Poisson processes in Case 2

β TBZ TPSZ & TZ TSF

W(1) W(2) W(3) W(4) W(1) W(2) W(3) W(4)

n1 = 40, n2 = 60

3 0.849 0.323 0.310 0.989 0.462 0.394 0.394 0.718 0.402

5 0.411 0.065 0.066 0.945 0.079 0.059 0.058 0.298 0.061

8 0.059 0.265 0.272 0.766 0.115 0.140 0.141 0.047 0.138

n1 = 80, n2 = 120

3 0.993 0.491 0.476 1.000 0.708 0.604 0.601 0.957 0.668

5 0.669 0.063 0.064 0.999 0.104 0.062 0.061 0.472 0.084

8 0.083 0.471 0.484 0.968 0.179 0.237 0.237 0.061 0.205

ble to know the shapes of the true mean functions in general. Of course, for a given
problem, one can simply try different weight processes but the interpretation of the
results may not be easy in some situations as will be seen in the examples discussed
in the next subsection. More comments on this are made below. Overall, the results
here gave similar conclusions to those obtained in Balakrishnan and Zhao (2009).

5.2 Two illustrative examples

In this subsection, we discuss the analysis of two sets of panel count data to illus-
trate the nonparametric estimation approaches and the test procedures based on the
statistics TSF, TPSZ, TZ and TBZ. The first example concerns the data arising from a
floating gallstones study and then the second example is based on a bladder tumor
study.

5.2.1 A floating gallstones study

Thall and Lachin (1988) described a follow-up study on the patients with floating
gallstones. The data are given in Table 1 of Thall and Lachin (1988) and consist of
the first year follow-up of the patients in two study groups, placebo (48) and high-
dose chenodiol (65), from the National Cooperative Gallstone Study. Note that the
original study consists of 916 patients who were randomized to placebo, low-dose,
or high-dose groups and followed for up to two years. The observed data include the
successive visit times in study weeks and the associated counts of episodes of nausea
for patients in different treatment groups. During the study, patients were scheduled to
return for clinical visits at 1, 2, 3, 6, 9, and 12 months. In reality, most of the patients
visited about six times within the first year, but actual visit times differed from patient
to patient. Some patients had only one visit and some had as many as nine visits. The
problem of interest here is to estimate the occurrence rates of the nausea and compare
the two treatment groups in terms of the incidence rates of nausea.

For the analysis, we will assume that all patients in the placebo group share the
mean function Λ1(t), while the patients in the high-dose chenodiol group have the
mean function Λ2(t). Figure 3 presents both NPMPLE and NPMLE of the two mean
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Fig. 3 The estimated mean
functions for the floating
gallstone study

Table 5 The p-values for testing no treatment effect for the floating gallstone data

TBZ TPSZ & TZ TSF

Weight W(1) W(2) W(3) W(4) W(1) W(2) W(3) W(4)

p-value 0.861 
0.001 
0.001 
0.001 0.454 0.417 0.413 0.891 0.143

functions and indicates that the occurrence rates of nausea seem to be different for
the patients in the two groups in the middle of the year. Table 5 gives the test results
obtained by applying the test procedures based on TSF, TPSZ, TZ and TBZ by using the
same weight processes as those used in the simulation study for testing the null hy-
pothesis H0 : Λ1(t) = Λ2(t). It can be seen that except the procedures based on TBZ
with weight processes W(2), W(3) and W(4), all other procedures suggest that there
are no significant differences between the incidence rates of nausea of the patients in
the two groups. Some general comments on this will be given below.

5.3 A bladder tumor study

Now we consider the panel count data that arose from the bladder tumor study con-
ducted by the Veterans Administration Cooperative Urological Research Group (Byar
et al. 1977) and given in Andrews and Herzberg (1985). The study is a randomized
clinical trial and consists of the patients with superficial bladder tumors when they
entered the trial. At the enrollment, they were assigned randomly to one of three treat-
ments: placebo, thiotepa and pyridoxine. At subsequent follow-up visits, any tumors
noticed were removed and treatment was continued. The study included 116 patients,
of which there were 47 in placebo group, 38 in thiotepa group and 31 in pyridoxine.
One of the objectives of the study is to estimate the tumor occurrence rates and to
determine the treatment effects on the frequency of tumor recurrence.
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Fig. 4 The estimated mean
functions for the bladder tumor
study

Table 6 The p-values for testing no treatment effects for the bladder tumor data

TBZ TZ

Weight W(1) W(2) W(4) W(1) W(2) W(4)

p-value 0.195 <10−8 <10−8 0.0851 0.1445 0.0840

Let Λ1(t),Λ2(t) and Λ3(t) be the mean functions corresponding to the three treat-
ment groups: placebo, thiotepa and pyridoxine, respectively. First we calculated the
NPMPLE and NPMLE of the three mean functions and these are displayed in Fig. 4.
It can be seen that the mean functions are quite different from each other. To test
H0 : Λ1(t) = Λ2(t) = Λ3(t), we applied the test procedures based on TZ and TBZ
and the obtained p-values are given in Table 6 with the three weight processes con-
sidered in the simulation study. As in the floating gallstones example, the procedures
based on TBZ with weight processes W(2) and W(4) indicate that the tumor occur-
rence rates were quite different for the patients in the three treatment groups, while
all other procedures suggest that there are no significant differences.

6 Estimation with multiple state panel count data

In the previous sections, the focus has been on panel count data concerning occur-
rence rates of certain recurrent events such as infections or hospitalizations. In prac-
tice, a different type of panel count data may occur concerning how often a sub-
ject stays in certain status and/or move from one status to another status and involv-
ing observations on study subjects only at discrete time points (Bartholomew 1983;
Kalbfleisch and Lawless 1985; Singer and Spilerman 1976a, 1976b; Wasserman
1980). Such an example can be found in, for instance, Kalbfleisch and Lawless (1985)
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who discussed a survey study of public school students on their smoking status. In
the study, the students were surveyed a few times and at each time, the information
on their smoking status, including never smoked, currently a smoker, and has smoked
but quit, was collected. Some of the questions of interest were how long the students
stayed at each of the three states and what were the probabilities of moving from one
state to another state. Gentleman et al. (1994) gave a similar example arising from an
AIDS study. In this section, we discuss the analysis of these panel count data with the
focus being on data arising from continuous-time finite state Markov models.

Consider a longitudinal study involving n independent subjects. Suppose that
each subject in the study moves among k states, denoted by 1, . . . , k, following a
continuous-time Markov chain. Let Xr(t) be the state occupied at time t for subject
r , r = 1, . . . , n. For 0 ≤ s ≤ t , let P(s, t) be the common k × k transition probability
matrix with entries

pij (s, t) = P
{
Xr(t) = j |Xr(s) = i

}
,

for i, j = 1, . . . , k. Define the transition intensities by

qij (t) = lim
�t→0

pij (t, t + �t)

�t
, i �= j

and

qii(t) = −
∑

j �=i

qij (t), i = 1, . . . , k.

Let Q(t) be the k × k transition intensity matrix with entries qij (t). It is well known
that the process Xr(t) can be specified by Q(t). If Q(t) = Q = (qij ) is independent
of t , the Markov process is said to be time-homogeneous. In this case, the process is
stationary and we have

P(t) = P(s, s + t) = P(0, t).

Also it is known (see Cox and Miller 1965) that

P(t) = eQt =
∞∑

τ=0

Qτ tτ

τ ! .

Suppose that {Xr(t)} is time-homogeneous and qij (θ) depends on b functionally
independent parameters θ1, . . . , θb , with θ = (θ1, . . . , θb) for each i, j = 1, . . . , k.
Assume that each study subject is observed at distinct times t0, t1, . . . , tm. Then con-
ditional on the distribution of subjects at t0, the likelihood function for θ is

L(θ) =
m∏

l=1

k∏

i,j=1

{
pij (wl; θ)

}nij l , (11)
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where wl = tl − tl−1, nijl denotes the number of subjects in state i at tl−1 and j at tl ,
l = 1, . . . ,m. This yields the log-likelihood as

logL(θ) =
m∑

l=1

k∑

i,j=1

nijl logpij (wl; θ). (12)

The maximum likelihood estimate, say θ̂ , of θ can be obtained by maximizing (12).
There exist various algorithms for finding θ̂ . One approach is to utilize a numerical
algorithm that requires no derivatives of logL(θ); see Wasserman (1980). Kalbfleisch
and Lawless (1985) presented a more efficient quasi-Newton procedure that uses first
derivatives of logL(θ). Here, it was assumed that all subjects are observed at the
same times. For the general situation where the inspection times may be different
over subjects, one can refer to Gentleman et al. (1994).

In the above discussion, it has been assumed that X(t) is time-homogeneous. Of
course, this may not be true in practice. To relax this, one can consider the Markov
process X(t) with the intensity matrix

Q(t) = Q0g(t;λ),

where Q0 is a fixed intensity matrix with unknown entries (qij ) and g(t;λ) is a
known function with an unknown parameter λ. For given λ, let s = ∫ t

0 g(u;λ)du

and define Y(s) = X(t). Then, the process {Y(s) : 0 < s < ∞} is a homogeneous
Markov process with intensity matrix Q0. Thus, for any given λ, we replace tl by
sl = ∫ tl

0 g(u;λ)du and wl by w∗
l = sl − sl−1. The parameters of Q0 can be estimated

by using the above method for given λ. In addition, the maximized log-likelihood can
be obtained for that λ. By varying λ, this additional parameter can be estimated by ob-
serving the effect on the maximized log-likelihood. For modeling non-homogeneous
Markov processes, another possibility is to use a piecewise transition intensity matrix
(Kalbfleisch and Lawless 1985).

Also sometimes covariates may exist and one may be interested in the estima-
tion of covariate effects. For this, suppose there exists a vector of p covariates
Z = (Z1, . . . ,Zp)T with Z1 = 1. For given Z, assume that the state process X(t)

is a homogeneous Markov chain with transition intensity matrix

Q(Z) = (qij (Z)
)
,

where

qij (Z) = exp
(
βT

ij Z
)
, i �= j

and

qii(Z) = −
∑

j �=i

qij (Z).

Here βij = (β1ij , . . . , βpij )
T is a vector of p regression parameters relating the in-

stantaneous rate of transitions from state i to state j to the covariate Z. Let r be the
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number of distinct covariate vectors in the sample and let these distinct covariates be
denoted by Zh = (Z1h, . . . ,Zph) with Z1h = 1, and let

Qh = Q(Zh) = (qij (Zh)
)
, h = 1, . . . , r.

Let n
(h)
ij l be the number of subjects with covariate values Zh that are in state i at time

tl−1 and in state j at time tl . Then the log-likelihood function has the form

logL(β) =
r∑

h=1

m∑

l=1

k∑

i,j=1

n
(h)
ij l logpij (wl;Zh), (13)

where

Ph(t) = exp(Qht) = (pij (t;Zh)
)

and β denotes the vector of all parameters βij (i �= j) together. It is clear that the
maximum likelihood estimate of β can be obtained by maximizing (13).

In practice, the goodness-of-fit of a model is often of interest. For the present situ-
ation, it can be assessed by comparing the observed transition frequencies nijl’s with
expected frequencies eij l = ni,l p̂ij (wl), where ni,l =∑k

j=1 nijl . A likelihood ratio,
or asymptotically equivalent Pearson chi-squared statistic to test the fit of the Markov
model is readily obtained by methods similar to those used in Markov chains (see,
e.g., Anderson and Goodman 1957; Gentleman et al. 1994). If none of the pij (wl)’s
is allowed to be zero, the likelihood ratio statistic is

Λ = 2
m∑

l=1

k∑

i,j=1

nijl log(nij l/eij l),

which is asymptotically (m fixed, n → ∞) a chi-squared variate with mk(k − 1) − b

degrees of freedom. The related Pearson statistic is

χ2 =
m∑

l=1

k∑

i,j=1

(nij l − eij l)
2/eij l .

Kalbfleisch and Lawless (1985) illustrated these methods through the public student
smoking data discussed above.

We remark that only time-homogeneous Markov models were discussed in this
section. This is because there exists little literature on nonparametric estimation about
heterogeneous Markov models under the framework considered here. Obvious non-
parametric estimators for pij (wl) are defined through nijl/ni,l (e.g. Kalbfleisch and
Lawless 1985, p. 868), but these do not incorporate the Markov information nor the
multi-state model structure (i.e. the allowed transitions), and hence they are not opti-
mal. Besides, they do not serve for the purpose of estimating the transition intensities
along time. For the situation where the event of interest can occur only once or fail-
ure time data, some discussion on the nonparametric estimation can be found in, for
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example, Commenges (2002) and Meira-Machado et al. (2009). Also it is worth not-
ing that the methodology discussed in the referred papers can be applied to situations
when the recurrent event under study can occur only up to a finite number of times,
say, g. In this case, N(t) takes values of 0, 1, . . . , g and one could define a g-state
progressive model for the analysis.

7 Nonparametric estimation with dependent observation processes

As mentioned before, one main difference between recurrent event data and panel
count data is that the latter involves an observation process that does not exist in
the former. So far we have assumed that the observation process is independent of
the underlying counting process of interest and thus one can make inference about
the counting process conditional on the observation process as done in the previous
sections. In practice, however, the observation process may depend on or contain
information about the counting process. That is, the two processes may be related.
For example, this can be the case if the recurrent event of interest is some type of
markers for a disease under study and the subjects or the markers can be observed or
measured only during their repeated hospitalization.

In this section, we will briefly discuss two latent variable or frailty modeling ap-
proaches for the analysis of panel count data when the underlying counting process
of interest and the observation process may be related. One models the rate function,
while the other models the mean function.

7.1 Rate function-based frailty model

Let Z be a non-negative latent variable with E(Z) = 1. Suppose that given Z, the
event process N(t) is a non-homogeneous Poisson process with the rate function

λ(t |Z) = Zλ0(t), t ∈ [0, τ ],
where λ0(t) is an unspecified function. Note that here for convenience, we still use
λ(t) for the rate function. Furthermore, it is assumed that given Z, the event process
N(t) is independent of the number of observations K and the observation times
{T1, . . . , TK }. That is, the event process N(t) and the observation process including
K and {T1, . . . , TK} are correlated only through the frailty variable Z. We will as-
sume that the distribution of the frailty variable and the probability of the observation
process given the frailty can be arbitrary.

Define

Λ0(t) =
∫ t

0
λ0(t) du.

Then the mean function of the event process is given by

E
(
N(t)

)= E(Z)Λ0(t) = Λ0(t).

Consider an event history study involving n subjects. For each subject, let Ni(t) be
the underlying counting process that is observed only at distinct observation times
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{Ti,1, . . . , Ti,Ki
}, where Ki is the number of observations, i = 1, . . . , n. Assume that

{Ni,Ki, Ti,j , j = 1, . . . ,Ki} (i = 1, . . . , n) is a random sample of {N,K,Tj , j =
1, . . . ,K} of size n. Let Ni,j = Ni(Ti,j ). Suppose our goal here is to estimate Λ0(t)

nonparametrically based on the observed data {Ki,Ti,j ,Ni,j , j = 1, . . . ,Ki, i =
1, . . . , n}.

Let Yi = Ti,Ki
, mi = Ni(Yi) and mij = Ni,j −Ni,j−1. Define F(t) = Λ0(t)/Λ0(τ ),

0 ≤ t ≤ τ . Then the conditional likelihood function, given Zi,Ki,mi and {Ti,j , j =
1, . . . ,Ki}, has the form

L ∝
n∏

i=1

Ki∏

j=1

{
Λ0(Ti,j ) − Λ0(Ti,j−1)

Λ0(Yi)

}mij

=
n∏

i=1

Ki∏

j=1

{
F(Ti,j ) − F(Ti,j−1)

F (Yi)

}mij

.

(14)
Huang et al. (2006) considered this and suggested the nonparametric maximum likeli-
hood estimator of F , denoted by F̂n, to be the non-decreasing, non-negative step func-
tion with possible jumps only at observation times {Ti,j , j = 1, . . . ,Ki, i = 1, . . . , n}
that maximizes L in (14). Also they pointed out that F̂n(t) can be computed by the
self-consistency algorithm proposed by Turnbull (1976) or the EM-algorithm. In the
EM-algorithm, both the E-step and the M-step have simple closed-form solutions.

To estimate Λ0(t), note that Λ0(t) = F(t)Λ0(τ ) and thus we only need to estimate
Λ0(τ ). For this, Huang et al. (2006) proposed to use

Λ̂n(τ ) = n−1
n∑

i=1

mi

F̂n(Yi)

and hence a natural estimate of Λ0(t) is given by Λ̂n(t) = F̂n(t)Λ̂n(τ ).
Let

F = {F : [0, τ ] → [0,M] | F is non-decreasing
}

and

μ(t) = E

{
K∑

j=1

I (Ti,j ≤ t)

}

.

Define the L2(μ) metric d on F by

d2(F1,F2) =
∫ ∣
∣F1(t) − F2(t)

∣
∣2 dμ(t), F1,F2 ∈ F .

Huang et al. (2006) showed that under some regularity conditions,

n
1
2 d(Λ̂n,Λ0) = Op(1).

That is, the estimate Λ̂n(t) is consistent. However, the asymptotic distribution of the
estimate has not been established yet.
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7.2 Mean function-based frailty model

Again let Z be a non-negative latent variable with E(Z) = 1 and suppose that the
event process N(t) is a non-homogeneous Poisson process. Also as in the previous
subsection, we assume that the event process and the observation process are cor-
related only through the latent variable Z. However, instead of modeling the rate
function, we assume that given Z, the mean function of N(t) has the form

Λ(t |Z) = ZΛ0(t), t ∈ [0, τ ],
where Λ0(t) is an unspecified, unknown function as before. This gives

E
(
N(t)

)= E(Z)Λ0(t) = Λ0(t).

To estimate Λ0(t), assume that Z follows Gamma(α,1/α) and the distributions
of Ki ’s and Ti,j ’s are unrelated to the parameters Λ0 and α. Then one can con-
struct a pseudo-likelihood function based on the observations {Ki,Ti,j ,Ni,j , j =
1, . . . ,Ki, i = 1, . . . , n} as

Ln(α,Λ) =
n∏

i=1

Ki∏

j=1

�(Ni,j + α−1)

�(α−1)Ni,j !
{αΛ(Ti,j )}Ni,j

{1 + αΛ(Ti,j )}Ni,j +α−1 . (15)

Zhang and Jamshidian (2003) considered this pseudo-likelihood function and defined
the nonparametric maximum pseudo-likelihood estimator of the mean function Λ0 to
be the non-decreasing, non-negative step function with possible jumps only at ob-
servation times {Ti,j , j = 1, . . . ,Ki, i = 1, . . . , n} that maximizes Ln(α,Λ) in (15).
Also they presented an EM-algorithm for computing the estimator. However, its as-
ymptotic properties are still unknown.

A lot of research is still needed for the analysis of panel count data with dependent
observation process. Here we have only described two simple models and it is obvious
that many other models could be considered. Also one may investigate the treatment
comparison problem discussed above and develop appropriate inferential procedures
when there are covariates of interest, as considered below.

8 Nonparametric analysis with covariates

As mentioned before, the focus of this article is on nonparametric inference based on
panel count data. However, to make it complete, we will briefly consider the situation
where there are some covariates and discuss several available estimation procedures
for covariate effects with the focus being on the marginal modeling approach. As in
the preceding sections, we assume that there are n independent subjects and each
gives rise to a counting process. Also we assume that for each subject, there exists a
p-dimensional vector of covariates denoted by Xi , assumed to be time-independent.
In the following, we will first discuss the Poisson process-based approaches that as-
sume that the counting processes of interest are non-homogeneous Poisson processes.
They will be followed by some estimating equation-based approaches that do not rely
on the Poisson process assumption and some procedures that can be applied when
there exists a dependent observation process.
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8.1 The Poisson process-based procedures

Let the Ni(t)’s, Ti,j ’s, Ni,j ’s, and sl’s be as defined before. Define Λ(t |Xi) =
E{Ni(t)|Xi}, the mean function given covariates Xi . In this subsection, we will as-
sume that the Ni(t)’s are non-homogeneous Poisson processes and the mean function
Λ(t |X) has the form

Λ(t |X) = Λ0(t) exp
(
X′β

)
. (16)

Here Λ0(t) is an unknown baseline mean function, the mean function for subjects
with X = 0, and β is a p-dimensional vector of regression parameters. As in Sect. 3.2,
by ignoring the dependence of {Ni(Ti,j ), j = 1, . . . ,Ki} for each i, one can easily
derive a pseudo-log-likelihood function given by

lp(Λ0, β) =
n∑

i=1

Ki∑

j=1

{
Ni,j logΛ0(Ti,j ) + Ni,jX

′
iβ − Λ0(Ti,j ) exp

(
X′

iβ
)}

.

To estimate Λ0(t) and β , it is natural to maximize the pseudo-log-likelihood func-
tion lp(Λ0, β). For this, let the wl’s and N̄l’s be as defined in Sect. 3 and define

āl(β) = 1

wl

n∑

i=1

Ki∑

j=1

exp
(
X′

iβ
)
I (Ti,j = sl)

and

b̄l(β) = 1

wl

n∑

i=1

Ki∑

j=1

Ni,jX
′
iβI (Ti,j = sl)

for given β , l = 1, . . . ,m. Then the pseudo-log-likelihood function lp(Λ0, β) can be
rewritten as

lp(Λ0, β) =
m∑

l=1

wl

{
N̄l logΛ0(sl) − āl(β)Λ0(sl) + b̄l(β)

}
.

As with the nonparametric situation, only the values of Λ0(t) at the sl’s can be
estimated. Let Λ̂0(t) and β̂ denote the estimators of Λ0(t) and β that maximize lp

with Λ̂0(t) being a non-decreasing step function with possible jumps only at the
sl’s. Then the determination of Λ̂0(t) and β̂ is equivalent to maximizing lp(Λ0, β) =
lp(Λ,β) over the (m+p) unknown parameters Λ = (Λ1, . . . ,Λm) and β with Λ1 ≤
· · · ≤ Λm, where Λl = Λ0(sl), l = 1, . . . ,m. To maximize lp(Λ,β), Zhang (2002)
proposed a two-step iterative algorithm that maximizes lp over Λ and β alternatively.
Note that for fixed β , the maximization of lp over Λ is equivalent to maximizing

m∑

l=1

wlāl(β)

(
N̄l

āl(β)
logΛl − Λl

)

.
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That is, the Λ̂0(sl)’s are the isotonic regression estimator of {N̄1/ā1(β), . . . ,

N̄m/ām(β)} with weights {w1ā1(β), . . . ,wmām(β)}. Thus for given β , we have

Λ̂β(sl) = max
r≤l

min
s≥l

∑s
v=r wvN̄v∑s

v=r wvāv(β)
= min

s≥l
max
r≤l

∑s
v=r wvN̄v∑s

v=r wvāv(β)

by the max-min formula of the isotonic regression estimate.
For given Λ0(t) or Λ, one can simply use the Newton–Raphson algorithm for the

estimation of β . It can be easily shown that the pseudo-log-likelihood function lp is
a concave function of β for given Λ0(t) and its value increases after each iteration
(Zhang 2002). For the convergence criterion for the two-step algorithm given above,
one can compare the relative absolute change of either the log-likelihood function
lp between two successive estimators of Λ0(t) and β or the difference between the
two successive estimators. For the variance estimation of the resulting estimates, one
could apply the simple bootstrap procedure.

For estimation of Λ0(t) and β , instead of using the pseudo-log-likelihood function
lp , one may consider to maximize the following full log-likelihood function:

l(Λ0, β) =
m−1∑

l′=0

m∑

l=l′+1

ñl,l′ log
[
Λ0(sl) − Λ0(sl′)

]−
m∑

l=1

bl(β)Λ0(sl)

+
n∑

i=1

Ni,Ki
X′

iβ,

where bl(β) =∑n
i=1 I (Ti,Ki

= sl) exp(X′
iβ) and

ñl,l′ =
n∑

i=1

Ki∑

j=1

(Ni,j − Ni,j−1)I (Ti,j = sl, Ti,j−1 = sl′)

for 0 ≤ l′ < l ≤ m. It is obvious that l(Λ0, β) could yield more efficient estimates
than lp(Λ0, β) (Wellner et al. 2004). Wellner and Zhang (2007) studied the asymp-
totic properties of the maximum pseudo-likelihood estimator (β̂

p
n , Λ̂

p
n ) and the maxi-

mum likelihood estimator (β̂n, Λ̂n). They established strong consistency, derived the
rate of convergence of both estimators in some L2-metrics related to the observation
scheme, and also proved the asymptotic normality of both β̂

p
n and β̂n under some

mild conditions, but the asymptotic distributions of Λ̂
p
n and Λ̂n are unknown.

8.2 The estimating equation-based procedures

In the previous subsection, the underlying counting processes giving rise to panel
count data were assumed to be non-homogeneous Poisson processes. Clearly this
may not be true in reality. In this subsection, we present some inferential procedures
that do not require the Poisson assumption.

Let the Ni(t)’s, Ti,j ’s, Xi ’s and Λ(t |X) be as defined before and suppose that the
mean function Λ(t |X) satisfies the model (16). For subject i, suppose that there exists
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a random variable Ci representing the follow-up time on the subject. In some cases,
we may have Ci = Ti,Ki

and sometimes this may not be the case. Define Oi(t) =
∑Ki

j=1 I (Ti,j ≤ t), a counting process representing the total number of observations
on subject i up to time t , i = 1, . . . , n. In the following, we will assume that Ni(t),
Oi(t) and Ci are independent of each other given Xi . Also we will assume that the
goal is to make inference about regression parameters β .

To estimate β , for each subject, define a new process

Ñi(t) =
∫ t

0
Ni(s) dOi(s),

which has possible jumps only at the observation time points Ti,j ’s with respective
jump sizes Ni(Ti,j ). It can be easily seen that as for the Oi(t)’s, we have recurrent
event or complete data for the Ñi(t)’s rather than panel count data. Also it can be
easily shown that

E
{
dÑi(t)|Oi(s),Xi

}= Λ0(t) exp
(
X′

iβ
)
dOi(t).

Let oi(t) = Oi(t) − Oi(t
−) and define

S(j)(β; t) =
∑n

i=1 I (Ci ≥ t)X
⊗j
i exp(X′

iβ)oi(t)
∑n

i=1 oi(t)

for t with
∑n

i=1 oi(t) > 0 and j = 0,1,2, where a⊗j = 1, a, aa′, for j = 0,1,2. For
the estimation of β , motivated by the partial score function with respect to the Cox
type of models, Hu et al. (2003) proposed to use the estimating function

Un(β; Ñ,W) =
n∑

i=1

∫ τ

0
W(t)I (Ci ≥ t)

{
Xi − X̄(t;β)

}
dÑi(t),

where W(·) is a weight function as before and X̄(t;β) = S(1)(β; t)/S(0)(β; t). If all
subjects have only one observation at time, say, t0, then the estimating function given
above reduces to

Un(β; Ñ,1) =
n∑

i=1

XiNi(t0) −
{

n∑

i=1

∫ t0

0

1
∑n

j=1 exp(X′
iβ)

dNi(t)

}

×
{

n∑

i=1

Xi exp
(
X′

iβ
)
}

with W(t) = 1.
Let β̂n denote the solution to Un(β; Ñ,1) = 0. Hu et al. (2003) showed that β̂n

is a consistent estimate of β and one can approximate the distribution
√

n(β̂n − β0)

by the multivariate normal distribution with mean vector 0 and the covariance matrix
�̂n = Â(β)−1B̂(β)Â(β)−1 with β replaced by β̂n, where β0 denotes the true value
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of β ,

Â(β) = −1

n

n∑

i=1

∫ τ

0
I (Ci ≥ t)

[
S(2)(β; t)
S(0)(β; t) − X̄(t;β)⊗2

]

dÑi(t)

and

B̂(β) = 1

n

[
n∑

i=1

∫ τ

0

{
Xi − X̄(t;β)

}
dM̂i(t;β)

]⊗2

with

M̂i(t;β) =
∫ t

0
I (Ci ≥ s)

{
Ni(s) − Λ̂0(s;β) exp

(
X′

iβ
)}

dOi(s)

and

Λ̂0(t;β) =
∑n

i=1 I (Ci ≥ t)Ni(t)oi(t)∑n
i=1 I (Ci ≥ t) exp(X′

iβ)oi(t)
.

In the procedure given above, it was assumed that the covariates Xi have no effect
on the observation process Oi(t). In practice, this may not be true and for this, as
with model (16) for Ni(t), one natural way is to assume that

E
{
Oi(t)|Xi

}= Λ̃0(t) exp
(
X′

iγ
)

(17)

for the effect of Xi on Oi(t), where Λ̃0(t) is an unknown baseline mean function and
γ denotes the vector of regression parameters as Λ0(t) and β , respectively. Among
others, Hu et al. (2003) considered the model (17) together with model (16) and gen-
eralized the estimation procedure described above. As the procedure given above, the
generalized estimation procedure also does not involve the baseline mean functions
Λ0(t) as well as Λ̃0(t). Sun and Wei (2000) investigated a more general situation
where Ni(t), Oi(t) and Ci may depend on each other, but are independent given Xi .
In particular, they used models (16) and (17) and the proportional hazards model for
the effect of covariates on the follow-up time Ci .

In comparing the Poisson-based and estimating equation-based estimation proce-
dures, it is clear that the former could be more efficient than the latter if the Poisson
process assumption is valid. Of course, in practice, it may be difficult to check or ver-
ify this assumption without prior information. On the other hand, the former could be
much more complicated than the latter partly because of the involvement or the need
of estimation of the baseline mean functions. Another advantage of the estimating
equation-based procedures is that they give a closed-form estimation of the variance.

Other authors who have investigated the problem discussed here include Cheng
and Wei (2000), Lawless and Zhan (1998), Staniswalls et al. (1997), and Sun and
Matthews (1997). In particular, Cheng and Wei (2000) developed an inferential ap-
proach similar to the estimation procedure based on Un(β; Ñ,W). Lawless and Zhan
(1998) and Staniswalls et al. (1997) gave some approaches that base the inference on
the modeling of the rate function of the underlying counting process instead of the
mean function.
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8.3 Estimation with dependent observation processes

For all the procedures discussed so far in this section, it was assumed that observation
times Ti,j ’s or the counting process Oi(t) that characterizes them is independent
of the underlying counting process Ni(t) governing the observed panel count data
either completely or conditional on covariates. In practice, however, this may not
be true. For example, the observation times could be hospitalization times and this
could be the case in an observational study concerning the occurrence rate of certain
symptoms related to a disease under study which can be observed or known only
when the patients are in the hospital due to the disease. It is apparent that the patients
may come to the hospital simply because of these symptoms and thus the observation
times are related to the occurrence process. A more specific example is given by the
bladder cancer panel count data discussed before, and for the data several authors
noticed that some patients in the study had more visits than others, suggesting that
the occurrence of bladder tumors and the visit may be related (Sun and Wei 2000).

In the case of dependent observation processes, as discussed in Sect. 7, a com-
mon approach is to employ some latent variable models to describe the relationship
between the two processes involved. For the situation considered here, as in Sect. 7,
let Z be a non-negative latent variable with E(Z) = 1 and suppose that given X and
Z, the event process N(t) is a non-homogeneous Poisson process with the intensity
function

λ(t |X,Z) = Zλ0(t) exp
(
β ′X

)
, t ∈ [0, τ ], (18)

where λ0(t) is an unspecified function and β is a p-dimensional vector of regres-
sion parameters. Given X and Z, the event process N(t) is independent of the
number of observations K and the observation times {T1, . . . , TK }. Here, the event
process N(t) and the observation times {T1, . . . , TK} can be correlated through the
frailty variable Z, and the distribution of the frailty variable and the conditional
distribution of the observation times given the frailty can be arbitrary and are left
unspecified. Note that under model (18) the conditional likelihood function, given
{Zi,Xi,Ki, Tij , j = 1, . . . ,Ki, i = 1, . . . , n}, has the same expression given by (14).
Thus, F(t) = Λ0(t)/Λ0(τ ) can be estimated by F̂n(t) given in Sect. 7.1. To estimate
Λ0(τ ) and β , Huang et al. (2006) proposed the use of the estimating equation

n−1
n∑

i=1

WiX1i

{
miF̂ (Yi) − exp

(
X′

1iθ
)}= 0, (19)

where X′
1i = (1,X′

i ), Yi = Ti,Ki
, mi = Ni(Yi), θ ′ = (γ,β ′), γ = logΛ(τ), and Wi is

a weight function. Let θ̂ ′
n = (γ̂n, β̂

′
n) denote the solution to (19). Then Λ0(t) can be es-

timated by Λ̂0(t) = F̂n(t)e
γ̂n . Under some regularity conditions, Huang et al. (2006)

showed that β̂n − β → 0 almost surely as n → ∞ and d(Λ̂01[0,t],Λ01[0,t]) → 0 al-
most surely for all t ∈ [0, τ ] as n → ∞. Here the metric d is as defined in Sect. 7.1.
The asymptotic distributions of β̂n and Λ̂0(t) have not been derived yet.

For the problem discussed here, Sun et al. (2007) also proposed a joint model of
the event process N(t) and the observation process O(t) through a shared latent vari-
able and developed a two-step inferential procedure for the estimation of regression
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parameters. Sometimes all of the event processes, the observation times and the cen-
soring times may be related with each other and one may be interested in modeling
them together. Among others, He et al. (2009) studied this case and developed an
inferential procedure for the analysis of such panel count data by using two latent
variables to characterize the relationship.

9 Bayesian analysis

In addition to the literature discussed above, there also exists some limited research
on Bayesian approaches for the analysis of panel count data. Of course, for non-
parametric inference in this case, one usually needs to put some restrictions on the
nonparametric component of the model such that the mean function can be approx-
imated by some kernel functions (Ishwaran and James 2004). To be more specific,
suppose we observe panel count data {Ki,Ti,j ,Ni,j , j = 1, . . . ,Ki, i = 1, . . . , n} and
the mean function of the event process Ni(t) can be modeled by

Λ(t |μ) =
∫

S

∫ t

0
k0(s, ν) dsμ(dν),

where k0 is a pre-specified kernel and μ is a finite measure over a measurable space
(S,A). Define F by F(A|ν) = ∫

A
k0(s, ν) ds for each Borel-measurable set A. Let

Aij = (Ti,j−1, Ti,j ] and Ai = (0, Ti,Ki
]. Then the likelihood function is

L(μ) = exp

{

−
n∑

i=1

∫

S

∫ ∞

0
Yi(t)F (dt |ν)μ(dν)

}

×
n∏

i=1

Ki∏

j=1

mij∏

l=1

∫

S
F(Aij |νij l)μ(dνij l),

where Yi(t) = I (t ∈ Ai) and mij = Ni,j − Ni,j−1.
Let ν be the vector of missing values νij l . We assume a prior on (ν,μ) with the

joint product measure

∏

i,j,l

μ(dνij l)G(dμ|α,β),

where G(·|α,β) denotes a weighted gamma process law with shape parameter α (a
finite measure over S ) and scale parameter β (a positive integrable function over S ).
That is, for each Borel-measurable set A ∈ A, the random measure μ, defined by

μ(A) =
∫

A

β(s)γα(ds),

is said to have a G(·|α,β) law, where γα is a gamma process over S with shape
measure α. We call γα a gamma process with shape parameter α if γα(A) is a
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gamma(α(A)) random variable with mean α(A) and variance α(A). Thus, by The-
orem 3 of James (2003), for any integrable function g(ν,μ), the posterior for the
likelihood is given by

∫
g(ν,μ)π(dν, dμ|X)

=
∫ ∫

g(ν,μ)G
(

dμ|α +
∑

i,j,l

δνij l
, β∗
)

π(dν|X),

where

π(dν|X) ∝ m0(dν)

n∏

i=1

Ki∏

j=1

mij∏

l=1

β∗(νij l)F (Aij |νij l),

β∗(ν) = β(ν)

1 + β(ν)
∑n

i=1 F(Ai |ν)
,

and

m0(dν) =
∫ n∏

i=1

Ki∏

j=1

mij∏

l=1

P(νij l)P (dP |α)

is the Pólya urn density for a Dirichlet process P (·|α) (Ferguson 1973, 1974).
The posterior law for the function g(ν,μ) can be approximated by the Pólya urn

Gibbs sampling and the Blocked Gibbs sampling. For panel count data in general,
the Blocked Gibbs sampler is preferred and more details on this issue can be found
in Ishwaran and James (2004).

10 Discussion and concluding remarks

The analysis of panel count data is still a relatively new and growing field and there
are still many open problems. In the preceding sections, our focus has been on the
mean function of underlying counting processes generating panel count data. As men-
tioned before, given the structure of panel count data and the amount of observed
information, it is much more convenient to deal with the mean function rather than
the intensity process or rate function. On the other hand, sometimes one may want
to directly model the intensity process or rate function (Ishwaran and James 2004;
Lawless and Zhan 1998; Staniswalls et al. 1997). For this purpose, however, one
usually has to make certain assumptions about the shape of the intensity process
or rate function in order to perform nonparametric inference (Sun and Rai 2001;
Sun and Matthews 1997).

Yet another feature of the methods described here is that they were developed
mainly for panel count data in which observation and censoring times differ from
subject to subject. For the situation wherein observation times or intervals are the
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same for all subjects, the data can be regarded as multivariate data and any method
that accommodates multivariate positive integer-valued response variables can then
be used for the analysis. This holds even though subjects may miss some intermediate
observations and/or drop out of the study early. In this case, the resulting data can be
seen as multivariate data with missing values. Also, as mentioned before, one can
treat panel count data as a special case of longitudinal data and apply the methods
developed for longitudinal data. However, these methods may not be able to take into
account the special structure of panel count data and thus would be less efficient.

Note that for nonparametric inference on panel count data with covariates dis-
cussed in Sects. 6 and 8, only linear effects were considered. Of course, nonlinear
covariate effects may exist in practice and in this case, one could use linear or some
flexible covariate effects to approximate them. For example, one can replace a linear
predictor β ′Z by

∑p

j=1 gj (Zj ), where Z is a p-dimensional covariate vector and gj

is a smooth function of Zj and could be estimated by smoothing methods such as
splines.

In preceding sections, all discussions have been on univariate situations. That is,
there exists only one type of recurrent event. In reality, there may exist several re-
lated types of recurrent events that are of interest and for which only panel count data
are available. Among others, Chen et al. (2005) discussed the analysis of multivari-
ate panel count data using a marginal mixed Poisson process approach by assuming
that the baseline intensity function is piecewise constant. He et al. (2008) studied the
same problem and proposed some estimating equation-based approaches. One limi-
tation for the approaches discussed above is that it has been assumed that all study
subjects come from a single population. Sometimes the subjects may arise from a
mixture of G different populations characterized by Ni(t) =∑G

g=1 zi,gCi,g(t), where
zi,g indicates if subject i belongs to the subpopulation or cluster g and Ci,g(t) is a
non-homogeneous Poisson process. Among others, Nielsen and Dean (2008) inves-
tigated this type of situation and provided an example of such a panel count data
arising from an experiment for testing the difference of pheromones in disrupting the
mating pattern of the cherry bark tortrix moth.

For future research directions, one area that definitely needs more research is the
treatment comparison based on panel count data. Although a few procedures are
available, the two examples in Sect. 5 suggested that they may give different con-
clusions. Thus more work is needed for the selection of a particular procedure given
a practical problem or for the development of new, more powerful procedures. Clearly
an ideal situation is to develop an approach that provides an automatic choice, which
would be difficult. A more practical idea is to combine an appropriate procedure with
several weight functions or several procedures and develop some method that gives a
minimum p-value like the Bonferroni procedure.

Another direction that has been briefly discussed here is the situation when the
event history process and the observation process may be related. It is easy to see
that all methods described for this have some limitations. For example, the ap-
proaches given in Sect. 7 were developed based on the Poisson process assump-
tion and although they could still be used for general situations, their performance
is not completely known. A related situation is that there exists a terminal event
such as death that affects or is related to the recurrent event of interest. Ghosh and
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Lin (2000) discussed this for recurrent event data and the problem is much harder
for panel count data. For a recurrent event, instead of the occurrence rate of the
event, sometimes one may be interested in the gap time of the event, the time be-
tween successive occurrences of the event (Sun et al. 2006; Zhao and Sun 2006;
Du 2009). For the analysis of gap times, although some approaches have been
proposed for the case of recurrent event data, there exists little research for panel
count data situations. The same is true for the model or variable selection based on
panel count data (Tong et al. 2009) and for the regression model that involves time-
dependent covariates or time-varying covariate effects (Sun et al. 2009).
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