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Abstract This paper presents a novel class of semiparametric estimating functions for the additive model

with right-censored data that are obtained from general biased-sampling. The new estimator can be obtained

using a weighted estimating equation for the covariate coefficients, by embedding the biased-sampling data into

left-truncated and right-censored data. The asymptotic properties (consistency and asymptotic normality) of

the proposed estimator are derived via the modern empirical processes theory. Based on the cumulative residual

processes, we also propose graphical and numerical methods to assess the adequacy of the additive risk model.

The good finite-sample performance of the proposed estimator is demonstrated by simulation studies and two

applications of real datasets.
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1 Introduction

The biased-sampling data are frequently encountered in economics, epidemiology, and medical studies.

They arise from complex surveys due to design or the data collecting mechanisms. A prominent feature of

biased data is that the observed subjects are selected with data-dependent sampling probabilities, rather

than being randomly sampled from the population. For example, during the prevalent cohort sampling

of heart patients, the data included only diseased subjects who have not experienced the failure events

before the recruitment. Thus, the subjects who experienced a failure event before the recruitment time

cannot be observed; therefore, the observed survival time is subject to left-truncated. Ignoring the left

truncation may substantially bias estimation and falsify the inference. There is a rich literature on left-

truncated data, including nonparametric estimators of the survivor function (see [21, 45, 47, 49, 54]), and

semiparametric regression models (see [11,22,46,53] and among others). One important sampling scheme
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is the length-biased data, in which the selection probabilities of the sampled subjects are proportional to

the lengths of their survival times. The selection bias in length-biased data, is usually handled by the

nonparametric or semiparametric models. The nonparametric estimators of the survival function under

length-biased sampling were developed by [3,13,30,50], and among others. Other estimation procedures

for length-biased data are based on the Cox model (see [10,15,38,39,44,52,53,57]), the accelerated failure

time (AFT) model, and the transformation model (see [7,19,42]). The nonparametric and semiparametric

regression models under length-biased sampling are comprehensively reviewed in [43].

Another common sampling scheme is the missing covariates in the data. This occurs when the study

design inherently or accidentally excludes some components of the covariates. A special case of missing

covariates is the case-cohort design with Bernoulli sampling, in which some data are observed to be

missing. The complete-cohort analysis, which discards all the subjects with missing covariates, may be

inefficient and yield biased estimators when the missing data mechanism depends on the outcome variables

and the observed covariates. To improve the complete-cohort analysis, researchers have developed various

methods that incorporate the partially incomplete data into the analysis. The estimation procedures for

data with missing covariates have been investigated in the proportional hazards model (see [6, 31, 35,

37, 51, 55]), in the additive model (see [12, 27]), and in the AFT model and the transformation model

(see [17,18,20,28]).

The current paper considers the additive risk model, which captures the risk difference rather than the

risk ratio in the Cox model. The additive risk model with right-censored data in various forms has been

studied by several authors (see [1, 5, 8, 26]), and the semiparametric estimation methods for this model

under biased-sampling data have also received considerable attention in the literature. In the existing

literature, the additive risk model with left-truncated and right-censored data, have been estimated using

a conditional estimating equation estimator by [26], the empirical likelihood estimator by [29] and a

semiparametric estimation proposed by [14] via combining the marginal pairwise pseudo-score function

and the conditional estimating equation. Ma et al. [32] and Zhao et al. [58] proposed some estimating

equation estimators for the additive risk model with length-biased and right-censored data. Li [23]

proposed a unified approach for the additive risk model with the general biased sampling data. They

used the weight function proposed by [17] in the transformation model. However, their method assumes

that the data are right-censored before the biased sampling. Such an assumption is not always realistic

in practice. This paper proposes a new class of semiparametric estimating functions for the additive

model with censored data that are collected by general biased-sampling. In these data, the censoring

can occur either before or after the biased sampling. The proposed approach is based on [44], in which

the biased sampling data in the Cox proportional hazard model have been investigated. Regardless, his

pseudo-partial likelihood approach for the Cox model cannot be directly used to eliminate the nuisance

function (i.e., the baseline hazard function) in estimating the regression coefficients. This is the major

challenge while performing statistical inferences for the additive risk model.

The contribution of this paper is twofold. First, we propose an embedded estimating equation from the

conditional estimating equation, via embedding the biased data into a left-truncated and right-censored

model. Compared with the conditional estimating equation estimator, the embedded estimating equation

estimator is more efficient because it incorporates the latent information in the biased-sampling data.

The limiting distributions of the proposed estimator are established using the modern empirical processes

theory. Second, we develop model checking techniques to assess the adequacy of the additive risk model.

We propose a class of numerical and graphical methods based on the cumulative residual processes. Under

the assumed model, the cumulative residual process weakly converges to a zero-mean Gaussian process,

whose distribution can be approximated using a simulation technique. The observed processes pattern

can be compared both visually and analytically to a large number of realizations from the approximated

processes. These comparisons reveal the various purposes of model fitting evaluation, including the

functional form of each covariate, the assumption of additive hazards with respect to each component,

and the adequacy of the overall model.

The remainder of this paper is organized as follows. Section 2 introduces the embedded estimating

equation estimator and derives its large-sample properties. The model checking techniques are discussed
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in Section 3. Section 4 evaluates the performance of the proposed method by conducting simulation

studies. Section 5 applies the proposed method to the Shrub data and the Stanford heart transplant

data, and Section 6 concludes the paper. The technical proofs are provided in Appendix A.

2 Estimation procedure

2.1 Biased-sampling data and model specification

Given a p-vector of time-dependent covariates Z(·) = (Z1(·), . . . , Zp(·))T, we can assume that the latent

lifetime T ∗ has the conditional distribution function F (t |Z(t)) and the conditional density function

f(t |Z(t)). A biased-sampling dataset of (T ∗,Z(·)) comprises n independent random samples, where the

observation of the i-th sample (Ti,Zi(·)) has the conditional density function

h(t |Zi) =
W (t |Zi(t))f(t |Zi(t))

µ(Zi)
, (2.1)

where W (t |Zi(t)) is a known non-negative weight function, and µ(Zi) is a normalization constant such

that h(t |Zi) is a probability density function.

In biased-sampling data, random samples are obtained from f ; however, the i-th observation (Ti,Zi(Ti))

is accepted with a probability that is proportional to its weight function W (Ti |Zi(Ti)). Different biased-

sampling data are assigned different weight functions. Some biased-sampling data with their correspond-

ing weight functions W (t |Z(t)) are listed below (see [31]),

1. for the left-truncated data, W (t |Z(t)) = I(A 6 t), where A is the left truncation;

2. for the length-biased data, W (t |Z(t)) = t;

3. in the data with the missing covariates, we can observe (T, δ, V,Z(·)), where T = min(T ∗, C),

δ = I(T ∗ 6 C) and V = I(Zm(t) is observed). Z(·) = (ZmT

(·),ZcT(·)T), where Zc(·) and Zm(·) are

complete and missing components of the covariates Z(·), respectively. The weight function is given by

W (T | δ,Z(·)) = P(V = 1 |T, δ,Z(·)). In particular, when the missing data are observed due to the case-

cohort design with Bernoulli sampling, the weight function becomes W (Ti |Zc
i (·), δi) = δi + (1 − δi)pi,

where pi is the probability of selecting the i-th subject in the subcohort.

Given the time-dependent covariates Zi(t) = (Zi1(t), . . . , Zip(t))
T, we assume that T ∗

i follows an

additive risk model [26],

λ(t |Zi) = λ0(t) + βTZi(t), (2.2)

where β is a p× 1 vector of unknown regression coefficients and λ0(t) is the baseline hazard function.

The main objective is to propose an estimator for the true coefficient β0. Throughout this paper, the

latent and observed values will be denoted by a superscripted and a non-superscripted star, respectively.

2.2 Working estimating equation: Left-truncated and right-censored data

We first consider the left-truncated and right-censored data. Assume that the latent lifetime T ∗ has the

distribution F (·), and the truncation time A∗ and censoring time C∗ have joint distribution functionG(·, ·)
with the joint density function g(·, ·). Given the covariates Z(·), we assume that T ∗ and (A∗, C∗) are

conditionally independent, and that P(T ∗ > A∗, C∗ > A∗) > 0. The left-truncated data are not sampled

from the joint distribution, rather they are sampled from the condition distribution given the event,

{T ∗ > A∗, C∗ > A∗}. In a sample of n independent triples, (Ai, T
0
i , Ci) (i = 1, . . . , n), are obtained

from this conditional distribution, i.e., each triplet (Ai, T
0
i , Ci) has the identical joint distribution as

(A∗
i , T

∗
i , C

∗
i ) |T ∗ > A∗, C∗ > A∗. We denote our observed data left-truncated and right-censored sample

data as {Ai, Ti, δi}ni=1, where Ti = min(T 0
i , Ci), and δi = I(Ti 6 Ci).

To proceed, we introduce the counting process Ni(t) = I(Ti 6 t, δi = 1) and the risk process Yi(t) =

I(Ai 6 t 6 Ti). Under Model (2.2), as shown by [2, Subsections 3.3 and 3.4], the intensity function

of Ni(t) is given by

Yi(t)dΛ(t |Zi) = Yi(t)[dΛ0(t) + βTZi(t)dt],
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where Λ0(t) =
∫ t

0
λ0(u)du is the cumulative baseline hazard function. Thus, the counting process Ni(·)

can be uniquely decomposed such that for each t,

Ni(t) =M
(L)
i (t) +

∫ t

0

Yi(u)[dΛ0(u |Zi) + βTZi(t)dt], (2.3)

where M
(L)
i (·) is a local square-integrable martingale (see [2]). Under the relation (2.3), Λ0(t) can be

naturally estimated using the Breslow’s type estimator,

Λ̂
(L)
0 (β̂(L), t) =

∫ t

0

∑n
i=1[dNi(u)− Yi(u)β̂

(L)TZi(u)du]∑n
i=1 Yi(u)

,

where β̂(L) is a consistent estimator of β0. Lin and Ying [26] further proposed the estimator β̂(L) by

solving the following conditional estimating function:

U (L)(β) =
1

n

n∑
i=1

∫ τ

0

Zi(t)[dNi(t)− Yi(t)dΛ̂
(L)
0 (β, t)− Yi(t)β

TZi(t)dt],

which is equivalent to

U (L)(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)−Z
(L)

(t)][dNi(t)− Yi(t)β
TZi(t)dt], (2.4)

where τ is the largest follow-up time, and Z
(L)

(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t). Solving the conditional

estimating equation U (L)(β) = 0, β0 can be estimated as

β̂(L) =

[ n∑
i=1

∫ τ

0

Yi(t)[Zi(t)−Z
(L)

(t)]⊗2dt

]−1[ n∑
i=1

∫ τ

0

[Zi(t)−Z
(L)

(t)]dNi(t)

]
,

where a⊗2 = aaT is the Kronecker product for any vector a. Using the empirical process theory, Lin

and Ying [26] derived that n1/2U (L)(β) is the sum of i.i.d. random vectors; therefore it converges in dis-

tribution to a zero-mean multivariate normal distribution with a covariance matrix Σ(L), where Σ(L) can

be consistently estimated by Σ̂(L) = n−1
∑n

i=1

∫ τ

0
[Zi(t)−Z

(L)
(t)]⊗2dNi(t). By Taylor’s series expansion

and some mathematical arguments, they also showed that
√
n(β̂(L) − β0) converges in distribution to

a zero-mean multivariate normal distribution with a variance matrix D(L)−1

Σ(L)D(L)−1

, which can be

consistently estimated by D̂(L)−1

Σ̂(L)D̂(L)−1

, where

D̂(L) = n−1
n∑

i=1

∫ τ

0

Yi(t)[Zi(t)−Z
(L)

(t)]⊗2dt.

Clearly, the estimator β̂(L) for β can be very inefficient in this situation, because the distribution of

truncation time is apparently not considered. To overcome this difficulty, we propose a more efficient es-

timator in the following sections. Our estimator embeds the data into the left-truncated data. Therefore,

we treat (2.4) as the working estimating equation for the complete data, and then derive an embedded

estimating equation for biased-sampling data based on (2.4).

2.3 Embedded estimating equation: Biased-sampling data

In this section, we consider the data only from biased sampling without censoring. We assume that the

latent truncation A∗ has the conditional distribution W (t |Z(t)) = P(A∗ 6 t |Z(t)), and the lifetime T ∗

has the survival distribution S(t |Z(t)) = 1− P(T ∗ 6 t |Z(t)). We additionally assume that A∗ and T ∗

are independently conditional on Z(·); however, we observe (A, T 0,Z(·)) only if T 0 > A. Therefore,

given Z(·) = z, the conditional density of observing (A, T 0) at (a, t) is w(a | z)f(t | z)I(t > a > 0)/µ,
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where w(a | z) = ∂W (a | z)/∂a and µ = E[W (T ∗ | z)]. The density function of the observed T 0 can be

then given by ∫
w(a | z)f(t | z)I(t > a > 0)da

µ
=
W (t | z)f(t | z)

µ
,

which takes the same form as the conditional density function in (2.1).

To derive a new class of weighted estimating functions, we follow Tsai [44], who obtained a partial

likelihood by embedding the data into a left-truncated and right-censored model. However, we emphasize

that our proposed estimator is based on the conditional estimating equation, which is different from

the pseudo-partial likelihood method of [44]. Specifically, we treat (A, T 0,Z(·)) as the complete data

vector and (T 0,Z(·)) as the incomplete data with the truncation time A completely missing. We further

consider

Mi(t) ≡ E[M
(L)
i |data]

= E

[
Ni(t)−

∫ t

0

Yi(u)[dΛ0(u |Zi(u)) + βTZi(u)du]

∣∣∣∣data]
= Ni(t)−

∫ t

0

πi(u)[dΛ0(u |Zi(u)) + βTZi(u)du], (2.5)

where πi(t) ≡ E[Yi(t) |data] = W (t |Zi(t))
W (T 0

i |Zi(Ti))
.

Obviously, by the double expectation formula, Mi(t) is a zero-mean process. In the view of (2.5), we

can estimate Λ0(t) by a Breslow’s type estimator,

Λ̂0(β̂, t) =

∫ t

0

∑n
i=1[dNi(u)− πi(u)β̂

TZi(u)du]∑n
i=1 πi(u)

.

As Mi(t) is a zero-mean process, we propose the following estimating function:

U(β) =
1

n

n∑
i=1

∫ τ

0

Zi(t)dMi(t).

Replacing Mi(t) in the aforementioned function by its empirical counterpart, we can estimate β0 using

the following estimating function:

U(β) =
1

n

n∑
i=1

∫ τ

0

Zi(t)[dNi(t)− πi(t)dΛ̂0(β, t)− πi(t)β
TZi(t)dt],

which is equivalent to

U(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)−Z(t)][dNi(t)− πi(t)β
TZi(t)dt], (2.6)

where Z(t) =
∑n

i=1 πi(t)Zi(t)/
∑n

i=1 πi(t).

Here, W (t |Z(t)) is the cumulative distribution function of the left-truncation time, which is assumed

to be either completely known or be estimated using other methods. For example, if W (t |Z(t)) is

unknown in practice, it can be replaced by its consistent estimator Ŵ (t |Z(t)). The estimating equation

can be further derived as

Û(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)− Ẑ(t)][dNi(t)− π̂i(t)β
TZi(t)dt], (2.7)

where π̂i(t) =
Ŵ (t |Zi(t))

Ŵ (T 0
i |Zi(t))

I(T 0
i > t) and

Ẑ(t) =
n∑

i=1

π̂i(t)Zi(t)

/ n∑
i=1

π̂i(t).
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Hence, the resulting estimator takes the closed form of

β̂ =

[ n∑
i=1

∫ τ

0

π̂i(t)[Zi(t)− Ẑ(t)]⊗2dt

]−1[ n∑
i=1

∫ τ

0

[Zi(t)− Ẑ(t)]dNi(t)

]
.

2.4 Embedded estimating equation: Right censored biased-sampling data

We now consider right-censored biased-sampling data, which are considerably challenging than uncensored

biased-sampling data. Inspired by (2.6), it requires to calculate the weights πi(t) = E[Yi(t) | data]. These
weights depend on the censoring mechanisms. As discussed in [44], the section only considers two types

of censoring mechanisms.

2.4.1 Censoring mechanism I: Censoring before biased sampling

In the first type of censoring, the censoring mechanism is applied before sampling the data with bias.

Given covariates Zi(·), T ∗, A∗ and C∗ are assumed to be mutually independent. The observed data

(Ai, Ti, δi) are conditional on Ti > Ai, where Ti = min(T ∗
i , C

∗
i ) and δi = I(T ∗

i 6 C∗
i ). Hence, in this type

of censoring, given Zi(·) = z, the joint density of (A∗
i , C

∗
i ) at (a, c) is given by

g(a, c | z) = w(a | z)h(c | z)I(a 6 c)/µ1,

where µ1 =
∫∞
0

∫ c

0
w(a |z)h(c | z)dadc, and w(a | z), h(c | z) are the probability density functions of A∗

i

and C∗
i , respectively. Given Zi(·) = z, the conditional density function of the observed data (Ai, Ti, δi)

at (a, t, δ) can be further obtained as

ϕ1(a, t, δ | z) =
w(a | z){f(t |z)H(t)}δ{S(t |z)h(t)}(1−δ)∫∞

0
w(a | z)H(a)S(a |z)da

,

where H(t) =
∫∞
t
h(s)ds is the survival function of the censoring time C∗. It follows that

E[Yi(t) | observed data] = I(Ti > t)W (t |Zi(Ti))/W (Ti |Zi(Ti)),

which indicates that the estimation procedures proposed in Subsection 2.2 remain valid. Furthermore,

under this type of censoring, the estimating equation (2.7) and the resulting estimator exhibit the same

formulation when T 0
i is replaced by Ti and Ni(t) is defined by Ni(t) = I(Ti 6 t, δi = 1). Specifically,

Û (1)(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)− Ẑ
(1)

(t)][dNi(t)− π̂
(1)
i (t)βTZi(t)dt], (2.8)

where π̂
(1)
i (t) = Ŵ (t |Zi(t))

Ŵ (Ti |Zi(Ti))
I(Ti > t) and Ẑ

(1)

(t) =
∑n

i=1 π̂
(1)
i (t)Zi(t)/

∑n
i=1 π̂

(1)
i (t). The resulting

estimator in closed form can be easily derived as presented above,

β̂(1) =

[ n∑
i=1

∫ τ

0

π
(1)
i (t){Zi(t)− Ẑ

(1)

(t)}⊗2dt

]−1[ n∑
i=1

∫ τ

0

{Zi(t)− Ẑ
(1)

(t)}dNi(t)

]
.

2.4.2 Censoring mechanism II: Censoring after biased sampling

The second type of censoring mechanism is applying the censoring of residual lifetime after the data are

sampled with bias. We define R∗
i = T ∗

i −A∗
i and Rci = C∗

i −A∗
i as the residual lifetime and the residual

censoring time of subject i, respectively, and apply right censoring to the residual lifetime R∗
i rather than

to the lifetime T ∗
i . As assumed in [44], we assume that Rci is independent of (R

∗
i , A

∗
i ) given covariates Zi

and C∗
i > A∗

i . The observed data (Ai, Ti, δi) satisfy Ai 6 Ti, where Ti = Ai +Ri, Ri = min(R∗
i , Rci) and

δi = I(R∗
i 6 Rci). However, C∗

i and A∗
i are not independent, because Cov(C∗

i , A
∗
i ) = Cov(A∗

i + R∗
i , A

∗
i )

= Var(A∗
i ) + Cov(Rci, A

∗
i ) ̸= 0. In this type of censoring mechanism, given Z(·) = z, the joint density

of (A∗
i , C

∗
i ) at (a, c) can be given by

g(a, c | z) = w(a | z)grc(c− a | z)I(c > a),
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where grc(t | z) is the density function of the residual censoring time Rci. Then, given Zi = z, the

conditional density function of the observed data (Ai, Ti, δi) at (a, t, δ) can be further given by

ϕ2(a, t, δ |z) =
w(a | z){f(t | z)Grc(t− a |z)}δ{S(t | z)grc(t− a | z)}1−δ∫∞

0
w(a | z)S(a | z)da

,

where Grc(t | z) =
∫∞
t
grc(s | z)ds is the survival function of Rci. We additionally obtain

E[Yi(t) | observed data]

=

∫ t

0
ϕ2(a, Ti, δi | zi)da∫ Ti

0
ϕ2(a, Ti, δi | zi)da

I(Ti > t)

=

{
δi

∫ t

0
w(a |zi)Grc(Ti − a |zi)da∫ Ti

0
w(a | zi)Grc(Ti − a | zi)da

+ (1− δi)

∫ t

0
w(a | zi)grc(Ti − a | zi)da∫ Ti

0
w(a | zi)grc(Ti − a | zi)da

}
I(Ti > t)

≡
{
δi
W1(Ti, t)

W1(Ti, Ti)
+ (1− δi)

W0(Ti, t)

W0(Ti, Ti)

}
I(Ti > t).

Note that, in this type of censoring, the conditional expectation E[Yi | observed data] is a function of

the censoring distribution. Hence, using the aforementioned procedure, the estimating function can be

obtained as,

U (2)(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)−Z
(2)

(t)][dNi(t)− π
(2)
i (t)βTZi(t)dt], (2.9)

where

π
(2)
i (t) = I(Ti > t)

{
δi
W1(Ti, t)

W1(Ti, Ti)
+ (1− δi)

W0(Ti, t)

W0(Ti, Ti)

}
,

and

Z
(2)

(t) =
n∑

i=1

π
(2)
i (t)Zi(t)

/ n∑
i=1

π
(2)
i (t).

When Grc(t) is unknown in practice, Grc(t) can be replaced by the Kaplan-Meier estimator Ĝrc(t) using

the residual observations {Ri, δi : i = 1, . . . , n}:

Ĝrc(t) = 1−
∏
Ri6t

{
1− ∆NG(Ri)

CG(Ri)

}
,

where NG(t) = n−1
∑n

i=1 I(Ri 6 t, δi = 0), CG(t) = n−1
∑n

i=1 I(Ri > t), and ∆NG(t) = NG(t+) −
NG(t−). The conditional at-risk process can be further estimated as follows:

π̂
(2)
i (t) =

{
δi
Ŵ1(Ti, t)

Ŵ1(Ti, Ti)
+ (1− δi)

Ŵ0(Ti, t)

Ŵ0(Ti, Ti)

}
I(Ti > t).

By replacing π
(2)
i (t) with π̂

(2)
i (t) in (2.9), the estimating equation can be obtained as

Û (2)(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)− Ẑ
(2)

(t)][dNi(t)− π̂
(2)
i (t)βTZi(t)dt], (2.10)

where Ẑ
(2)

(t) =
∑n

i=1 π̂
(2)
i (t)Zi(t)/

∑n
i=1 π̂

(2)
i (t). The resulting closed-form estimator can be given by

β̂(2) =

[ n∑
i=1

∫ τ

0

π̂
(2)
i (t){Zi(t)− Ẑ

(2)

(t)}⊗2dt

]−1[ n∑
i=1

∫ τ

0

{Zi(t)− Ẑ
(2)

(t)}dNi(t)

]
.
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2.5 Extension to the missing covariates

Let T ∗ and C be the latent failure and censoring times, respectively. Let T = min(T ∗, C) be the observed

time, and δ = I(T ∗ 6 C) be the failure indicator. It is assumed that T ∗ is conditional independent of C

given covariates Z(·). Suppose that Z(·) can be partitioned as Z(·) = (ZmT

(·),ZcT(·)T), where Zm(·) is
the covariates with possibly missing values, and Zc(·) is the complete covariates. (T, δ,Zc(·)) are observed
for all subjects in the study; however, the missing covariates Zm(·) are observed only for a subset. By

introducing the selection indicator, V = I(Zm(·) is observed), and by assuming the missing-at-random

(see [41]), the distribution of V given (T, δ,Z(·)) is

W (T | δ,Zc(·)) ≡ P(V = 1 |T, δ,Zc(·)) = P(V = 1 |T, δ,Z(·)).

Let (Ti, δi,Zi(·), Vi) be the independent and identically distributed copies of (T, δ,Z(·), V ) for i = 1, . . . , n,

where Zi(·) = (ZmT

i (·),ZcT

i (·))T. The observed data are {(Ti, δi,Zc
i , ViZ

m
i (·), Vi) : i = 1, . . . , n}.

To validate the embedded estimating estimation method for the missing covariates, we introduce a

latent non-negative random variable U with conditional distribution P(U 6 t|Zc(·) = zc,Zm(·) = zm)

=W (t | zc). We assume that U and (T, δ) are conditionally independent givenZ(·), and that (U, T,Z(·), δ)
are observable only if U 6 T . Consequently, the indicator I(Ui 6 Ti) can be considered as a selection

indicator Vi, which indicates whether or not the i-th subject contains missing covariates. To show that

the data with missing covariates can be viewed as a biased sample from a population, we derive the

density of the observed time T without censoring. Specifically, in the absence of right censoring, the joint

density of (U, T ) conditional on (Zc(·),Zm(·)) = (zc,zm) is given by

P(T = t, U = u |Zc(·) = zc,Zm(·) = zm)

= P(T ∗ = t, U = u |U 6 T ∗,Zc(·) = zc,Zm(·) = zm)

=
f(t | zc)w(u | zc)I(t > u)

µ
,

where w(u | zc) is the density of U given zc, and µ = EW (T ∗ | zc). Because the density of the observed T ,

W (t | zc)f(t |zc)/µ, takes the same form as that of (2.1) for biased-sampling data, the missing data can

be viewed as a biased sample from the population. The probability of selecting subjects with U 6 T from

this population is proportional to W (t |zc). As suggested by [31], this sampling scheme can be termed

as left-truncation, where U plays the role of the left-truncation time.

For the complete data (Ui, Ti,Zi(·), δi), the local square-integrable martingale is given by

MU
i (t) = NU

i (t)−
∫ t

0

Y U
i (t)[dΛ0(u) + βTZi(u)du],

where NU
i (t) = I(Ui 6 Ti)Ni(t), Y

U
i (t) = I(Ui 6 t 6 Ti).

Note that the latent left truncation time U is not observable. Using the similar idea in the Cox model

with missing covariates in [31], we can treat (Ti,Zi, δi) as the missing data with the left-truncation

time Ui completely missing. Furthermore, by the assumption W (T |Zc, δ) =W (T |Zc) and the relation

I(Ui 6 Ti) = Vi, we obtain

M
(m)
i (t) ≡ E[MU

i (t) | data]

= ViNi(t)−
∫ t

0

Viπ
(m)
i (u)[dΛ0(u |Zi) + βTZi(u)du], (2.11)

where π
(m)
i (t) =

W (t |Zc
i )

W (Ti |Zc
i )
I(Ti > t). Clearly, Mi(t) is a mean-zero process. Similar to the aforementioned

procedure, the estimating equation can be derived as

U (m)(β) =
1

n

n∑
i=1

∫ τ

0

[Zi(t)−Z
(m)

(t)]Vi[dNi(t)− π
(m)
i (t)βTZi(t)dt], (2.12)
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where Z
(m)

(t) =
∑n

i=1 Viπ
(m)
i (t)Zi/

∑n
i=1 Viπ

(m)
i (t).

However, W (T, δ,Zc(·)) is unknown in practice, and W (T, δ,Zc(·)) depends on the failure indica-

tor δ. By the similar arguments to that of [31], we can generalize the weight function as π̂
(m)
i (t) =

Ŵ (t |Zc
i (·), 1)I(Ti > t)/Ŵ (Ti |Zc

i (·), δi), by replacing W (t | δ,Zc(·)) with its consistent estimator

Ŵ (t | δ,Zc(·)). The embedded estimating equation can be proposed as

Û (m)(β) =
1

n

n∑
i=1

Vi

∫ τ

0

[Zi(t)− Ẑ
(m)

(t)][dNi(t)− π̂
(m)
i (t)βTZi(t)dt], (2.13)

where

Ẑ
(2)

(t) =

∑n
i=1 Viπ̂

(m)
i (t)Zi(t)∑n

i=1 Viπ̂
(m)
i (t)

.

Thus, the resulting closed-form estimator is given by

β̂(m) =

[ n∑
i=1

Vi

∫ τ

0

π̂
(m)
i (t){Zi(t)− Ẑ

(m)

(t)}⊗2dt

]−1[ n∑
i=1

Vi

∫ τ

0

{Zi(t)− Ẑ
(m)

(t)}dNi(t)

]
.

Remark 2.1. (i) For the additive model with missing covariates, Lin [27] proposed the following simple

weighted estimator:

β̂SW =

[ n∑
i=1

Vi

Ŵ (Ti |Zc
i , δi)

∫ τ

0

{Zi(t)− ẐSW (t)}⊗2dt

]−1 n∑
i=1

Vi

Ŵ (Ti |Zc
i , δi)

∫ τ

0

{Zi(t)− ẐSW (t)}dNi(t),

where

ẐSW (t) =

∑n
i=1 ViI(Ti > t)Zi(t)/Ŵ (Ti |Zc

i , δi)∑n
i=1 ViI(Ti > t)/Ŵ (Ti |Zc

i , δi)
.

To reduce the overweighting problem using the inverse probability weighted method, Hao [12] proposed

the reweighting estimator

β̂SR =

[ n∑
i=1

∫ τ

0

ViŴ (t |Zc
i , 1)

Ŵ (Ti |Zc
i , δi)

{Zi(t)− ẐSR(t)}⊗2dt

]−1 n∑
i=1

∫ τ

0

ViŴ (t |Zc
i , 1)

Ŵ (Ti |Zc
i , δi)

{Zi(t)− ẐSR(t)}dNi(t),

where

ẐSR(t) =

∑n
i=1 ViI(Ti > t)Zi(t)Ŵ (t |Zc

i , 1)/Ŵ (Ti |Zc
i , δi)∑n

i=1 ViI(Ti > t)Ŵ (t |Zc
i , 1)/Ŵ (Ti |Zc

i , δi)
.

Note that our proposed estimator β̂(m) is exactly the estimator β̂SR proposed by [12] data with missing

covariates.

(ii) As pointed out by a referee, to improve robustness and efficiency of β̂(m), one may add an augmented

term on the estimating functions based on the double robust technique in [40]. This resulting estimator

possesses the double-robustness property, i.e., given the observed data, the estimator is consistent whether

the selection probability or the conditional distribution of the missing covariates is correctly specified

(see [51]). Thus, Hao [12] constructed an augmented reweighting estimator β̂AR, which is more efficient

than the simple weighted estimator β̂SR. Furthermore, we should recall our proposed estimator β̂(m) is

identical to the estimator β̂SR. Therefore, The augmented reweighted version of β̂(m) can be constructed

in a similar manner to β̂SR in [12]. The details have been omitted to save space.

2.6 Asymptotic properties

In this subsection, we derive the asymptotic properties of the proposed estimator. Note that the esti-

mating equations (2.8), (2.9) and (2.13) takes the form of (2.6). Therefore, without loss of ambiguity,

we write the estimating equation U(β) as (2.6), and express Û(β) by replacing the weight function πi(t)

with π̂i(t).
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Theorem 2.2. Under the regularity conditions in Appendix A, n1/2Û(β) converges in distribution to

a zero-mean multivariate normal distribution with a covariance matrix Σ, where Σ can be consistently

estimated by

Σ̂ =
1

n

n∑
i=1

[ ∫ τ

0

{Zi(t)− Ẑ(t)}{dNi(t)− π̂i(t)β̂
TZi(t)dt}

]⊗2

,

with Ẑ(t) =
∑n

i π̂i(t)Zi(t)/
∑n

i π̂i(t). Furthermore,
√
n(β̂−β0) converges in distribution to a zero-mean

multivariate normal distribution with variance matrix D−1ΣD−1, which can be consistently estimated by

D̂−1Σ̂D̂−1, where

D̂ =
1

n

n∑
i=1

∫ τ

0

[Zi(t)− Ẑi(t)]
⊗2π̂i(t)dt.

The subsequent theorem exhibits the weak convergence of the process Λ̂0(β̂, t).

Theorem 2.3. Under the regularity conditions in Appendix A,
√
n[Λ̂0(β̂, t)− Λ0(t)] converges weakly

to a zero-mean Gaussian process with covariance function η(s, t) ≡ E{Ψ1(s)Ψ1(t)
T}, where

Ψi(t) =

∫ t

0

dMi(u)

s(0)(u)
− hT(β0, t)D

−1

∫ τ

0

[Zi(u)− z(u)]dMi(u),

and h(β0, t) =
∫ t

0
E[π1(u)Z1]

s(0)(u)
du.

3 Model-checking techniques

The i-th residual in model (2.2) can be defined as

M̂i(t) = Ni(t)−
∫ t

0

π̂i(u){dΛ̂0(u) + β̂TZi(u)du}.

Note that M̂i(t) can be viewed as the difference between the observed and model-predicted number of

failures for the i-th subject by time t. Thus, using these residuals, one can verify the adequacy of (2.2)

for biased-sampling data. However, as the M̂i(t) are not martingales, the standard tests of fit for additive

risk models (see [16,56]) are not directly applicable. Following the basic ideas of [25], we develop a class

of graphical and numerical methods based on the cumulative sums of the residuals M̂i(t).

The following multi-parameter stochastic process involves various forms of cumulative sums of M̂i(t),

Q(t, z) = n−1/2
n∑

i=1

∫ t

0

q(Zi(u))I(Zi(u) 6 z)dM̂i(u),

where q(·) is a known vector-valued bounded function, and I(Zi(·) 6 z) = I(Zi1(·) 6 z1, . . . , Zip(·) 6 zp).

Intuitively, if (2.2) holds, these processes will randomly fluctuate around zero. However, we need to

establish the asymptotic properties of Q(t, z). To proceed, we define some notation. Let

Sq(t,z) =

∑n
i=1 q(Zi(t))I(Zi(t) 6 z)π̂i(t)∑n

i=1 π̂i(t)
,

and

Bq(t, z) =
1

n

n∑
i=1

∫ t

0

q(Zi(u))I(Zi(u) 6 z)π̂i(u)[Zi(u)− Ẑ(u)]Tdu,

where Ẑ(u) =
∑n

i=1 π̂i(u)Zi(u)/
∑n

i=1 π̂i(u). Furthermore, we denote sq(t, z), bq(t, z) and z(t) as the

limit of Sq(t,z), Bq(t,z) and Ẑ(t), respectively. Subsequently, we define

γi(t, z) =

∫ t

0

[q(Zi)I(Zi(u) 6 z)− sq(u,z)]dMi(u)
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− bq(t, z)D
−1

∫ τ

0

[Zi(u)− z(u)]dMi(u),

γ̂i(t, z) =

∫ t

0

[q(Zi(u))I(Zi(u) 6 z)− Sq(u,z)]dM̂i(u)

−Bq(t, z)D̂
−1

∫ τ

0

[Zi(u)− Ẑ(u)]dM̂i(u).

The following theorem provides the asymptotic property of Q(t, z).

Theorem 3.1. Under the regularity conditions in Appendix A, Q(t, z) converges weakly to a zero-mean

Gaussian process with a covariance function E[γ1(t, z)γ1(t
∗, z∗)T] at (t, z) and (t∗, z∗).

In practice, the limiting distribution of Q(t, z) can be approximating through a Monte Carlo sim-

ulation technique. First, we can independently generate a simple random sample {ξ1, . . . , ξn} from

the standard normal distribution N(0, 1), which are independent of {Ni(t), Yi(t),Zi(t) : i = 1, . . . , n}
based on the observed data. Then, we can obtain the perturbed version of the stochastic process

Q̂(t,z) = n−1/2
∑n

i=1 γ̂i(t, z)ξi. The perturbation procedure can be theoretically justified by the fol-

lowing theorem.

Theorem 3.2. Given {Ni(t), Yi(t),Zi(t) : i = 1, . . . , n}, Q̂(t, z) converges weakly to the same zero-

mean Gaussian process as that of Q(t,z).

Subsequently, we illustrate the application of Q(t,z) to model-fitting evaluations with different pur-

poses. First, we consider the problem of checking the functional forms of the covariates. For the j-th

component of Z(·), we take q(z) = 1, t = τ , and zk = ∞ for all k ̸= j, obtaining

Qj(z) = n−1/2
n∑

i=1

∫ τ

0

I(Zij(u) 6 z)dM̂i(u).

The null distribution of Q(z) can be approximated by the corresponding zero-mean Gaussian pro-

cess Q̂j(z),

Q̂j(z) = n−1/2
n∑

i=1

∫ τ

0

[I(Zij(u) 6 z)− Sj
q(u,z)]dM̂i(u)ξi

−Bj
q(τ,z)D̂

−1n−1/2
n∑

i=1

∫ τ

0

[Zi(u)− Ẑ(u)]dM̂i(u)ξi, (3.1)

where Sj
q and Bj

q(τ, z) are the j-th component of Sq and Bq(τ, z), respectively. To assess unusual the

observed residual pattern, we simultaneously plot several (e.g., 50) realizations of Q̂j(z) along with the

observed Qj(z). Furthermore, to obtain the p-value of the supremum test supz |Q(z)|, we can generate a

large number of, say 1,000, realizations of supz |Q̂(z)|, and then calculate the percentage of those greater

than the observed value of supz |Q(z)|.
To check the additive risk assumption under (2.2), we consider the standardized score-type process

U∗
j (t) = (Σ̂−1

jj )
1/2n1/2Uj(β̂, t),

where Uj(β̂, t) is the j-th component of U(β̂, t) and Σ̂−1
jj is the j-th diagonal element of Σ̂−1. Clearly,

n1/2U(β̂, t) = n−1/2
n∑

i=1

∫ t

0

[Zi(u)− Ẑ(u)]dM̂i(u)

is a special case of Q(t,z) with q(Zi(u)) = Zi(u) − Ẑ(u) and z = ∞. In this case, Sq(u,z) = 0. As

shown in the proof of Theorem 3.1, the null distribution of U∗
j (t) can be approximated by that of the

zero-mean Gaussian process,

Û∗
j (t) = (Σ̂−1

jj )
1/2

[
n−1/2

n∑
i=1

∫ t

0

[Zij(u)− Ẑj(u)]dM̂i(u)ξi
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−Bj
q(t, z)D̂

−1n−1/2
n∑

i=1

∫ τ

0

[Zi(u)− Ẑ(u)]dM̂i(u)ξi

]
,

where Bj
q(t, z) is the j-th component of Bq(t,z). Graphical and numerical inspections can be performed

by simulation in the same fashion as for Q̂j(z). The test statistic for checking the additive hazards

structure of the j-th covariate (j = 1, . . . , p) is given by

Sj = sup
t∈[0,τ ]

|U∗
j (t)|.

The p-value (= P(Sj > sj)) can be approximated by P(Ŝ∗
j > sj), where sj is the observed value of Sj ,

and

Ŝj = sup
t∈[0,τ ]

|Û∗
j (t)|.

The p-value can be empirically estimated by the percentage of (Ŝj > sj) through generating many

realizations of Ŝj . The overall test statistic for the joint additivity of all covariates is given by

Sa = sup
t∈[0,τ ]

p∑
j=1

|U∗
j (t)|.

4 Simulation studies

4.1 Accuracy of estimation

A series of simulation studies were conducted for evaluating the inference procedure proposed in the

previous sections. As we pointed out in Subsection 2.5, our embedded estimating equation estimator for

data with missing covariatesis is exactly the reweighted estimator proposed by [12]. Thus, the results of

missing covariates are omitted for saving space.

The data were generated as follows. The survival time T ∗ was generated from the additive risk model,

λ(t |Z) = λ0(t) + β1Z1 + β2Z2,

where λ0(t) = 0.5t−1/2, Z1 ∼ Binom(1, 0.5) and Z2 ∼ Unif(0.5, 1.5), and the true value (β1, β2) =

(−0.5, 1). The truncation time A was generated from two different types of biased-sampling data:

(1) Length-biased sampling: A∗ was generated from a uniform distribution Unif(0, 100);

(2) General biased sampling: A∗ was generated from a Weibull distribution with a scale parameter 1.2

and a shape parameter 0.8.

The data from biased sampling were censored in two mechanisms:

(I) Censoring mechanism I: censoring before biased sampling.

The censoring time C∗ was independently generated from an exponential distribution with parameter c,

which controls the censoring percentages: 10%, 30%, 50%. In the censored data (Ti, δi), the observed data

(A, T, δ) were obtained only when T > A, where T = min(T ∗, C∗) and δ = I(T ∗ 6 C∗).

(II) Censoring mechanism II: censoring after biased sampling.

Let R∗ = T ∗ − A be the residual lifetime. We then independently generated the residual censoring

time Rc from an exponential distribution with parameter c, where c controls the censoring percentages:

10%, 30%, 50%. The observations (A, T, δ) were retained when T > A, where T = A∗ + min(R∗, Rc)

and δ = I(R∗ 6 Rc). The observed data were (A, T, δ), where T = A + R, R = min(R∗, Rc) and

δ = I(R∗ 6 Rc).

In each scenario, 1,000 repetitions were conducted with the sample size n = 150 and n = 300. For

comparison, both the proposed estimator β̂ and the naive estimator β̂(L) were used. The estimate results

under censoring mechanisms I and II are summarized in Tables 1 and 2, respectively. In each scenario,

all the estimators appear to be unbiased over the range of right censoring rates from low (10%) to heavy

(50%), and the estimated standard errors (“ESE”) are close to the empirical standard errors (“SD”),
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Table 1 Performance comparison between the proposed estimator and the naive estimator based on 1,000 simulated

samples under censoring mechanism I (censoring before biased sampling)

n = 150 n = 300

Naive Proposed Naive Proposed

C% β̂
(L)
1 β̂

(L)
2 β̂1 β̂2 β̂

(L)
1 β̂

(L)
2 β̂1 β̂2

Length-biased sampling

10% Bias −0.007 −0.014 0.002 −0.016 −0.004 −0.006 0.003 −0.010

SD 0.223 0.340 0.154 0.250 0.151 0.245 0.107 0.180

ESE 0.219 0.357 0.153 0.255 0.154 0.250 0.107 0.176

CP 0.948 0.964 0.955 0.976 0.949 0.955 0.950 0.955

MSE 0.050 0.115 0.024 0.063 0.023 0.060 0.012 0.032

RMSE 1.000 1.000 0.474 0.543 1.000 1.000 0.507 0.536

30% Bias −0.005 −0.026 0.004 −0.029 −0.004 0.001 0.006 −0.006

SD 0.259 0.429 0.199 0.329 0.183 0.304 0.142 0.233

ESE 0.257 0.430 0.200 0.342 0.180 0.303 0.139 0.236

CP 0.953 0.953 0.957 0.981 0.947 0.948 0.940 0.963

MSE 0.067 0.184 0.039 0.109 0.033 0.092 0.020 0.054

RMSE 1.000 1.000 0.588 0.590 1.000 1.000 0.604 0.589

50% Bias 0.002 −0.019 0.020 −0.028 −0.006 −0.004 0.001 −0.013

SD 0.335 0.573 0.279 0.461 0.235 0.392 0.196 0.316

ESE 0.333 0.573 0.287 0.495 0.234 0.399 0.199 0.341

CP 0.951 0.954 0.957 0.985 0.957 0.948 0.960 0.984

MSE 0.112 0.328 0.078 0.213 0.055 0.154 0.038 0.100

RMSE 1.000 1.000 0.695 0.649 1.000 1.000 0.694 0.651

General biased sampling

10% Bias −0.007 −0.001 −0.008 0.000 −0.003 −0.007 −0.002 −0.007

SD 0.241 0.394 0.205 0.330 0.174 0.288 0.146 0.236

ESE 0.239 0.402 0.190 0.327 0.167 0.280 0.131 0.223

CP 0.953 0.958 0.933 0.978 0.944 0.949 0.923 0.959

MSE 0.058 0.155 0.042 0.109 0.030 0.083 0.021 0.056

RMSE 1.000 1.000 0.726 0.700 1.000 1.000 0.707 0.677

30% Bias −0.003 0.006 0.003 0.011 0.002 −0.003 0.001 −0.006

SD 0.289 0.508 0.254 0.434 0.213 0.350 0.179 0.299

ESE 0.287 0.493 0.246 0.426 0.201 0.344 0.169 0.291

CP 0.957 0.948 0.945 0.978 0.938 0.947 0.938 0.962

MSE 0.083 0.258 0.064 0.189 0.045 0.122 0.032 0.089

RMSE 1.000 1.000 0.774 0.732 1.000 1.000 0.706 0.730

50% Bias −0.006 −0.003 0.002 0.008 0.001 0.002 0.005 0.008

SD 0.392 0.654 0.347 0.562 0.273 0.456 0.240 0.396

ESE 0.372 0.640 0.338 0.585 0.260 0.448 0.232 0.402

CP 0.946 0.948 0.948 0.984 0.940 0.953 0.939 0.978

MSE 0.153 0.427 0.120 0.316 0.074 0.207 0.058 0.157

RMSE 1.000 1.000 0.784 0.740 1.000 1.000 0.776 0.756

Bias: the empirical bias; SD: empirical standard error; ESE: average estimated standard error; CP: 95% coverage probability;

MSE: mean squared error; RMSE: MSE ratio of the proposed estimator to the naive estimator.

indicating good performance of the variance estimator. In addition, the empirical coverage probabilities

(“CP”) are close to the nominal level 95%. As expected, when the sample size increases from n = 150

to n = 300 or when censoring rate varies from heavy (50%) to light (10%), the mean squared errors

(“MSE”) trend to be smaller. To assess the efficiency of the proposed estimator, we compute the relative

mean squared error (“RMSE”), which is defined by the MSE ratio of the proposed estimator to the naive

estimator. As expected, all the RMSEs are less than 0.8, which indicates that the proposed estimator is

more efficient than the naive estimator.
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Table 2 Performance comparison between the proposed estimator and the naive estimator based on 1,000 simulated

samples under censoring mechanism II (censoring after biased sampling)

n = 150 n = 300

Naive Proposed Naive Proposed

C% β̂
(L)
1 β̂

(L)
2 β̂1 β̂2 β̂

(L)
1 β̂

(L)
2 β̂1 β̂2

Length-biased sampling

10% Bias 0.000 −0.016 0.010 −0.018 0.004 −0.022 0.001 −0.004

SD 0.212 0.354 0.144 0.238 0.160 0.251 0.105 0.172

ESE 0.221 0.354 0.150 0.247 0.155 0.247 0.105 0.172

CP 0.965 0.944 0.960 0.974 0.946 0.941 0.958 0.962

MSE 0.045 0.125 0.021 0.057 0.026 0.063 0.011 0.029

RMSE 1.000 1.000 0.465 0.454 1.000 1.000 0.431 0.466

30% Bias 0.006 −0.027 0.022 −0.036 0.008 −0.033 0.007 −0.018

SD 0.240 0.409 0.167 0.280 0.181 0.291 0.122 0.205

ESE 0.249 0.407 0.181 0.300 0.175 0.285 0.127 0.210

CP 0.961 0.948 0.957 0.987 0.948 0.940 0.960 0.967

MSE 0.058 0.168 0.028 0.080 0.033 0.086 0.015 0.042

RMSE 1.000 1.000 0.489 0.476 1.000 1.000 0.454 0.492

50% Bias 0.015 −0.047 0.031 −0.061 0.012 −0.038 0.017 −0.029

SD 0.288 0.513 0.213 0.374 0.219 0.354 0.158 0.261

ESE 0.299 0.499 0.236 0.395 0.212 0.350 0.167 0.278

CP 0.962 0.945 0.960 0.984 0.948 0.950 0.960 0.973

MSE 0.083 0.265 0.046 0.144 0.048 0.127 0.025 0.069

RMSE 1.000 1.000 0.557 0.541 1.000 1.000 0.525 0.542

General biased sampling

10% Bias 0.002 0.016 0.000 0.023 −0.005 −0.015 −0.004 −0.003

SD 0.235 0.417 0.196 0.361 0.164 0.276 0.137 0.233

ESE 0.237 0.402 0.188 0.324 0.166 0.278 0.129 0.218

CP 0.951 0.957 0.945 0.956 0.949 0.948 0.942 0.946

MSE 0.055 0.174 0.038 0.131 0.027 0.076 0.019 0.054

RMSE 1.000 1.000 0.697 0.750 1.000 1.000 0.698 0.711

30% Bias 0.008 0.007 0.010 0.010 −0.004 −0.011 0.000 −0.006

SD 0.274 0.487 0.228 0.407 0.192 0.333 0.157 0.273

ESE 0.276 0.473 0.228 0.395 0.194 0.328 0.157 0.268

CP 0.960 0.950 0.960 0.974 0.961 0.946 0.951 0.961

MSE 0.075 0.237 0.052 0.165 0.037 0.111 0.024 0.074

RMSE 1.000 1.000 0.695 0.697 1.000 1.000 0.665 0.673

50% Bias 0.017 −0.009 0.021 −0.019 0.001 −0.012 0.007 −0.012

SD 0.361 0.623 0.298 0.508 0.249 0.440 0.205 0.360

ESE 0.353 0.610 0.308 0.530 0.248 0.424 0.213 0.364

CP 0.949 0.949 0.961 0.982 0.949 0.939 0.953 0.959

MSE 0.130 0.388 0.089 0.258 0.062 0.194 0.042 0.130

RMSE 1.000 1.000 0.683 0.666 1.000 1.000 0.681 0.670

Bias: the empirical bias; SD: empirical standard error; ESE: average estimated standard error; CP: 95% coverage

probability; MSE: mean squared error; RMSE: MSE ratio of the proposed estimator to the naive estimator.

4.2 Performance of model checking

The performance of the model checking test with finite sample sizes was also investigated using simulation

studies. We generated the failure time T ∗ from the null modelH0 and two alternative modelsHa1 andHa2

as follows:

• H0 : λ(t |Z) = 1 + Z, where Z ∼ Unif(0, 1);
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Table 3 Test for the additive risk assumption based on the score process. Empirical sizes and powers of the proposed

test were calculated from 1,000 simulated samples at the significance level of 0.05

n = 150 n = 300

Censoring C% Size Power Size Power

mechanism H0 Ha1 Ha2 H0 Ha1 Ha2

Length-biased sampling

I 10% 0.075 0.355 0.815 0.052 0.580 0.905

30% 0.062 0.225 0.765 0.060 0.512 0.875

50% 0.071 0.175 0.595 0.085 0.405 0.795

II 10% 0.051 0.295 0.765 0.060 0.570 0.912

30% 0.045 0.275 0.682 0.075 0.504 0.875

50% 0.050 0.235 0.565 0.032 0.383 0.820

General biased sampling

I 10% 0.095 0.382 0.863 0.055 0.625 0.960

30% 0.064 0.345 0.764 0.065 0.502 0.953

50% 0.061 0.201 0.625 0.071 0.380 0.845

II 10% 0.025 0.385 0.805 0.065 0.612 0.925

30% 0.075 0.335 0.770 0.075 0.545 0.920

50% 0.034 0.230 0.585 0.055 0.375 0.801

Null model, H0 : λ(t |Z) = 1 + Z; alternative models, Ha1 : λ(t |Z) = t exp(Z) and Ha2 : λ(t |Z) = tZ.

Table 4 Test for the functional forms of the covariate based on the cumulative residual process. Empirical sizes and

powers of the proposed test are calculated from 1,000 simulated samples at the significance level of 0.05

n = 150 n = 300

Censoring C% Size Power Size Power

mechanism H0 Ha2 H0 Ha2

Length-biased sampling

I 10% 0.024 0.745 0.040 0.965

30% 0.020 0.551 0.030 0.835

50% 0.022 0.265 0.025 0.574

II 10% 0.051 0.725 0.050 0.961

30% 0.033 0.553 0.038 0.900

50% 0.015 0.420 0.045 0.712

General biased sampling

I 10% 0.015 0.622 0.026 0.945

30% 0.014 0.425 0.036 0.794

50% 0.028 0.247 0.027 0.442

II 10% 0.018 0.653 0.038 0.945

30% 0.034 0.429 0.032 0.785

50% 0.027 0.256 0.025 0.520

Null model, H0 : λ(t |Z) = 1 + Z; and alternative model, Ha2 : λ(t |Z) = tZ.

• Ha1 : λ(t |Z) = t exp(Z), where Z ∼ Unif(0, 1);

• Ha2 : λ(t |Z) = tZ, where Z is a log-normal variable with a shape parameter 0 and a scale parame-

ter 1.

The other simulation settings were as described in the previous subsection, i.e., two different types of

biased-sampling (length-biased sampling and general biased sampling), and two censoring mechanisms

(I and II). In each configuration, 1,000 simulations were conducted at two sample sizes, n = 150 and

n = 300. The p-value of the proposed test was approximated using 1,000 bootstrap realizations of the

approximating Gaussian process for each simulated sample.

Table 3 summarizes the results under the null hypothesis, providing the probabilities of rejecting
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H0 : λ(t |Z) = 1 + Z at the nominal level of 0.05. In each scenario, the empirical test sizes are close to

the nominal level. To detect violation of the additive risk assumption, Table 3 also presents the empirical

test powers of the tests against two alternatives,

Ha1 : λ(t |Z) = t exp(Z) and Ha2 : λ(t |Z) = tZ.

In each scenario, the proposed test based on the score process has reasonable power to reject the null

hypothesis. As expected, the power tends to increase with increasing the sample size or decreasing the

censoring rate.

To examine the functional form of the covariate, Table 4 summarizes the empirical test size under

the null hypothesis H0 : λ(t |Z) = 1 + Z, and the empirical power against the alternative hypothesis

Ha2 : λ(t |Z) = tZ. The proposed test has type I error close to the nominal level and reasonable power.

Thus, the proposed test based on the cumulative residual process over a covariate may be a powerful test

of the covariate functional form.

5 Applications

In this section, we analyze two types of biased-sampling datasets.

Example 5.1. Length-biased data.

The original shrub data, which can be found in [34], present the widths of 46 shrubs. We consider the

lifetime proxy outcome of the shrub width T ∗, given two covariates: Z1 = I(T ∗ belongs to transect I),

and Z2 = I(T ∗ belongs to transect II). The additive risk model for the population width T ∗ is given by

λ(t |Z1, Z2) = λ0 + β1Z1 + β2Z2.

As argued by [52], the probability of observing a shrub is proportional to its width. Thus, this data set

is length-biased, and the weight function can be chosen as W (t) = t.

The estimated coefficients are β̂1 = 1.426 (SE = 0.542) and β̂2 = 0.117 (SE = 0.580), with p-values of

0.004 and 0.420, respectively. The estimates are similar to the results of the proportional hazards models

reported by [44, 52]. However, the covariate Z2 is not statistically significant as its p-value exceeds 0.05.

We also applied the proposed model-checking techniques to these data. From 1,000 simulated realizations,

the p-values for testing the functional forms of the covariates Z1 and Z2 are 1. This is expected because

the covariates are dichotomous. Furthermore, the p-values for testing the additive risk assumption of Z1

and Z2 are 0.912 and 0.715, respectively, which suggests that the additive assumption is appropriate.

As depicted in Figure 1, the observed score processes appear to be within the ranges of the initial 50

simulated score processes. It graphically supports that there is no evidence against the assumed model.
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(a) Standardized score processes for Z1
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(b) Standardized score processes for Z2

Figure 1 Standardized score processes for assessing the additive risk assumption in the shrub data. The standardized

score processes is plotted against (a) Z1 (p-value 0.912) and (b) Z2 (p-value 0.715). Bold line = observed process; gray lines

= simulated processes



Zhang F P et al. Sci China Math August 2018 Vol. 61 No. 8 1511

10 20 30 40 50 60

−2

−1

0

1

2

z

C
u
m
u
la
tiv
e
 r
e
si
d
u
a
ls

(a) Cumulative residuals versus age

0 2 4 6 8 10

−2

−1

0

1

2

t

S
ta
n
d
a
rd
iz
e
d
 s
c
o
re
 p
ro
c
e
s
s

(b) Standardized score processes versus fellow-up time (years)

Figure 2 Plots of residual processes for the Stanford heart transplant data: (a) cumulative residuals versus age (p-value

0.167); (b) standardized score processes versus follow-up time (p-value 0.420). Bold line = observed process; gray lines =

simulated processes

Example 5.2. Biased-sampling and right-censored data.

Miller and Halpern [33] reported the survival or censoring times and the ages of 184 patients, enrolled

in the Stanford heart transplant program from October 1967 to February 1980. The event time T ∗ (in

days) of interest is the survival time after entry. The censoring time is the duration between the calendar

entry date of the patients and February 1980. Assuming no loss of follow-up, we let E be the calendar

entry date of the patient, and calculate two quantities: the censoring time C = February 1980 −E, and

the truncation time (or the transplant waiting time) A = transplant calendar date −E.

As pointed out by [44], the data can be viewed as biased-sampling data with right censoring

mechanism I. Furthermore, the survival times T can be treated as a biased sample with a weight function

equal to the distribution of transplant waiting time A. By fitting the transplant waiting time provided

by [9, 44] used the weight function

W (t) = 1− exp(−0.027t0.925).

Here, we analyzed the data using the additive risk model, λ(t) = λ0(t) + β1 × age. We converted the

survival time to years (i.e., T/365). Following [33], we deleted 27 patients lacking the T5 mismatch score

and five patients with survival times of lower than 10 days from the 184 patients in the original dataset.

Based on the remaining 152 patients, the proposed estimate is β̂1 = 0.010 (SE = 0.006) with the p-value

0.040. The results show that there is a strong relation between survival time and age, which coincides

with the conclusion of [44].

The p-values for checking the adequacy of the assumed model are calculated based on 1,000 simulated

realizations. The graphical and numerical results for checking the adequacy of the assumed model are

summarized in Figure 2. Figure 2(a) pertains to the functional forms of age (p-values 0.167), whereas

Figure 2(b) pertains to the additive hazards assumption (p-values 0.420). In all the plots, the observed

residual processes appear to be completely covered by the first 50 simulated ones. This result graphically

demonstrates that there is no evidence against the assumed model.

6 Conclusion

This paper proposed an inference procedure for the regression parameters in the additive risk models with

biased-sampling data. General biased-sampling data include the length-biased data and data with missing

covariates. This is a parallel work of the proportional hazards model in [44] extending to the additive

risk model. However, the proposed approach is different from his pseudo-partial likelihood approach for

proportional hazards model. We propose an embedded estimating equation by embedding the biased data

into a left-truncated and right-censored model, provided that the weight function is completely known or

estimated by other methods. The proposed estimator is more efficient than the conditional estimating

equation estimator because it incorporates the information in the biased-sampling data.
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Similar to the estimator for the proportional hazards model in [44], the proposed estimator depends

on that the weight function W (t |Z) in biased density function is either completely known or can be

estimated from other methods. The weight function W (t |Z) is usually assumed to be equal to or

proportional to the cumulative distribution function of the left-truncation or the probability of selecting

complete cases in presence of missing covariates. If W (t |Z) is misspecified, the proposed estimator

may be inconsistent. However, as suggested in [30], W (t |Z) can be possibly modeled by a parametric

form or selected by varying W (t |Z) in a sensitivity analysis. Further investigation is therefore needed.

Furthermore, because the proposed estimator is not a nonparametric maximum likelihood estimator, its

optimality cannot be guaranteed. The efficiency of the proposed estimating equation could be improved

by constructing augmented estimators, especially when W (t |Z) is completely unspecified. A careful

investigation on this direction is also warranted in the further study.
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Appendix A Proofs of asymptotic results

Let F (·), W (·) and G(·) be the distributions of failure time T ∗, truncation time A∗ and residual censoring

variable C, respectively. Let lF and uF be the lower and upper bounds of the support of any distribu-

tion F , respectively. To establish the asymptotic distributions of the proposed estimators, we require the

following regulatory conditions:

(i) There exists a constant τ > 0 such that P (Yi(t) = 1, t ∈ [0, τ ]) > 0;

(ii) W (t |z) has a density function w(tz) in its support [0, uW ] with uW > uF ;

(iii) lF > 0;

(iv) either uG < uF with G(uG) > 0 or uG > uF ;

(v) Zi(·) is bounded with total variations.

Appendix A.1 Proof of Theorem 2.2

The proof is divided into three steps:

(1) We show that, for sufficiently large n, the estimating equation Û(β) has the similar local behavior

to U(β) in the compact neighborhood. Under the regularity conditions (i)–(iv), Luo and Tsai [30]

proved that

sup
t∈[0,τ ]

|π̂i(t)− πi(t)| → 0,

almost surely. Coupled with condition (v), this implies that

sup
t∈[0,τ ]

|Ẑ(t)−Z(t)| → 0,

almost surely. For some positive δn with δn → 0 as n→ ∞, we define the class

F =

{
f(t) =

∫ τ

0

(g(t)−Z(t))π(t)βTZ(t)dt : β ∈ B,

g is bounded function and sup
t∈[0,τ ]

|g(t)−Z(t)| 6 δn

}
.

Thus, by definition,

sup
f∈F

|f | 6 δn sup
β∈B

∣∣∣∣ ∫ τ

0

π(t)βTZ(t)dt

∣∣∣∣.
Furthermore, it follows from [48] that F is Glivenko-Cantelli. Hence, supf∈F |Pnf − Pf | → 0 almost

surely. For a sufficiently large n,∣∣∣∣n−1
n∑

i=1

∫ τ

0

[Ẑ(t)−Z(t)]πi(t)β
TZi(t)dt

∣∣∣∣ 6 sup
f∈F

|Pf |+ sup
f∈F

|Pnf − Pf |.

Thus, we show that

sup
β∈B

∣∣∣∣n−1
n∑

i=1

∫ τ

0

[Ẑ(t)−Z(t)]πi(t)β
TZi(t)dt

∣∣∣∣→ 0

almost surely. Similarly, we can show that

sup
β∈B

∣∣∣∣n−1
n∑

i=1

∫ τ

0

Zi(t)[π̂i(t)− πi(t)]β
TZi(t)dt

∣∣∣∣→ 0,

sup
β∈B

∣∣∣∣n−1
n∑

i=1

∫ τ

0

Z(t)[π̂i(t)− πi(t)]β
TZi(t)dt

∣∣∣∣→ 0

almost surely. Thus, supβ∈B |Û(β)− U(β)| → 0 almost surely.



Zhang F P et al. Sci China Math August 2018 Vol. 61 No. 8 1515

(2) We show the consistency of β̂. In the view of regularity conditions, we can use the strong law of

large numbers to show that Û(β) converges almost surely to

U(β) ≡ E

[ ∫ τ

0

{Zi(t)− z(t)}[dNi(t)− πi(t)β
TZi(t)dt]

]
,

for every β, where z(t) = s(1)(t)/s(0)(t), and s(k)(t) is the limitation of S(k)(t) = n−1
∑n

i=1 π̂i(t)Z
⊗k
i (t)

for k = 0, 1, 2. Clearly, U(β0) = 0 by double expectation. Note that ∂Û(β0)/∂β = −D2(β0) is negative

semidefinite for sufficiently large n, we have β̂ converges to β0 almost surely by a standard argument.

(3) To establish the asymptotic normal of
√
nU(β0) and β̂, we define

D̃ =
1

n

n∑
i=1

∫ τ

0

[Zi(t)−Zi(t)]
⊗2πi(t)dt,

Σ̃ =
1

n

n∑
i=1

[ ∫ τ

0

{Zi(t)−Z(t)}{dNi(t)− πi(t)β̂
TZi(t)dt}

]⊗2

,

with Z(t) =
∑n

i πi(t)Zi(t)/
∑n

i πi(t). With the help of similar arguments to that of the first step, we

observe that D̃ and Σ̃ are consistent for D and Σ, respectively.

In the view of equation (2.5), we have

U(β0, t) =MZ(t)−
∫ t

0

Z(u)dM(u),

where M(t) = n−1
∑n

i=1Mi(t) and MZ(t) = n−1
∑n

i=1

∫ t

0
Zi(u)dMi(u). Clearly, U(β0) = U(β0, τ).

Note that both of them are sums of i.i.d. zero-mean terms for fixed t. By the multivariate central limit

theorem, (n1/2M(t), n1/2MZ(t)) converges in finite dimensional distributions to a zero-mean Gaussian

process with continuous sample paths, say (WM ,WMZ
). Clearly, Mi(·) is the difference of two monotonic

functions in t. Since the condition (iii) implies that Zi(·) is bounded, we may assume without loss of

generality that Zi(·) > 0. Then
∫ t

0
Zi(u)Mi(u) is also the difference of two monotonic functions in t. By

the functional central limit theorem (see [36, Theorem 10.6]), (n1/2M(t), n1/2MZ(t)) is tight and thus

converges weakly to (WM ,WMZ
).

Since Zi(·) > 0 for i = 1, . . . , n, S(1)(t) is also a monotonic function in t. It then follows from [4,

Lemama A.3] that

n1/2
∫ t

0

dM(u)

S(0)(u)
→
∫ t

0

dWM (u)

s(0)(u)
,

uniformly in t almost surely. In addition, we obtain

n1/2
∫ t

0

S(1)(u)

S(0)(u)
dM(u) →

∫ t

0

s(1)(u)

s(0)(u)
dWM (u),

uniformly in t almost surely. This convergence, coupled with the convergence of n1/2MZ to WMZ
, yields

the uniform convergence of n1/2U(β0, t) to WMZ
(t)−

∫ t

0
z(u)dWM (u) almost surely. The limit covariance

function is

Σ(s, t) = E

[ ∫ s

0

{Z1(u)− z(u)}dM1(u)

∫ t

0

{Z1(u)− z(u)}TdM1(u)

]
,

which can be approximated by

Σ̃(s, t) = n−1
n∑

i=1

∫ s

0

{Zi(u)−Z(u)}dMi(u)

∫ t

0

{Zi(u)−Z(u)}TdMi(u).

Furthermore, expanding U(β̂) around β0, we have

−
√
nU(β0) =

√
nU(β̂)− U(β) =

∂U(β∗)

∂β

√
n(β̂ − β0),
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where β∗ lies on the segment between β̂ and β. Therefore,

√
n(β̂ − β) = −

[
∂U(β)

∂β0

]−1√
nU(β0) + oP (1) = D̃−1

√
nU(β0) + oP (1),

which converges to a multivariate normal distribution with zero-mean and covariance matrix D−1ΣD−1,

by Slutsky’s theorem. Here, Σ = Σ(τ, τ). For the future reference, we display the asymptotic approxi-

mation
√
n(β̂ − β0) = D−1 1√

n

n∑
i=1

∫ τ

0

[Zi(u)− z(u)]dMi(u) + op(1).

Appendix A.2 Proof of Theorem 2.3

We make the simple decomposition

√
n[Λ̂0(β̂, t)− Λ0(t)]

=
√
n[Λ̂0(β̂, t)− Λ̂0(β0, t)] +

√
n[Λ̂0(β0, t)− Λ0(t)]

=
√
n

∫ t

0

∑n
i=1 π̂i(u)[β

T
0 Zi(u)− β̂TZi(u)]∑n
i=1 π̂i(u)

du+
√
n

∫ t

0

dM i(u)

S(0)(u)
.

By the arguments of Appendix A.1, the second term is tight and equals to

1√
n

n∑
i=1

∫ t

0

dMi(u)

s(0)(u)
+ op(1).

By the Taylor series expansion, the first term equals to −HT(β∗, t)
√
n(β̂ − β0), where

H(β, t) =

∫ t

0

n−1
∑n

i=1 π̂t(u)Zi(u)du

n−1
∑n

i=1 π̂i(u)
,

and β∗ is on the line segment between β̂ and β0. By [24, Lemma 1] and the uniform strong law of large

numbers, H(β0, t) converges almost surely to

h(β0, t) =

∫ t

0

E[π1(u)Z1]du

s(0)(u)

uniformly in t. Hence, the first term on the right-hand side of equation is tight and equals to

−hT(β0, t)D
−1 1√

n

n∑
i=1

∫ τ

0

[Zi(u)− z(u)]dMi(u) + op(1).

Then,
√
n[Λ̂0(β̂, t)− Λ0(t)] = n−1/2

n∑
i=1

Ψi(t) + op(1),

which converges weakly to a zero-mean Gaussian process with covariance function

η(s, t) ≡ E{Ψ1(s)Ψ1(t)
T},

where

Ψi(t) =

∫ t

0

dMi(u)

s(0)(u)
− hT(β0, t)D

−1
2

∫ τ

0

[Zi(u)− z(u)]dMi(u).

As argued before, η(s, t) can be approximated by η̂(s, t) = n−1
∑n

i=1 Ψ̂i(s)Ψ̂i(t)
T, where

Ψ̂i(t) =

∫ t

0

dM̂i(u)

S(0)(u)
−HT(β̂, t)D̂−1

∫ τ

0

[
Zi(u)−Z(u)

]
dM̂i(u).

This completes the proof.
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Appendix A.3 Proof of Theorem 3.1

We further establish the weak convergence of Q(t, z) and Q̂(t, z) under (2.2). By Taylor series expansion

and some simple algebra, we have

Q(t, z) =
1√
n

n∑
i=1

∫ t

0

[q(Zi(u))I(Zi(u) 6 z)− Sq(u,z)]dMi(u)−Bq(t,z)
√
n(β̂ − β0), (A.1)

where

Sq(t, z) =

∑n
i=1 q(Zi(u))I(Zi(u) 6 z)πi(t)∑n

i=1 πi(t)
,

and

Bq(t, z) =
1

n

n∑
i=1

∫ t

0

q(Zi(u))I(Zi(u) 6 z)πi(u)[Zi(u)−Z(u)]Tdu.

By the strong consistency of β̂ and the uniform strong law of large numbers, Sq(u,z) and Bq(u,z)

converge almost surely to sq(u,z) and bq(u,z). Note that the first term on the right-hand side of (A.1)

takes a similar form to U(β0, t), its tightness follows from the arguments given in Appendix A.1. On the

other hand, the second term is tight since
√
n(β̂−β0) converges weakly and Bq(t,z) converges uniformly

to bq(t, z). Thus, Q(t,z) is tight.

Furthermore, by (A.1) and the convergence of β̂, Sq(t, z) and Bq(t,z), we can derive that

Q(t, z) = n−1/2
n∑

i=1

γi(t,z) + op(1),

where

γi(t, z) =

∫ t

0

[q(Zi(u))I(Zi(u) 6 z)− sq(u,z)]dMi(u)− bq(t,z)D
−1

∫ τ

0

[Zi(u)−Z(u)]dMi(u).

By the multivariate central limit theorem and the tightness of Q(t,z), Q(t, z) converges weakly to a

zero-mean Gaussian process with covariance function E[γ1(t, z)γ1(t
∗, z∗)T] at (t, z) and (t∗,z∗). This

covariance function can be consistently estimated by

n−1
n∑

i=1

γ̂i(t,z)γ̂i(t
∗, z∗)T,

where

γ̂i(t,z) =

∫ t

0

[q(Zi(u))I(Zi(u) 6 z)− Sq(u,z)]dM̂i(u)−Bq(t, z)D̂
−1

∫ τ

0

[Zi(u)− Ẑ(u)]dM̂i(u).

Appendix A.4 Proof of Theorem 3.2

We establish the weak convergence of Q̂(t, z) in this subsection. Conditional on the data

{Ni(t), Yi(t),Zi(t) : i = 1, . . . , n},

the only random components in Q̂(t, z) = n−1/2
∑n

i=1 γ̂i(t,z)ξi are {ξ1, . . . , ξn}. A straightforward

calculation shows EQ̂(t, z) = 0 and

Cov(Q̂(t, z), Q̂(t∗, z∗)) = n−1
n∑

i=1

γ̂i(t,z)γ̂i(t
∗, z∗)T.

By the multivariate central limit theorem, conditional on the data, Q̂(t,z) converges in finite dimensional

distribution to a zero-mean Gaussian process with covariance function

n−1
n∑

i=1

γ̂i(t,z)γ̂i(t
∗, z∗)T.
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Furthermore, by the strong consistency of β̂ and the strong law of large numbers,

n−1
n∑

i=1

γ̂i(t, z)γ̂i(t
∗,z∗)T

converges to

n−1
n∑

i=1

γ̂i(t, z)γ̂i(t
∗,z∗)T

almost surely uniformly in s and t. Then Q̂(t, z) converges to the same limiting distribution as Q(t, z)

provided that Q̂(t,z) is tight. Indeed, since Q̂(t,z) comprises monotone functions in t, the tightness

of Q̂(t, z) follows from the functional central limit theorem (see [36, p. 53]).




