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Abstract: The authors consider the estimation of regression parameters in the context of a class of general-

ized proportional hazards models, termed linear transformation models, in the presence of interval-censored

data. They present an estimating equation approach whose good performance is demonstrated through

simulations and which they illustrate in a few concrete cases.

Analyse par régression de temps de décès censurés par intervalle au moyen de modèles
à transformation linéaire

Résumé : Les auteurs s’intéressent à l’estimation des paramètres de régression dans le cadre d’une classe

de modèles à risques proportionnels généralisés, dits modèles à transformation linéaire, en présence de

données censurées par intervalle. Ils proposent une approche par équations d’estimation, dont ils montrent

la bonne performance au moyen de simulations et qu’ils illustrent dans quelques cas concrets.

1. INTRODUCTION

This paper discusses regression analysis of interval-censored failure time data, which arises when
the time of occurrence of the event of interest is known only to lie in an interval. Such data occur
naturally when a failure time arises from a clinical trial or a longitudinal study that entails periodic
follow-ups (Finkelstein 1986; Sun 2004). An individual due for weekly or monthly observation for
a clinically observed change in disease status (“response”) may miss a few weeks’ or months’
observations and may return with a changed status, thus contributing an interval-censored time of
the occurrence of the change.

An example of interval-censored data, that motivated this study, is given in Finkelstein (1986)
and arose from a retrospective study on early breast cancer patients with a periodic follow-up.
The study involves two treatments: radiation therapy alone and radiation therapy with adjuvant
chemotherapy. During the study, each patient was supposed to be checked every 4 or 6 months
by physicians for the appearance of breast retraction, a response that has a negative impact on
overall cosmetic appearance. However, actual examination times differ from patient to patient and
only interval-censored data are available for the appearance.

Several methods have been proposed in the literature for regression analysis of interval-censored
failure time data. For example, Betensky, Lindsey, Ryan & Wand (2002), Cai & Betensky (2003),
Finkelstein (1986) and Pan (2000) investigated the fitting of the Cox model to the data mentioned
above. Huang & Rossini (1997) proposed to use the proportional odds model and Sun (1997)
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considered a logistic regression model. More references on this can be found in Sun (2004). Note
that most of the existing methods were developed for specific models. Corresponding to this, we
will consider a class of generalized Cox models, termed linear transformation models (Chen, Jin &
Ying 2002), for interval-censored data.

The remainder of the paper is organized as follows. We will begin in Section 2 by introducing
linear transformation models along with some notation and assumptions. The linear transforma-
tion models provide flexibility in specifying the effects of covariates on survival times and include
as special cases the Cox model and the proportional odds model. Section 3 presents an estimat-
ing equation approach for estimating regression parameters with interval-censored data and the
asymptotic properties of the proposed estimates are discussed. Section 4 reports some results from
simulation studies investigating the finite sample properties of the estimates and in Section 5, the
methodology is applied to two well-known examples including the breast cancer data discussed
above. Section 6 concludes with some remarks.

2. LINEAR TRANSFORMATION MODELS

Consider a survival study and let T and Z denote the survival time of interest and a vector of
covariates, respectively, and u be an unknown strictly increasing function. A linear transformation
model assumes that

u(T ) = Z>β + ε, (1)

where β is the vector of unknown regression parameters and ε has a completely known distribution
function F . An advantage of the linear transformation model is its generality as it includes some
commonly used models as special cases. For example, (1) gives the Cox model (Kalbfleisch &
Prentice 2002) if F (t) = 1 − exp{− exp(t)}, an extreme value distribution. If F is the standard
logistic distribution, (1) becomes the proportional odds model (Huang & Rossini 1997). Let SZ

denote the survival function of T given Z. Then (1) is equivalent to

g{SZ(t)} = u(t)− Z>β,

where g−1(s) = 1− F (s).
In this paper, we will discuss the fitting of model (1) to interval-censored failure time data

(Finkelstein 1986; Sun 2004). By interval-censored data, we mean that instead of observing T , we
only observe two random variables L ≤ R such that L ≤ T < R. That is, we have P(L ≤ T <
R) = 1. Note that the censoring here is different from what is commonly referred to as interval
truncation, meaning that a subject is observed if and only if T is in [L,R). By interval-censoring,
we mean that a subject is always observed, but its true failure time may not be exactly known and
instead is known only to belong to an interval bracketed by L and R as in the example discussed
above. If L = R or R = ∞, we then have an exact or right-censored failure time, respectively, and
in this case, several methods have been proposed for inference about the regression parameter β in
model (1). For example, Cheng, Wei & Ying (1995) proposed a class of estimating functions and
Chen, Jin & Ying (2002) generalized the partial likelihood estimator of β under the Cox model.
However, there seems to be no existing method available for interval-censored data.

In the following, we will confine our attention to the situation where Z is a categorical variable,
which frequently occurs in survival studies. In the breast cancer study discussed above, for example,
Z denotes treatment indicators. As do most authors (e.g., Gómez, Espinal & Lagakos 2003), we
will assume that the mechanism generating censoring intervals for T is independent of T given Z.
In other words, for the development of the presented methodology, we need

P(T ≤ t|L = `, R = r, L ≤ T < R, Z) = P(T ≤ t|` ≤ T < r, Z) . (2)
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3. INFERENCE PROCEDURES

This section considers inference about β when only interval-censored failure time data are observed.
Suppose that we have n i.i.d. replicates {(Li, Ri, Ti, Zi) : i = 1, . . . , n} of (L,R, T, Z) and that
observed data consist of {([Li, Ri), Zi) : i = 1, . . . , n}. Let HZ denote the distribution function
of T given Z and ĤZ the maximum likelihood estimator of HZ based on the observed data on
subjects with Zi = Z. Some comments about ĤZ will be given below.

To estimate β, we will focus on the quantities I(Ti ≥ Tj) or the ranks of the Ti’s. This
is motivated by the fact that they are invariant under model (1) and provide efficient inference
through the partial likelihood for β for right-censored data under the Cox model (Kalbfleisch &
Prentice, 2002). Since I(Ti ≥ Tj) is not observed, we have to consider its expectation given Zi and
Zj and under model (1), we have

E{I(Ti ≥ Tj)|Zi, Zj} = E{I(εi − εj ≥ Z>ijβ)|Zi, Zj} = τ(Z>ijβ), (3)

where εi = u(Ti)− Z>i β and Zij = Zj − Zi, i, j = 1, . . . , n. The function τ(t) can be expressed as

τ(t) =
∫ ∞

−∞
{1− F (s + t)}dF (s) .

On the other hand, we show in Appendix A that

E

{
(aiaj)−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj (tj)|Zi, Zj

}
= τ(Z>ijβ) (4)

according to the noninformative censoring mechanism (2), where

ai =
∫ Ri

Li

dHZi(ti), i = 1, . . . , n.

Motivated by the idea behind the generalized estimating equation and equations (3) and (4),
we propose to use the estimating equation

U(β) =
n∑

i=1

n∑

j=1

τ ′(Z>ijβ)

{
(âiâj)−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dĤZi(ti)dĤZj (tj)− τ(Z>ijβ)

}
Zij = 0

for estimation of β. In the above,

âi =
∫ Ri

Li

dĤZi(ti)

and τ ′(t) is the first derivative of τ(t) and has the form

τ ′(t) = −
∫ ∞

−∞
f(s + t)dF (s),

where f is the density function of ε.
Let β̂ denote the solution to U(β) = 0. Then it is shown in Appendix B that β̂ is unique for

large n and consistent. Furthermore, motivated by the weighted partial likelihood estimator, we
can generalize U(β) to

Uw(β) =
n∑

i=1

n∑

j=1

wij(β̂)τ ′(Z>ijβ)

{
(âiâj)−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dĤZi(ti)dĤZj (tj)− τ(Z>ijβ)

}
Zij ,
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where wij is a positive bounded weight function. Let β̂w denote the solution to the equation
Uw(β) = 0 and β0 the true value of β. Then β̂w is a consistent estimator of β0 and heuristically
the distribution of n1/2(β̂w − β0) can be approximated by a normal distribution with mean zero
and covariance matrix Σ̂ = D̂Γ̂D̂> (see Appendix C), where

D̂−1 =
1
n2

n∑

i=1

n∑

j=1

wij(β̂w){τ ′(Z>ij β̂w)}2ZijZ
>
ij

and

Γ̂ =
1
n3

n∑

i=1

n∑

j=1

n∑

k 6=j

(êij − êji)(êik − êki)ZijZ
>
ik,

where êij is equal to

eij(β) = wij(β)τ ′(Z>ijβ)

{
(aiaj)−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj (tj)− τ(Z>ijβ)

}

with β and HZ replaced by β̂w and ĤZ , respectively. As pointed out by a referee, the above
estimate Σ̂ may in general underestimate the variance. However, our simulation results (see Section
4) suggest that the approximation to both the variance and the distribution work well for practical
sample sizes.

To implement the above inference procedure, we need to determine the maximum likelihood
estimator of HZ based on interval-censored data. A common method for this, which is used in the
following numerical studies and examples, is to use the self-consistency algorithm given in Turnbull
(1976). A summary of some other algorithms for the determination of the maximum likelihood
estimator can be found in Sun (2004).

4. NUMERICAL STUDIES

In this section, we report some results from simulation studies conducted for evaluating the pro-
posed methodology. For the results reported below, we considered the two sample comparison
problem with Z generated from a Bernoulli distribution with success probability 1/2. Further-
more, we assumed that the survival time of interest follows either the proportional hazards model
or the proportional odds model. For the former case, we let u(t) = log(t) and rounded off gener-
ated survival times to their first decimal places. The censoring intervals were generated by adding
and subtracting from the generated survival times random numbers from the uniform distribution
U{0, 0.1, 0.2}, respectively. Note that this does not give completely independent observation times,
but is more practical since it was motivated by and is equivalent to the usual set-up in follow-up
studies. In these situations, each subject is observed at a sequence of time points and the censor-
ing interval is given by the two observation time points that are immediately before and after the
survival time, respectively.

For the case of the proportional odds model, we let u(t) = log(0.08t) and rounded off generated
survival times to the nearest integers. The censoring intervals were generated in the same way as
for the Cox model, but from U{0, 1, 2}. For both situations, a constant right-censoring time was
used and chosen to give required percentages of right-censored survival times. The weight function
in Uw(β) was unity. The following results are based on n = 200 and 1000 replications for each
set-up.

Table 1 presents the estimated average biases of the proposed estimators of the regression
parameter β and the empirical 95% coverage probabilities for β based on the normal approximation
given in Section 3 for different true values of β and different percentages of right-censoring. To
assess the variance estimate, the table also includes the means of the standard error estimates given
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in Section 3 and the sample standard deviations of the point estimates. Part (a) of the table is
for the case of the proportional hazards model and part (b) corresponds to the proportional odds
model. It is seen that the proposed method provides both reasonably accurate point estimates and
confidence intervals and that the variance estimate seems reasonable for most cases. The bias for
β = −1 seems larger than for other situations and the results that are not shown here suggest that
it becomes smaller as the sample size increases.

We also assessed the appropriateness of the normal approximation to the distribution of β̂ by
studying the quantile plot of the standardized point estimates against the standard normal distri-
bution. Figures 1–2 display such plots corresponding to β = 1 for the proportional hazards model
with 10% right-censoring and the proportional odds model with 20% right-censoring, respectively.
They suggest that the normal approximation to the distribution of (β̂−β)/SE(β̂) is good. Similar
quantile plots were obtained for other situations.

Table 1. Simulation results for estimation of β.
a. Proportional hazards model b. Proportional odds model

Percentages of
right censoring β Bias SE SEE CP Bias SE SEE CP

10% −1.0 0.001 0.188 0.168 0.928 0.064 0.177 0.208 0.963
−0.5 −0.003 0.176 0.161 0.932 0.005 0.226 0.242 0.961

0 −0.001 0.156 0.150 0.956 −0.001 0.237 0.242 0.957
0.5 0.001 0.167 0.164 0.953 0.003 0.247 0.244 0.953
1.0 0.001 0.180 0.177 0.948 −0.002 0.234 0.241 0.934

20% −1.0 0.007 0.190 0.168 0.921 0.074 0.178 0.223 0.966
−0.5 0.004 0.178 0.160 0.922 −0.006 0.236 0.242 0.958

0 −0.002 0.156 0.158 0.950 −0.002 0.244 0.241 0.953
0.5 −0.001 0.176 0.164 0.934 0.004 0.249 0.243 0.938
1.0 −0.006 0.183 0.177 0.942 −0.004 0.251 0.241 0.942

30% −1.0 0.041 0.185 0.167 0.911 0.080 0.219 0.241 0.968
−0.5 0.031 0.173 0.159 0.929 0.021 0.239 0.240 0.952

0 0.004 0.169 0.160 0.968 −0.004 0.246 0.234 0.944
0.5 −0.025 0.168 0.162 0.932 0.025 0.253 0.241 0.929
1.0 0.059 0.183 0.174 0.934 −0.018 0.263 0.248 0.924

Note: Bias represents the bias of the mean of the point estimates; SE represents the sample
standard error of the estimates; SEE represents the mean of the standard error estimates; CP
represents the empirical 95% coverage probability.

5. EXAMPLES

To illustrate the proposed methodology, we apply it to two sets of interval-censored failure time
data. The first one arose from the breast cancer study discussed before (Finkelstein 1986) and the
other is from a study of HIV-1 infection on patients with hemophilia (Kroner, Rosenberg, Adedort,
Alvord & Goedert 1994).

5.1. Breast cancer study.

This study involves 94 early breast cancer patients with two treatments, radiotherapy alone and
radiation therapy with adjuvant chemotherapy. Among them, 46 patients were given radiotherapy
alone and 48 patients received radiation therapy with adjuvant chemotherapy. A main objective
of the study was to compare the two treatments in terms of the time until the appearance of
breast retraction, the survival time of interest. As mentioned before, the patients were examined
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Figure 1. Quantile plot of the estimates for Figure 2. Quantile plot of the estimates for
the proportional hazards model with β = 1. the proportional odds model with β = 1.

periodically and actual examination times differ from patient to patient since they often missed
their regular visits as their recovery progressed. Thus only interval-censored data on the survival
time were observed.

For the comparison of the two treatments, we define Zi = 0 if the patient was given radiotherapy
alone and Zi = 1 otherwise and assume that the survival time can be described by model (1).
Assuming the proportional hazards model, we obtained β̂ = −0.697 with the estimated standard
error of 0.251. This yields a P -value of 0.006 based on the Wald test statistic and the standard
normal distribution for testing β = 0, no treatment difference. By assuming the proportional odds
model, the proposed method gave β̂ = −1.041 with the estimated standard error being 0.372.
In this situation, for the test of the hypothesis β = 0, the Wald test statistic gave a P -value of
0.005. Both results suggest that the patients given adjuvant chemotherapy had significantly shorter
survival times than the patients not having adjuvant chemotherapy. In other words, the adjuvant
chemotherapy significantly increased the hazard of breast retraction.

We also tried other models within the class of linear transformation models and obtained similar
P -values. Cai & Betensky (2003) and Finkelstein (1986) gave similar results by assuming the Cox
model. In summary, the results obtained here confirmed that there were significant differences
between the two groups of patients in terms of their hazards of developing breast retraction.

5.2. HIV-I Infection study.

A multi-center prospective study was conducted in 1980’s to investigate HIV-1 infection rate among
people with hemophilia (Kroner, Rosenberg, Adedort, Alvord & Goedert 1994). They were at risk
of HIV-1 infection from blood products received for their treatment such as factor VIII and factor
IX concentrate, which were made from the plasma of thousands of donors. In the study, only
interval-censored observations were obtained for patients’ HIV-1 infection times and the patients
were grouped into different groups according to the average annual dose of the blood products they
received. For illustration, here we will focus on 368 patients from five centers where patients were
enrolled into the study without regard to HIV-1 antibody status and in the groups with low dose
or no factor VIII concentrate. The goal is to compare the HIV-1 infection rates between the two
groups. More details about the study can be found in Goedert et al. (1989).

To apply the proposed methodology, we let Zi = 0 for patients receiving no factor VIII con-
centrate and Zi = 1 otherwise. First we assumed that the HIV-1 infection time could be described
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by the Cox model and in this case the method gave β̂ = −1.016 with the estimated standard error
of 0.124. By assuming the proportional odds model, the method yielded β̂ = −1.511 with the
estimated standard error being 0.182. In both cases, we have P -values less than 0.00001 for testing
no treatment effect or β = 0. Similar P -values were obtained under other models from the linear
transformation model family. In summary, the results suggest that the patients receiving low dose
factor VIII concentrate had a significantly higher hazard rate of HIV-1 infection than the patients
receiving no factor VIII concentrate.

6. CONCLUDING REMARKS

The proportional hazards model is the most commonly used regression model in survival analysis.
However, as pointed out by some authors (Chen, Jin & Ying 2002), sometimes it may not provide
a good fit to observed failure time data and thus a different or more general model is needed. This
paper investigated the fitting of linear transformation models, a class of generalized Cox models,
to interval-censored failure time data, which has not been discussed before. For inference about
regression parameters, we presented an estimating equation approach based on rank information as
the partial likelihood approach for right-censored data. Also like the partial likelihood approach,
the presented method has the advantage that it does not involve estimation of the nonparametric
part of the model. The simulation studies showed that the methodology works quite well for
practical situations.

More research remains to be done. In this paper, we considered only the discrete covariate sit-
uation. Although this covers many common situations like the examples discussed in the previous
section, it would be useful to generalize the proposed method to or develop similar methods for
continuous covariate situations. Also sometimes it may be interesting to estimate the function u
or the baseline cumulative hazard function. For this, under the Cox model, Betensky, Lindsey,
Ryan & Wand (2002) and Cai & Betensky (2003) proposed to use the local likelihood method and
the penalized spline approach, respectively. However, it does not seem to be straightforward to
generalize these methods to model (1). Another topic for future research is the rigorous investi-
gation of the asymptotic properties of the presented methodology. In the above, we only gave a
heuristic derivation of the normality of the regression parameter estimator and an ad hoc estimator
of the asymptotic covariance. Although the simulation result indicates that they seem reasonable,
it would be helpful to provide a rigorous proof.

APPENDIX A: THE DERIVATION OF EQUATION (4)

For s ≤ t and i = 1, . . . , n, define bi(s, t) =
∫ t

s
dHZi(v). It can be easily shown from (2) that

P(Ti ≤ t|Li = `i, Ri = ri, Zi) = I(`i ≤ t < ri)b−1
i (`i, ri)

∫ t

`i

dHZi(v) + I(t ≥ ri)

and thus
E{I(Ti ≥ Tj)|Li = `i, Ri = ri, Zi, Lj = `j , Rj = rj , Zj}

=
∫

ti,tj

I(ti ≥ tj)dP(Ti ≤ ti|Li = `i, Ri = ri, Zi)dP(Tj ≤ tj |Lj = `j , Rj = rj , Zj)

= {bi(`i, ri)bj(`j , rj)}−1
∫ rj

`j

∫ ri

`i

I(ti ≥ tj)dHZi(ti)dHZj (tj) .

Let QL,R(`, r|Z) denote the joint distribution of (L,R) given Z. Then it follows from the above
equation

E{I(Ti ≥ Tj)|Zi, Zj} = E [E {I(Ti ≥ Tj)|Li, RiZi, Lj , Rj , Zj} |Zi, Zj ]
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=
∫

`i≤ri,`j≤rj

E{I(Ti ≥ Tj)|Li = `i, Ri = ri, Zi, Lj = `j , Rj = rj , Zj}

× dQLi,Ri
(`i, ri|Zi)dQLj ,Rj

(`j , rj |Zj)

=
∫

`i≤ri,`j≤rj

{bi(`i, ri)bj(`j , rj)}−1
∫ rj

`j

∫ ri

`i

I(ti ≥ tj)dHZi
(ti)dHZj

(tj)

× dQLi,Ri
(`i, ri|Zi)dQLj ,Rj

(lj , rj |Zj)

= E

[
{bi(Li, Ri)bj(Lj , Rj)}−1

∫ Rj

Lj

∫ Ri

Li

I(ti ≥ tj)dHZi
(ti)dHZj

(tj)

∣∣∣∣∣Zi, Zj

]
.

Hence by noting that ai = bi(Li, Ri) (i = 1, . . . , n), (4) follows from the above equation and
equation (3).

APPENDIX B: THE DERIVATION OF CONSISTENCY AND UNIQUENESS

For the consistency and uniqueness of β̂, following the arguments in Appendix 1 of Cheng, Wei &
Ying (1995), we consider the quantity n−2U(β)(β0−β). Let G denote the distribution function of
Z. It follows from the uniform consistency of HZ(t) (Groeneboom & Wellner 1992) and the strong
law of large numbers for U-statistics that with probability one, n−2U(β)(β0 − β) converges to

∫

z1,z2

τ ′(z>12β)(z>12β0 − z>12β)
{
τ(z>12β0)− τ(z>12β)

}
dG(z1)dG(z2)

uniformly on any compact set of β, where z12 = z1 − z2. Since τ is a strictly decreasing function
and τ ′ < 0, the above limit is thus nonnegative and is zero only when β = β0. This implies that β̂
is unique and consistent.

APPENDIX C: A HEURISTIC DERIVATION OF THE ASYMPTOTIC NORMALITY of β̂w

To see the asymptotic distribution of β̂w, first note that the consistency of ĤZ (Groeneboom &
Wellner 1992) suggests that n−3/2Uw(β0) can be approximated by

n−3/2
n∑

i=1

n∑

j=1

wij(β0)τ ′(Z>ijβ0)Zij×
{

(aiaj)−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj (tj)− τ(Z>ijβ0)

}
,

which is asymptotically equivalent to a multivariate U-statistic. Thus it follows from the asymptotic
theory of multivariate U-statistics (Wei & Johnson 1985) that the distribution of n−3/2Uw(β0) can
be asymptotically approximated by the normal distribution with mean 0 and covariance matrix

Γ = lim
n→∞

E





1
n3

n∑

i=1

n∑

j=1

n∑

k 6=j

(eij − eji)(eik − eki)ZijZ
>
ik



 ,

which can be estimated by Γ̂ given in Section 3. Now using the Taylor series expansion of Uw(β̂w)
around β0, we have, asymptotically,

n−3/2Uw(β0) =
{
−n−2 ∂Uw(β∗)

∂β

} {
n1/2(β̂w − β0)

}
,

where β∗ is on the segment between β0 and β̂w. This plus the convergence of −n−2∂Uw(β∗)/∂β

in probability suggests that the distribution of n1/2(β̂w − β0) can be asymptotically approximated
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by the normal distribution with mean 0 and covariance matrix Σ̂ given in Section 3. Note that
here the convergence of −n−2∂Uw(β∗)/∂β follows from the fact that asymptotically,

−n−2 ∂Uw(β∗)
∂β

= n−2
n∑

i=1

n∑

j=1

wij(β0){τ ′(Z>ijβ0)}2ZijZ
>
ij ,

which holds due to the consistency of β̂w and the uniform strongly convergence of ĤZ .
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