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a b s t r a c t

Multivariate recurrent event data arise inmany clinical and observational studies, inwhich
subjects may experience multiple types of recurrent events. In some applications, event
times can be always observed, but types for some events may be missing. In this article,
a semiparametric additive rates model is proposed for analyzing multivariate recurrent
event data when event categories are missing at random. A weighted estimating equation
approach is developed to estimate parameters of interest, and the resulting estimators
are shown to be consistent and asymptotically normal. In addition, a lack-of-fit test is
presented to assess the adequacy of the model. Simulation studies demonstrate that
the proposed method performs well for practical settings. An application to a platelet
transfusion reaction study is provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate recurrent event data are often encountered in biomedical studies when subjects may experience several
different types of recurrent events (Cai and Schaubel, 2004; Chen et al., 2005; Schaubel and Cai, 2006a). For example,
infections in bone marrow transplantation can be subtyped by underlying causes (e.g. bacterial, fungal and viral infections).
Childhood asthma outcomes may be differentiated by severity (e.g. hospital admissions and physician office visits).
The occurrence of a technical failure in continuous ambulatory peritoneal dialysis study may be classified by causes
(e.g. peritonitis, abdominal complications, inadequate dialysis and other). For analyzing this kind of data, it is usually
more informative to study the category-specific recurrent event processes separately, rather than aggregating across event
categories, because the type-specific covariate effects may be not equal in many situations.

Several methods have been proposed in the literature to analyze multivariate recurrent event data (Abu-Libdeh et al.,
1990; Cai and Schaubel, 2004; Sun et al., 2009; Zhu et al., 2010; Chen et al., 2012; Zhao et al., 2012). For example, Abu-
Libdeh et al. (1990) suggested a nonhomogeneous mixed Poisson process to model the dependence among different types
of recurrent events. Cai and Schaubel (2004) proposed a class of proportional marginal means and ratesmodels for assessing
the effect of covariates on the event processes. Sun et al. (2009) presented a semiparametric multiplicative rates model with
time-varying covariate effects. Zhu et al. (2010) considered a jointmodeling approach for regression analysis of multivariate
recurrent event data in the presence of a dependent terminal event. Chen et al. (2012) proposed a general additive marginal
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ratemodel for themultiple type recurrent events. Zhao et al. (2012) studied a joint semiparametric frailty-basedproportional
intensity model with both time-dependent and time-independent covariates.

The aforementioned semiparametric regression models assumed that the event category was always known. In reality,
however, the occurrence of an event is always observed but the specific type is unknown. For example, in the Dialysis
Outcomes and Practice Patterns Study (Schaubel and Cai, 2006b), the dates of hospital admission of all patients are available,
but for some patients, the reasons for hospital admission may not be recorded or may be difficult to determine. Another
example is a clinical trial involving different treatment strategies for asthma patients (Chen and Cook, 2009), where asthma
exacerbations are subtyped by the analysis of sputum cell counts as either non-eosinophilic or eosinophilic. If patients took
rescue medication for exacerbations before providing a sputum sample, the cellular analysis of sputum was not valid, and
thus the exacerbation type was not determined. When the event category may be missing, a naive way of handling such a
situation is the complete-case analysis, which treats events of unknown category as censored. The complete-case analysis
leads to biased estimators unless event categories aremissing completely at random (Little and Rubin, 2002), which assume
that category missingness occurs randomly among events.

When the category missingness mechanism depends on the observed data but not on the missing categories, it is
termed missing at random (MAR) (Little and Rubin, 2002). In recent years, some methods have been developed to analyze
multivariate recurrent event data with missing event categories under the MAR assumption (Schaubel and Cai, 2006a,b);
(Chen and Cook, 2009; Lin et al., 2013). For example, Schaubel and Cai (2006a,b) studied the multiple-event-category
proportional means and rates model using weighted estimating equations and multiple imputation methods, respectively.
Chen and Cook (2009) considered the multivariate random effects model based on a likelihood approach. Lin et al. (2013)
proposed a nonparametric estimation of themean function in which themissingness mechanism is completely unspecified.
Note that a useful and important alternative to the proportional rates model is the additive rates model. In this article, we
propose a semiparametric additive rates model to analyze multivariate recurrent event data with missing event categories
under the MAR assumption. A weighted estimating equation approach is developed to estimate parameters of interest. The
resulting estimators have closed forms and are easy to implement.

The rest of the article is organized as follows. In Section 2, we specify the model and propose an estimating equation
approach for estimation of model parameters. Section 3 presents the asymptotic properties of the resulting estimators with
proofs outlined in the Appendix. A model checking technique is given in Section 4, and some simulation results to evaluate
the proposedmethod are reported in Section 5. An application to a platelet transfusion reaction study is provided in Section 6,
and some concluding remarks are made in Section 7.

2. Model and estimation procedures

Suppose that there aren independent subjectswithK recurrent event categories. LetN∗

ik(t)denote thenumber of category
k events over the interval [0, t] for subject i, and Cik be the right censoring time for event type k for subject i.Usually, Cik = Ci
for k = 1, . . . , K . Let Yik(t) = I(Cik ≥ t) be the at-risk process, where I(·) is the indicator function. The observed event
processes are given byNik(t) =

 t
0 Yik(s) dN∗

ik(s).Assume that dN∗

ik(t) ∈ {0, 1} and that dN∗

ik(t)dN
∗

il (t) = 0 for k ≠ l. Let Zik(t)
be the p × 1 vector of external time-dependent covariates (Kalbfleisch and Prentice, 2002). The proposed semiparametric
additive rates model takes the form

E[dN∗

ik(t)|Zik(t)] = dµ0k(t) + β ′

0Zik(t)dt, (1)

for k = 1, . . . , K , where β0 is a vector of unknown regression parameters, and µ0k(t) is an unspecified baseline mean
function. In the case where all data are observed, model (1) has been studied by Chen et al. (2012). In addition, when K ≡ 1,
model (1) reduces to that considered by Schaubel et al. (2006).

Remark 1. Although model (1) is each written in terms of a regression parameter vector which is common across event
categories, category-specific parameter vector can be incorporated upon appropriate expansion of the covariate vector. In
addition, for the case of common baseline mean function across event categories, we have

E[dN∗

ik(t)|Zik(t)] = dµ0(t) + β ′

0Zik(t)dt. (2)

The proposed estimation procedure can be extended in a straightforward manner to deal with model (2).

We consider the setting where event times are always observed, but event categories may be missing under the MAR
assumption. Let δi(t) denote the type of the event which occurred to subject i at time t , and set δik(t) = I(δi(t) = k). Define
ξi(t) = 1when an event occurs at time t and δi(t) is known, and 0 otherwise. For a random sample of n subjects, the observed
data consist of {Nik(t), Cik, Zik(t), ξi(t), ξi(t)δi(t); t ≤ Cik, i = 1, . . . , n, k = 1, . . . , K}. When some of the event categories
are missing, a complete case analysis may not only lose efficiency due to discarding all events with missing categories, but
may also yield biased estimators when the event categories are MAR.

Define dNi.(t) =
K

k=1 dNik(t). Since dNik(t)dNil(t) = 0 for k ≠ l, it follows that dNik(t) = δik(t)dNi.(t), and

dNik(t) = ξi(t)dNik(t) + δik(t)dNc
i.(t),
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where dNc
i.(t) = (1 − ξi(t))dNi.(t). Thus, under model (1), we have

E

ξi(t)dNik(t) + δik(t)dNc

i.(t) − Yik(t){dµ0k(t) + β ′

0Zik(t)dt}


= 0.

However, it does not lead to a feasible estimating equation since we are unable to observe δik(t)when dNc
i.(t) = 1. LetWi(t)

be a vector denoting the pertinent information in the event history at time t for subject i. Then under the MAR assumption,

E[δik(t)|dNc
i.(t) = 1,Wi(t)] = E[δik(t)|dNi.(t) = 1, ξi(t) = 0,Wi(t)]

= E[δik(t)|dNi.(t) = 1,Wi(t)]
= E[δik(t)|dNi.(t) = 1, ξi(t) = 1,Wi(t)],

which implies that E[δik(t)|dNc
i.(t) = 1,Wi(t)] can be estimated based on events where categories are not missing. Let

πik(t) = E[δik(t)|dNi.(t) = 1,Wi(t)]. Here we assume that πik(t) can be parametrically modeled as πik(t; γ0), where γ0 is
the true parameter value. As discussed in Schaubel and Cai (2006a,b), we propose to model πik(t; γ0) through the following
generalized logits model:

log


πik(t; γ0)

πi1(t; γ0)


= γ ′

0Wik(t), k = 2, . . . , K , (3)

where the vector Wik(t) contains the elements of Wi(t) which pertain to category k, and k = 1 is arbitrarily selected as the
reference category. Note that the generalized logits model is a very flexible approach, and other parametric models can also
be easily accommodated. Let γ̂ be the solution to the following estimating equation:

n
i=1

K
k=2

 τ

0
Wik(t)[δik(t) − πik(t; γ )]ξi(t)dNi.(t) = 0. (4)

Then γ̂ is a consistent estimator of γ0. Also the event category probabilities can be estimated by

πik(t; γ̂ ) =
exp{γ̂ ′Wik(t)}
K

l=1
exp{γ̂ ′Wil(t)}

, k = 1, . . . , K ,

where Wi1(t) = 0. Define

dMik(t; β, γ ) = ξi(t)dNik(t) + πik(t; γ )dNc
i.(t) − Yik(t){dµ0k(t) + β ′Zik(t)dt}.

Under models (1) and (3), we have E[Mik(t; β0, γ0)] = 0. By applying the generalized estimating equation approach (Liang
and Zeger, 1986) and the consistency of γ̂ for γ0, we specify the following estimating equations for µ0k(t) and β0:

n
i=1

 t

0
dMik(s; β, γ̂ ) = 0, 0 ≤ t ≤ τ , (5)

and
n

i=1

K
k=1

 τ

0
Zik(t)dMik(t; β, γ̂ ) = 0, (6)

where τ is a prespecified constant such that P(Yik(τ ) = 1) > 0 for k = 1, . . . , K and i = 1, . . . , n. For given β , it follows
from (5) that

µ̂0k(t; β, γ̂ ) =

n
i=1

 t

0

ξi(s)dNik(s) + πik(s; γ̂ )dNc
i.(s) − Yik(s)β ′Zik(s)ds

n
j=1

Yjk(s)
. (7)

Substituting (7) into (6), we obtain the following weighted estimating function for β0:

U(β) =

n
i=1

K
k=1

 τ

0
{Zik(t) − Z̄k(t)}{ξi(t)dNik(t) + πik(t; γ̂ )dNc

i.(t) − Yik(t)β ′Zik(t)dt}, (8)

where Z̄k(t) =
n

i=1 Yik(t)Zik(t)/
n

i=1 Yik(t). Let β̂ be the solution to U(β) = 0, which has a closed form

β̂ =


n

i=1

K
k=1

 τ

0
Yik(t){Zik(t) − Z̄k(t)}⊗2dt

−1 
n

i=1

K
k=1

 τ

0
{Zik(t) − Z̄k(t)}


ξi(t)dNik(t) + πik(t; γ̂ )dNc

i.(t)


,

where a⊗2
= aa′ for any vector a. The corresponding estimator of µ0k(t) is then given by µ̂0k(t) = µ̂0k(t; β̂, γ̂ ).
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3. Asymptotic properties

In this section, we establish the asymptotic properties of the proposed estimators, and assume that the following regu-
larity conditions hold for i = 1, . . . , n and k = 1, . . . , K .

(C1) {Nik(·), Cik, Zik(·)}Kk=1 are independent and identically distributed for i = 1, . . . , n.
(C2) P(Cik ≥ τ) > 0, and Nik(τ ) < η < ∞ almost surely.
(C3) Zik(t) and Wik(t) are almost surely of bounded variation on [0, τ ].
(C4) A and Ω(γ0) are nonsingular, where

A = E
 K

k=1

 τ

0
Yik(t){Zik(t) − z̄k(t)}⊗2dt


,

Ω(γ ) = E
 K

k=1

 τ

0
Wik(t)πik(t; γ )


Wik(t) −

K
l=1

Wil(t)πil(t; γ )
′

ξi(t)dNi.(t)

,

and z̄k(t) is the limit of Z̄k(t).

The asymptotic properties of β̂ are summarized in the following theorem with the proof outlined in the Appendix.

Theorem 1. Under the regularity conditions (C1)–(C4), β̂ is strongly consistent to β0, and n1/2(β̂−β0) is asymptotically normal
with mean zero and covariance matrix A−1ΣA−1, where Σ = E[(

K
k=1 Φik(β0, γ0))

⊗2
],

Φik(β, γ ) =

 τ

0
{Zik(t) − z̄k(t)}dMik(t; β, γ ) + Ψk(γ )Ω(γ )−1

K
l=1

Γil(γ ),

Γik(γ ) =

 τ

0
Wik(t){δik(t) − πik(t; γ )}ξi(t)dNi.(t),

Ψ̂k(γ ) = n−1
n

i=1

 τ

0
{Zik(t) − Z̄k(t)}


Wik(t) −

K
l=1

Wil(t)πil(t; γ )
′

πik(t; γ )dNc
i.(t),

and Ψk(γ ) is the limit of Ψ̂k(γ ).

The asymptotic covariancematrix A−1ΣA−1 can be consistently estimated by Â−1Σ̂ Â−1, where Σ̂ = n−1 n
i=1[

K
k=1 Φ̂ik

(β̂, γ̂ )]⊗2,

Â = n−1
n

i=1

K
k=1

 τ

0
Yik(t){Zik(t) − Z̄k(t)}⊗2dt,

Φ̂ik(β, γ ) =

 τ

0
{Zik(t) − Z̄k(t)}dM̂ik(t; β, γ ) + Ψ̂k(γ )Ω̂(γ )−1

K
l=1

Γil(γ ),

Ω̂(γ ) = n−1
n

i=1

K
k=1

 τ

0
Wik(t)πik(t; γ )


Wik(t) −

K
l=1

Wil(t)πil(t; γ )
′

ξi(t)dNi.(t),

and

dM̂ik(t; β, γ ) = ξi(t)dNik(t) + πik(t; γ )dNc
i.(t) − Yik(t){dµ̂0k(t; β, γ ) + β ′Zik(t)dt}.

Define Ĥk(t) = −
 t
0 Z̄k(s)ds and Ȳk(t) = n−1 n

i=1 Yik(t). LetHk(t) and ȳk(t) be the limits of Ĥk(t) and Ȳk(t), respectively.
The asymptotic properties of µ̂0k(t) are given in the next theorem.

Theorem 2. µ̂0k(t) converges almost surely to µ0k(t) uniformly in t ∈ [0, τ ], and n1/2(µ̂0k(t) − µ0k(t)) converges weakly on
[0, τ ] to a zero-mean Gaussian process with covariance function at (s, t) equal to ωk(s, t) = E[φik(s; β0, γ0)φik(t; β0, γ0)],
where

φik(t; β, γ ) = Hk(t)′A−1
K

k=1

Φik(β, γ ) + Qk(t; γ )Ω(γ )−1
K

l=1

Γil(γ ) +

 t

0
ȳk(s)−1dMik(s; β, γ ),

Q̂k(t; γ ) = n−1
n

i=1

 t

0
Ȳk(s)−1πik(s; γ )


Wik(s) −

K
l=1

Wil(s)πil(s; γ )
′

dNc
i.(s),

and Qk(t; γ ) is the limit of Q̂k(t; γ ).
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The covariance function ωk(s, t) can be consistently estimated by

ω̂k(s, t) = n−1
n

i=1

φ̂ik(s)φ̂ik(t),

where

φ̂ik(t) = Ĥk(t)′Â−1
K

k=1

Φ̂ik(β̂, γ̂ ) + Q̂k(t; γ̂ )Ω̂(γ̂ )−1
K

l=1

Γil(γ̂ ) +

 t

0
Ȳk(s)−1dM̂ik(s; β̂, γ̂ ).

Remark 2. Note that µ̂0k(t) could have negative increments. However, as discussed in Lin and Ying (1994), Yin and Cai
(2004) and Schaubel et al. (2006), simplemodifications can bemade to ensuremonotonicitywhile preserving the established
asymptotic properties, that is,

µ̃0k(t) = max
0≤u≤t

µ̂0k(u; β̂, γ̂ ).

Following the similar arguments to those in Lin andYing (1994), it canbe shown that {µ̃0k(t)−µ̂0k(t)} = op(n−1/2)uniformly
in t ∈ [0, τ ].

4. Model checking

Note that model inadequacy could result from the event category model. To check the generalized logits model (3), we
can use some model checking procedures such as the Hosmer–Lemeshow test, the classification table and the ROC curve
(Hosmer and Lemeshow, 2000). Here, we propose a formal lack-of-fit test for assessing the adequacy ofmodel (1). Following
Lin et al. (1993), we consider the following cumulative sums of residuals:

Lk(t, z) = n−1/2
n

i=1

 t

0
I(Zik(s) ≤ z)dM̂ik(s; β̂, γ̂ ),

where the event I(Zik(s) ≤ z) means that each component of Zik(s) is no larger than the corresponding component of z (Lin
et al., 2000). Define the null hypothesis as the correct specification of model (1) under the assumption that model (3) are
correctly specified. For the null distribution ofLk(t, z), we have the following theoremwith the proof given in the Appendix.

Theorem 3. Under the assumptions of Theorem 1, the null distribution of Lk(t, z) converges weakly to a zero-mean Gaussian
process with covariance function at (t1, z1) and (t2, z2) equal to E{σik(t1, z1)σik(t2, z2)}, where

σik(t, z) =

 t

0


I(Zik(s) ≤ z) −

Dk(s, z)
ȳk(s)


dMik(s; β0, γ0)

+


Ek(t, z) − Fk(t, z)


Ω(γ0)

−1
K

l=1

Γil(γ0) − Lk(t, z)′A−1
K

l=1

Φil(β0, γ0),

Ek(t, z) = E

 t

0
I(Zik(s) ≤ z)


Wik(s) −

K
l=1

πil(s; γ0)Wil(s)
′

πik(s; γ0)dNc
i.(s)


,

Fk(t, z) = E

 t

0

Dk(s, z)
ȳk(s)


Wik(s) −

K
l=1

πil(s; γ0)Wil(s)
′

πik(s; γ0)dNc
i.(s)


,

Lk(t, z) = E
 t

0
Yik(s)I(Zik(s) ≤ z){Zik(s) − z̄k(s)}ds


,

and Dk(t, z) = E{Yik(t)I(Zik(t) ≤ z)}.

It follows from Theorem 3 that the null distribution of Lk(t, z) can be approximated by the zero-mean Gaussian process

L̃k(t, z) = n−1/2
n

i=1

Υ̂ik(t, z),

where

Υ̂ik(t, z) =

 t

0


I(Zik(s) ≤ z) −

D̂k(s, z)
Ȳk(s)


dM̂ik(s; β̂, γ̂ )

+


Êk(t, z) − F̂k(t, z)


Ω̂(γ̂ )−1

K
l=1

Γil(γ̂ ) − L̂k(t, z)′Â−1
K

l=1

Φ̂il(β̂, γ̂ ),
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Êk(t, z) = n−1
n

i=1

 t

0
I(Zik(s) ≤ z)


Wik(s) −

K
l=1

Wil(s)πil(s; γ̂ )
′

πik(s; γ̂ )dNc
i.(s),

F̂k(t, z) = n−1
n

i=1

 t

0

D̂k(s, z)
Ȳk(s)


Wik(s) −

K
l=1

πil(s; γ̂ )Wil(s)
′

πik(s; γ̂ )dNc
i.(s),

L̂k(t, z) = n−1
n

i=1

 t

0
Yik(s)I(Zik(s) ≤ z){Zik(s) − Z̄k(s)}ds,

and D̂k(t, z) = n−1 n
i=1 Yik(t)I(Zik(t) ≤ z).

It is difficult to estimate the asymptotic covariance function of Lk(t, z) analytically because the limiting process of
Lk(t, z) does not have an independent increment structure. To this end, we can utilize the resampling approach (Lin et al.,
1993, 2000). Let {G1, . . . ,Gn} be independent standard normal variables which are independent of the observed data. Then
it can be shown that the null distribution of Lk(t, z) can be approximated by the conditional distribution of L̂k(t, z), where

L̂k(t, z) = n−1/2
n

i=1

Υ̂ik(t, z)Gi. (9)

Thus, we can obtain a large number of realizations from L̂k(t, z) by repeatedly generating the standard normal random
sample {G1, . . . ,Gn} while fixing the observed data. To evaluate the lack-of-fit of model (1), we could plot Lk(t, z) along
with a few number of realizations of L̂k(t, z) to see if there are some unusual patterns. SinceLk(t, z) is expected to fluctuate
randomly around 0 under the assumed model, a formal lack-of-fit test can be constructed based on the supremum statistic
sup0≤t≤τ ,z |Lk(t, z)|, with which the p-value can be obtained by comparing the observed value of sup0≤t≤τ ,z |Lk(t, z)| to a
large number of realizations from sup0≤t≤τ ,z |L̂k(t, z)|.

5. Simulation studies

Simulation studies were conducted to examine the finite-sample properties of the proposed estimators. In the study,
we considered the situation where there exist K = 2 event categories. The covariates were taken as Zi1 = (Zi, 0)′ and
Zi2 = (0, Zi)′,where Zi follows a Bernoulli distribution with success probability 0.5. Let Ri be a gamma random variable with
mean 1 and variance σ 2

R , which was introduced to induce positive correlation among the within-subject events. To avoid
yielding too many recurrent events for one subject, we set R∗

i = min(Ri, 1.5) with σ 2
R = 0.5 and 1. The kth type recurrent

events were generated from a Poisson process with the intensity function

λik(t) = R∗

i + λ0k + β ′

0Zik, k = 1, 2,

where β0 = (β1, β2)
′
= (0.5, 0.3)′, λ01 = 0.25 or 0.5, and λ02 = 0.5. It can be verified that N∗

ik(t) satisfies the additive
rates model (1) with dµ0k(t) = {E(R∗

i ) + λ0k}dt. The censoring time Cik was generated from a uniform distribution U(0, τ )
with τ = 5. Under the preceding settings, the average number of observed events per subject ranged from 3.2 to 5.4 for
k = 1 and from 3.6 to 5.2 for k = 2. The event categories were set to missing with probability

P{ξi(t) = 0|dNi.(t) = 1, Zi} =
exp{ρ0 + Ziρz}

1 + exp{ρ0 + Ziρz}
,

where ρ0 = −1, and ρz = 0, log(1.5) or log(2). Under the above settings, the proportion of events with missing types
varied from 27% to 36%.

For comparison, three methods were used to estimate β0: (i) the full-data (FF) analysis, which is based on data with all
event categories being always observed; (ii) the complete-case (CC) analysis, which treats events of unknown category
as censored; (iii) the proposed weighted estimating equation (WEE) method. For the WEE method, the event category
probability was fitted by the following logistic model:

log


πi2(t; γ0)

πi1(t; γ0)


= γ ′

0Wi2(t),

whereWi2(t) = (1, Zi)′. The results presented below are based on 500 replications with sample sizes n = 100 and 200.
All the simulation results are summarized in Tables 1 and 2. In these tables, Bias is the sample mean of the estimate

minus the true value; ESD is the empirical standard deviation of the estimate; ASE is the average estimated standard error;
RE is the relative efficiency (computed as the ratio of empirical variances); and CP is the 95% empirical coverage probability
based on the normal approximation.

Table 1 presents the comparison results on estimation of β1 only, as those for the estimate of β2 are very similar. It can
be seen from Table 1 that the CC estimator is nearly unbiased only when ρz = 0 (i.e., the event categories are missing
completely at random). However, the CC estimator is highly biased when ρz > 0, and the bias increases as the correlation
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Table 1
Comparison results on estimation of β1 = 0.5.

n σ 2
R λ01 ρz Bias ESD RE:WEE

FF WEE CC FF WEE CC vs.FF vs.CC

100 0.5 0.25 0 −0.002 −0.001 0.005 0.186 0.200 0.212 0.86 1.12
log(1.5) −0.002 −0.003 −0.242 0.186 0.205 0.216 0.82 1.11
log(2) −0.002 −0.003 −0.454 0.186 0.208 0.218 0.80 1.10

0.5 0 −0.007 −0.011 −0.014 0.197 0.213 0.223 0.86 1.10
log(1.5) −0.007 −0.012 −0.286 0.197 0.215 0.229 0.84 1.13
log(2) −0.007 −0.011 −0.523 0.197 0.220 0.234 0.80 1.13

1 0.25 0 0.002 −0.001 −0.003 0.172 0.183 0.192 0.88 1.10
log(1.5) 0.002 −0.002 −0.163 0.172 0.185 0.197 0.86 1.13
log(2) 0.002 −0.001 −0.305 0.172 0.189 0.201 0.83 1.13

0.5 0 0.018 0.022 0.019 0.197 0.204 0.216 0.93 1.12
log(1.5) 0.018 0.022 −0.170 0.197 0.205 0.218 0.92 1.13
log(2) 0.018 0.022 −0.343 0.197 0.207 0.224 0.91 1.17

200 0.5 0.25 0 0.008 0.006 0.005 0.128 0.139 0.147 0.85 1.12
log(1.5) 0.008 0.006 −0.235 0.128 0.141 0.152 0.82 1.16
log(2) 0.008 0.005 −0.448 0.128 0.144 0.156 0.79 1.17

0.5 0 0.004 0.002 0.004 0.137 0.147 0.157 0.87 1.14
log(1.5) 0.004 0.002 −0.265 0.137 0.151 0.162 0.82 1.15
log(2) 0.004 0.002 −0.504 0.137 0.153 0.170 0.80 1.23

1 0.25 0 −0.005 −0.008 −0.006 0.133 0.141 0.148 0.89 1.10
log(1.5) −0.002 0.005 −0.158 0.132 0.146 0.156 0.82 1.14
log(2) −0.002 0.006 −0.299 0.132 0.147 0.157 0.81 1.14

0.5 0 −0.007 −0.003 −0.004 0.135 0.143 0.149 0.89 1.09
log(1.5) −0.003 −0.007 −0.200 0.144 0.154 0.165 0.87 1.15
log(2) −0.003 −0.005 −0.368 0.144 0.157 0.169 0.84 1.16

Table 2
Simulation results for the accuracy of the asymptotic approximation to the distributions of the WEE estimator.

n σ 2
R λ01 ρz β1 β2

ASE ESD CP ASE ESD CP

100 0.5 0.25 0 0.197 0.200 0.940 0.202 0.210 0.928
log(1.5) 0.201 0.205 0.936 0.205 0.212 0.928
log(2) 0.205 0.208 0.934 0.209 0.215 0.938

0.5 0 0.207 0.213 0.936 0.206 0.209 0.946
log(1.5) 0.211 0.215 0.944 0.211 0.213 0.940
log(2) 0.215 0.220 0.942 0.214 0.220 0.938

1 0.25 0 0.195 0.183 0.962 0.201 0.190 0.960
log(1.5) 0.198 0.185 0.960 0.204 0.191 0.954
log(2) 0.201 0.189 0.952 0.206 0.190 0.964

0.5 0 0.206 0.204 0.940 0.203 0.208 0.940
log(1.5) 0.209 0.205 0.942 0.206 0.212 0.924
log(2) 0.212 0.207 0.954 0.208 0.215 0.928

200 0.5 0.25 0 0.141 0.139 0.946 0.145 0.147 0.932
log(1.5) 0.144 0.141 0.948 0.147 0.149 0.938
log(2) 0.146 0.144 0.938 0.150 0.151 0.944

0.5 0 0.148 0.147 0.958 0.145 0.144 0.950
log(1.5) 0.151 0.151 0.952 0.148 0.150 0.954
log(2) 0.154 0.153 0.954 0.151 0.153 0.954

1 0.25 0 0.140 0.141 0.950 0.143 0.143 0.942
log(1.5) 0.142 0.146 0.928 0.146 0.147 0.948
log(2) 0.144 0.147 0.934 0.148 0.150 0.938

0.5 0 0.147 0.143 0.954 0.144 0.150 0.934
log(1.5) 0.149 0.154 0.930 0.146 0.149 0.928
log(2) 0.152 0.157 0.932 0.148 0.151 0.932

between themissingness probability and Zi increases. Both the FF andWEE estimators are essentially unbiased in all settings.
Furthermore, the WEE estimator is more efficient than the CC estimator, and is only slightly less efficient than the FF
estimator.

Table 2 gives the simulation results on the accuracy of the asymptotic approximation to the distributions of the WEE
estimator. The results show that theWEEmethod performs well for the situations considered here. Specifically, the average
estimated standard errors are very close to the empirical standard deviations, and the 95% empirical coverage probabilities
are reasonable. The performance of theWEE estimator becomes better when the sample size increases from 100 to 200, We
also considered other setups and the results were similar to those given above.
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Table 3
Analysis results for the FNHTRs data.

Type Covariate CC method WEE method
Est × 102 SE × 102 p-value Est × 102 SE × 102 p-value

I Gender −1.4801 1.0469 0.1574 0.2012 0.9975 0.8401
Age 0.1092 0.0272 <0.01 0.0069 0.0222 0.7542

II Gender −0.9899 0.8940 0.2682 −0.0555 0.7486 0.9409
Age 0.1011 0.0272 <0.01 0.0460 0.0208 0.0271

Note: Type I denotes the reaction with fever; Type II denotes the reaction with no fever; Est is the estimate of the parameter; and SE denotes the standard
error estimate.

6. Application

For the illustration purpose, we applied the proposed method to a set of recurrent event data from some patients who
may experience different febrile nonhemolytic transfusion reactions (FNHTRs) arising within 4–6 h post transfusion. The
data were collected at five university teaching hospitals in Toronto coded A–E over three consecutive summers from 1996
to 1998 (Patterson et al., 2000). We considered a subset of the data which consist of 242 patients who were followed up
during the 1997 summer. The occurrence of FNHTRs is temporary and thus it is reasonable to treat a reaction as a recurrent
event. A total of 1201 transfusions were recorded and among them, there were 314 reaction episodes being observed and
the mean number of reactions per patient was 1.3 (sd = 1.8). The FNHTR is characterized by fever, chill, rigor, hive and
other symptoms. In the following analysis, for simplicity, we classified all kinds of reactions into two types: the reaction
accompanied with fever (denoted by Type I reaction) and the reaction with no fever (denoted by Type II reaction). Based on
the above classification, among the 314 observed reactions, there were 181 Type I reactions, 115 Type II reactions, and 18
reactions with missing types. Thus we got bivariate recurrent event data in the presence of missing event types.

Following Zhao et al. (2012), we definedN∗

i1(t) andN∗

i2(t) as the numbers of fever and no fever reactions that had occurred
over interval [0, t] for patient i, respectively. The covariate vector Zi includes the gender of patients (1 if female, 0 if male)
and the age of patients when entering the study (in years). The censoring time Ci is defined as the day of the last visit for
patient i, and let τ = 165 denote the maximum value of Ci’s. In this dataset, the proportion of events with missing types is
quite small (less than 6%). To illustrate our method, following the idea of Lu and Liang (2008), we further artificially deleted
some event types for those recurrent events with known types according to the MAR mechanism. Specifically, the missing
probability was chosen as p = exp(2 + 0.5 ∗ Gender − 0.1 ∗ Age)/(1 + exp(2 + 0.5 ∗ Gender − 0.1 ∗ Age)), which leads
to about 28% events with missing types. Our main goal is to estimate the covariate effects on the recurrence rate of the two
types of transfusion reactions. In the interest of flexibility, both covariates are assumed to be type-specific.

For the analysis, we considered model (1) with Zi1 = (Z ′

i , 0)
′ and Zi2 = (0, Z ′

i )
′. Two methods were employed

for comparison: WEE methods and CC methods. For the WEE methods, πik(t; γ0) was assumed to satisfy the following
generalized logistic model

πik(t; γ0) =
exp{γ ′

0Wik}

2
l=1

exp{γ ′

0Wil}

, k = 1, 2

where Wi2 = (1, Z ′

i )
′ and Wi1 = 0. The results are summarized in Table 3. These results indicate that by the WEE method,

neither FNHTR rates seem to be correlated with the gender of the patients, and younger patients may experience lower risk
of Type II platelet transfusion reactions. These results are consistent with those obtained by Zhao et al. (2012). On the other
hand, the CC estimators for all the effects are significantly different from the WEE estimators, and the CC method would
overestimate the effects of gender and age. In addition, the standard errors of the WEE estimators are smaller than those of
the CC estimators as shown in the simulation.

For model checking, we first used the Hosmer–Lemeshow test (Hosmer and Lemeshow, 2000) to check the adequacy of
the assumed logistic model. To calculate the test statistic, we ordered the fitted value π̂i2(t; γ̂ ), and grouped them into 10
classes of roughly equal size. The test statistic value was about 12.54 with a p-value of 0.128, which indicates little evidence
against the assumed logistic model. Finally, we apply the model checking techniques introduced in Section 4 to assess the
adequacy of model (1) for the data. We calculated the statistics Lk(t, z) (k = 1, 2), and obtained sup0≤t≤τ ,z |L1(t, z)| =

0.890 and sup0≤t≤τ ,z |L2(t, z)| = 0.659 with p-values of 0.324 and 0.316, respectively, based on 500 realizations of the
corresponding statistics sup0≤t≤τ ,z |L̂1(t, z)| and sup0≤t≤τ ,z |L̂2(t, z)|. These results suggest that model (1) fits the data
adequately.

7. Concluding remarks

In this article, we proposed an additive rates model for multivariate recurrent event data with missing event categories
under the MAR assumption. A weighted estimating equation method was developed for parameter estimation. Specifically,
when an event category was missing, a weighted contribution was added to the estimating equation, with the weight
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equal to the corresponding category-specific probability. The resulting estimators have explicit expressions and are easy
to implement. The asymptotic properties of the proposed estimators were established. Simulation results showed that the
proposed methods work well, and an application to the FNHTR data was provided.

Model (1) has the limitation that the linear predictor β ′

0Zik(t) needs to be constrained to ensure non-negativity for the
right-hand side of (1). One may avoid this constraint by using a nonnegative link function, such as dµ0k(t) + g(β ′

0Zik(t))dt.
The proposed estimation procedure can be extended in a straightforward manner to deal with any regression function
g(β ′

0Zik(t)), where g(·) is a known link function. Furthermore, it would beworthwhile to studymultivariate recurrent events
with missing event categories under other competing models, such as an additive–multiplicative rates model (Liu et al.,
2010) and a class of semiparametric transformation models (Lin et al., 2001; Zeng and Lin, 2006). In addition, Lin et al.
(2013) developed fully nonparametric methods in which the missingness mechanism is completely unspecified. It would
be desirable to develop similar nonparametric methods for an additive rates model.

In general, there are three types of assumptions onmissingness:missing completely at random (MCAR),MAR andmissing
not at random (MNAR). TheMAR assumption is common for statistical analysis withmissing data and is reasonable in many
applications (Little and Rubin, 2002), andMCAR is a special case ofMAR. ForMNAR, becausemissingness depends onmissing
data, some nonidentifiability problems arise (Tsiatis, 2006). Development of an estimation method to analyze multivariate
recurrent event data with missing event categories under the MNAR assumption is challenging and merits future research.
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Appendix. Proofs of asymptotic results

Proof of Theorem 1. It can be checked that

β̂ − β0 = Â−1

n−1

n
i=1

K
k=1

 τ

0
{Zik(t) − Z̄k(t)}


dMik(t; β0, γ̂ ) + Yik(t)dµ0k(t)



= Â−1n−1
n

i=1

K
k=1

 τ

0
{Zik(t) − Z̄k(t)}dMik(t; β0, γ̂ ), (A.1)

where

Â = n−1
n

i=1

K
k=1

 τ

0
Yik(t){Zik(t) − Z̄k(t)}⊗2dt.

Using the strong law of large numbers (van der Vaart, 2000) and the strong consistency of γ̂ , we obtain

n−1
n

i=1

K
k=1

 τ

0
{Zik(t) − Z̄k(t)}dMik(t; β0, γ̂ ) → 0, a.s.

and Â converges almost surely to A, which is nonsingular by condition (C4). Thus, it follows from (A.1) that β̂ is strongly
consistent to β0.

To prove asymptotic normality of β̂ , write

n1/2(β̂ − β0) = Â−1
K

k=1

2
l=1

Ukl, (A.2)

where

Uk1 = n−1/2
n

i=1

 τ

0
{Zik(t) − Z̄k(t)}dMik(t),

Uk2 = n−1/2
n

i=1

 τ

0
{Zik(t) − Z̄k(t)}


dMik(t; β0, γ̂ ) − dMik(t)


,
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andMik(t) = Mik(t; β0, γ0). Using the functional central limit theorem (Pollard, 1990), we have

Uk1 = n−1/2
n

i=1

 τ

0
{Zik(t) − z̄k(t)}dMik(t) + op(1). (A.3)

In view of (4), by the Taylor expansion and some straightforward calculations, we have

Uk2 = n−1/2
n

i=1

 τ

0
{Zik(t) − Z̄k(t)}{πik(t; γ̂ ) − πik(t; γ0)}dNc

i.(t)

= n−1/2
n

i=1

Ψk(γ0)Ω(γ0)
−1

K
l=1

Γil(γ0) + op(1), (A.4)

where Ψk(γ ), Ω(γ ) and Γil(γ ) are as defined in Theorem 1. It follows from (A.2)–(A.4) and the strong consistency of Â that

n1/2(β̂ − β0) = A−1n−1/2
n

i=1

K
k=1

Φik(β0, γ0) + op(1), (A.5)

where

Φik(β, γ ) =

 τ

0
{Zik(t) − z̄k(t)}dMik(t; β, γ ) + Ψk(γ )Ω(γ )−1

K
l=1

Γil(γ ).

Utilizing themultivariate central limit theorem, n1/2(β̂−β0) is asymptotically normalwithmean zero and covariancematrix
A−1ΣA−1, where Σ is given in Theorem 1.

Proof of Theorem 2. First write

µ̂0k(t) − µ0k(t) = {µ̂0k(t) − µ̂0k(t; β0, γ̂ )} + {µ̂0k(t; β0, γ̂ ) − µ̂0k(t; β0, γ0)} + {µ̂0k(t; β0, γ0) − µ0k(t)}. (A.6)

It is easy to see that

µ̂0k(t) − µ̂0k(t; β0, γ̂ ) = −

 t

0
Z̄k(s)′ds(β̂ − β0). (A.7)

In addition, by the Taylor expansion, we have

µ̂0k(t; β0, γ̂ ) − µ̂0k(t; β0, γ0) =

 t

0

n
i=1

πik(s; γ ∗)


Wik(s) −

K
l=1

πil(s; γ ∗)Wil(s)
′

dNc
i.(s)

n
j=1

Yjk(s)
× (γ̂ − γ0), (A.8)

where γ ∗ lies between γ̂ and γ0. Under conditions (C1)–(C3), the integrals in (A.7) and (A.8) are bounded almost surely
uniformly in t ∈ [0, τ ]. Hence using the consistency of β̂ and γ̂ , we get that µ̂0k(t) − µ̂0k(t; β0, γ̂ ) and µ̂0k(t; β0, γ̂ ) −

µ̂0k(t; β0, γ0) converge almost surely to 0 uniformly in t ∈ [0, τ ], respectively.
For the third term on the right-hand side of (A.6), after some algebraic manipulations, we obtain

µ̂0k(t; β0, γ0) − µ0k(t) =

n
i=1

 t

0

dMik(s)
n

j=1
Yjk(s)

. (A.9)

By the uniform strong law of large numbers (Pollard, 1990) and Lemma 1 of Lin et al. (2000), it can be seen that
µ̂0k(t; β0, γ0) − µ0k(t) converges almost surely to 0 uniformly in t ∈ [0, τ ]. Thus, it follows from (A.6)–(A.9) that µ̂0k(t)
converges almost surely to µ0k(t) uniformly in t ∈ [0, τ ].

Next, we show the weak convergence of µ̂0k(t). It follows from (A.5) and (A.7) that

n1/2
{µ̂0k(t) − µ̂0k(t; β0, γ̂ )} = Hk(t)′A−1n−1/2

n
i=1

K
k=1

Φik(β0, γ0) + op(1) (A.10)

uniformly in t ∈ [0, τ ], where Hk(t) = −
 t
0 z̄k(s)ds. Based on (4) and (A.8), a straightforward calculation yields

n1/2
{µ̂0k(t; β0, γ̂ ) − µ̂0k(t; β0, γ0)} = Qk(t; γ0)Ω(γ0)

−1n−1/2
n

i=1

K
l=1

Γil(γ0) + op(1) (A.11)
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uniformly in t ∈ [0, τ ], where Qk(t; γ ) is as defined in Theorem 2. In addition, by (A.9), we have that uniformly in t ∈ [0, τ ],

n1/2
{µ̂0k(t; β0, γ0) − µ0k(t)} = n−1/2

n
i=1

 t

0

dMik(s)
ȳk(s)

+ op(1), (A.12)

where ȳk(s) is the limit of Ȳk(s). Thus, it follows from (A.6) and (A.10)–(A.12) that

n1/2
{µ̂0k(t) − µ0k(t)} = n−1/2

n
i=1

φik(t; β0, γ0) + op(1) (A.13)

uniformly in t ∈ [0, τ ], where φik(t; β, γ ) is as defined in Theorem 2. Because φik(t; β0, γ0) are independent zero-mean
random variables for each t , the multivariate central limit theorem implies that n1/2

{µ̂0k(t) − µ0k(t)} converges in finite-
dimensional distributions to a zero-mean Gaussian process. Note that Hk(t) and Qk(t; γ0) are deterministic functions, and
the third term of φik(t; β0, γ0) can be written as sums of monotone functions of t . Thus, n1/2

{µ̂0k(t) − µ0k(t)} is tight (van
der Vaart andWellner, 1996), and converges weakly to a zero-mean Gaussian process whose covariance function at (s, t) is
given by ωk(s, t), which is defined in Theorem 2.

Proof of Theorem 3. First note that

Lk(t, z) = n−1/2
n

i=1

 t

0
I(Zik(s) ≤ z)dMik(s) + Rk1(t, z) + Rk2(t, z) + Rk3(t, z), (A.14)

where

Rk1(t, z) = n−1/2
n

i=1

 t

0
I(Zik(s) ≤ z){πik(s; γ̂ ) − πik(s; γ0)}dNc

i.(s),

Rk2(t, z) = −n−1/2
n

i=1

 t

0
I(Zik(s) ≤ z)Yik(s)d{µ̂0k(s) − µ0k(s)},

and

Rk3(t, z) = −n−1/2
n

i=1

 t

0
I(Zik(s) ≤ z)Yik(s)Zik(s)′ds(β̂ − β0).

Similarly to (A.4), we obtain

Rk1(t, z) = n−1/2
n

i=1

Ek(t, z)Ω(γ0)
−1

K
l=1

Γil(γ0) + op(1), (A.15)

where Ek(t, z) is defined in Theorem 3. Using the uniform strong law of large numbers and (A.13), we have

Rk2(t, z) = −n−1/2
n

i=1


L2k(t, z)′A−1

K
l=1

Φil(β0, γ0) + Fk(t, z)Ω(γ0)
−1

K
l=1

Γil(γ0)

+

 t

0

Dk(s, z)
ȳk(s)

dMik(s)


+ op(1), (A.16)

where

L2k(t, z) =

 t

0
Dk(s, z)dHk(s),

and Dk(t, z) and Fk(t, z) are defined in Theorem 3. In addition, by (A.5), we get

Rk3(t, z) = −n−1/2
n

i=1

L1k(t, z)′A−1
K

l=1

Φil(β0, γ0) + op(1), (A.17)

where

L1k(t, z) = E
 t

0
Yik(s)I(Zik(s) ≤ z)Zik(s)ds


.
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Let Lk(t, z) = L1k(t, z) + L2k(t, z). Then it follows from (A.14)–(A.17) that

Lk(t, z) = n−1/2
n

i=1

σik(t, z) + op(1),

where σik(t, z) is defined in Theorem 3. By the multivariate central limit theorem, Lk(t, z) converges in finite-dimensional
distributions to a zero-mean Gaussian process. By the same argument as the tightness of n1/2

{µ̂0k(t) − µ0k(t)}, Lk(t, z)
is tight. Thus, Lk(t, z) converges weakly to a zero-mean Gaussian process with covariance function at (t1, z1) and (t2, z2)
equal to E{σik(t1, z1)σik(t2, z2)}. By the arguments of Lin et al. (2000), the limiting Gaussian process can be approximated by
the zero-mean Gaussian process L̂k(t, z) given in (9).
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