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Abstract Multivariate recurrent event data arises when study subjects may experience more than one type

of recurrent events. In some situations, however, although event times are always observed, event categories

may be partially missing. In this paper, an additive-multiplicative rates model is proposed for the analysis of

multivariate recurrent event data when event categories are missing at random. A weighted estimating equations

approach is developed for parameter estimation, and the resulting estimators are shown to be consistent and

asymptotically normal. In addition, a model-checking technique is presented to assess the adequacy of the

model. Simulation studies are conducted to evaluate the finite sample behavior of the proposed estimators, and

an application to a platelet transfusion reaction study is provided.
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1 Introduction

Recurrent event data arises frequently in many clinical and longitudinal studies where the event of

interest may occur more than once over time. Examples include repeated transient ischemic attacks

in cerebrovascular disease study, multiple opportunistic infections in HIV clinical trials, and recurrent

pulmonary exacerbations in cystic fibrosis trials. Other examples of recurrent events that often occur

in practice include hospitalizations, tumor metastases and bleeding incidents. A lot of work exists with

respect to the analysis of recurrent event data [1,8,16,21]. For example, Lin et al. [8] developed rigorous

parameter estimation procedures for the marginal proportional rate model. Schaubel et al. [21] studied

a semiparametric additive rate model for recurrent events. All the aforementioned methods are for the

analysis of univariate recurrent events. In many settings, especially in medical studies, study subjects

may experience several different types of related recurrent events, leading to multivariate recurrent event

data. For example, infections in bone marrow transplantation can be classified into bacterial, fungal
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and viral origins; transient ischemic attacks may be differentiated according to location in cardiovascular

trials; and childhood asthma outcomes may be subtyped as physician office visits and hospitalizations.

For the analysis of multivariate recurrent event data, some estimation procedures have been developed in

the literature [2, 4, 24, 28]. For example, Cai and Schaubel [2] proposed a class of proportional marginal

means and rates models for evaluating the effects of the covariates on the recurrent event processes. Chen

et al. [4] presented a general additive marginal rate model for analyzing the multivariate recurrent event

data. Sun et al. [24] studied a semiparametric multiplicative rates model that allows for time-dependent

covariate effects. Zhu et al. [28] considered regression analysis of multivariate recurrent events in the

presence of a dependent terminal event based on a joint modeling approach.

However, in practice, although the occurrence of an event is always observed, the specific category

may be missing due to a variety of reasons. For example, in the study of technique failure rates for end-

stage renal disease patients receiving continuous ambulatory peritoneal dialysis [19], although the dates

of all technique failures are available, the causes of some technique failures are uncertain due to technical

difficulties. Another example is a platelet transfusion reaction study [27] wherein hematology/oncology

patients may experience different types of febrile nonhemolytic transfusion reactions. The occurrence

time of each transfusion reaction is always recorded, but the specific types are partially missing. For

multivariate recurrent event data with missing event types, the complete-case analysis is to discard those

events with missing categories, which may lead to biased parameter estimation unless the missingness

mechanism is missing completely at random (MCAR) [11], i.e., the event category missingness occurs

randomly among events. When the category missingness mechanism depends only on the observed

quantities, but not on the missing categories, it is termed missing at random (MAR) [11]. Compared

with the MCAR assumption, MAR is a weaker assumption and often holds in practice.

The issue of missing event types in recurrent event data is analogous to the competing risk issue

with missing cause of failure, which has been investigated by [5, 13, 14, 22]. For example, Gao and

Tsiatis [5] considered the linear transformation competing risks model with missing cause of failure.

Lu and Liang [14] studied competing risks data with missing cause of failure under the semiparametric

additive hazards model. In recent years, some methods have been developed to analyze multivariate

recurrent event data with missing event types under the MAR assumption. For example, Schaubel

and Cai [19, 20] studied the multiple-event-type proportional means and rates model based on weighted

estimating equations and multiple imputation methods, respectively. Chen and Cook [3] presented a

multivariate random effects model using the likelihood approach. Lin et al. [10] proposed a nonparametric

estimation of the mean function in which local likelihood methods are employed to estimate the event

category probabilities.

In application, some covariate effects are additive while others are multiplicative or certain covariates

have both the additive and multiplicative effects. To enhance the modelling capability in many applica-

tions, it seems natural to consider models which allow some covariate effects to be multiplicative while

allowing others to be additive. Recently, a class of additive-multiplicative rate models [12, 23] have been

proposed to analyze recurrent events of single type. In this paper, we consider a semiparametric additive-

multiplicative rates model to study multivariate recurrent event data with event types missing at random.

A weighted estimating equations approach is developed to estimate model parameters. Simulation results

in Section 5 show that the proposed methods work well under the MAR assumption.

The remainder of the article is organized as follows. In Section 2, we specify the model and present an

estimating equation method for parameter estimation. Section 3 gives the asymptotic properties of the

resulting estimators with proofs outlined in Appendix. A model-checking technique is described in Section

4. Simulation studies are conducted to evaluate the proposed methods in Section 5. An application on the

platelet transfusion reaction study is provided in Section 6 and some concluding remarks are summarized

in Section 7.

2 Model and estimation procedures

Consider a study that involves n independent subjects and each subject may experience K different types
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of recurrent events. For each pair (i, k), letN∗
ik(t) denote the number of events of type k that have occurred

up to time t for subject i, and assume that dN∗
ik(t) ∈ {0, 1}, and dN∗

ik(t)dN
∗
il(t) = 0 for k �= l. Let Cik

denote the right censoring times of event type k for subject i. Due to censoring, the observed recurrent

event processes are Nik(t) =
∫ t

0
Yik(s)dN

∗
ik(s), where Yik(t) = I(Cik � t), and I(·) is the indicator

function. Let Wik(t) and Xik(t) be vectors of external time-dependent covariates of dimensions p and q

(see [6]), which represent additive and multiplicative effects on the recurrent event processes, respectively.

The proposed additive-multiplicative rates model takes the form

E{dN∗
ik(t) | Wik(t), Xik(t)} = g(βT

0 Wik(t))dt + h(γT
0 Xik(t))dμ0k(t), (1)

where g(·) and h(·) are known link functions, β0 and γ0 are p×1 and q×1 vectors of unknown regression

coefficients, and μ0k(t) is the category-specific baseline mean function. Obviously, (1) defines a very rich

family of models through the link functions g and h, which includes the proportional rate model [2] and

the additive rate model [4] as special cases. In practice, the choice of these appropriate link functions

may be based on prior data or the desiring interpretation of the regression parameters.

We first consider the situation where event categories are fully observed. Let Zik(t) = {WT
ik(t), X

T
ik(t)}T

and define

M∗
ik(t, θ) = Nik(t)−

∫ t

0

Yik(s){g(βTWik(t))dt+ h(γTXik(t))dμ0k(t)},

where θ = (βT, γT)T is included in the parameter space denoted by Θ, which contains the true value

θ0 = (βT
0 , γ

T
0 )

T as its interior point, and is assumed to be compact for the technical proof. Under (1)

and independent censoring assumption, we have E{dM∗
ik(t, θ0) | Zik(t)} = 0. By applying the idea of

generalized estimating equations [7], we specify the following estimating equations for μ0k(t) and θ0,

respectively:

n∑
i=1

∫ t

0

dM∗
ik(s, θ) = 0, (2)

n∑
i=1

K∑
k=1

∫ τ

0

Zik(s, θ)dM
∗
ik(s, θ) = 0, (3)

where τ is a prespecified time point satisfying P (Yik(τ) = 1) > 0 for k = 1, . . . ,K and i = 1, . . . , n. For

fixed θ, based on (2), some simple calculations give that

μ̃0k(t, θ) =

n∑
i=1

∫ t

0

dNik(s)− Yik(s)g(β
TWik(s))ds∑n

i=1 Yik(s)h(γTXik(s))
, (4)

for k = 1, . . . ,K. Substituting (4) into (3) leads to the following estimating equation for θ0:

n∑
i=1

K∑
k=1

∫ τ

0

{Zik(s)− Z̄k(s, γ)}{dNik(t)− Yik(t)g(β
TWik(t))dt} = 0, (5)

where

Z̄k(t, γ) =

∑n
i=1 Yik(t)h(γ

TXik(t))Zik(t)∑n
i=1 Yik(t)h(γTXik(t))

.

Let θ̃ be the solution to (5) and the baseline mean function estimator is given by μ̃0k(t, θ̃).

We now consider the setting where event times are always observed, but some event categories are

missing at random. Let δi(t) denote the type of event which occurred to subject i at time t. Define

δik(t) = I (δi(t) = k), and set ξi(t) = 1 when an event occurs at time t and δi(t) is known and 0 otherwise.

For a random sample of n subjects, the observed data consists of {Nik(t), Cik, Zik(t), ξi(t), ξi(t)δi(t); t

� Cik, i = 1, . . . , n, k = 1, . . . ,K}. A complete-case analysis is to simply ignore events of missing types,

which not only leads to efficiency loss due to smaller sample size but also generates biased estimators

when the missingness mechanism is MAR.
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Define dNi.(t) =
∑K

k=1 dNik(t). Since dNik(t)dNil(t) = 0 for k �= l, it follows that dNik(t) =

δik(t)dNi.(t), and

dNik(t) = ξi(t)dNik(t) + (1− ξi(t))dNik(t)

= ξi(t)dNik(t) + (1− ξi(t))δik(t)dNi.(t)

= ξi(t)dNik(t) + δik(t)dN
c
i.(t),

where dN c
i.(t) = (1− ξi(t))dNi.(t). Under (1), we have

E[ξi(t)dNik(t) + δik(t)dN
c
i.(t)− Yik(t){g(βT

0 Wik(t))dt+ h(γT
0 Xik(t))dμ0k(t)}] = 0.

However, by which we can not establish operational estimating equations since δik(t) is unavailable when

dN c
i.(t) = 1. Let Vi(t) be a covariate vector which catches the pertinent information in the event history

at time t for subject i. Under the MAR assumption, we have

E[δik(t) | dN c
i.(t) = 1, Vi(t)] = E[δik(t) | dNi.(t) = 1, ξi(t) = 0, Vi(t)]

= E[δik(t) | dNi.(t) = 1, Vi(t)]

= E[δik(t) | dNi.(t) = 1, ξi(t) = 1, Vi(t)],

which implies that

E[δik(t) | dN c
i.(t) = 1, Vi(t)]

can be estimated based on those events whose categories are known. Define

πik(t) = E[δik(t) | dNi.(t) = 1, Vi(t)].

We posit a parametric model πik(t; η0) for πik(t). As discussed in Schaubel and Cai [19, 20], we propose

to fit πik(t; η0) by the following generalized logistic model:

log

{
πik(t; η0)

πi1(t; η0)

}
= ηT0 Vik(t), k = 2, . . . ,K, (6)

where the covariate Vik(t) contains the elements of Vi(t) which pertain to category k, and k = 1 is

arbitrarily selected as the reference category. Although the logistic regression is widely used, other

parametric forms may be possible, such as the generalized probit model. Let η̂ be the solution to the

following estimating equation

n∑
i=1

K∑
k=2

∫ τ

0

Vik(t)[δik(t)− πik(t; η)]ξi(t)dNi.(t) = 0. (7)

It is easy to show that η̂ is a consistent estimator of η0. Then the event category probabilities can be

estimated by

πik(t; η̂) =
exp{η̂TVik(t)}∑K
l=1 exp{η̂TVil(t)}

, k = 1, . . . ,K,

where Vi1(t) = 0. Let

dMik(t, θ, η) = ξi(t)dNik(t) + πik(t, η)dN
c
i.(t)− Yik(t){g(βTWik(t))dt+ h(γTXik(t))dμ0k(t)}.

If (1) and (6) are correctly specified, we have E[dMik(t, θ0, η0)] = 0. Thus by applying the generalized

estimating equation approach [7] and exploiting the consistency of η̂, we specify the following estimating

equations for μ0k(t) and θ0, respectively:

n∑
i=1

∫ t

0

dMik(s, θ, η̂) = 0, 0 � t � τ, (8)
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n∑
i=1

K∑
k=1

∫ τ

0

Zik(s)dMik(s, θ, η̂) = 0. (9)

It follows from (8) that

μ̂0k(t, θ, η̂) =

n∑
i=1

∫ t

0

ξi(s)dNik(s) + πik(s, η̂)dN
c
i.(s)− Yik(s)g(β

TWik(s))ds∑n
i=1 Yik(s)h(γTXik(s))

. (10)

Substituting (10) into (9), we get a weighted estimating equation for θ0:

U(θ) =

n∑
i=1

K∑
k=1

∫ τ

0

{Zik(s)− Z̄k(s, γ)}{ξi(s)dNik(s) + πik(s, η̂)dN
c
i.(s)

− Yik(s)g(β
TWik(s))ds} = 0. (11)

The standard Newton-Raphson algorithm can be used to solve the above equation. In general, the initial

value of θ is chosen to be 0, such as in the simulation studies below, and the Newton-Raphson algorithm

always converges for the situation considered here. Let θ̂ be the solution to (11), and the corresponding

baseline mean function estimator is given by μ̂0k(t) = μ̂0k(t, θ̂, η̂). By the law of large numbers and

the consistency of η̂, we show in the Appendix that under some regularity conditions, θ̂ is unique and

consistent in a small neighborhood of θ0.

3 Asymptotic properties

In this section, we will establish the asymptotic properties of the proposed parameter estimators in the

setting where event categories are missing at random. Let ġ(x) = dg(x)/dx and ḣ(x) = dh(x)/dx. The

following regularity conditions are assumed to hold for i = 1, . . . , n and k = 1, . . . ,K.

(C1) {Nik(·), Yik(·), Zik(·)}Kk=1 are independent and identically distributed for i = 1, . . . , n.

(C2) P (Cik � τ) > 0, and Nik(τ) < M < ∞ almost surely.

(C3) Zik(t) and Vik(t) are almost surely of bounded variation on [0, τ ].

(C4) g is nonnegative and h(γTXik(t)) is locally bounded away from 0 for γ in a small neighborhood

of γ0; g and h are twice continuously differentiable.

(C5) Matrices Ω(η0) and A = A(θ0) are nonsingular, where

Ω(η) = E

{ K∑
k=1

∫ τ

0

V1k(t)π1k(t; η)

{
V1k(t)−

K∑
l=1

V1l(t)π1l(t; η)

}T

ξ1(t)dN1.(t)

}
,

A(θ) = E

{ K∑
k=1

∫ τ

0

Y1k(t){Z1k(t)− z̄k(t, γ)}
[

ġ(βTW1k(t))W1k(t)dt

ḣ(γTX1k(t))X1k(t)dμ0k(t)

]T}
,

and z̄k(t, γ) is the limit of Z̄k(t, γ).

The asymptotic properties of θ̂ are summarized in the following theorem with the proof outlined

in Appendix.

Theorem 1. Under the regularity conditions (C1)–(C5), θ̂ is strongly consistent to θ0, and n1/2(θ̂−θ0)

is asymptotically normal with mean zero and covariance matrix A−1Σ(A−1)T, where

Σ = E

[( K∑
k=1

Φik(θ0, η0)

)⊗2]
,

Φik(θ, η) =

∫ τ

0

{Zik(t)− z̄k(t, γ)}dMik(t, θ, η) + Ψk(γ, η)Ω(η)
−1

K∑
l=1

Γil(η),

Γik(η) =

∫ τ

0

Vik(t){δik(t)− πik(t, η)}ξi(t)dNi.(t),
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Ψ̂k(γ, η) = n−1
n∑

i=1

∫ τ

0

{Zik(t)− Z̄k(t, γ)}
{
Vik(t)−

K∑
l=1

Vil(t)πil(t, η)

}T

πik(t, η)dN
c
i.(t),

Ψk(γ, η) is limit of Ψ̂k(γ, η) and a⊗2 = aaT for any vector a.

The covariance matrix A−1Σ(A−1)T can be consistently estimated by Â−1Σ̂(Â−1)T, where Σ̂ =

n−1
∑n

i=1(
∑K

k=1 Φ̂ik(θ̂, η̂))
⊗2,

Â = n−1
n∑

i=1

K∑
k=1

∫ τ

0

Yik(t){Zik(t)− Z̄k(t, γ̂)}
[

ġ(β̂TWik(t))Wik(t)dt

ḣ(γ̂TXik(t))Xik(t)dμ̂0k(t)

]T

,

Φ̂ik(θ, η) =

∫ τ

0

{Zik(t)− Z̄k(t, γ)}dM̂ik(t, θ, η) + Ψ̂k(γ, η)Ω̂(η)
−1

K∑
l=1

Γil(η),

Ω̂(η) = n−1
n∑

i=1

K∑
k=1

∫ τ

0

Vik(t)πik(t, η)

{
Vik(t)−

K∑
l=1

Vil(t)πil(t, η)

}T

ξi(t)dNi.(t),

and dM̂ik(t, θ, η) = ξi(t)dNik(t) + πik(t, η)dN
c
i.(t)− Yik(t){g(βTWik(t))dt+ h(γTXik(t))dμ̂0k(t, θ, η)}.

Define

S0
k(t, γ) = n−1

n∑
i=1

Yik(t)h(γ
TXik(t)), SW

k (t, β) = n−1
n∑

i=1

Yik(t)ġ(β
TWik(t))Wik(t),

SX
k (t, γ) = n−1

n∑
i=1

Yik(t)ḣ(γ
TXik(t))Xik(t),

W̄k(t, θ) = SW
k (t, β)/S0

k(t, γ), X̄k(t, γ) = SX
k (t, γ)/S0

k(t, γ),

and

Dk(t, θ) = −
[ ∫ t

0 w̄k(s, θ)ds∫ t

0
x̄k(s, γ)dμ0k(s)

]
,

where s0k(t, γ), s
w
k (t, β) and sxk(t, γ) are the limits of S0

k(t, γ), S
W
k (t, β) and SX

k (t, γ), respectively; w̄k(t, θ)

= swk (t, β)/s
0
k(t, γ) and x̄k(t, γ) = sxk(t, γ)/s

0
k(t, γ). The limiting results for μ̂0k(t) are given in the next

theorem.

Theorem 2. μ̂0k(t) converges almost surely to μ0k(t) uniformly in t ∈ [0, τ ]. Furthermore, n1/2{μ̂0k(t)

− μ0k(t)} converges weakly to a zero-mean Gaussian process with covariance function at (s, t) equal to

ωk(s, t) = E[φik(s, θ0, η0)φik(t, θ0, η0)], where

φik(t, θ0, η0) = Dk(t, θ0)
TA−1

K∑
l=1

Φil(θ0, η0) +Bk(t, γ0, η0)Ω(η0)
−1

K∑
l=1

Γil(η0)

+

∫ t

0

s0k(s, γ0)
−1dMik(s, θ0, η0),

B̂k(t, γ, η) = n−1
n∑

i=1

∫ t

0

S0
k(s, γ)

−1πik(s, η)

{
Vik(s)−

K∑
l=1

Vil(t)πil(s, η)

}T

dN c
i.(s),

and Bk(t, γ, η) is the limit of B̂k(t, γ, η).

The covariance function ωk(s, t) can be consistently estimated by ω̂k(s, t) = n−1
∑n

i=1 φ̂ik(s)φ̂ik(t),

where

φ̂ik(t) = D̂k(t, θ̂)
TÂ−1

K∑
l=1

Φ̂il(θ̂, η̂) + B̂k(t, γ̂, η̂)Ω̂(η̂)
−1

K∑
l=1

Γil(η̂) +

∫ t

0

S0
k(s, γ̂)

−1dM̂ik(s, θ̂, η̂)

and

D̂k(t, θ̂) = −
[ ∫ t

0
W̄k(s, θ̂)ds∫ t

0 X̄k(s, γ̂)dμ̂0k(s)

]
.
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4 Model checking techniques

To assess the adequacy of (1), we propose a goodness-of-fit test statistic. Let Mik(t) = Mik(t, θ0, η0) and

M̂ik(t) = M̂ik(t, θ̂, η̂). Following Lin et al. [8], we consider the following cumulative sums of residuals:

Lk(t, z) = n−1/2
n∑

i=1

∫ t

0

I(Zik(u) � z)dM̂ik(u),

where the event I(Zik(u) � z) means that each component of Zik(u) is bounded by the corresponding

component of z. For the null distribution of Lk(t, z), we have the following theorem with the proof given

in Appendix.

Theorem 3. Under the regularity conditions listed in Section 3, the null distribution of Lk(t, z)

converges weakly to a zero-mean Gaussian process with covariance function at (t1, z1) and (t2, z2) equal

to E[σik(t1, z1)σik(t2, z2)], where

σik(t, z) =

∫ t

0

[
I(Zik(u) � z)− Gk(u, z)

s0k(u, γ0)

]
dMik(u) + {Ek(t, z)− Fk(t, z)}Ω(η0)−1

×
K∑
l=1

Γil(η0)− {Hk(t, z) + Lk(t, z)}TA−1
K∑
l=1

Φil(θ0, η0),

Ek(t, z) = E

{∫ t

0

I(Zik(u) � z)

[
Vik(u)−

K∑
l=1

πil(u, η0)Vil(u)

]T
πik(u, η0)dN

c
i.(u)

}
,

L1k(t, z) = E{Yik(t)I(Zik(t) � z)ġ(βT
0 Wik(t))Wik(t)},

L2k(t, z) = E{Yik(t)I(Zik(t) � z)ḣ(γT
0 Xik(t))Xik(t)},

Gk(t, z) = E{Yik(t)h(γ
T
0 Xik(t))I(Zik(t) � z)},

Lk(t, z) =

[ ∫ t

0 L1k(u, z)du∫ t

0
L2k(u, z)dμ0k(u)

]
,

and

Hk(t, z) =

∫ t

0

Gk(u, z)dDk(u, θ0), Fk(t, z) =

∫ t

0

Gk(u, z)dBk(u, γ0, η0).

It follows from Theorem 3 that the null distribution of Lk(t, z) can be approximated by the zero-mean

Gaussian process L̃k(t, z) = n−1/2
∑n

i=1 Υ̂ik(t, z), where

Υ̂ik(t, z) =

∫ t

0

[
I(Zik(u) � z)− Ĝk(u, z)

S0
k(u, γ̂)

]
dM̂ik(u) + {Êk(t, z)− F̂k(t, z)}Ω̂(η̂)−1

×
K∑
l=1

Γil(η̂)− {Ĥk(t, z) + L̂k(t, z)}TÂ−1
K∑
l=1

Φ̂il(θ̂, η̂),

Êk(t, z) = n−1
n∑

i=1

∫ t

0

I(Zik(u) � z)

[
Vik(u)−

K∑
l=1

πil(u, η̂)Vil(u)

]T
πik(u, η̂)dN

c
i.(u),

L̂1k(t, z) = n−1
n∑

i=1

Yik(t)I(Zik(t) � z)ġ(β̂TWik(t))Wik(t),

L̂2k(t, z) = n−1
n∑

i=1

Yik(t)I(Zik(t) � z)ḣ(γ̂TXik(t))Xik(t),

Ĝk(t, z) = n−1
n∑

i=1

Yik(t)h(γ̂
TXik(t))I(Zik(t) � z),
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L̂k(t, z) =

[ ∫ t

0
L̂1k(u, z)du∫ t

0 L̂2k(u, z)dμ̂0k(u)

]
,

and

Ĥk(t, z) =

∫ t

0

Ĝk(u, z)dD̂k(u, θ̂, η̂), F̂k(t, z) =

∫ t

0

Ĝk(u, z)dB̂k(u, γ̂, η̂).

It is difficult to estimate the asymptotic covariance function of Lk(t, z) analytically because the limiting

process of Lk(t, z) does not have an independent increment structure. To this end, we can appeal

to the resampling approach [8, 9]. Let {G1, . . . , Gn} be independent standard normal variables which

are independent of the observed data. It can be showed that the null distribution of Lk(t, z) can be

approximated by the conditional distribution of L̂k(t, z), where

L̂k(t, z) = n−1/2
n∑

i=1

Υ̂ik(t, z)Gi. (12)

Thus, we can obtain a large number of realizations of L̂k(t, z) by repeatedly generating the standard

normal random sample {G1, . . . , Gn} while fixing the observed data. To check the adequacy of (1), we

could plot Lk(t, z) along with a few realizations of L̂k(t, z) to see if there exist some unusual patterns.

Since Lk(t, z) is expected to fluctuate randomly around 0 under the assumed model, a formal lack-of-fit

test can be constructed based on the supremum test statistic sup0�t�τ,z |Lk(t, z)|, with which the p-value

can be obtained by comparing the observed value of sup0�t�τ,z |Lk(t, z)| to a large number of realizations

from sup0�t�τ,z |L̂k(t, z)|.

5 Simulation studies

In this section, simulation studies were conducted to examine the finite-sample properties of the proposed

estimators. We considered the setting where there existK = 2 event categories. Two covariatesWi andXi

are generated from Bernoulli distribution with success probability 0.5 and uniform distribution on (0, 1),

respectively. To induce positive correlation among the within-subject events, a frailty variable Ri was

introduced, following a gamma distribution with mean E[Ri] = 1 and variances σ2 = 0, 0.25, 0.5. To

avoid yielding too many recurrent events for one subject, we set R∗
i = min(Ri, 1). The kth recurrent

event times for subject i were generated from a Poisson process with intensity function

λik(t) = R∗
i {βkWi + exp(γkXi)λ0k},

where (β1, β2, γ1, γ2) = (0.5, 0.3, 0.5, 1), λ01 = 0.5 and λ02 = 0.625. The censoring times Cik = Ci were

generated from U(0, τ) with τ = 5. Under the above settings, the average number of observed events per

subject was approximately 2 for k = 1 and that was approximately 3 for k = 2 . The event categories

were set to missing with probability

P{ξi(t) = 0 | dNi.(t) = 1, Z̃i(t)} =
exp(αTZ̃i(t))

1 + exp(αTZ̃i(t))
,

where Z̃i(t) = (1, t, Ni.(t−),Wi, Xi)
T with Ni.(t−) counting the total number of events before t for

subject i. In this study, we set α = (α0, αt, αNZ)
T, with α0 = −1 , αt = −0.2 and αNZ = (αN , αW , αX)

= (0, 0, 0), (0.1, 0.2, 0.3) or (0.1, 0.5, 1). The percentage of events with missing categories ranged from 21%

to 48%.

For comparison, three methods were employed to estimate regression parameters: (i) the full-data (FF)

analysis, which is based on the data with all event types being known; (ii) the complete-case (CC) method,

which excludes the events with missing types; (iii) the proposed weighted estimating equations (WEE)

method. The FF analysis was conducted before setting event types to missing. For the WEE method,

the event category probability was fitted by the following logistic model: log{πi2(t,η0)
πi1(t,η0)

} = ηT0 Vi2(t), where

Vi2(t) = [1, t, Ni.(t−),Wi, Xi]
T. The results presented below are based on 500 replications with sample

sizes n = 100 and 200.
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Table 1 Comparison results on estimation of β1 = 0.5

Bias MSE

n αNZ σ2 FF WEE WEE∗ CC FF WEE WEE∗ CC

100 (0,0,0) 0 0.004 0.004 −0.008 0.004 0.015 0.018 0.017 0.019

0.250 0.004 0.004 0.003 0.004 0.015 0.017 0.016 0.018

0.500 −0.007 −0.008 −0.019 −0.009 0.014 0.017 0.017 0.018

(0.1,0.2,0.3) 0 0.004 0.002 −0.005 −0.088 0.015 0.020 0.017 0.029

0.250 0.004 0.005 −0.004 −0.086 0.015 0.018 0.018 0.027

0.500 −0.007 −0.008 −0.017 −0.094 0.014 0.019 0.017 0.029

(0.1,0.5,1) 0 0.004 0.002 −0.010 −0.229 0.015 0.023 0.020 0.081

0.250 0.004 0.007 −0.005 −0.223 0.015 0.021 0.019 0.074

0.500 −0.007 −0.006 −0.016 −0.223 0.014 0.022 0.018 0.075

200 (0,0,0) 0 −0.003 −0.002 −0.010 −0.002 0.007 0.009 0.008 0.010

0.250 0.003 0.002 −0.002 0.002 0.007 0.008 0.008 0.009

0.500 −0.019 −0.016 −0.026 −0.015 0.008 0.010 0.010 0.010

(0.1,0.2,0.3) 0 −0.003 −0.004 −0.011 −0.092 0.007 0.009 0.008 0.020

0.250 0.003 0.002 −0.008 −0.088 0.007 0.009 0.008 0.018

0.500 −0.019 −0.016 −0.024 −0.101 0.009 0.011 0.009 0.021

(0.1,0.5,1) 0 −0.003 −0.005 −0.011 −0.232 0.007 0.012 0.009 0.069

0.250 0.003 0.001 −0.011 −0.229 0.007 0.011 0.008 0.065

0.500 −0.019 −0.017 −0.015 −0.237 0.009 0.014 0.009 0.071

All the simulation results are summarized in Tables 1–4. In these tables, Bias is the sample mean of

the estimate minus the true value; ESD is the empirical standard deviation of the estimate; ASE is the

average estimated standard error; MSE is the sample mean of the squared errors between the estimate

and the true value; and CP is the 95% empirical coverage probability based on the normal approximation.

The estimation results of β1 = 0.5 and γ1 = 0.5 are summarized in Tables 1 and 2, similar results are

obtained (not reported here) for β2 and γ2. Both Tables 1 and 2 show that the CC estimators are nearly

unbiased only when αNZ = (0, 0, 0) (i.e., the event types are missing completely at random). However,

the CC estimators have large biases when αNZ is not equal to zero and the bias of the CC estimator

increases as the correlation between the missingness probability and covariates increases. Both the FF

and WEE estimators are essentially unbiased in all settings. Furthermore, the WEE estimators are more

efficient than the CC estimators, and are only slightly less efficient than the FF estimators. In addition,

as pointed out by the associate editor, we try to fit the event category probability by the probit model

for robustness check, and the corresponding simulation results are also presented in the WEE∗ columns

of Tables 1 and 2. It can be seen that although the probit model approach gives unbiased estimates for

β1, it leads to biased estimates for γ1 unless the missing mechanism is MCAR (αNZ = 0); while the

proposed logistic model approach is valid under MAR and is robust.

Tables 3 and 4 give the accuracy of asymptotic approximation to the distributions of the regression

parameter estimators. It can be seen that there is a good agreement between the average estimated

standard errors and empirical standard deviations, and the 95% empirical coverage probabilities are

reasonable. The performance of the WEE estimators becomes better when the sample size increases

from 100 to 200. We also considered other setups and the results were similar to those given above.

6 An application

Now we apply the proposed method to a set of bivariate recurrent event data from a platelet transfu-

sion reaction study on hematology/oncology patients. In this study, all patients may experience different

febrile nonhemolytic transfusion reactions (FNHTRs) defined as the presence of fever, chills, rigors, hives,



1172 Ye P et al. Sci China Math June 2015 Vol. 58 No. 6

Table 2 Comparison results on estimation of γ1 = 0.5

Bias MSE

n αNZ σ2 FF WEE WEE∗ CC FF WEE WEE∗ CC

100 (0,0,0) 0 0.027 0.018 0.040 0.023 0.120 0.136 0.120 0.160

0.250 0.017 0.003 0.016 0.007 0.133 0.152 0.133 0.164

0.500 −0.014 −0.017 0.034 −0.015 0.131 0.152 0.135 0.168

(0.1,0.2,0.3) 0 0.027 0.019 0.077 −0.253 0.120 0.159 0.131 0.212

0.250 0.017 −0.001 0.086 −0.255 0.133 0.164 0.133 0.211

0.500 −0.014 −0.034 0.051 −0.292 0.131 0.168 0.150 0.234

(0.1,0.5,1) 0 0.027 0.019 0.078 −0.713 0.120 0.195 0.142 0.669

0.250 0.017 −0.001 0.122 −0.716 0.133 0.191 0.158 0.666

0.500 −0.014 −0.035 0.065 −0.758 0.131 0.206 0.136 0.731

200 (0,0,0) 0 −0.005 −0.003 0.027 −0.006 0.060 0.067 0.060 0.072

0.250 −0.004 0.001 0.015 0.000 0.060 0.067 0.064 0.074

0.500 0.003 0.003 0.025 0.008 0.064 0.072 0.064 0.081

(0.1,0.2,0.3) 0 −0.005 −0.001 0.058 −0.264 0.060 0.073 0.063 0.137

0.250 −0.004 −0.007 0.071 −0.262 0.060 0.074 0.066 0.142

0.500 0.003 0.006 0.075 −0.251 0.064 0.078 0.073 0.135

(0.1,0.5,1) 0 −0.005 0.001 0.094 −0.719 0.060 0.090 0.074 0.587

0.250 −0.004 0.002 0.104 −0.712 0.060 0.086 0.073 0.583

0.500 0.003 0.008 0.095 −0.712 0.064 0.093 0.080 0.580

Table 3 Simulation results for the accuracy of asymptotic approximation to the distributions of

estimators for β1 and β2 using the WEE method

β1 β2

n αNZ σ2 ASE ESD CP ASE ESD CP

100 (0,0,0) 0 0.129 0.133 0.940 0.147 0.150 0.948

0.250 0.128 0.129 0.944 0.146 0.147 0.954

0.500 0.129 0.129 0.948 0.149 0.152 0.946

(0.1,0.2,0.3) 0 0.137 0.142 0.942 0.154 0.160 0.948

0.250 0.135 0.135 0.944 0.153 0.158 0.940

0.500 0.137 0.136 0.956 0.156 0.161 0.946

(0.1,0.5,1) 0 0.148 0.152 0.938 0.165 0.169 0.948

0.250 0.148 0.145 0.952 0.164 0.167 0.932

0.500 0.148 0.149 0.948 0.166 0.173 0.942

200 (0,0,0) 0 0.091 0.092 0.964 0.104 0.106 0.946

0.250 0.091 0.091 0.940 0.104 0.112 0.920

0.500 0.091 0.096 0.930 0.106 0.103 0.944

(0.1,0.2,0.3) 0 0.096 0.097 0.946 0.109 0.109 0.948

0.250 0.097 0.096 0.952 0.109 0.118 0.920

0.500 0.097 0.104 0.940 0.111 0.110 0.956

(0.1,0.5,1) 0 0.105 0.108 0.940 0.117 0.116 0.956

0.250 0.106 0.105 0.946 0.117 0.130 0.914

0.500 0.105 0.116 0.914 0.118 0.123 0.946

and other recorded symptoms developed within 4–6 hours post transfusion. The data were collected

at five university teaching hospitals in Toronto coded A-E over three consecutive summers from 1996–
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Table 4 Simulation results for the accuracy of asymptotic approximation to the distributions of

estimators for γ1 and γ2 using the WEE method

γ1 γ2

n αNZ σ2 ASE ESD CP ASE ESD CP

100 (0,0,0) 0 0.355 0.368 0.952 0.254 0.260 0.936

0.250 0.354 0.390 0.920 0.253 0.262 0.954

0.500 0.367 0.390 0.942 0.266 0.272 0.940

(0.1,0.2,0.3) 0 0.376 0.398 0.944 0.267 0.276 0.946

0.250 0.377 0.405 0.926 0.265 0.276 0.946

0.500 0.390 0.408 0.950 0.278 0.283 0.930

(0.1,0.5,1) 0 0.411 0.441 0.934 0.285 0.299 0.936

0.250 0.414 0.437 0.944 0.283 0.298 0.946

0.500 0.426 0.453 0.946 0.295 0.309 0.942

200 (0,0,0) 0 0.246 0.258 0.944 0.179 0.175 0.948

0.250 0.249 0.259 0.956 0.178 0.162 0.964

0.500 0.257 0.269 0.942 0.189 0.191 0.954

(0.1,0.2,0.3) 0 0.261 0.271 0.938 0.187 0.186 0.936

0.250 0.264 0.272 0.948 0.186 0.170 0.970

0.500 0.272 0.280 0.948 0.197 0.198 0.962

(0.1,0.5,1) 0 0.285 0.300 0.948 0.200 0.200 0.940

0.250 0.288 0.293 0.944 0.200 0.188 0.968

0.500 0.297 0.305 0.954 0.209 0.212 0.948

1998 [15]. We considered a subset of the data which included 254 patients who were followed up during

the 1997 summer and a total of 1395 transfusions were recorded. The observed number of transfusions

per patient ranges from 1 (77 patients) to 50 (1 patient). Since the occurrence of FNHTRs is temporary,

it is reasonable to treat a reaction as a recurrent event. There are 1201 transfusions eligible for our

analysis and 314 transfusion reactions being observed. The mean number of reactions per patient is 1.3

(sd=1.8) and the median follow-up time is 8 days. In the following analysis, for simplicity, we will classify

all reactions into two types: The reaction accompanied with fever (denoted by Type I reaction) and the

reaction with no fever (denoted by Type II reaction). Based on the above classification, among the 314

observed transfusion reactions, there were 181 Type I reactions, 115 Type II reactions, and 18 reactions

with missing types. Thus we get bivariate recurrent event data in the presence of missing event types.

Following Zhao et al. [27], we letN∗
i1(t) andN∗

i2(t) denote the numbers of Types I and II reactions which

had occurred over interval [0, t] for subject i, respectively. Also we define the covariateWi as the gender of

patient i (1 if female, 0 if male), andXi as the age of patient i when entering the study (1 if age in (0, 27], 2

if age in (27, 42], 3 if age in (42, 55], 4 if age greater than 55). Let τ be the largest follow-up time (164 days).

Our goal is to estimate the effects of gender and age on the risk of the two types of transfusion reactions.

In the interest of flexibility, both covariates are assumed to be type-specific. We propose the following

four models to fit the data: The additive gender effect and multiplicative age effect model (denoted by

AMM1) E{dN∗
ik(t) | Wi, Xi} = βkWidt + exp(γkXi)dμ0k(t); the additive age effect and multiplicative

gender effect model (denoted by AMM2) E{dN∗
ik(t) | Wi, Xi} = γkXidt+exp(βkWi)dμ0k(t); the additive

rates model (denoted by AM) E{dN∗
ik(t) | Wi, Xi} = (βkWi + γkXi)dt + dμ0k(t); the multiplicative

rates model (denoted by MM) E{dN∗
ik(t) | Wi, Xi} = exp(βkWi + γkXi)dμ0k(t), for k = 1, 2. The event

category probability was modeled by the following logistic regression πik(t; η0) =
exp{ηT

0 Vik}∑
2
l=1 exp{ηT

0 Vil} , k = 1, 2,

where Vi2 = (1,Wi, Xi)
T and Vi1 = 0.

Table 5 gives the estimates of covariate effects with the corresponding standard error estimates in paren-

theses using the above four models. All results show that neither FNHTR rates seems to be correlated

with the gender of the patients, and older patients may have higher risk of Type II platelet transfusion
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Table 5 Analysis results for the FNHTRs data

Type I Type II

Model β̂1 γ̂1 β̂2 γ̂2 AIC BIC

AMM1 0.0025 (0.0097) 0.0548 (0.0809) 0.0003 (0.0072) 0.2354 (0.1009) 0.7837 0.8413

AMM2 0.0531 (0.2252) 0.0028 (0.0040) −0.0265 (0.5270) 0.0075 (0.0034) 0.7835 0.8412

AM 0.0023 (0.0097) 0.0027 (0.0040) −0.0004 (0.0072) 0.0075 (0.0034) 0.7837 0.8413

MM 0.0505 (0.1956) 0.0544 (0.0791) 0.0103 (0.2277) 0.2345 (0.0976) 0.7839 0.8415

Note. Type I denotes the reaction with fever. Type II denotes the reaction with no fever.

reactions. These results were similar to those obtained by Zhao et al. [27]. In order to examine which

model fits the data best, we employ the Akaike’s information criterion (AIC) and Bayesian information

criterion (BIC) to evaluate the performance of the four models, where

AIC = 2(p+ q)/n+ log(RSS/n), BIC = (p+ q) log(n)/n+ log(RSS/n),

and RSS=
∑n

i=1

∑2
k=1 r

2
ik with rik being the residual of event Type k for subject i. The analysis results

are also presented in Table 5. Under the measures of AIC and BIC, model AMM2 is the best among

the four models, which indicates that the effect of age on the recurrence of FNHTRs is more likely to be

additive while the effect of gender is more likely to be multiplicative.

Finally, we apply the model-checking technique developed in Section 4 to assess the adequacy of model

AMM2 for the data. We calculated the statistics Lk(t, z) (k = 1, 2), and obtained

sup
0�t�τ,z

|L1(t, z)| = 0.7628 and sup
0�t�τ,z

|L2(t, z)| = 0.4213

with p-values of 0.198 and 0.672, respectively, based on 500 realizations of the corresponding statistics

sup0�t�τ,z |L̂1(t, z)| and sup0�t�τ,z |L̂2(t, z)|. These results suggest that model AMM2 fits the data well.

7 Concluding remarks

In this paper, we proposed an additive-multiplicative rates model for multivariate recurrent event data

with missing event categories under the MAR assumption. A weighted estimating equation approach

was developed for parameter estimation, where weights are equal to the corresponding category-specific

probabilities when event categories are missing. The resulting estimators were shown to be consistent

and asymptotically normal. Simulation results indicated that the proposed methods perform well in finite

samples, and a real-data example was provided.

For the additive-multiplicative rates model, a direct classification between additive and multiplicative

effects can be done by hypothesis testing. In many applications, however, one may face a problem of the

selection of Wik(t) and Xik(t). In general, based on some priori knowledge, the covariates anticipated

to have a large impact on rate ratios should be added to the multiplicative part, and those which could

have a large impact on absolute rates should be incorporated into the additive part. When there was

little information on the underlying recurrent event processes, it would be desirable to develop some

data-driven methods for the classification of covariates. For example, if covariates are of small dimension,

we can fit all possible models based on different combinations of covariates, and choose the best fitted

model based on some model selection criterion.

It would be worthwhile for us to analyze multivariate recurrent event data with missing event categories

under other competing models, such as the semiparametric transformation model [26]. In addition, Lin

et al. [10] developed fully nonparametric estimators of the event mean function in which the missingness

mechanism is completely unspecified. We will consider similar nonparametric methods for regression

analysis in the further research.
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Appendix

Proof of Theorem 1. Firstly, we prove the strong consistency. Based on (11), we have U(θ) =∑n
i=1

∑K
k=1

∫ τ

0
{Zik(s, θ) − Z̄k(s, γ)}dMik(s, θ, η̂). Let z̄

(1)
k (t, γ) = ∂z̄k(t, γ)/∂γ

T and Â1(θ) = −n−1

∂U(θ)/∂θT, where

Â1(θ) = n−1
n∑

i=1

K∑
k=1

∫ τ

0

Yik(s)[Zik(s)− Z̄k(s, γ)]

× [ġ(βTWik(s))Wik(s)
Tds, ḣ(γTXik(s))Xik(s)

Tdμ0k(s)]

+ n−1
n∑

i=1

K∑
k=1

∫ τ

0

Z̄
(1)
k (s, γ)dMik(s, θ, η̂) (A.1)

with Z̄
(1)
k (t, γ) = ∂Z̄k(t, γ)/∂γ

T. Since any function of bounded variation can be written as difference

of two increasing functions, the processes Z̄k(t, γ) and Z̄
(1)
k (t, γ) can be written as sums and products

of monotone functions in t and γ. Thus they are manageable [17, p. 38]. Using the uniform strong law

of large numbers [17, p. 41], it follows that Z̄k(t, γ) and Z̄
(1)
k (t, γ) converge almost surely to z̄k(t, γ) and

z̄
(1)
k (t, γ) uniformly in t ∈ [0, τ ] and γ. Thus, Â1(θ) converges almost surely to a nonrandom function A1(θ)

uniformly in θ ∈ Θ, and it is obvious that A1(θ0) = A, where A is given in (C5). It follows from the

strong law of large numbers and the consistency of η̂ that almost surely,

n−1U(θ0) → E

[ K∑
k=1

∫ τ

0

{Zik(s)− z̄k(s, γ0)}dMik(s, θ0, η0)

]
= 0. (A.2)

The uniform convergence of Â1(θ), the continuity of A1(θ), and the nonsingularity of A imply that there

exists a small neighborhood of θ0 inside of which the eigenvalues of Â1(θ) are bounded away from zero

for all large n. Thus, it follows from the inverse function theorem [18, p. 221] that there is a small

neighborhood of θ0, inside of which there exists a unique solution θ̂ to U(θ) = 0 for every sufficiently

large n. Since the radius of the neighborhood can be taken arbitrarily small, θ̂ is strongly consistent.

Now we show the asymptotic normality of θ̂. Write

n−1/2U(θ0) =

K∑
k=1

2∑
l=1

Ukl, (A.3)

where

Uk1 = n−1/2
n∑

i=1

∫ τ

0

[Zik(s)− Z̄k(s, γ0)]dMik(s, θ0, η0),

Uk2 = n−1/2
n∑

i=1

∫ τ

0

[Zik(s)− Z̄k(s, γ0)][dMik(s, θ0, η̂)− dMik(s, θ0, η0)].

Using the functional central limit theorem [17, p. 53], we have

Uk1 = n−1/2
n∑

i=1

∫ τ

0

[Zik(s)− z̄k(s, γ0)]dMik(s, θ0, η0) + op(1). (A.4)

In view of (7), by the Taylor expansion and some straightforward calculations, we have

Uk2 = n−1/2
n∑

i=1

∫ τ

0

[Zik(s)− Z̄k(s, γ0)][πik(s, η̂)− πik(s, η0)]dN
c
i.(s),
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= n−1/2
n∑

i=1

Ψk(γ0, η0)Ω(η0)
−1

K∑
k=1

Γik(η0) + op(1), (A.5)

where Ψk(γ, η), Ω(η) and Γik(η) are defined in Theorem 1. It follows from (A.3)–(A.5) that

n−1/2U(θ0) = n−1/2
n∑

i=1

K∑
k=1

Φik(θ0, η0) + op(1), (A.6)

where Φik(θ, η) =
∫ τ

0 [Zik(s) − z̄k(s, γ)]dMik(s, θ, η) + Ψk(γ, η)Ω(η)
−1

∑K
l=1 Γil(η). Using the Taylor ex-

pansion and Â1(θ0) → A almost surely, we have

n1/2(θ̂ − θ0) = A−1n−1/2
n∑

i=1

K∑
k=1

Φik(θ0, η0) + op(1). (A.7)

By the multivariate central limit theorem, n1/2(θ̂ − θ0) is asymptotically normal with mean zero and

covariance matrix A−1Σ(A−1)T, where Σ is defined in Theorem 1.

Proof of Theorem 2. First write

μ̂0k(t)− μ0k(t) = {μ̂0k(t)− μ̂0k(t; θ0, η̂)}+ {μ̂0k(t; θ0, η̂)− μ̂0k(t; θ0, η0)}
+ {μ̂0k(t; θ0, η0)− μ0k(t)}. (A.8)

By the Taylor expansion, we get

μ̂0k(t)− μ̂0k(t; θ0, η̂) = D̂k(t, θ
∗)T(θ̂ − θ0), (A.9)

where θ∗ lies between θ0 and θ̂, and D̂k(t, θ) is given in Theorem 2. In a similar manner, we have

μ̂0k(t; θ0, η̂)− μ̂0k(t; θ0, η0) = B̂k(t, γ0, η
∗)(η̂ − η0), (A.10)

where η∗ lies between η̂ and η0, and B̂k(t, γ, η) is defined in Theorem 2. Under the conditions (C1)–(C4),

D̂k(t, θ
∗) and B̂k(t, γ0, η

∗) are of bounded variation asymptotically uniformly in t ∈ [0, τ ]. Using the

strong consistency of θ̂ and η̂ , we get that both μ̂0k(t) − μ̂0k(t; θ0, η̂) and μ̂0k(t; θ0, η̂) − μ̂0k(t; θ0, η0)

converge almost surely to 0 uniformly in t ∈ [0, τ ].

For the third term on the right-hand side of (A.8), after some algebraic manipulations, we obtain

μ̂0k(t; θ0, η0)− μ0k(t) = n−1
n∑

i=1

∫ t

0

dMik(s, θ0, η0)

S0
k(s, γ0)

. (A.11)

By the uniform strong law of large numbers and [8, Lemma 1], it can be seen that μ̂0k(t; θ0, η0)− μ0k(t)

converges almost surely to 0 uniformly in t ∈ [0, τ ]. Thus, it follows from (A.8)–(A.11) that μ̂0k(t)

converges almost surely to μ0k(t) uniformly in t ∈ [0, τ ].

Now we prove the weak convergence of μ̂0k(t). Based on (A.7) and (A.9), we get

n1/2{μ̂0k(t)− μ̂0k(t; θ0, η̂)} = Dk(t, θ0)
TA−1n−1/2

n∑
i=1

K∑
k=1

Φik(θ0, η0) + op(1), (A.12)

where Dk(t, θ) is the limit of D̂k(t, θ). It follows from (A.10) and (7) that

n1/2{μ̂0k(t; θ0, η̂)− μ̂0k(t; θ0, η0)} = Bk(t, γ0, η0)Ω(η0)
−1n−1/2

n∑
i=1

K∑
l=1

Γil(η0) + op(1), (A.13)

uniformly in t ∈ [0, τ ], where Bk(t, γ, η) is the limit of B̂k(t, γ, η). In addition, by (A.11), we have that

uniformly in t ∈ [0, τ ],

n1/2{μ̂0k(t; θ0, η0)− μ0k(t)} = n−1/2
n∑

i=1

∫ t

0

dMik(s, θ0, η0)

s0k(s, γ0)
+ op(1), (A.14)
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where s0k(s, γ0) is the limit of S0
k(s, γ0). Therefore, it follows from (A.8) and (A.12)–(A.14) that

n1/2{μ̂0k(t)− μ0k(t)} = n−1/2
n∑

i=1

φik(t, θ0, η0) + op(1), (A.15)

uniformly in t ∈ [0, τ ], where φik(t; θ, η) is as defined in Theorem 2. Because φik(t; θ0, η0) are in-

dependent and identically distributed zero-mean random variables for each t, the multivariate central

limit theorem implies that n1/2{μ̂0k(t) − μ0k(t)} converges in finite-dimensional distributions to a zero-

mean Gaussian process. Note that Dk(t, θ0) and Bk(t, γ0, η0) are deterministic functions, and the third

term of φik(t;β0, γ0) can be written as sums of monotone functions of t. Hence, n1/2{μ̂0k(t) − μ0k(t)}
is tight [25, p. 215], and converges weakly to a zero-mean Gaussian process with covariance function

ωk(s, t) = E{φik(s, θ0, η0)φik(t, θ0, η0)} for s, t ∈ [0, τ ]. This completes the proof.

Proof of Theorem 3. Note that

Lk(t, z) = n−1/2
n∑

i=1

∫ t

0

I(Zik(s) � z)dMik(s) +Rk1(t, z) +Rk2(t, z) +Rk3(t, z), (A.16)

where

Rk1(t, z) = n−1/2
n∑

i=1

∫ t

0

I(Zik(s) � z)[πik(s, η̂)− πik(s, η0)]dN
c
i.(s),

Rk2(t, z) = −n−1/2
n∑

i=1

{∫ t

0

I(Zik(s) � z)Yik(s)[g(β̂
TWik(s))ds+ h(γ̂TXik(s))dμ0k(s)

− g(βT
0 Wik(s))ds− h(γT

0 Xik(s))dμ0k(s)]

}
,

and Rk3(t, z) = −n−1/2
∑n

i=1

∫ t

0 I(Zik(s) � z)Yik(s)h(γ̂
TXik(s))d[μ̂0k(s)−μ0k(s)]. Similarly to (A.5), we

obtain

Rk1(t, z) = n−1/2
n∑

i=1

Ek(t, z)Ω(η0)
−1

K∑
l=1

Γil(η0) + op(1), (A.17)

where Ek(t, z) is given in Theorem 3. By the Taylor expansion, uniform strong law of large numbers

and (A.7), we get

Rk2(t, z) = −n−1/2
n∑

i=1

Lk(t, z)
TA−1

K∑
l=1

Φil(θ0, η0) + op(1), (A.18)

where Lk(t, z) is presented in Theorem 3. In addition, by the uniform strong law of large numbers

and (A.15), we have

Rk3(t, z) = −n−1/2
n∑

i=1

{
Hk(t, z)

TA−1
K∑
l=1

Φil(θ0, η0) + Fk(t, z)Ω(η0)
−1

K∑
l=1

Γil(η0)

+

∫ t

0

Gk(s, z)

s0k(s, γ0)
dMik(s)

}
+ op(1), (A.19)

where Gk(t, z), Hk(t, z) and Fk(t, z) are also defined in Theorem 3. Then it follows from (A.16)–(A.19)

that Lk(t, z) = n−1/2
∑n

i=1 σik(t, z) + op(1), where σik(t, z) is defined in Theorem 3. The multivariate

central limit theorem implies that Lk(t, z) converges in finite-dimensional distributions to a zero-mean

Gaussian process. Using the similar argument as the tightness of n1/2{μ̂0k(t)− μ0k(t)}, Lk(t, z) is tight.

Therefore, Lk(t, z) converges weakly to a zero-mean Gaussian process with covariance function at (t1, z1)

and (t2, z2) equal to E{σik(t1, z1)σik(t2, z2)}. By the arguments of Lin et al. [8], the limiting Gaussian

process can be approximated by the zero-mean Gaussian process L̂k(t, z) given in (12).


