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1. INTRODUCTION

The general filtering problem can be described as follows. The signal or
system process �Xt� 1 ≤ t ≤ T� is unobservable. Information about �Xt�

is obtained by observing another process Y , which is a function of X
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corrupted by noise. The classic model for Y is

Yt =
∫ t

0
h�Xs�ds + Bt� 0 ≤ t ≤ T (1)

where �Bt� 0 ≤ t ≤ T� is assumed to be a Brownian motion (BM) and
h is a measurable function. The observation �-field � Y

t = ��Ys � 0 ≤ s ≤
t� contains all the available information about Xt. The primary aim of
filtering theory is to get an estimate of Xt based on the information
� Y

t . This is given by the conditional distribution �t, or, equivalently, the
conditional expectation E�f�Xt��� Y

t � for a rich enough class of functions
f . This estimate also minimizes the mean square error and, hence � is
called the optimal filter.

Recently, the filtering problem for systems governed by fractional
Brownian motions (FBM) has been studied by many authors. Kleptsyna
et al. [11] consider the case that the signal process is driven by a FBM
while the observation noise is still the usual BM. Kleptsyna et al.
[10, 13], Kleptsyna and Le Breton [12], and Le Breton [16] studied the
linear filtering problem with FBM as observation noise.

Nonlinear filtering problem with FBM observation noise has been
studied by Coutin and Decreusefond [4], Gawarecki and Mandrekar
[6], and Amirdjanova [1]. In these papers, the noise is modeled by
a fractional Brownian motion BH with Hurst parameter H (see next
section for definition). Because of the well-known identity in Eq. (5),
the above-mentioned authors modified the observation function to∫ t

0 	H�s� t�h�Xs�ds and their observation model becomes

Yt =
∫ t

0
	H�s� t��h�Xs�ds + dBs�
 (2)

Since
∫
0·h�XS�ds is in the reproducing kernel Hilbert space (RKHS) of

the Brownian motion, Kallianpur-Striebel formula can be applied, and
Zakai equation and Kushner-FKK equation are then derived.

In this paper, we insist on using the original observation function
and consider the following observation model:

Yt =
∫ t

0
h�Xs�ds + BH

s (3)

where h is bounded and BH
s is a FBM with Hurst parameter H > 1

2 .
The signal process Xt is governed by the following stochastic differential
equation

dXt = b�Xt�dt + ��Xt�dWt (4)
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where Wt is a Brownian motion independent of BH . Since the FBM is
of long-term memory, the filtering must also be of long-term memory.
To overcome this difficulty, we shall consider the filtering problem for
the signal process, which is the corresponding path-valued process of the
original signal. Here we want to mention that a Bayes formula, which is
different from Eq. (15) in our paper, has been derived by Mandal and
Mandrekar [17]. Since the terms there are not given explicitly and the
adaptivity was not established, the authors did not develop a filtering
theory out of that formula for the observation model in Eq. (3). Later on,
jointly with Gawarecki, one of the authors studied the filtering problem
in [6] for the model in Eq. (2), since the terms in the Bayes formula of
[17] can be given explicitly in this case.

We now fix some notations. For a Polish space E, we denote the
space of bounded continuous functions on E by Cb�E�. Let the bp-
closure of a set V be the smallest set containing V , which is closed under
bounded pointwise (bp) convergence of sequences. This set is denoted
by bp− closure�V�. Let D��0� T�� E� denote the set of all cadlag (right
continuous with left limits) functions from �0� T� into E. Let ��E� and
�+�E� denote the spaces of probability measures and positive finite
measures on E, respectively.

2. A TRANSFORMATION

In this section, we first recall the definition of the FBM and some of the
basic properties. Then we introduce a transformation which will convert
our model into the classical setup.

Let us fix a complete probability space �
�� � P� on which all
stochastic processes are defined.

Definition 2.1. For a given H ∈ �1/2� 1�, a stochastic process BH =
�BH

t � t ∈ �0� T �� is a fractional Brownian motion with Hurst parameter H
if:

(i) BH
0 = 0;

(ii) BH is a zero-mean Gaussian process with continuous sample paths
and stationary increments; and

(iii) The covariance function is given by

RH�s� t� =
VH

2

(�s�2H + �t�2H − �t − s�2H)
where

VH = Var
(
BH
1

)− −��2− 2H� cos��H�

�H�2H − 1�
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Now, from Theorem 4.5 in [2], we have that

BH
t =

∫ t

0
	H�s� t�dBs (5)

where Bt is a Brownian motion and

	H�s� t� =
s

1
2−H

�
(
H − 1

2

) ∫ t

s
�H− 1

2 ��− s�H− 3
2d�


Further

Bt =
∫ t

0
sH− 1

2d
( ∫ s

0
k�s� ��dBH

�

)
(6)

where

k�s� �� = 1

�
(
H − 1

2

) �s − ��
1
2−H�

1
2−H


Define

Zt =
∫ t

0
sH− 1

2d
( ∫ s

0
k�s� ��dY�

)
(7)

and

St =
∫ t

0
sH− 1

2d
( ∫ s

0
k�s� ��h�X��d�

)

 (8)

Note that Zt is �
Y
t -measurable. On the other hand, from [18], we have

Yt =
∫ t

0
	H�s� t�dZs�

and, hence, � Y
t = � Z

t . So, Zt can be regarded as the observation process.
Then the observation model becomes

Zt = St + Bt (9)

We make the following boundedness assumption throughout this
paper. Condition �BC� � b� � ∈ C1

b��� and h ∈ C2
b���.

Let

�̂ = ��t� xt� � t ≥ 0� x ∈ C��0� T�����

where xt�S� = x�t ∧ s�.
The following theorem, converting the filtering model to a classical

one, is the key step in this paper.
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Theorem 2.2. The observation model is equivalent to

Zt =
∫ t

0
G�s�Xs�ds + Bt (10)

where Xs is the path of X upto time s�G is a measurable map from �̂ to �
given by

G�s�Xs� = h�X0��
(
3
2 −H� 3

2 −H
)
�2− 2H�

�
(
H − 1

2

) s
1
2−H

+ 2− 2H

�
(
H − 1

2

) s 1
2−H

∫ 1

0
�u�1− u��

1
2−H

∫ su

0
Lh�Xr�dr du

+ 1

�
(
H − 1

2

) s 3
2−H

∫ 1

0
�u�1− u��

1
2−HLh�Xsu�udu

+ 2− 2H

�
(
H − 1

2

) s 1
2−H

∫ s

0

∫ 1

r
s

�u�1− u��
1
2−Hdu

× ��h′��Xr�
(
��Xr�

−1dXr −
(
b�−1

)
�Xr�dr

)
− 1

�
(
H − 1

2

)S−1
∫ s

0
r

3
2−H

(
1− r

s

) 1
2−H

× ��h′��Xr�
(
��Xr�

−1dXr −
(
b�−1

)
�Xr�dr

)

 (11)

Proof. Applying Itô’s formula to Eq. (4), we have

h�X�� = h�X0�+
∫ �

0
Lh�Xr�dr +

∫ �

0
��h′��Xr�dWr

where

Lh�x� = 1
2
�2�x�h′′�x�+ b�x�h′�x�


Then, by Eq.(8),

St = S1
t + S2

t + S3
t

where

S1
t =

∫ t

0
sH− 1

2d
( ∫ s

0
k�s� ��h�X0�d�

)

= h�X0�
∫ t

0
sH− 1

2d

( ∫ s

0

1

�
(
H − 1

2

) �s − ��
1
2−H�

1
2−Hd�

)

= h�X0��
(
3
2 −H� 3

2 −H
)
�2− 2H�

�
(
H − 1

2

)(
3
2 −H

) t
3
2−H�
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S2
t =

∫ t

0
SH− 1

2d
( ∫ s

0
k�s� ��

∫ �

0
Lh�Xr�dr d�

)

= 1

�
(
H − 1

2

) ∫ t

0
sH− 1

2d
( ∫ 1

0
�u�1− u��

1
2−Hs2−2H

∫ su

0
Lh�Xr�dr du

)

= 2− 2H

�
(
H − 1

2

) ∫ t

0
s

1
2−H

∫ 1

0
�u�1− u��

1
2−H

∫ su

0
Lh�Xr�dr du ds

+ 1

�
(
H − 1

2

) ∫ t

0
s

3
2−H

∫ 1

0
�u�1− u��

1
2−HLh�Xsu�u du ds

and

S3
t =

∫ t

0
sH− 1

2d
( ∫ s

0
k�s� ��

∫ �

0
��h′��Xr�dWrd�

)
= 1

�
(
H − 1

2

) ∫ t

0
sH− 1

2d
( ∫ s

0
�s − ��

1
2−H�

1
2−H

∫ �

0
��h′��Xr�dWrd�

)

= 1

�
(
H − 1

2

) ∫ t

0
sH− 1

2d
( ∫ s

0

∫ s

�
�s − ��

1
2−H�

1
2−Hd���h′��Xr�dWr

)

= 1

�
(
H − 1

2

) ∫ t

0
sH− 1

2

∫ s

0

d

ds

∫ s

�
�s − ��

1
2−H�

1
2−Hd���h′��Xr�dWrds

= 2− 2H

�
(
H − 1

2

) ∫ t

0
s

1
2−H

∫ s

0

∫ 1

r
s

�u�1− u��
1
2−Hdu��h′��Xr�dWrds

− 1

�
(
H − 1

2

) ∫ t

0
s−1

∫ s

0
r

3
2−H

(
1− r

s

) 1
2−H

��h′��Xr�dWrds

Note that

dWr = ��Xr�
−1dXr −

(
b�−1

)
�Xr�dr


Eq. (11) follows easily. �

3. BAYES FORMULA AND FILTERING EQUATIONS

From the observation model in Eq. (10), we see that we need to enrich
the signal process. Let �Xt = �t� Xt�. Then �t� Xt� is a �̂-valued Markov
process. We now characterize its generator. Let

��A0� =

F ∈ Cb��̂� �

F�t� y� = ��t� y�t1 ∧ t�� · · · � y�tn ∧ t��
for some n ≥ 1� 0 ≤ t1 < · · · < tn ≤ T�
� ∈ C2

b

(
�n+1

)

 
 (12)
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For any F ∈ ��A0�, define

A0F�t� X
t� = �0��t� Xt1∧t� · · · � Xtn∧t�

+
n∑

i=1

1t<ti
�i��t� Xt1∧t� · · · � Xtn∧t�b�Xt�

+ 1
2

n∑
i�j=1

1t<ti∧tj �
2
ij��t� Xt1∧t� · · · � Xtn∧t��

2�Xt� (13)

An application of Itô’s formula to F�t� Xt� for F ∈ ��A0� implies that

F��Xt�−
∫ t

0
A0F��Xs�ds

is a martingale. Hence, A0 is a part of the generator of �Xt.
Define the optimal filter by

�tF = ��F�T�Xt��� Y
t �� ∀F ∈ Cb��̂�
 (14)

Using the classical nonlinear filtering theory (see [9]), we obtain the
following results.

Theorem 3.1. Let the signal process �Xt� and the observation process �Yt�
be given by Eq.(4) and Eq.(5), respectively. Let Px denote the probability
distribution of the processes Xt. Then

(i)

�tF =
∫
F�t� x�e

∫ t
0 G�s�xs�dZs− 1

2

∫ t
0 G

2�s�xs�dsdPX�x�∫
e
∫ t
0 G�s�xs�dZs− 1

2

∫ t
0 G

2�s�xs�dsdPX�x�
� ∀F ∈ Cb��̂�
 (15)

(ii) The process �t satisfies the Kushner-FKK equation

�tF = �0F +
∫ t

0
�s�A0F�ds +

∫ t

0
��s�GF�− �sG�sF�d�s� ∀F ∈ ��A0�


where �t = Zt −
∫ t

0 �s Gds is the innovation process.
(iii) Define �t by

�tF = �tF exp
( ∫ t

0
�sGdZs −

1
2

∫ t

0
��sG�2ds

)
(16)

for any F ∈ Cb��̂�. The process �t satisfies the Zakai equation:

�tF = �0F +
∫ t

0
�s�A0F�ds +

∫ t

0
�s�GF�dZs� ∀F ∈ ��A0� (17)

and

�tF = �tF/�t1
 (18)
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Proof. We only need to verify that

�
∫ T

0
G�s�Xs�2ds < 	


Here we only check the last term in Eq. (11) (denote it by G5). Note that

�
∫ T

0
G5�s� X

s�2ds ≤ c�
∫ T

0
s−2

∫ s

0
r3−2H

(
1− r

s

)1−2H
��h′�2�Xr�dr ds

≤ c
∫ T

0
s2−2Hds

∫ 1

0
t3−2H�1− t�1−2Hdt < 	
 �

4. UNIQUENESS OF �t AND �t

The establishment of the uniqueness for the solution to the Kushner-
FKK and the Zakai equation is very important for these equations to
be useful to the filtering problem. Such problems have been studied by
various authors using essentially operator techniques and via martingale
problem. See [3] and the references therein.

In this section, we first recall some of the results in [3] and then apply
them to our present setup.

Definition 4.1. Let B be an operator on C�E� with domain ��B� ⊂
Cb�E�. A process �Ut� 0 ≤ t ≤ T� defined on some probability space
�
�� � P� is said to be a solution to the martingale problem for �B� v� if:

(i) P � U−1
0 = v�

(ii)
∫ t

0 E�BF�Us��ds < 	, for every t ≤ T , F ∈ ��B�; and
(iii) for all F ∈ ��B�, F�Ut�−

∫ t

0 BF�Us�ds is a martingale.

The martingale problem for �B� �� is said to be well-posed if there
exists a solution U to the martingale problem for �B� �� and any two
solutions have the same finite dimensional distributions.

The D��0� T�� E�-martingale problem for �B� �� is said to be well-
posed if there exists a cadlag solution �Ut� 0 ≤ t ≤ T� to the martingale
problem and for any two solutions with cadlag paths, their finite
dimensional distributions are the same.

The following conditions were imposed by Bhatt et al. [3].

(C1) There exists � ∈ C�E�, satisfying

�BF�x�� ≤ CF��x�� F ∈ ��B�� x ∈ E
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(C2) There exists a countable subset �Fn� ⊂ ��B�, such that

bp− closure
(
��Fn��

−1BFn� � n ≥ 1�
) ⊃ {

�F��−1BF� � F ∈ ��B�
}



(C3) ��B� is an algebra that separates points in E and contains the
constant functions

(C4) The D��0� T�� E� martingale problem for �B� �x� is well-posed for
every x ∈ E.

(C5) For all � ∈ ��E�, any progressively measurable solution to the
martingale problem for �B� �� admits a cadlag modification.

The next theorem gives the uniqueness for the solution to the Zakai
Eq. (17).

Theorem 4.2. If ��t� is an � Y
t -adapted �+��̂�-valued cadlag process

satisfying

�tF = �0F +
∫ t

0
�s�A0F�ds +

∫ t

0
�s�GF�dZs� ∀F ∈ ��A0� (19)

and ∫ T

0
�
[
�t��̂�

]
dt < 	� (20)

then �t = �t, for all 0 ≤ t ≤ T a.s., where �t is defined by Eq. (16).

Proof. The conclusion follows from Theorem 4.1 in [3] if we verify the
conditions (C1)–(C5) for A0. It is easy to see that (C1) holds for A0 with
��x� ≡ 1. (C2) and (C3) can be verified easily. Now we check (C4) and
(C5).

Let �Xt be a �̂-valued measurable solution to the matingale problem
for A0. It is clear that �Xt = �t� X̃t� where X̃t�·� ∈ C��0� T���� and stopped
at t. Take F�t� X̃t� = ��X̃t�t ∧ t1��. Then for t ≥ t1,

��X̃t�t1��−
∫ t1

0

(
�′�X̃s�s��b�X̃s�s��+

1
2
�′′�X̃s�s���

2�X̃s�s��

)
ds

is a martingale. This implies that ��X̃t�t1��, t ≥ t1 is a martingale. We
may replace � by �2, so that �2�X̃t�t1��, t ≥ t1 is also a martingale. This
implies that ∀t� t′ ≥ t1, we have X̃t�t1� = �X̃t′�t1��, a.s.

Take F�t� �X̃t� = ��X̃t�t�� (namely, take t1 = T in previous choice of
F ). Then

��X̃t�t��−
∫ t

0
L��X̃s�s��ds
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is a martingale. Hence, the process t → X̃t�t� has a continuous version
Xt. Therefore, for fixed t and s, �t ≥ s�, we have X̃t�s� = XS a.s. Since
X̃t�s� and Xs are continuous in s, we have for fixed t� X̃t�s� = Xs a.s.
for all s ≤ t. This proves that for fixed t� X̃t = Xt a.s. Namely, Xt is a
continuous version of X̃t. Since Xt is continuous, this proves (C5). This
also shows the uniqueness of the D��0� T�� �̂�-martingale problem for A0

and, hence, (C4) holds. �

Theorem 4.3. Let ��t� ⊂ ���̂� be an FY
t -adapted cadlag process, which is

a solution of the Kushner-FKK equation

�tF = �0F +
∫ t

0
�s�A0F�ds +

∫ t

0
��s�GF�− ��sG���sF��d�

�
s� ∀F ∈ ��A0��

where

��s = Zt −
∫ t

0
�sGds


If ��t� ⊂ M+��̂� defined by

�tF = �tf exp
( ∫ t

0
�sGdZs −

1
2

∫ t

0
��sG�2ds

)
� ∀F ∈ Cb��̂�� (21)

satisfies Eq. (20) then �t = �t� for all 0 ≤ t ≤ T a.s.

Proof. An application of Itô formula shows that � defined by Eq. (21)
satisfies the Zakai Eq. (19). Theorem 4.2 is then applicable and it implies
that �t = �t, for all t ≤ T a.s. Since

�tF = �tF

�t1
� �tF = �tF

�t1
�

the result is proved. �

5. ROBUSTNESS

In this section, we consider a sequence of functions �bn�x�� �n�x�� hn�x��,
which converges to �b�x�� ��x�� h�x�� uniformly in x as n → 	. Further,
we assume that �bn� �n� hn� satisfies the condition (BC) uniformly in
n, and assume ��x� and �n�x� have lower bounds, different from 0
uniformly in n. Let Xn and Zn be defined on a probability space
�
n�� n� Pn� by

dXn
t = bn�Xn

t �dt + �n�Xn
t �dW

n
t
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and

Zn
t =

∫ t

0
Gn�s� �Xn�s�ds + Bn

t 


We consider the convergence of the optimal filter �n
t .

Theorem 5.1. As n → 	, we have �n
t F → �tF in distribution.

Proof. Define probabilities Qn and Q by

dPn

dQn
= exp

( ∫ T

0
Gn�s� �Xn�s�dZn

s −
1
2

∫ T

0
Gn�s� �Xn�s�2ds

)
≡ Ln

T �X
n� Zn�

and

dP

dQ
= exp

( ∫ T

0
G�s�Xs�dZs −

1
2

∫ T

0
G�s�Xs�2ds

)
≡ LT�X�Z�


Then, under Qn, Z
n is a Brownian motion independent of Xn; under Q,

Z is a Brownian motion independent of X. We now verify that

Qn � �Xn� Zn
T � L

n
T �X

n� Zn��−1 → Q � �X� Z� LT � �X� Z��
−1


From the theory of SDE, it is easy to show that

Qn � �Xn�−1 = Pn � �Xn�−1 → P � X−1


Let �
̃� �̃ � P̃� be a probability space on which �X̃n� X̃� Z̃� are defined
such that X̃n → X̃ a.s., Qn � �Xn� Zn�−1 = P̃ � �X̃n� Z̃�−1, and Z̃ is a
Brownian motion independent of X̃n under P̃. Then

�Qn

f�Xn� Zn� Ln
T � �X

n� Zn�� = �P̃f�X̃n� Z̃� Ln
T �X̃

n� Z̃��


By Theorem 2.2 in [14], we get

Ln
T �X̃

n� Z̃� → LT�X̃� Z̃� in probability


Thus, we have that

�Qn

f�Xn� Zn� Ln
T �X

n� Zn�� → �P̃f�X̃� Z̃� LT �X̃� Z̃��

= �Qf�X� Z� LT �X� Z��


By Theorem 2.1 in [7], we have �n
t F → �tF in distribution. �
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