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This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data
(SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard
functions unspecified and allowing the history of the longitudinal response having an effect on the risk of
dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and
combining the Gibbs sampler and the Metropolis–Hastings algorithm, we propose a Bayesian Lasso
(BLasso) method to simultaneously estimate unknown parameters and select important covariates in
SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed
techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate
the proposed methodologies.
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1 Introduction

Joint models of longitudinal and survival data (JMLSs) represent a flexible class of models for de-
scribing the interrelationships among longitudinal variables and survival variables, and they are widely
applied to cancer and HIV/AIDS clinical studies; see, for example, Chi and Ibrahim (2006), De Grut-
tola and Tu (1994), Hu et al. (2009), Rizopoulos et al. (2009), Song and Wang (2008), Tsiatis and
Davidian (2004), Tsiatis et al. (1995), Wang and Taylor (2001), Zhu et al. (2012), and references cited
therein. Unlike the two-stage model for longitudinal and survival data proposed by Tsiatis et al. (1995),
a JMLS consists of a longitudinal submodel and a survival submodel (Ibrahim et al., 2002, 2010),
which share common random effects for capturing the individual characteristics. The longitudinal
submodel is used to account for the association among the longitudinal responses and the related
covariates, while the survival submodel is employed to investigate the relationship among the event
time, the longitudinal processes, and the time-independent covariates.

Basic JMLSs have been widely studied under the normality assumption of longitudinal responses
and the shared parameter model, in which the longitudinal outcome and the time to event share a latent
Gaussian random effect, due to mathematical tractability and computational convenience. But, when
the normality assumption is violated, the existing approaches to analyze basic JMLSs may lead to
unreasonable or even misleading conclusions (Rizopoulos and Ghosh, 2011; Li et al., 2012; Baghfalaki
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et al., 2013). To this end, some alternative methods for analyzing JMLSs have been proposed in recent
years. For example, Huang et al. (2010, 2014) proposed a relatively robust estimation approach to a
univariate JMLS with longitudinal responses following the skew distribution; Baghfalaki et al. (2013,
2014) presented a robust inference on JMLSs under the assumption that the longitudinal responses are
normally distributed and the time to event shares a common Gaussian random effect. However, the
above-mentioned approaches are not flexible enough to capture the feature of longitudinal responses
having bimodal or multimodal distributions in a JMLS. Another important limitation of the above-
mentioned methods is that they did not consider longitudinal information, which, if appropriately
used, could offer a better insight into the dynamics of the disease’s progression (Rizopoulos et al.,
2014). Also, an approach to accommodate the above-mentioned issue has not been studied in the
JMLS literature, although we often encounter bimodal or multimodal data in longitudinal studies.
Hence, to relax the normality assumption of the longitudinal outcomes and allow for the effect of the
history of the longitudinal response, this article proposes a novel semiparametric JMLS (SJMLS) for
multivariate longitudinal and survival data by assuming that the longitudinal responses are distributed
as a finite mixture of normal distributions, the baseline hazard functions are unknown, and the
history of longitudinal response up to the current time, which is defined by the current expectation of
longitudinal response, may have an effect on the risk of dropout.

Generally, the piecewise constant hazard model could be employed to specify the prior distribution
of the unknown baseline hazard (Zhu et al., 2012; Huang et al., 2014; Tang et al., 2014). But it might
lead to a nonsmooth survival function, especially when the time axis is divided into a small number
of intervals. This feature might not be desirable in some applications, in which a smooth but still
flexible enough baseline hazard function should be postulated. To address the issue, this article uses
the well-known Bayesian penalized splines (Lang and Brezger, 2004) to approximate the unknown log
baseline hazard functions in the considered SJMLS.

In addition, covariate selection is another issue to be addressed in a SJMLS. Traditionally, the
important covariates in a regression model can be identified by the forward selection method, backward
elimination method, stepwise selection method (Hocking, 1976), or model comparison via Bayes
factor (Kass and Raftery, 1995; Lee and Tang, 2006) or some information criterion such as the
Akaike information criterion (Akaike, 1974), but these approaches are computationally expensive
and unstable for the complicated models with a large number of covariates. As an alternative, some
penalized likelihood methods have been proposed for simultaneous variable selection and parameter
estimation in multiple linear regression. Notable methods include the least absolute shrinkage and
selection operator (Lasso) (Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) (Fan
and Li, 2001), the adaptive Lasso (Zou, 2006), and boosting algorithm (Buhlmann and Hothorn,
2007), which has received considerable attention in various regression frameworks (Buhlmann and Yu,
2003; Buhlmann, 2006; Hofner et al., 2011). In particular, in a Bayesian framework, Park and Casella
(2008) proposed a BLasso by imposing the double exponential prior on the regression coefficients
and the gamma distribution on the shrinkage parameter. The BLasso approach has been extended
to various models including semiparametric structural equation models (Guo et al., 2012) and linear
regression models (Hans, 2009; Lykou and Ntzoufras, 2013), due to its stability and computationally
efficiency. However, to our knowledge, there was little literature yet that addressed covariate selection
in SJMLSs via the BLasso approach. Hence, the second main purpose of this article is to extend
BLasso approach to the considered SJMLSs.

This research was motivated by a clinical trial from the International Breast Cancer Study Group
(IBCSG), which is devoted to an innovative clinical cancer study for improving the outcome of women
with breast cancer. In this trial, each premenopausal woman with a node-positive breast cancer was
randomly assigned to either the adjuvant chemotherapy or the reintroduction of three single courses
of delayed chemotherapy. In addition to the adjuvant treatment effects, patients’ quality of life (QOL)
was assumed to have prognostic information and to be predictive of breast cancer progression. Cancer
progression was monitored over time via two failure time random variables: disease-free survival
(DFS), which is defined as the time duration of staying free of disease after a particular treatment for
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a patient suffering from a cancer, and overall survival (OS), which is defined as the time duration of
staying alive for a patient suffering from a cancer. In this study, the median of DFS is 7.611 years with a
censoring proportion of 46.39%, while the median of OS is 9.255 years with a censoring proportion of
63.10%. Therapeutic method has a direct effect on DFS and OS, and the toxicity of therapeutic method
may adversely affect a patient’s QOL, which is specifically related to DFS and OS. Four indicators
of health-related QOL including physical well-being (lousy-good), mood (miserable-happy), appetite
(none-good), and perceived coping (‘how much effort does it cost you to cope with your illness?” (a great
deal-none)) were measured at the baseline and at months 3 and 18 after randomization for each of 832
patients. There were a total of 2154 QOL observations in the data set. Chi and Ibrahim (2006), Zhu et al.
(2012), and Tang et al. (2014) analyzed the data set via various parametric/semiparametric JMLSs.
However, they did not consider the selection of the potentially important covariates including therapy
designs and individual characteristics. To this end, a BLasso approach is developed to simultaneously
estimate unknown parameters and identify the significant effect of the potentially covariates on QOL,
DFS, and OS in a framework of SJMLS.

The rest of this article is organized as follows. In Section 2, we describe a SJMLS with longitudinal
outcomes following a finite mixture of normal distributions. Section 3 proposes a Bayesian Lasso
(BLasso) approach to identify the important covariates in a SJMLS. Simulation studies are conducted
to investigate the performance of the proposed methods in Section 4. An example is analyzed in Section
5. Some concluding remarks are given in Section 6. Technical details are presented in all appendices.

2 A SJMLS

2.1 Model and notation

Consider a data set from n individuals. For the i-th individual (i = 1, . . . , n), let yi jk be the k-th
longitudinal outcome observed at time ti j for j = 1, . . . , ni and k = 1, . . . , K; let T ∗

im be the true
survival time of the m-th time-to-event outcome, Cim the censoring time, and Tim = min(T ∗

im,Cim)

the corresponding observed event time. Also, denote δim = 1(T ∗
im ≤ Cim) as the event indicator for

i = 1, . . . , n, m = 1, . . . , M, where 1(A) is the indicator function of an event A.
Denote yi j = (yi j1, . . . , yi jK )T, T i = (Ti1, . . . , TiM )T, and δi = (δi1, . . . , δiM )T. Let bi = (bi1, . . . , biq)

T

be time-independent random effects underlying both the longitudinal and survival processes for the
i-th individual. Given bi, it is assumed that yi j ’s are conditionally independent of each other. Under
the above assumptions, we consider the following linear model for longitudinal response vector yi j :

yi j = η(Ri(ti j ),Wi(ti j ), bi) + εi j, (1)

where η(Ri(ti j ),Wi(ti j ), bi) = βTRi(ti j ) + Wi(ti j )bi is the trajectory function vector of longitudinal
response vector yi j for the i-th individual at time ti j , Ri(ti j ) is an (r + 1) × 1 time-dependent design
vector at time point ti j whose first element is set to be 1 for allowing a more convenient formulation
of the model, β is an (r + 1) × K unknown parameter matrix with the k-th column being βk =
(βk0, βk1, . . . , βkr)

T for k = 1, . . . , K, Wi(ti j ) is a K × q design matrix corresponding to the random
effects bi, and εi j = (εi j1, . . . , εi jK )T is a K × 1 vector of measurement errors whose distribution is
assumed to follow a finite mixture of normal distributions rather than a classical normal distribution,
which is specified in Section 2.2. Similar to a common assumption for the random effects bi in a mixed-
effects model, it is assumed that bi is independent and identically distributed as a multivariate normal

distribution with zero mean and covariance matrix � = (� jk)q×q, that is, bi
i.i.d.∼ Nq(0,�). Also, we

assume that εi j ’s are independent of bi.
To incorporate the history information of longitudinal response up to current time and time-

independent covariates ξi = (ξi1, . . . , ξip)
T, we consider an M-dimensional survival model for the i-th

individual under the assumption that all components of the time-to-event outcomes are independent.
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Let λm(t|bi) be the conditional hazard function of the m-th time-to-event outcome given bi for the i-th
individual, which is defined as

λm(t|bi) = λm0(t)exp
{
ψT

mη(Ri(t),Wi(t), bi) + γT
mξi

}
for t > 0, (2)

where ψm = (ψm1, . . . , ψmK )T quantifies the association between the true value of the longitudinal
trajectories at time t and the hazard of an event at the same time point, γm = (γm1, . . . , γmp)

T is
a vector of regression coefficients corresponding to covariate vector ξi, and λm0(t) is an unknown
baseline hazard function. Because λm0(t) is nonnegative, it can be written as λm0(t) = exp{λ∗

m0(t)},
which implies that equation (2) can be rewritten as

λm(t|bi) = exp
{
λ∗

m0(t) + ψT
mη(Ri(t),Wi(t), bi) + γT

mξi

}
, (3)

where λ∗
m0(t) is referred to as the log baseline hazard function. Then, for the i-th individual, the

conditional probability density function of (T i, δi) given bi is given by

Pr(T i, δi|bi) =
M∏

m=1

Sm(Tim|bi){λm(Tim|bi)}δim , (4)

where Sm(t|bi) = exp{− ∫ t
0 λm(u|bi)du} is the m-th conditional survival function.

2.2 Specifying the distribution of measurement error

In classical longitudinal data models, it is usually assumed that measurement error vector εi j follows
a multivariate normal distribution, which may be questionable in practice. Moreover, the violation of
the basic assumption would lead to biased estimates of parameters or even misleading conclusions.
To this end, it is desirable to develop an approach to relax the basic normality assumption. Similar
to Escobar and West (1995) and Müller et al. (1996), here we assume that εi j follows the following

finite mixture of normal distributions: εi j ∼∑G
g=1 πgNK (μg, �g), where πg is a random probability

weight between 0 and 1 such that 0 ≤ πg ≤ 1 and
∑G

g=1 πg = 1, G is an integer that specifies the
number of normal distributions possibly used in approximating εi j ’s distribution. As Ishwaran and
Zarepour (2000) pointed out that increasing G may not significantly improve the accuracy of parameter
estimations and a large value G may lead to an increase in computing time. Hence, a moderate value
of G such as 20 or 50, which might be enough to capture a good approximation in application, is
recommended for Bayesian inference. More details on the selection of G can refer to Ishwaran and
Zarepour (2000) and Ohlssen et al. (2007). Generally, it is rather difficult and inefficient to present
a Bayesian procedure to make inference on the above specified model because of a finite mixture
model of normal distributions involved. An efficient approach to address the issue in a Markov chain
Monte Carlo (MCMC) framework is to introduce a latent variable Li j for recording each εi j ’s cluster
membership and then take its distribution to be

εi j | μ,	, Li j ∼ NK (μLi j
, �Li j

), (5)

where �Li j
is the Li j-th element of the set of covariance matrices 	 = {�g : g = 1, . . . , G} with �g =

diag(σ 11
g , . . . , σ KK

g ), μLi j
is the Li j-th element of the set of mean vectors μ = {μg : g = 1, . . . , G} with

μg ∼ NK (μμ,�g). In fact, the latent variable Li j is a set of “pointers” for identifying the values of μ

and 	 associated with individual i and the measured time point ti j so that the distribution of εi j is
known when Li j is known, which is similar to the Dirichlet process approximation (DP) to unknown
distribution (Chow et al., 2011). Motivated by Chow et al. (2011), the latent variable Li j can be specified
by the following Dirichlet process:

Li j |π
i.i.d.∼ Multinomial(π1, . . . , πG), (6)
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where π = (π1, . . . , πG)T is defined by the following stick-breaking procedure:

π1 = κ1 and πg = κg

g−1∏
�=1

(1 − κ�) for g = 2, . . . , G, (7)

where κg
i.i.d.∼ Beta(1, τ ) for g = 1, . . . , G − 1, and κG = 1 so that

∑G
g=1 πg = 1. Under the above as-

sumptions, equation (1) can reformulated by

yi j | bi,μ,	, Li j ∼ NK

(
η(Ri(ti j ),Wi(ti j ), bi) + μLi j

, �Li j

)
. (8)

2.3 Modeling log baseline hazard functions

Following Lang and Brezger (2004), a penalized splines approximation to log baseline hazard function
λ∗

m0(t) in equation (3) is given by

λ∗
m0(t) = ϕm0 + ϕm1t + · · · + ϕmst

s +
hm∑
j=1

ϕm,s+ j (t − Km j )
s
+ = ϕT

mBm(t), (9)

where s is the degree of the polynomial components, hm is the number of knots (hm knots define hm + 1
regression intervals because the ending points are not used as knots), ϕm = (ϕm0, . . . , ϕm,s+hm

)T is a vec-
tor of parameters, and Bm(t) = (1, t, . . . , ts, (t − Km1)

s
+, . . . , (t − Kmhm

)s
+)T with as

+ = {max(a, 0)}s,
Km j is the location of the j-th knot that can be taken to be the (( j + 1)/(hm + 2))-th quantile of
the unique data set {Tim : i = 1, . . . , n} for j = 1, . . . , hm and m = 1, . . . , M. Generally, one can use
the Akaike information criterion or Bayesian information criterion to select the optimal degree of
regression splines and number of knots, that is, the optimal sizes of s and hm. Here, following the
argument of Eilers and Marx (1996), a moderate number of knots (usually between 20 and 40) and a
small value of s (e.g., s=2 or 3) are recommended for Bayesian analysis.

Clearly, it is rather difficult and complicated to compute equation (4) via the above presented for-
mulae because of an intractable integral involved. To overcome the difficulty, we first construct a finite
partition for the m-th time-to-event outcome time axis for m = 1, . . . , M. To this end, we let 0 = Cm0 <

Cm1 < Cm2 < · · · < CmLm
, which leads to Lm intervals (Cm0,Cm1], (Cm1,Cm2], . . . , (Cm,Lm−1,CmLm

],
where CmLm

can be taken to be some value that is greater than max(T1m, . . . , Tnm) and Lm is a
prespecified integer (e.g., 100 or 150). Generally, one can select subintervals (Cm,�−1,Cm�] with equal
lengths, or approximately equal lengths subject to the restriction that at least one failure occurs in each
interval, or equal numbers of failures or censored observations (Ibrahim et al., 2002) for m = 1, . . . , M.
Then, the conditional survival probability Sm(Tim|bi) can be written as

Sm(Tim|bi) = exp

⎧⎨
⎩−

Lm∑
�=1

Dim�

⎫⎬
⎭ , (10)

where Dim� = ∫ Cm�

Cm,�−1
λm(u|bi)1(u ≤ Tim)du, and 1(u ≤ Tim) is a generic indicator function taking the

value 1 if u ≤ Tim and 0 otherwise. According to the theory of rectangular integral approximation,
when Lm is sufficiently large, Diml can be approximated by

Dim� ≈ (Cm� − Cm,�−1)λm(um�|bi)1(Cm� < Tim) +
+ (Tim − Cm,�−1)λm(u∗

im�|bi)1(Cm,�−1 < Tim ≤ Cm�), (11)
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where um� = (Cm� + Cm,�−1)/2 and u∗
im� = (Tim + Cm,�−1)/2. Clearly, Dim� = 0 if Cm,�−1 > Tim. Based

on equations (9)–(11), it is feasible to facilitate the computation of equations (3)–(4).

2.4 Prior specification

To develop Bayesian inference on the considered models, we need specifying the prior distributions for
covariance matrix � of random effects, μμ and σ kk

g (k = 1, . . . , K, g = 1, . . . , G) related to equation
(5) and τ related to equation (7). Following the arguments of Chow et al. (2011) and Zhu et al. (2012),
we consider the following priors for �, μμ, σ kk

g , and τ :

� ∼ IWq(R
0, �), μμ ∼ NK

(
ζ0

μ, H0
μ

)
,
(
σ kk

g

)−1 ∼ �(c1, c2), τ ∼ �(aτ , bτ ),

where R0, �, ζ0
μ, H0

μ, c1, c2, aτ , and bτ are the pregiven hyperparameters, IWq(·, ·) represents the
inverted Wishart distribution, and �(a, b) denotes the gamma distribution with parameters a and b.
The hyperparameters aτ and bτ should be carefully selected because they directly affect estimate of τ

controlling the behavior of εi j . The details for the selection of aτ and bτ can refer to Chow et al. (2011).
In a Bayesian framework, we require specifying the prior of ϕm j related to equation (9). Following

Lang and Brezger (2004), we consider the following second-order difference for specifying ϕm j ’s prior:

ϕm j = 2ϕm, j−1 − ϕm, j−2 + um j with um j ∼ N
(
0, ς2

m

)
for j = 2, . . . , s + hm,

and the diffuse prior for ϕm0 and ϕm1 ∝ constant, where ς2
m is introduced to control the amount

of smoothness. The prior for ς−2
m is assumed to follow a Gamma distribution, that is, ς−2

m ∼
Gamma(am

ς , bm
ς ) with the pregiven hyperparameters am

ς and bm
ς . A common selection for the hyper-

parameters is am
ς = 1 and a small value for bm

ς , for example, bm
ς = 0.005, leading to an almost diffuse

prior for ς2
m.

For the above-defined models together with the above given priors, our major interest is to estimate
parameters β, �, ψm, and γm and to identify the important covariates. To this end, we consider a
BLasso approach as follows.

3 Bayesian Lasso

Tibshirani (1996) showed that the Lasso estimates for linear regression parameters via the �1-penalized
least-squares criterion can be interpreted as Bayesian posterior mode estimates when the regression
parameters have independent Laplace (i.e., double-exponential) priors. Motivated by the idea, Bae
and Mallick (2004) and Yuan and Lin (2006) subsequently proposed the Laplace-like prior for linear
regression parameter, Park and Casella (2008) proposed a Bayesian framework for Lasso, and Guo
et al. (2012) extended BLasso approach to a semiparametric structural equation model. However, to
our knowledge, there is little work developed on covariate selection for the considered SJMLS in a
Bayesian framework.

Following Park and Casella (2008) and Guo et al. (2012), a BLasso procedure can be proposed
to identify the important covariates in equations (1) and (2) by imposing the following conditional
Laplace priors on βk, γm, and ψm:

p(βk|ϑk) =
r∏

j=0

ϑk

2
exp(−ϑk|βk j |), p(γm|υm) =

p∏
j=1

υm

2
exp(−υm|γm j |),

p(ψm|νm) =
K∏

j=1

νm

2
exp(−νm|ψm j |),
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for k = 1, . . . , K and m = 1, . . . , M, respectively, where ϑk, υm, and νm are the regularization parame-
ters that control the tail decay. Because the masses of the above presented Laplace priors are quite highly
concentrated around zero with a distinct peak at zero, posterior means or modes of βk j ’s, γm j ’s, and
ψm j ’s are shrunk toward zero, which is the key principle in using BLasso method to select the important
covariates. Following Tibshirani (1996), the Laplace distribution with the form a exp(−a|z|)/2 can be
represented as a scale mixture of normal distributions with independent exponentially distributed
variance, that is,

a
2

exp (−a|z|) =
∫ ∞

0

1√
2πu

exp
(

− z2

2u

)
a2

2
exp
(

−a2u
2

)
du for a > 0,

which shows that the prior on βk or γm or ψm can be written as a tractable hierarchical formulation
by introducing a latent variable. Therefore, the above specified priors for βk, γm, and ψm can be
reformulated as the following hierarchical models:

βk|Hβk
∼ Nr+1(0, Hβk

) with Hβk
= diag

(
h2

βk0
, . . . , h2

βkr

)
,

γm|Hγm
∼ Np(0, Hγm

) with Hγm
= diag

(
h2

γm1
, . . . , h2

γmp

)
,

ψm|Hψm
∼ NK (0, Hψm

) with Hψm
= diag

(
h2

ψm1
, . . . , h2

ψmK

)
,

p
(

h2
βk0

, . . . , h2
βkr

)
=

r∏
j=0

ϑ2
k

2
exp

(
−ϑ2

k

2
h2

βk j

)
,

p
(

h2
γm1

, . . . , h2
γmp

)
=

p∏
j=1

υ2
m

2
exp
(

−υ2
m

2
h2

γm j

)
,

p
(

h2
ψm1

, . . . , h2
ψmK

)
=

K∏
j=1

ν2
m

2
exp
(

−ν2
m

2
h2

νm j

)
. (12)

The above hierarchical representation greatly simplifies the computation because all the full condi-
tional distributions have the closed expressions. Thus, one can directly draw observations from these
conditional distributions using the Gibbs sampler (Geman and Geman, 1984).

To implement the above presented BLasso procedure, it is necessary to select ϑ2
k , υ2

m, and ν2
m.

Generally, one can specify ϑ2
k , υ2

m, and ν2
m by using the empirical Bayes method or the fully Bayes

method with the appropriate hyperprior. Inspired by Park and Casella (2008), we consider the following
conjugate priors for ϑ2

k , υ2
m, and ν2

m:

ϑ2
k ∼ �

(
ak

ϑ , bk
ϑ

)
, υ2

m ∼ �
(
am

υ , bm
υ

)
, and ν2

m ∼ �
(
am

ν , bm
ν

)
, (13)

where ak
ϑ , bk

ϑ , am
υ , bm

υ am
ν , and bm

ν are the prespecified hyperparameters. Thus, it follows from equations
(12) and (13) that the conditional distributions of ϑ2

k , υ2
m, and ν2

m are given by

ϑ2
k |βk, Hβk

∼ �

⎛
⎝ak

ϑ + r + 1, bk
ϑ + 1

2

r∑
j=0

h2
βk j

⎞
⎠ , υ2

m|γm, Hγm
∼ �

⎛
⎝am

υ + p, bm
υ + 1

2

p∑
j=1

h2
γm j

⎞
⎠ ,
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ν2
m|γm, Hψm

∼ �

⎛
⎝am

ν + K, bm
ν + 1

2

K∑
j=1

h2
ψm j

⎞
⎠ ,

respectively. The conditional distributions for h−2
βk j

( j = 1, . . . , r), h−2
γm�

(� = 1, . . . , p), and h−2
ψmι

(ι =
1, . . . , K) are given by

h−2
βk j

|βk j, ϑ
2
k ∼ IG

(∣∣∣ϑk/βk j

∣∣∣ , ϑ2
k

)
, h−2

γm�
|γm�, υ

2
m ∼ IG

(∣∣υm/γm�

∣∣ , υ2
m

)
,

h−2
ψmι

|ψmι, υ
2
m ∼ IG

(∣∣νm/ψmι

∣∣ , ν2
m

)
,

respectively, where IG(a, b) represents the inverse Gaussian distribution with the scale parameter a and
the shape parameter b. For the details for sampling observations from the inverse Gaussian distribution
one can refer to Appendix B.

Let θ = {θY , θT , θε}, where θY = {β,�}, θT = {(ϕm,ψm, γm) : m = 1, . . . , M} and θε contains all
unknown parameters related to εi j ’s distribution. Let B = {bi : i = 1, . . . , n} be the set of random
effects, and Do = {(yi j, T i, Ri(ti j ),Wi(ti j ), ξi, δi) : i = 1, . . . , n, j = 1, . . . , ni} be the observed data set.
Bayesian statistical inference including parameter estimation and covariate selection on θ and B is
focused on the joint posterior distribution p(θ, B|Do). The Gibbs sampler (Geman and Geman, 1984)
together with the Metropolis–Hastings (MH) algorithm is adopted to simulate a sequence of random
observations from the joint posterior distribution p(θ, B|Do), and then the Bayesian estimates are
obtained from the mean of the generated random observations. The conditional distributions required
in implementing the above proposed BLasso procedure are presented in Appendix A.

4 Simulation studies

In this section, we conducted several simulation studies to investigate the finite performance of the
above proposed methods.

We considered the model defined in equations (1) and (2) with K = 2, M = 2, r = 7, p = 6, q = 2,
Wi(ti j ) = I2, Ri(ti j ) = (1, Ri1, . . . , Ri6, ti j )

T, and sample size n = 200. The data were generated as
follows: covariate vectors (Ri1, . . . , Ri6)

T and ξi = (ξi1, . . . , ξi6)
T were independently generated from

the multivariate normal distribution N6(1, I ), bi was generated from a bivariate normal distribution
N2(0,�) with (�11,�12,�21,�22) = (0.25, 0.10, 0.10, 0.25), the censoring time was taken to be Cim =
1(uim > 1.0) + uim1(uim ≤ 1.0) in which uim was generated from a uniform distribution U (0.8, 1.2),
Tim = min(T ∗

im,Cim), and ti j = 0.25( j − 1) for j = 1, . . . , ni, where ni satisfies tini
≤ max(Ti1, Ti2). The

true values of β1, β2, γ1, and γ2 were taken to be β1 = (1.0, 0.8, 0.2,−0.2, 0.0, 0.0, 0.0, 0.4)T and
β2 = (0.4, 0.9,−0.2, 0.2, 0.0, 0.0, 0.0, 0.6)T, γ1 = (0.45,−0.35, 0.35, 0.00, 0.00, 0.00)T, γ2 = −γ1, re-
spectively, which indicated that variables Ri4, Ri5, Ri6, ξi4, ξi5, and ξi6 were six unimportant covariates
in the model considered here. Our main purpose was to use the proposed approach to identify the
unimportant covariates and estimate nonzero coefficients. Bayesian results were obtained from 200
replications.

To show that the proposed methods can capture the feature of various longitudinal measurement
error distributions and cover the feature of various log baseline hazard functions, we considered two
scenarios for εi j and λ∗

m0(t) as follows.

Scenario 1. The log baseline hazard functions were specified by

λ∗
10(t) = 2t2 − 1.6t, λ∗

20(t) = log
(

1 + 0.7 sin
(

2π

3
t
))

,
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Figure 1 EPSR (i.e., estimated potential scale reduction) values of all parameters against iteration
numbers for a randomly selected replication in Scenario 1 (left panel) and Scenario 2 (right panel).

which correspond to a quadratic function and a nonlinear function, respectively; and the true distri-
bution of εi j = (εi j1, εi j2)

T was taken to be

εi j1 ∼ N(0, 0.25), εi j2 ∼ 0.4N(0, 0.3) + 0.3N(−1.5, 0.3) + 0.3N(1.5, 0.4),

which corresponded to unimodal and trimodal distributions, respectively.

Scenario 2. The log baseline hazard functions were taken to be

λ∗
10(t) = log(2), λ∗

20(t) = log (1 + 0.5t) ,

which correspond to a constant function adopted by Zhu et al. (2012) and a nonlinear function,
respectively; and the true distribution of εi j was specified by

εi j1 = ε∗
i j1 − 2 with ε∗

i j1
i.i.d.∼ �(4, 2), εi j2

i.i.d.∼ 0.6N(−0.4, 0.04) + 0.4N(0.6, 0.04),

which correspond to a right skewed distribution and a bimodal distribution, respectively. The average
censoring proportions of the survival times were about 29% and 35% for the Scenarios 1 and 2,
respectively.

For each of the above generated data sets, the proposed semiparametric Bayesian procedure was
used to simultaneously evaluate Bayesian estimates of unknown parameters, error distributions and log
baseline hazard functions λ∗

m0(t), and select the important covariates. The hyperparameters R0 and ψ0
m

were taken to be their corresponding true values, and we set � = 1, c1 = 11, c2 = 2, ζ0
μ = 02, H0

μ = 10I2,
and aτ = bτ = 0.1 relating to the DP mixture of normal distributions, am

ς = 1 and bm
ς = 0.005 relating

to the second-order difference, ak
ϑ = am

υ = am
ν = 1 and bk

ϑ = bm
υ = bm

ν = 0.1 corresponding to diffuse
priors in equation (13). To approximate Diml defined in equation (11), we equably divided the time
axis into 100 (i.e., Lm = 100) subintervals. Following the argument given in Section 2.2, we set G = 20,
the degree of splines s = 2, and the number of knots hm = 20. To investigate the convergence of the
proposed algorithm, we calculated the estimated potential scale reduction (EPSR) values of parameters
(Gelman et al., 1996) based on three parallel sequences of observations that were generated from three
different starting values. For the randomly selected five test runs, we observed that the EPSR values
were less than 1.2 after about 10,000 iterations (e.g., see Fig. 1). Thus, 5000 observations were collected
after 10,000 iterations in producing Bayesian results for each of 200 replications. For comparison, we
calculated Bayesian estimates of parameters under noninformative priors of the regression parameters.
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Table 1 Bayesian estimates of parameters in the simulation studies.

Par. True Scenario I Scenario II

Laplace prior Laplace prior Noninformative prior

Bias RMS F0(%) Bias RMS F0(%) Bias RMS F0(%)

ψ11 0.00 0.019 0.111 96.0 −0.003 0.114 95.0 −0.051 0.160 89.0
ψ12 0.50 −0.030 0.123 3.5 −0.051 0.136 4.0 0.021 0.140 2.5
ψ21 0.00 0.024 0.118 97.0 −0.003 0.102 97.5 −0.055 0.147 90.0
ψ22 0.60 −0.063 0.139 0.0 −0.039 0.115 0.0 0.038 0.139 0.5
γ11 0.45 0.010 0.093 0.0 −0.029 0.099 0.5 0.021 0.107 0.0
γ12 −0.35 0.032 0.092 4.5 0.024 0.092 5.0 0.001 0.091 3.5
γ13 0.35 0.005 0.093 1.5 −0.028 0.100 7.0 0.009 0.096 2.5
γ14 −0.00 0.013 0.074 97.0 −0.002 0.075 98.0 −0.010 0.102 90.0
γ15 0.00 0.012 0.072 96.5 −0.001 0.077 96.5 −0.009 0.087 91.5
γ16 0.00 0.011 0.079 96.0 −0.003 0.080 96.0 0.006 0.098 89.5
γ21 −0.45 0.034 0.100 0.0 0.040 0.110 0.5 −0.001 0.099 0.0
γ22 0.35 −0.026 0.096 4.5 −0.016 0.085 2.0 0.012 0.101 3.5
γ23 −0.35 0.035 0.095 4.5 0.039 0.096 7.5 0.001 0.103 4.5
γ24 0.00 0.002 0.072 97.5 0.006 0.076 97.0 0.016 0.103 91.0
γ25 0.00 −0.004 0.077 95.5 0.000 0.075 97.0 0.014 0.100 91.0
γ26 0.00 −0.003 0.077 95.5 −0.002 0.076 98.0 0.013 0.085 90.0
β10 1.00 −0.002 0.041 0.0 0.004 0.067 0.0 0.004 0.069 0.0
β11 0.80 −0.007 0.040 0.0 −0.008 0.052 0.0 0.010 0.054 0.0
β12 0.20 −0.003 0.036 0.0 −0.001 0.049 3.0 −0.004 0.051 5.0
β13 −0.20 0.002 0.040 0.5 0.011 0.058 8.0 −0.002 0.053 4.5
β14 0.00 −0.001 0.038 94.0 −0.002 0.046 96.5 −0.005 0.055 87.5
β15 0.00 −0.001 0.034 93.0 −0.006 0.048 97.0 0.006 0.048 91.0
β16 0.00 −0.003 0.036 95.0 −0.004 0.048 96.0 −0.025 0.050 89.0
β17 0.40 −0.005 0.035 0.0 −0.031 0.115 3.0 −0.008 0.107 4.5
β20 0.40 −0.010 0.070 0.0 −0.005 0.046 0.0 0.002 0.044 0.0
β21 0.90 −0.011 0.052 0.0 −0.010 0.046 0.0 0.001 0.041 0.0
β22 −0.20 0.008 0.055 5.5 0.006 0.044 0.5 −0.003 0.041 0.0
β23 0.20 −0.010 0.054 6.0 −0.002 0.044 0.0 −0.009 0.043 2.0
β24 0.00 0.000 0.043 97.0 −0.002 0.038 94.0 −0.001 0.041 88.5
β25 0.00 0.004 0.044 98.0 −0.001 0.041 91.5 −0.001 0.042 87.5
β26 0.00 −0.001 0.046 96.5 0.000 0.041 91.5 0.001 0.041 87.0
β27 0.60 −0.006 0.082 0.0 −0.006 0.034 0.0 0.002 0.037 0.0
�11 0.25 0.028 0.039 – 0.091 0.100 – 0.093 0.103 –
�12 0.10 −0.027 0.036 – −0.027 0.037 – −0.023 0.035 –
�22 0.25 0.070 0.086 – 0.033 0.044 – 0.040 0.050 –
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Figure 2 Estimated versus true densities of residual εi j1 (upper left panel) and εi j2 (upper right panel),
and estimated versus true values of log baseline hazard function λ∗

10 (lower left panel) and λ∗
20 (lower

right panel) in Scenario 1.

Results were reported in Table 1, where “bias” is the difference between the true value and the mean of
the estimates based on 200 replications, “RMS” is the root mean square between the estimates based
on 200 replications and its true value, and “F0” is the proportion that parameter was identified to
be zero in 200 replications in terms of the criterion that a parameter was identified to be 0 if its 95%
confidence interval contains zero.

Examination of Table 1 indicated that (i) Bayesian estimates of parameters were reasonably accurate
regardless of εi j ’s distributions and prior inputs of parameters because their absolute biases were
less than 0.10 and their RMS values were less than 0.15, especially for parameters corresponding to
unimportant covariates, their corresponding absolute biases, and RMS values were obviously less in
most cases; (ii) BLasso could identify the correct models in most cases regardless of prior inputs of
parameters because the F0 values corresponding to the important covariates were less than 8%, but
the F0 values corresponding to unimportant covariates were more than 90%; (iii) estimates obtained
with the Laplace priors of parameters were better than those obtained with the noninformative priors
of parameters in terms of the RMS values; (iv) BLasso method behaves better than a general Bayesian
method with the noninformative priors of parameters in terms of the F0 values. Figures 2 and 3 plotted
the estimated densities of εi j1 and εi j2 against their corresponding true densities, the estimated curves
of λ∗

10(t) and λ∗
20(t) against their corresponding true curves for a randomly selected replication under

the above considered two scenarios, respectively. Inspection of Figs. 2 and 3 showed that (i) the finite
mixture of normal distributions was flexible enough to capture the general shapes of our considered
two distribution assumptions for εi j ; (ii) the proposed P-splines approximation to nonparametric
function was flexible enough to recover the true log baseline hazard function, and the slight difference
between the estimated and true curves was observed at some time points; (iii) the estimated 95%
confidence region for the baseline hazard function could cover its true curve with a reasonably narrow
region. The performance of the proposed approach to recover the true baseline hazard function in
a multivariate survival model can be measured by the root mean square error of function λ∗

m0(t):
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Figure 3 Estimated versus true densities of residual εi j1 (upper left panel) and εi j2 (upper right panel),
and estimated versus true values of log baseline hazard function λ∗

10 (lower left panel) and λ∗
20 (lower

right panel) in Scenario 2.

RMSE(λ∗
m0) =

√∑Lm
l=0(λ

∗
m0(cml ) − λ̂∗

m0(cml ))
2/(Lm + 1) with λ̂∗

m0(t) = ϕ̂
T

mBm(t), where ϕ̂m was the
mean of 200 estimates for ϕm. RMSE(λ∗

10) and RMSE(λ∗
20) were 0.101 and 0.068 under Scenario 1,

respectively, and 0.090 and 0.059 under Scenario 2, respectively, which indicated that our proposed
P-splines approximation to λ∗

m0(t) performed well. All these findings indicated that (i) our proposed
Bayesian procedure could well capture the true information of εi j and λm0(t) regardless of their true
distributions and forms, and (ii) BLasso could identify the true model with a high probability.

5 Application to the IBCSG data

To illustrate applications of the proposed approach, we considered a data set from a clinical
trial conducted by IBCSG for 832 premenopausal women from Switzerland, Sweden, and New
Zealand/Australia. Our major interest is to investigate the relationship between longitudinal outcome
(i.e., QOL) and survival time (i.e., DFS and OS) and to identify important factors (i.e., covariates),
which have a significant effect on QOL and/or DFS and OS. Chi and Ibrahim (2006) and Zhu et al.
(2012) analyzed the data set via a JMLS with longitudinal measurement error following a multivariate
normal distribution and the fixed covariates. Unlike Chi and Ibrahim (2006) and Zhu et al. (2012),
we fitted the IBCSG data via a SJMLS defined in (1) and (2) by using the above developed BLasso
procedure. For each of four longitudinal QOL indicators (appetite, y1; perceived coping, y2; mood, y3;
and physical well-being, y4, more details could refer to Appendix C), we transformed its corresponding
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Figure 4 Histograms and estimated densities of y1 (upper left panel), y2 (upper right panel), y3 (lower
left panel), and y4 (lower right panel): IBCSG data.

observed value to
√

100 − QOL (Chi and Ibrahim, 2006). The transformed QOLs decreased over time
and were scaled tween 0 and 10 with smaller values reflecting better QOL (Zhu et al., 2012). Their
corresponding densities and histograms were shown in Fig. 4. Examination of Fig. 4 indicated that the
within-individual error might not follow a normal distribution but some multimodal and asymmetric
distribution, for example, a finite mixture of normal distributions.

Let yi j1, . . . , yi j4 be the observed values of y1, . . . , y4 for the i-th woman at time point ti j for
i = 1, . . . , 832 and j = 1, . . . , ni with ni ∈ {1, 2, 3}. Similar to Chi and Ibrahim (2006) and Zhu et al.
(2012), we fitted the IBCSG data set to the following SJMLS:{

yi j = η(Ri(ti j ),Wi(ti j ), bi) + εi j, i = 1, . . . , 832, j = 1, . . . , ni,

λm(t|bi) = exp{λ∗
m0(t) + ψT

mη(Ri(t),Wi(t), bi) + γT
mξi}, m = 1, 2,

where yi j = (yi j1, . . . , yi j4)
T, η(Ri(t),Wi(t), bi) = βRi(t) + Wi(t)bi with Wi(t) = I4 and Ri(t) =

(1, Ri1, . . . , Ri8, t)T in which covariates Ri1, . . . , Ri8 were listed in Appendix C, β = (β1, . . . ,β4)
T

with βk = (βk0, βk1, . . . , βk9)
T for k = 1, . . . , 4, ξi = (ξi1, . . . , ξi8)

T in which ξi� = Ri� for � = 1, . . . , 8,
ψm = (ψm1, . . . , ψm4)

T, and γm = (γm1, . . . , γm8)
T. Here, we assumed that New Zealand/Australia was

the reference category. Moreover, it was assumed that the random effects bi’s were independent and
identically distributed as N4(0,�), and the longitudinal measurement errors εi j ’s were independent
and identically distributed as a finite mixture of normal distributions.
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Figure 5 (a) Estimated densities of residual εi jk for k = 1 (upper left panel), k = 2 (upper right
panel), k = 1 (middle left panel), and k = 4 (middle right panel): IBCSG data. (b) Estimated log
baseline hazard functions of λ∗

m0(t) for m = 1 (lower left panel) and m = 2 (lower right panel): IBCSG
data.

To use the proposed BLasso procedure to analyze the IBCSG data set, we took G = 20, s = 2,
hm = 40, and Lm = 200 with the equal-length subintervals when using P-splines to approximate the
log baseline hazard λ∗

m0(t) for m = 1, 2. The same priors and hyperparameters are specified as in
simulation studies. Based on the above settings, we calculated the EPSR values for parameters in
the above specified SJMLS, which is not presented to save space. The EPSR values showed that the
MCMC algorithm converged about 10,000 iterations because the EPSR values of parameters were less
than 1.2 about 10,000 iterations. Thus, 5000 observations were collected to evaluate Bayesian estimates
and standard deviations of parameters after 10,000 iterations. Results were presented in Tables 2, 3
and Fig. 5. Matlab program for implementing the proposed BLasso can be seen in the Supporting
Information on the journal’s website.

Examination of Fig. 5 indicated that (i) the estimated densities of εi j1 and εi j4 were skew, and
the estimated density of εi j3 was bimodal, which implied that it might be unreasonable to specify

a symmetric normal distribution for εi j ; (ii) the estimated log baseline hazard functions λ̂∗
10(t) and

λ̂∗
20(t) monotonically decreased with respect to t, and were located within their corresponding 95%

confidence regions. From Table 2, we have the following observations: (i) the estimated correlations r12,
r13, r14, r23, r24, and r34 were 0.535, 0.930, 0.851, 0.634, 0.684, and 0.869, respectively, which showed
that components of bi were positively correlated, where r jk is the correlation coefficient of bi j and bik;
(ii) the number of positive nodes, the number of initial cycles, the reintroduction of CMF, residence
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Table 3 Bayesian estimates (BEs) and 95% confidence intervals (CIs) for parameters in the survival
model of the IBCSG data.

DFS OS

BE (95%CI) BE (95%CI)

Appetite −0.986 (−1.733,−0.239) −1.249 (−2.156,−0.342)
Perceived coping −0.669 (−0.957,−0.381) −0.703 (−1.115,−0.291)
Mood −3.123 (−3.774,−2.472) −3.778 (−4.548,−3.008)
Physical well-being 4.442 (3.913, 4.971) 5.242 (4.630, 5.854)
#Positive nodes > 4 1.706 (1.183, 2.229) 1.991 (1.350, 2.632)
#Initial cycle 0.050 (−0.405, 0.505) 0.143 (−0.427, 0.713)
Reintroduction 0.063 (−0.290, 0.416) 0.029 (−0.422, 0.480)
#INIR −0.279 (−0.798, 0.240) −0.136 (−0.699, 0.427)
Residence: Switzerland 0.335 (0.023, 0.647) −0.050 (−0.499, 0.399)
Residence: Sweden 0.342 (0.032, 0.652) 0.326 (−0.309, 0.961)
#Age > 40 −0.527 (−1.009,−0.045) −0.322 (−0.818, 0.174)
ER(1 = positive) −0.069 (−0.441, 0.303) −0.381 (−0.851, 0.089)

Notes #INIR: interaction of the number of initial cycles and reintroduction.

from Switzerland as well as the interaction between the number of initial cycles, and the reintroduction
of the procedure did not have effect on QOL because the 95% confidence intervals of these effects
did not exclude zero; (iii) “#Age” was identified to be an important covariate having a significantly
positive effect on QOL because their corresponding 95% confidence intervals did not include zero,
which showed that younger patients (under 40 years) had a better QOL than older patients (over 40
years); (iv) “time” was detected to be an important covariate having a significantly negative effect on
QOL except for appetite and physical well-being variables because the 95% confidence intervals of
the effect excluded zero, which implied that patients’ QOL could be improved after initial surgery;
(v) patients living in Sweden have a better QOL than those living in Switzerland, Australia, and New
Zealand because their estimated coefficients are positive.

For the bivariate survival model, it followed from Table 3 that (i) DFS and OS were consistently af-
fected by the longitudinal QOL covariates (e.g., appetite, perceived coping, mood, physical well-being)
as well as the number of positive nodes of the tumor > 4 because their corresponding confidence in-
tervals excluded zero, (ii) covariates related to residence: Switzerland and residence: Sweden and #Age
> 40 would only affect DFS, (iii) neither the number of the initial CMF cycles nor the reintroduction
of another cycle or the estrogen receptor status would affect DFS and OS. To wit, patients having a
better physical well-being, appetite, perceived coping, or mood were less likely to have either cancer
relapse or death; patients having the number of positive nodes being less than 4 might have a relapse or
not survive than those having the number of positive nodes being more than 4; younger patients were
more likely to have a relapse or death than older patients in terms of DFS; patients from Switzerland
and Sweden might have neither cancer relapse nor death in terms of DFS.

6 Discussion

This paper presented a novel semiparametric joint model for multivariate longitudinal and survival
data by relaxing the commonly adopted normality assumption of the longitudinal outcomes and
leaving the baseline hazard functions completely unspecified. The advantages of the proposed model
include: (i) it enhances the modeling flexibility and allows practitioners to make statistical inference
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on longitudinal and survival data in a wide variety of considerations; (ii) it can capture the feature
of unimodal, bimodal, and multimodal distribution for the longitudinal outcomes in a SJMLS; (iii)
it does not require specifying the mean and covariance matrix of normal distribution involved in a
finite mixture of normal distributions but regards them as random parameters; (iv) it can be written
as a hierarchical model that allows one to develop a computationally feasible algorithm via the MH
within the Gibbs sampler; (v) it requires fewer knots than smoothing splines in approximating log
baseline hazard functions and is easier to implement using a data augmentation algorithm; (vi) the
computational burden is not heavy, for example, it takes about 300 s to run a replication in the above
conducted simulation studies, and about 2 h to run the IBCSG data set.

Although BLasso method developed by Park and Casella (2008) has been extended to various
models including semiparametric structural equation models (Guo et al., 2012) and linear regression
models (Hans, 2009; Lykou and Ntzoufras, 2013), little work has been developed on a SJMLS.
Motivated by a data set from a clinical trial conducted by IBCSG, we presented a BLasso method
to simultaneously estimate parameters and implement both shrinkage and variable selection for the
considered SJMLS. Our simulation results suggested that the proposed BLasso procedure worked
well under our considered settings in the sense that (i) the absolute biases of Bayesian estimates
of parameters were less than 0.1 and their corresponding RMS values were less than 0.15; (ii) the
average frequencies of correctly identifying unimportant covariates were more than 90%. But more
simulation studies found that Bayesian variable selection and estimation strongly depend on the
censoring percentage. The proposed BLasso can be easily extended to a complicated SJMLS with
ordinal and nonignorable missing data in the longitudinal measurements and nonparametric random
effects that are commonly encountered in practice.

Future work with the proposed SJMLS or the above-mentioned complicated SJMLS includes
(i) simultaneous selection of fixed and random effects via the boosting algorithm (Buhlmann and
Hothorn, 2007; Hofner et al., 2013), which is an interesting topic; (ii) a robust inference procedure,
which does not depend on the normality assumption of the random effects; (iii) nonlinear effects of
the covariates on each of the models; (iv) more sophisticated spline models with knots automatically
selected may be used to improve the performance of the proposed procedures.
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A Appendix

Bayesian inference on SJMLS

To simultaneously obtain Bayesian estimates of unknown parameters, baseline hazard functions and
random effects and select covariates in the considered SJMLS, the Gibbs sampler is employed to
draw a sequence of random observations from the joint posterior distribution p(θY , θT , θε, b|Do).
The block Gibbs sampler is conducted by iteratively sampling observations from the following
conditional distributions: p(θY |θT , θε, b, Do), p(θT |θY , θε, b, Do), p(θε|θY , b, Do), and
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p(b|θY , θT , θε, Do). The conditional distributions required in implementing the Gibbs sampler
are presented as follows.

Block Gibbs Sampler (A): Conditional distribution related to θy
Let θy = {β,�}, where β = (β1, . . . ,βK ) in which βk = (βk0, βk1, . . . , βkr)

T for k = 1, . . . , K. It
follows from equations (8), (10), and (11) that the conditional distribution p(βk|θT , θε, b, Do) is pro-
portional to

exp

⎧⎨
⎩

n∑
i=1

M∑
m=1

⎛
⎝δimψmkβ

T
kRi(Tim) −

Lm∑
�=1

Dim�

⎞
⎠− 1

2
βT

kH−1
βk

βk+

−
n∑

i=1

ni∑
j=1

1

2σ kk
Li j

(
yi jk − βT

k Ri(ti j ) − W T
ki(ti j )bi

)2

⎫⎬
⎭ ,

which is not a familiar distribution, where σ kk
Li j

is the (k, k)-th element of covariance matrix �Li j
,

and W T
ki(ti j ) is the k-th row vector of design matrix Wi(ti j ). Thus, it is rather difficult to directly

sample observations from p(βk|θT , θε, b, Do). Therefore, the well-known MH algorithm is adopted to
simulate observations from the above conditional distribution, which is implemented as follows. Given
the current value β

(�)

k , a new candidate βk is generated from the proposal distribution Np(β
(�)

k , σ 2
βk

ϒβk
)

with σ 2
βk

set to control the acceptance rate, and then the generated candidate βk is accepted with
probability

min

{
1,

p(βk|θT , θε, b, Do)

p(β
(�)

k |θT , θε, b, Do)

}
,

where ϒ−1
βk

= H−1
βk

+ �n
i=1�

M
m=1�

Lm
�=1ψ

2
mkRi(V

∗
im�)Ri(V

∗
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TDim� + �n
i=1�

ni
j=1Ri(ti j )Ri(ti j )
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with

V ∗
im� = 0.5(Cm� + Cm,�−1)1(Cm� ≤ Tim) + 0.5(Tim + Cm,�−1)1(Cm,�−1 < Tim ≤ Cm�).
From the prior distribution of � and the fact that bi ∼ Nq(0,�), it is easily shown that the conditional

distribution of � is given by p(�|b) ∼ IWq(� + n, �n
i=1bib

T
i + R0).

Block Gibbs Sampler (B): Conditional distribution related to θT
Let θT = {(ψm, γm,ϕm) : m = 1, . . . , M}. Then, ψm, γm, and ϕm can be iteratively sampled from

their corresponding conditional distributions, which are given as follows. The conditional distribution
p(ψm|β, γm,ϕm, b, Do) is proportional to

exp

⎧⎨
⎩

n∑
i=1

⎛
⎝δimψT

mη(Ri(Tim),Wi(Tim), bi) −
Lm∑
�=1

Dim�

⎞
⎠− 1

2
ψT

mH−1
ψm

ψm

⎫⎬
⎭ ,

where Dim� is defined in equation (11).
Conditional distribution p(γm|β,ψm,ϕm, b, Do) is proportional to

exp

⎧⎨
⎩

n∑
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⎛
⎝δimγT

mξi −
Lm∑
�=1
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⎞
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2
γT
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⎭ .

Conditional distribution p(ϕm|β,ψm, γm, b, Do) is proportional to

exp

⎧⎨
⎩
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where Hϕm
is a (hm + s + 1) × (hm + s + 1) second difference penalized matrix with rank hm + s − 1

(Lang and Brezger, 2004). The MH algorithm for sampling observations from the above conditional
distribution is similar to that for sampling βk. Thus, the details are omitted. The conditional distribution
of ς2

m is given by p(ς−2
m |ϕm) ∼ Gamma(am

ς + 0.5(hm + s − 1), bm
ς + 0.5ϕT

mH−1
ϕm

ϕm).
Block Gibbs Sampler (C): Conditional distribution related to b
Conditional distribution p(bi|θY , θT , θε, Do) is proportional to

exp

⎧⎨
⎩

n∑
i=1

M∑
m=1

⎛
⎝δimψT

mWi(Tim)bi −
Lm∑
�=1
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2
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i �
−1bi+

− 1
2

n∑
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ni∑
j=1

(yi j − η(Ri(ti j ), bi))
T�−1

Li j
(yi j − η(Ri(ti j ), bi))

⎫⎬
⎭ .

Similarly, the MH algorithm is used to sample bi from the above conditional distribution for i =
1, . . . , n.

Block Gibbs Sampler (D): Conditional distribution related to θε

Let θε denote all unknown parameters associated with distribution of εi j , θε can be iteratively
sampled by using the following steps:

Step (a). Let π = {π1, . . . , πG} and L = {Li j : i = 1, . . . , n, j = 1, . . . , ni}. It is easily shown that the
conditional distribution p(π|L, τ ) is distributed as the following generalized Dirichlet distribution:
p(π|L, τ ) ∼ Dir(a∗

1, b∗
1, . . . , a∗

G−1, b∗
G−1), where a∗

g = 1 + dg, b∗
g = τ +∑G

j=g+1 d j for g = 1, . . . , G − 1,
and dg is the number of Li j ’s whose value equals to g. Simulating observations from the conditional
distribution p(π|L, τ ) can be implemented as follows. First, κ∗

g is independently generated from a Beta
distribution Beta(a∗

g, b∗
g). Then, π1, . . . , πG are obtained by

π1 = κ∗
1 , πG = 1 −

G−1∑
g=1

πg, and πg =
g−1∏
j=1

(
1 − κ∗

j

)
κ∗

g for g �= 1 or G.

Step (b). The conditional distribution of τ given π is given by p(τ |π) ∼ Gamma(a1 + G − 1, a2 −∑G−1
g=1 log(1 − κ∗

g )).
Step (c). The conditional distribution of Li j given (π,μ,�, b) is given by

p(Li j |π,μ,�, yi j )
i.i.d.∼ Multinomial

(
π∗

i j1, . . . , π
∗
i jG

)
,

where π∗
i jg is proportional to πgp(yi j |μg,�g) with yi j |μg,�g ∼ NK (μg,�g), � = {�g : g = 1, . . . , G},

and μ = {μg : g = 1, . . . , G}.
Step (d). Let L∗

1, . . . , L∗
d be the d unique values of Li j ’s (i.e., unique number of “clusters”). The

conditional distribution of (σ kk
g )−1 (k = 1, . . . , K) is given by

(
σ kk

g

)−1 ∼ Gamma
(

c1 + 0.5, c2 + 0.5
(
μk

g − μk
μ

)2)
for g �∈ {L∗

1, . . . , L∗
d },

(σ kk
g )−1 ∼ Gamma

(
c1 + dg + 1

2
, c2 + 1

2

{
(μk

g − μk
μ)2 + A}) for g ∈ {L∗

1, . . . , L∗
d

}
,

where A =∑{(i, j):Li j=g}(ε̂i j − μg)
2, μk

g and μk
μ are the k-th element of vector μg and μμ, respectively.
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Step (e). The conditional distribution of μg is given by μg|μμ,�g ∼ NK (μμ,�g) for g �∈ {L∗
1, . . . , L∗

d },
and

p(μg|μμ,	, L, ε) ∼ NK

(∑
{(i, j):Li j=g} εi j + μμ

dg + 1
,

�g

dg + 1

)
for g ∈ {L∗

1, . . . , L∗
d },

where ε = {εi j : i = 1, . . . , n, j = 1, . . . , ni}.
Step (f). The conditional distribution for μμ is given by μμ|μg, �g ∼ NK (E, F), where F =

(
∑G

g=1 �−1
g + H0

μ

−1
)−1 and E = F(H0

μ

−1
ζ0

μ +∑G
g=1 �−1

g μg).

B Appendix

Sampling from the inverse Gaussian distribution

An inverse Gaussian distribution IG(a, b) (also known as the Wald distribution) with the mean
a > 0 and the shape parameter b > 0 has the following probability density function f (x; a, b) =
{b/(2πx3)}1/2 exp{−b(x − a)2/(2a2x)} for x > 0. An algorithm (Michael et al., 1976) for simulating ob-
servation X from IG(a, b) is given as follows. First, we generate a random variable η∗ from the standard
normal distribution (e.g., η∗ ∼ N(0, 1)), and denote v = a + a2η∗2/(2b) − a/

√
4abη∗2 + a2η∗4/(2b).

Second, we sample a random number u from a uniform distributionU (0, 1). Let X = v if u ≤ a/(a + v),
and X = a2/v otherwise.

C Appendix

Variables in IBCSG data

1. Four untransformed longitudinal QOL indicators
y1: physical well-being on a scale of zero (lousy) to hundred (good);
y2: mood on a scale of zero (miserable) to hundred (happy);
y3: appetite on a scale of zero (none) to hundred (good);
y4: perceived coping (how much effort does it cost you to cope with your illness?) on a scale

of zero (a great deal) to hundred (none).
2. Observed event times in survival submodel

Ti1: the monitored disease-free survival time, abbreviated as “DFS”;
Ti2: the monitored overall survival time, abbreviated as “OS”.

3. Covariates in the considered SJMLS
Ri1: the number of positive nodes of the tumor, abbreviated as “#Positive nodes”;
Ri2: three versus six initial cycles of oral cyclophosphamide, methotrexate, and fluorouracil

(CMF), abbreviated as “#Initial cycle”;
Ri3: the reintroduction of three single courses of delayed chemotherapy, abbreviated as

“Reintroduction”;
Ri4: the interaction of the number of initial cycles and reintroduction, abbreviated as “#INIR”;
Ri5: whether the residence is Switzerland, abbreviated as “Residence: Switzerland”;
Ri6: whether the residence is Sweden, abbreviated as “Residence: Sweden”;
Ri7: the age of premenopausal woman, abbreviated as “#Age”;
Ri8: the estrogen receptor (ER) status (negative/positive), abbreviated as “ER.”
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