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Abstract: In this article, we propose a class ofmixedmodels for recurrent event data. The newmodels include

the proportional rates model and Box–Cox transformation rates models as special cases, and allow the effects

of covariates on the rate functions of counting processes to be proportional or convergent. For inference

on the model parameters, estimating equation approaches are developed. The asymptotic properties of the

resulting estimators are established and the finite sample performance of the proposed procedure is evaluated

through simulation studies. A real example with data taken from a clinic study on chronic granulomatous

disease (CGD) is also illustrated for the use of the proposed methodology. The Canadian Journal of
Statistics 39: 578–590; 2011 © 2011 Statistical Society of Canada

Résumé: Dans cet article, nous proposons une classe de modèles mixtes pour des donnes d’événements

récurrents. Les nouveaux modèles incluent le modèle de taux proportionels et ceux des taux avec transfor-

mation de Box-Cox comme cas spéciaux. Ils permettent aussi aux effets des covariables sur les fonctions

de taux des processus de comptage d’être proportionnel ou convergent. Une approche utilisant les équations

d’estimation est développée pour faire l’inférence sur les paramètres des modèles. Les propriétés asympto-

tiques des estimateurs résultants sont obtenues et la performance, pour de petits échantillons, de la procédure

proposée est évaluée par des études de simulation. La méthodologie proposée est illustrée à l’aide d’un

vrai exemple avec des données Tirées d’un essai clinique sur la granulomatose chronique familiale (CGD).

La revue canadienne de statistique 39: 578–590; 2011 © 2011 Société statistique du Canada

1. INTRODUCTION

For the analysis of recurrent event data, the most popular model is the proportional intensity

model proposed by Anderson & Gill (1982). Under this model, the underlying counting process

arising from recurrent events is a Poisson process. This may not be true in practice. To relax

such Poisson assumption, several authors have studied proportional means and rates models;

see Pepe & Cai (1993), Lawless & Nadeau (1995), Lin et al. (2000), and Ghosh & Lin (2002)

among others. However, in the proportional means and rates models, the covariates have a fixed

multiplicative effect on the mean and rate functions. In many applications, it is unreasonable to

assume that the effects of covariates measured at the beginning of a study remain fixed over time.

For example, Lin, Wei, & Ying (2001) examined data on recurrent pulmonary exacerbations from

a cystic fibrosis clinical trial and found that the two mean functions for the numbers of events in

the rhDNase and placebo groups converge with time rather than being proportional over time.
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To allow nonproportional means and rates, several semiparametric regression methods have

been studied. For example, Lin, Wei, & Ying (1998) considered the accelerated failure time

models for counting processes, Lin, Wei, & Ying (2001) and Zeng & Lin (2006) studied a class

of semiparametric transformation models for point processes through a specified link function,

and Ghosh (2004) presented an accelerated rates regression model for recurrent event data in

which the effect of covariates is to transform the time scale for a baseline rate function. Cook

& Lawless (2007) and Aalen, Borgan, & Gjessing (2008) provided comprehensive reviews of

methods for recurrent events data. Recently, Schaubel, Zeng, &Cai (2006) and Zeng&Cai (2010)

provided an additive rates model, in which the covariate effects are assumed to be additive to the

unspecified baseline rate, Zeng & Lin (2007) considered a class of semiparametric transformation

models with random effects for recurrent events, Sun & Su (2008) studied a very general mean

model which includes the accelerated and proportional mean models as special cases, Liu et

al. (2010) considered an additive–multiplicative rates model, wherein some covariate effects are

additive while others are multiplicative, and Sun, Tong, & Zhou (2011) proposed a family of

Box–Cox transformation models, which takes Box–Cox transformation for both the conditional

mean function and the baseline mean function of the point process. All the above models cannot

allow for both proportional and converging covariate effects on the rate function of recurrent

event data.

In this article, we propose a class of mixed models to display a variety of patterns for the

effects of covariates on the rate function in the spirit of the work of Barker & Henderson (2004),

which introduced a mixed model for classical survival data. The proposed models include the

proportional ratesmodel and a family of Box–Cox transformationmodels as subclasses, and allow

for both proportional and converging effects.

Specifically, let N∗(t) be the number of events that have occurred by time t and let Z be a

vector of covariates. Define dµ(t|Z) = E{dN∗(t)|Z}. The proportional rates model is given by

dµ(t|Z) = eβ′Z dµ0(t),

and a class of Box–Cox transformation models take the form

dµ(t|Z) = eβ′Z eγµ0(t)

1 + eβ′Z(eγµ0(t) − 1)
dµ0(t)

where dµ0(t) = E{dN∗(t)|Z = 0}, which is referred to as an unspecified baseline rate function,

β is a vector of regression parameters, and γ ≥ 0 is an unknown scalar parameter (Sun, Tong,

& Zhou, 2011). Note that the proportional rates model only allows for proportional covariate

effects and the Box–Cox transformation model only allows for converging covariate effects on

the rate function. In practice, however, some covariates may have proportional effects, and the

other covariates may have converging effects. To this end, letZ = (Z′
1, Z

′
2)

′, whereZ1 andZ2 are

p × 1 and q × 1 vectors of covariates, respectively. Assume that covariates Z1 have proportional

effects, and Z2 have converging effects. By combining the proportional rates model and a class

of Box–Cox transformation models, we obtain a class of mixed models, which take the form

dµ(t|Z) = eβ′
1
Z1+β′

2
Z2 eγµ0(t)

1 + eβ′
2
Z2 (eγµ0(t) − 1)

dµ0(t), (1)

where β1 and β2 are vectors of regression parameters. Clearly, when γ = 0, (1) reduces to

the proportional rates model with covariates Z. If β1 = 0, the model reduces to a family of

Box–Cox transformation models with covariates Z2. If β2 = 0, the model reduces to the propor-

tional rates model with covariate Z1. When N∗(t) is a simple counting process (i.e., only take a
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value of 0 or 1), this family of models reduces to the mixed proportional and converging hazards

models (Barker & Henderson, 2004).

For the analysis, we introduce the following baseline function

R(t) = 1

γ

(
eγµ0(t) − 1

)
.

Note that R(t) is positive, and increases with time. As γ → 0, R(t) → µ0(t). Substituting R(t)

into (1), we get

dµ(t|Z) = eβ′
1
Z1+β′

2
Z2

1 + γ eβ′
2
Z2R(t)

dR(t). (2)

To demonstrate some properties of the mixed model, we consider rate ratios. Fixing the Z2

covariates and taking a ratio of rates with two different values of Z1, we have

dµ(t|Z1, Z2)

dµ(t|Z∗
1, Z2)

= eβ′
1
(Z1−Z∗

1
),

which is proportional in Z1. However, fixing Z1 and taking rate ratios for two values of Z2 gives

dµ(t|Z1, Z2)

dµ(t|Z1, Z
∗
2)

= eβ′
2
(Z2−Z∗

2
) + γ eβ′

2
Z2R(t)

1 + γ eβ′
2
Z2R(t)

.

This ratio is eβ′
2
(Z2−Z∗

2
) at t = 0 and then converges to one as t increases. Themixedmodel therefore

allows for a proportional effect in Z1 and a converging effect in Z2. Clearly, dµ(t|Z)/dµ0(t) →
eβ′

1
Z1 as t → ∞, and the parameter γ controls the rate of convergence. If γ is close to zero, the

rates converge to baseline levels extremely slowly; when γ is extremely large, the rate would

converge almost immediately. This situation could occur when a covariate has a large effect on

recurrent event times at the beginning of a study and then has little or no effect shortly afterwards.

To ensure the identifiability of γ , it is necessary to assume that β2 is not identically zero.

The remainder of the paper is organised as follows. Section 2 presents inference procedures

for the regression parameters and the scalar parameter based on recurrent event data, and the

asymptotic properties of the proposed estimates are established. Section 3 reports some results

from simulation studies conducted for evaluating the proposed methods. In Section 4, we apply

the methodology to the CGD data and Section 5 concludes with some remarks.

2. ESTIMATION PROCEDURES

In practice,N∗(·) may not be fully observed since the subject is often followed for a limited period

of time. Specifically, N(t) = N∗(t ∧ C) is observed instead of N∗(t), where C is the follow-up

or censoring time, and a ∧ b = min(a, b). Following Lin, Wei, & Ying (2001), we assume that

C is independent of N∗(·) conditional on Z. For a random sample of n subjects, the observed

data consist of {Ci, Ni(t), Zi; t ≤ Ci} (i = 1, . . . , n), where Zi = (Z′
1i, Z

′
2i)

′. Here, we focus on
estimation of θ = (β′

1, β
′
2, γ)

′ in model (1). Let θ0 = (β′
10, β

′
20, γ0)

′ be the true value of θ. Define

MiR(t) =
t∫

0

{
e−β′

10
Z1i−β′

20
Z2i + γ0 e

−β′
10

Z1iR0(u)
}
dNi(u) −

t∫
0

Yi(u) dR0(u),

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 MIXED MODELS FOR RECURRENT EVENT DATA 581

where Yi(t) = I(Ci ≥ t), and R0(t) = γ−1
0 (eγ0µ0(t) − 1). Note that under model (1), MiR(t)’s are

zero-mean stochastic processes. Then, for given θ. a natural estimator for R0(t) is the solution to

n∑
i=1

[{
e−β′

1
Z1i−β′

2
Z2i + γ e−β′

1
Z1iR(t)

}
dNi(t) − Yi(t) dR(t)

]
= 0, 0 ≤ t ≤ τ,

where τ is a prespecified constant such that P(Ci ≥ τ) > 0. Denote this estimator by R̂(t; θ),

which can be obtained from the following integral equation

R̂(t; θ) =
t∫

0

γR̂(u; θ) d�̂(u;β1, 0) + �̂(t;β1, β2), (3)

where

�̂(t;β1, β2) =
t∫

0

∑n
i=1 e

−β′
1
Z1i−β′

2
Z2i dNi(u)∑n

i=1 Yi(u)
.

Thus it follows from (3) that R̂(t; θ) has the following explicit expression (e.g., Yang, 1992)

R̂(t; θ) = 1

P̂(t;β1, γ)

t∫
0

P̂(u−;β1, γ) d�̂(u;β1, β2),

where P̂(t;β1, γ) = ∏
u≤t{1 − γ��̂(u;β1, 0)} is the product-integral of γ�̂(u;β1, 0) over [0, t]

and ��̂(u;β1, 0) is the jump of �̂(u;β1, 0) at u.

Define

�̂k(t; , β1, β2) =
t∫

0

∑n
i=1 Zki e

−β′
1
Z1i−β′

2
Z2i dNi(u)∑n

i=1 Yi(u)
, k = 1, 2,

�̂1(t; θ) = − 1

P̂(t;β1, γ)

t∫
0

P̂(u−;β1, γ)
[
d�̂1(u;β1, β2) + γ{�̂1(t;β1, 0)

−�̂1(u−;β1, 0)} d�̂(u;β1, β2)
]
,

�̂2(t; θ) = − 1

P̂(t;β1, γ)

t∫
0

P̂(u−;β1, γ) d�̂2(u;β1, β2),

�̂3(t; θ) = 1

P̂(t;β1, γ)

t∫
0

P̂(u−;β1, γ)
[
�̂(t;β1, 0) − �̂(u−;β1, 0)

]
d�̂(u;β1, β2),
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and �̂(t; θ) = (�̂′
1(t; θ), �̂

′
2(t; θ), �̂3(t; θ))

′. Using the partial-score function (Lin et al., 2000)with
R(t) replaced by R̂(t; θ), we propose to estimate θ by the solution to the following score equation

U(θ) =
n∑

i=1

τ∫
0

{
Xi(t; θ) − X̄(t; θ)

}
dNi(t) = 0, (4)

where

Xi(t; θ) =
(
(e−β′

2
Z2i + γR̂(t; θ))Z′

1i, e
−β′

2
Z2iZ′

2i, −R̂(t; θ)
)′ − γ�̂(t; θ)

{e−β′
2
Z2i + γR̂(t; θ)}

,

and

X̄(t; θ) =
∑n

i=1 Yi(t)Xi(t; θ)
{
e−β′

1
Z1i−β′

2
Z2i + γ e−β′

1
Z1i R̂(t; θ)

}−1

∑n
i=1 Yi(t)

{
e−β′

1
Z1i−β′

2
Z2i + γ e−β′

1
Z1i R̂(t; θ)

}−1
.

Denote the solution to U(θ) = 0 by θ̂ = (β̂
′
1, β̂2, γ̂)

′. Then θ̂ can be obtained easily through

Newton–Raphson method. As in the simulation studies below, the Newton–Raphson method

usually converges quickly, and it took about one second for one run with n = 500 in Matlab.

To find out the asymptotic distribution of θ̂, define R̂(t) = R̂(t; θ̂), π̂(t) = n−1
∑n

i=1 Yi(t),

D̂i(t) = eZ′
1i

β̂1{e−Z′
2i

β̂2 + γ̂R̂(t)}−1, D̂
∗
i (t) = {e−Z′

2i
β̂2 + γ̂R̂(t)}−1,

D̄∗(t) =
n∑

i=1

Yi(t)D̂i(t)D̂
∗
i (t)

/ n∑
i=1

Yi(t)D̂i(t),

M̂i(t) = Ni(t) −
t∫

0

Yi(u)D̂i(u) dR̂(u),

ξ̂(t) = γ̂P̂(t; β̂1, γ̂)

nπ̂(t)

n∑
i=1

τ∫
t

1

P̂(u; β̂1, γ̂)
Yi(u)D̂i(u){D̂∗

i (u) − D̄∗(u)}Xi(u; θ̂) dR̂(u),

and

η̂i =
τ∫

0

{
Xi(t; θ̂) − X̄(t; θ̂) + D̂i(t)

−1ξ̂(t)
}
dM̂i(t).

Then under some regularity conditions, following the argument given in the Appendix of Sun,

Tong, & Zhou (2011), it can be shown that θ̂ is strongly consistent and n1/2(θ̂ − θ0) is asymp-

totically normal with mean zero and covariance matrix that can be consistently estimated by

Â
−1

�̂Â
−1

, where �̂ = n−1
∑n

i=1 η̂⊗2
i , and

Â = n−1
n∑

i=1

τ∫
0

Yi(t)D̂i(t)
{
Xi(t; θ̂) − X̄(t; θ̂)

}⊗2
dR̂(t).

Here v⊗2 = vv′ for a vector v.
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3. SIMULATION STUDY

We conducted a simulation study to examine the finite sample properties of the proposed estima-

tors. LetZ1i andZ2i be independent Bernoulli random variables with success probability 0.5. We

set µ0(t) = t (a homogeneous process) or µ0(t) = 0.4(t2 + 2t) (a nonhomogeneous process). For

givenZ1i andZ2i, we generated recurrent event times from the Poisson process with the intensity

function (1). The censoring time Ci was taken as min(C∗
i , τ), where C∗

i follows a uniform dis-

tribution on (1, 6) and τ = 3 representing the largest follow-up time. For each simulation study,

we considered β2 = 1, and β1 = 0, 0.5 representing no effect and a positive effect of Z1i on the

recurrent event times, respectively. Set γ = 0.05, 0.1, or 0.5, which control the convergence rate

of the effect of Z2. The average number of events per subject ranged from 2.9 to 5.9 for different

settings. The results presented below are based on 1,000 replications with sample sizes n = 100,

200, 300, and 500.

Tables 1 and 2 show the simulation results on estimation of β = (β1, β2) and γ for µ0(t) = t,

and Tables 3 and 4 present the simulation results for µ0(t) = 0.4(t2 + 2t). The tables include the

Table 1: Simulation results for estimation of β1 and β2 with µ0(t) = t.

β1 β2

β1 n γ Bias SSE ESE CP Bias SSE ESE CP

0 100 0.05 0.0030 0.0947 0.0941 0.956 0.0319 0.2177 0.2170 0.951

0.1 0.0048 0.1006 0.0968 0.938 0.0351 0.2454 0.2321 0.941

0.5 0.0025 0.1102 0.1078 0.939 0.0761 0.3889 0.3509 0.941

200 0.05 −0.0032 0.0678 0.0666 0.943 0.0269 0.1523 0.1525 0.947

0.1 0.0002 0.0698 0.0687 0.943 0.0102 0.1632 0.1623 0.950

0.5 −0.0001 0.0800 0.0767 0.942 0.0317 0.2428 0.2396 0.943

300 0.05 −0.0014 0.0564 0.0546 0.942 0.0094 0.1235 0.1232 0.954

0.1 0.0000 0.0556 0.0559 0.958 0.0138 0.1335 0.1325 0.949

0.5 −0.0016 0.0659 0.0623 0.947 0.0239 0.1920 0.1917 0.953

500 0.05 −0.0004 0.0439 0.0422 0.941 −0.0026 0.0998 0.0949 0.939

0.1 −0.0010 0.0440 0.0434 0.956 0.0081 0.1044 0.1026 0.951

0.5 0.0003 0.0484 0.0485 0.952 0.0128 0.1421 0.1477 0.952

0.5 100 0.05 0.0031 0.0891 0.0837 0.933 0.0219 0.1919 0.1857 0.935

0.1 −0.0051 0.0908 0.0865 0.933 0.0333 0.2094 0.2005 0.936

0.5 0.0057 0.0980 0.0963 0.943 0.0764 0.3085 0.3000 0.943

200 0.05 −0.0013 0.0616 0.0597 0.943 0.0061 0.1344 0.1311 0.949

0.1 0.0010 0.0599 0.0612 0.951 0.0054 0.1397 0.1406 0.956

0.5 −0.0002 0.0698 0.0687 0.951 0.0311 0.2186 0.2070 0.933

300 0.05 0.0006 0.0491 0.0488 0.952 0.0129 0.1065 0.1075 0.951

0.1 0.0007 0.0502 0.0500 0.947 −0.0021 0.1120 0.1140 0.952

0.5 0.0018 0.0570 0.0559 0.957 0.0160 0.1654 0.1657 0.950

500 0.05 0.0016 0.0371 0.0378 0.954 0.0062 0.0826 0.0829 0.958

0.1 0.0005 0.0389 0.0389 0.955 0.0006 0.0874 0.0886 0.957

0.5 0.0010 0.0443 0.0434 0.952 0.0127 0.1258 0.1286 0.954
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Table 2: Simulation results for estimation of γ with µ0(t) = t.

β1 = 0 β1 = 0.5

n γ Bias SSE ESE CP Bias SSE ESE CP

100 0.05 0.0079 0.0927 0.0895 0.948 0.0016 0.0765 0.0761 0.950

0.1 0.0119 0.1154 0.1077 0.940 0.0106 0.0959 0.0914 0.947

0.5 0.0817 0.4739 0.3288 0.942 0.0598 0.2982 0.2704 0.944

200 0.05 0.0092 0.0604 0.0620 0.963 0.0013 0.0551 0.0539 0.946

0.1 0.0038 0.0786 0.0747 0.939 0.0019 0.0634 0.0647 0.957

0.5 0.0370 0.2360 0.2145 0.946 0.0264 0.2011 0.1809 0.936

300 0.05 0.0021 0.0510 0.0505 0.942 0.0034 0.0436 0.0440 0.954

0.1 0.0043 0.0643 0.0603 0.938 −0.0004 0.0524 0.0526 0.945

0.5 0.0130 0.1672 0.1652 0.946 0.0101 0.1492 0.1432 0.942

500 0.05 −0.0017 0.0408 0.0390 0.936 0.0015 0.0336 0.0339 0.947

0.1 0.0028 0.0467 0.0468 0.952 −0.0011 0.0395 0.0404 0.951

0.5 0.0056 0.1205 0.1264 0.957 0.0105 0.1118 0.1105 0.948

estimated biases (Bias) given by the sample means minus the true values, the sampling standard

errors (SSE), the sampling means of the estimated standard errors estimates (ESE), and the 95%

empirical coverage probabilities (CP). The results indicate that the estimates seem to be unbiased

and the proposed variance estimation procedure provides reasonable estimates. Also the results

on the empirical coverage probabilities indicate that the normal approximations are appropriate.

Note that both the estimated bias and standard error of β̂1 seem not affected by the value of γ . This

is reasonable because Z1 has the same effect for different values of γ . But both the estimated bias

and standard error of β̂2 slightly increase with γ . This is probably because Z2 has a converging

effect, and the rate depends on γ . For larger values of γ , the effect of Z2 converges more rapidly,

and hence, the data contain less information on β2.

To investigate the distributional behaviour of the proposed estimators β̂1, β̂2, and γ in a finite

sample situation, we provide some QQ-plots in Figure 1 with n = 300, β1 = 0.5, and µ0(t) = t,

which suggest that the normal approximation is reasonable.

To compare the proposed estimation procedure with the maximum partial likelihood estimates

(MPLE) proposed by Lin et al. (2000) for the proportional rates model, we conducted additional

simulation studies for the situation where γ = 0. Table 5 presents the results on estimation of β =
(β1, β2) for γ = 0 andµ0(t) = t under the same setups as those inTable 1. It can be seen fromTable

5 that the estimates for β1 are almost the same for the two methods, and our estimated standard

errors for β2 are somewhat larger than those of the MPLE. Both methods provide reasonable

estimates for β, and the proposed estimator γ̂ performs well for γ = 0. We also generated data

with µ0(t) = 0.4(t2 + 2t), and obtained similar results.

Although γ = 0 looks to be a boundary point, the mixed model (1) is still a valid marginal

rate model for small negative γ provided the denominator of (1) stays positive for 0 ≤ t ≤ τ.

We further investigated the size and power of the Wald test for the hypothesis γ = 0 based on

the asymptotic distribution of γ̂ presented in Section 2 at the significance level of 5%, and the

estimated sizes and powers are summarised in Table 6. The results suggest that the Wald test

procedure seems to have the right size and reasonable power. As expected, the power increases

as the sample size and the value of γ increase.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 MIXED MODELS FOR RECURRENT EVENT DATA 585

Table 3: Simulation results for estimation of β1 and β2 with µ0(t) = 0.4(t2 + 2t).

β1 β2

β1 n γ Bias SSE ESE CP Bias SSE ESE CP

0 100 0.05 −0.0013 0.0994 0.0965 0.939 0.0296 0.2195 0.2181 0.953

0.1 0.0023 0.0997 0.0988 0.943 0.0475 0.2421 0.2341 0.946

0.5 0.0014 0.1165 0.1108 0.929 0.0634 0.3715 0.3511 0.940

200 0.05 0.0034 0.0705 0.0684 0.943 0.0128 0.1533 0.1530 0.947

0.1 −0.0028 0.0699 0.0703 0.953 0.0149 0.1634 0.1638 0.942

0.5 0.0056 0.0787 0.0786 0.946 0.0465 0.2452 0.2410 0.950

300 0.05 −0.0021 0.0561 0.0559 0.956 0.0023 0.1240 0.1241 0.946

0.1 −0.0001 0.0576 0.0573 0.942 0.0020 0.1341 0.1330 0.951

0.5 −0.0000 0.0652 0.0641 0.940 0.0068 0.2014 0.1922 0.936

500 0.05 −0.0004 0.0436 0.0432 0.949 0.0008 0.0958 0.0961 0.941

0.1 0.0005 0.0452 0.0445 0.940 0.0060 0.1025 0.1030 0.955

0.5 −0.0021 0.0507 0.0497 0.944 0.0152 0.1467 0.1490 0.953

0.5 100 0.05 0.0030 0.0906 0.0866 0.937 0.0061 0.1937 0.1863 0.939

0.1 0.0020 0.0948 0.0883 0.930 0.0184 0.2028 0.2019 0.945

0.5 0.0001 0.0982 0.0993 0.955 0.0564 0.3316 0.2985 0.933

200 0.05 −0.0014 0.0645 0.0613 0.944 0.0040 0.1335 0.1323 0.941

0.1 0.0023 0.0641 0.0631 0.939 0.0077 0.1420 0.1418 0.953

0.5 0.0014 0.0727 0.0701 0.937 0.0365 0.2171 0.2084 0.938

300 0.05 0.0031 0.0507 0.0500 0.948 0.0059 0.1051 0.1078 0.963

0.1 −0.0005 0.0537 0.0515 0.945 0.0092 0.1144 0.1157 0.946

0.5 0.0007 0.0571 0.0574 0.948 0.0175 0.1632 0.1675 0.951

500 0.05 0.0011 0.0384 0.0388 0.951 0.0040 0.0853 0.0837 0.943

0.1 0.0001 0.0413 0.0399 0.946 0.0061 0.0889 0.0897 0.954

0.5 0.0010 0.0431 0.0445 0.952 0.0084 0.1243 0.1286 0.950

4. APPLICATION

In this section we apply the methodology proposed in the previous sections to a set of recurrent

event data arising from a double-blinded clinical trial of chronic granulomatous disease (CGD)

patients,where theCGD is a group of inherited rare disorders of the immune function characterised

by recurrent pyogenic infections which usually occur early in life and may lead to death in

childhood. The trial involving two treatment groups, placebo or gamma interferon, was conducted

by the International CGD Cooperative Study Group and consists of 128 eligible patients recruited

betweenOctober 1988 andMarch 1989. The goal of the study is to investigate the ability of gamma

interferon to reduce the rate of serious infections requiring hospitalisation. The data set includes

the dates of randomisation and each serious infection during the follow-up period for each patient.

In total, 30 of the 65 patients in the placebo group and 14 of 63 in the gamma interferon group

had experienced at least one serious infection. The data are given in Appendix D of Fleming &

Harrington (1991) and were analysed by Lin et al. (2000) and Sun & Su (2008) among others.
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Table 4: Simulation results for estimation of γ with µ0(t) = 0.4(t2 + 2t).

β1 = 0 β1 = 0.5

n γ Bias SSE ESE CP Bias SSE ESE CP

100 0.05 0.0123 0.0942 0.0911 0.953 0.0002 0.0811 0.0782 0.938

0.1 0.0135 0.1106 0.1082 0.954 0.0049 0.0935 0.0937 0.956

0.5 0.0692 0.4112 0.3356 0.938 0.0454 0.3431 0.2738 0.933

200 0.05 0.0026 0.0646 0.0634 0.950 0.0011 0.0553 0.0548 0.955

0.1 0.0037 0.0776 0.0756 0.943 0.0022 0.0646 0.0657 0.955

0.5 0.0416 0.2487 0.2187 0.945 0.0319 0.2086 0.1864 0.945

300 0.05 0.0011 0.0516 0.0514 0.950 0.0018 0.0437 0.0446 0.952

0.1 −0.0012 0.0619 0.0615 0.951 0.0032 0.0527 0.0531 0.952

0.5 0.0090 0.1876 0.1713 0.927 0.0151 0.1527 0.1476 0.947

500 0.05 −0.0000 0.0397 0.0396 0.946 0.0010 0.0342 0.0345 0.957

0.1 0.0021 0.0467 0.0474 0.958 0.0029 0.0403 0.0412 0.955

0.5 0.0129 0.1301 0.1307 0.948 0.0056 0.1120 0.1126 0.952

Figure 1: QQ-plots with n = 300, β1 = 0.5, and µ0(t) = t. QSE stands for quantile of standardised
estimates.
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Table 5: Comparison of the proposed method with the MPLE when γ = 0 and µ0(t) = t.

Our method MPLE

β1 n Parameter Bias SSE ESE CP Bias SSE ESE CP

0 100 β1 0.0002 0.0903 0.0908 0.952 0.0002 0.0903 0.0908 0.952

β2 0.0208 0.1968 0.1975 0.941 0.0018 0.1044 0.1017 0.937

γ 0.0039 0.0716 0.0724 0.954 – – – –

200 β1 −0.0013 0.0649 0.0642 0.956 −0.0013 0.0648 0.0642 0.956

β2 0.0186 0.1411 0.1402 0.957 0.0032 0.0734 0.0726 0.948

γ 0.0043 0.0513 0.0507 0.955 – – – –

300 β1 0.0002 0.0509 0.0524 0.962 0.0002 0.0509 0.0524 0.962

β2 0.0086 0.1143 0.1135 0.954 0.0003 0.0605 0.0591 0.950

γ 0.0021 0.0420 0.0412 0.947 – – – –

500 β1 0.0017 0.0403 0.0407 0.946 0.0018 0.0403 0.0407 0.946

β2 0.0018 0.0887 0.0879 0.955 −0.0007 0.0461 0.0459 0.944

γ 0.0002 0.0325 0.0320 0.940 – – – –

0.5 100 β1 0.0016 0.0820 0.0812 0.939 0.0017 0.0821 0.0811 0.939

β2 0.0153 0.1842 0.1714 0.924 0.0002 0.0922 0.0885 0.931

γ 0.0025 0.0661 0.0629 0.942 – – – –

200 β1 0.0016 0.0585 0.0575 0.947 0.0015 0.0585 0.0575 0.947

β2 0.0031 0.1215 0.1203 0.938 −0.0017 0.0641 0.0627 0.947

γ 0.0005 0.0435 0.0438 0.953 – – – –

300 β1 0.0006 0.0483 0.0469 0.943 0.0006 0.0484 0.0469 0.942

β2 0.0039 0.0991 0.0984 0.947 −0.0009 0.0542 0.0513 0.943

γ 0.0010 0.0353 0.0358 0.961 – – – –

500 β1 0.0006 0.0366 0.0364 0.950 0.0006 0.0366 0.0364 0.951

β2 0.0010 0.0778 0.0763 0.938 0.0000 0.0402 0.0398 0.948

γ −0.0002 0.0279 0.0276 0.949 – – – –

For the analysis, we consider fitting model (1) with Z = (Z1, Z2)
′ for the data, where Z1

denotes the patient’s age in year at enrolment, and Z2 is the treatment indicator, taking value 1

for the patients who received gamma interferon. This model would be useful for predicting the

experience of infection for patients with specific age and treatment assignments. Let τ be the

largest follow-up time. The application of the proposed method gives estimates of the covariate

coefficients as β̂1 = −0.0303 and β̂2 = −1.4560 with the estimated standard errors of 0.0143

and 0.5429, respectively. Both covariate effects are significant at 5% level, and the results are

consistent with those obtained by Fleming & Harrington (1991) and Lin et al. (2000).

To give a more concrete interpretation, we also obtained the estimate of the convergence rate

parameter as γ̂ = 0.5245 with the estimated standard error 0.6646, which implies a high degree of

uncertainty, and the scale parameter γ is not significantly different from 0. This result suggests that

the proportional rates model is appropriate for this set of data. Sun & Su (2008) also analysed the

same CGD data using a class of accelerated means regression models. Their results showed that

the covariates have no effect of time-scale change, and the proportional effect is highly significant
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Table 6: Estimated sizes and powers of the Wald test for testing γ = 0.

µ0(t) = t µ0(t) = 0.4(t2 + 2t)

β1 n γ = 0 γ = 0.1 γ = 0.3 γ = 0.5 γ = 0 γ = 0.1 γ = 0.3 γ = 0.5

0 100 0.055 0.165 0.384 0.381 0.047 0.156 0.345 0.362

200 0.041 0.272 0.712 0.795 0.044 0.248 0.666 0.792

300 0.037 0.412 0.859 0.943 0.043 0.359 0.861 0.924

500 0.052 0.603 0.980 0.998 0.058 0.587 0.970 0.995

0.5 100 0.054 0.198 0.505 0.596 0.053 0.171 0.477 0.521

200 0.052 0.349 0.825 0.904 0.066 0.320 0.815 0.891

300 0.044 0.480 0.952 0.983 0.046 0.516 0.944 0.974

500 0.041 0.708 0.996 1.000 0.059 0.717 0.995 1.000

on the mean function of recurrent infections. These findings are consistent with those obtained

by our proposed method.

To assess the overall fit of model (1) for the CGD data, following Lin et al. (2000), we consider

the following cumulative sum of residuals:

F(t, z) = n−1/2
n∑

i=1

I(Zi ≤ z)M̂i(t),

where the event I(Zi ≤ z)means that each component ofZi is bounded above by the corresponding

component of z. Generate n independent standard normal random variablesG1, . . . , Gn, indepen-

dent of the data. It can be shown that the distribution of the process F(t, z) can be approximated

by that of the zero-mean Gaussian process

F̂(t, z) = n−1/2
n∑

i=1


̂i(t, z)Gi,

where


̂i(t, z) =
t∫

0

{
I(Zi ≤ z) − D̂i(u)

−1 Ŝ(u, z)

π̂(u)

}
dM̂i(u)

− B̂(t, z)′Â−1

τ∫
0

{
Xi(u; θ̂) − X̄(u; θ̂) + D̂i(u)

−1µ̂(u)
}
dM̂i(u),

Ŝ(u, z) = n−1
n∑

i=1

{
I(Zi ≤ z)

[
Yi(u)D̂i(u) − γ̂P̂(u; β̂1, γ̂)

×
t∫

u

1

P̂(v; β̂1, γ̂)
Yi(v)D̂i(v){D̂i(v) dR̂(v) − d�̂(v; β̂1, 0)}

]}
,
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and

B̂(t, z) = n−1
n∑

i=1




t∫
0

I(Zi ≤ z)Yi(u)D̂i(u)
[
Xi(u; θ̂) dR̂(u) + d�̂(u; θ̂)

]
in notation of Section 2.

For the CGD data, we obtained sup
0≤t≤τ,z

|F(t, z)| = 0.7040 with a p-value of 0.375 based on

1,000 realisations of the statistic sup
0≤t≤τ,z

|F(t, z)|, which can be obtained by repeatedly gener-

ating the standard normal random sample (G1, . . . , Gn) while fixing the data {Ci, Ni(·), Zi}
(i = 1, . . . , n) at their observed values. This result indicates that model (1) fits the data ade-

quately.

5. CONCLUDING REMARKS

In this article we have studied a class of mixed models for recurrent event data. A key advantage

of the proposed modeling approach is that the dependence structure of recurrent event times is left

unspecified and it allows for both the proportional and convergent covariate effects on the rate

function of the recurrent event process. Using the partial-score function, an estimation procedure

was proposed for the model parameters, and the asymptotic properties of the resulting estimators

were established. The numerical studies showed that the proposedmethodsworkwell for practical

situations.

An important application of the proposed approach is checking the assumption that effects of

covariates on recurrent event times are proportional or convergent. If the estimate of γ is close to

zero, then it is reasonable to proceed on Z2 with a proportional effect. Under such situation, the

proposed method and the maximum partial likelihood method provide reasonable estimates for

β. However, if the estimated γ is significantly different from zero, then it will be desirable to use

the proposed mixed models instead of the proportional rates models.

In the mixed model, there is a problem with the choice of Z1 and Z2. The backward selection

method presented in Barker & Henderson (2004) can be applied by replacing the likelihood with

the pseudo-partial likelihood. If covariates are of small dimension, we can identify proportional

and converging covariate effects on recurrent event times by fitting different models.

Note that our proposed method relies on the assumption that the recurrent event and censoring

processes are independent given covariates. In some applications, however, this noninformative

censoring assumptionmight be violated, especially if censoring is inducedby informative dropouts

and/or failure events. One possible way to adjust the method for such dependent censoring is to

model the censoring mechanism as in Liu, Wolfe, & Huang (2004). It would be interesting to

extend the proposed inference procedures to this situation.
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