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ABSTRACT. Several non-parametric test procedures have been proposed for incomplete survival

data: interval-censored failure time data. However, most of them have unknown asymptotic

properties with heuristically derived and/or complicated variance estimation. This article presents a

class of generalized log-rank tests for this type of survival data and establishes their asymptotics.

The methods are evaluated using simulation studies and illustrated by a set of real data from a

cancer study.

Key words: asymptotic distribution, clinical trials, interval-censoring, log-rank test, survival

comparison

1. Introduction

This paper discusses non-parametric comparison of survival functions based on incomplete

survival data: interval-censored failure time data (cf. Li et al., 1997; Sun, 1998; Pan, 2000). By

interval-censored data, we mean that the survival time of interest is observed only to belong to

an interval instead of being exactly known or right-censored as usually assumed (cf. Li, 2003).

One field in which interval-censored data often occur is observational or follow-up studies

where patients are not continuously under observation. In this case, only the status about the

occurrence of a certain event is observed at observation times, rather than the occurrence time

of the event. One such example from a cancer study is provided in Finkelstein (1986) and will

be discussed below in more details. Another field that commonly produces interval-censored

failure time data is tumorgenicity experiments (cf. Lagakos & Louis, 1988). In this case, it is

usually the case that the survival time of interest is either left-censored or right-censored, a

special case of interval-censored data.

Survival comparison is usually one of main goals in survival studies. For the problem, when

right-censored failure time data are available, a number of well-established methods have been

developed (cf. Fleming & Harrington, 1991; Kalbfleisch & Prentice, 2002). For the case of

interval-censored failure time data, several authors have discussed the problem. For example,

Peto & Peto (1972) considered the two-sample comparison problem under the Lehmann-type

alternatives G2ðtÞ ¼ Gh
1ðtÞ, where G1 and G2 are survival functions corresponding to the two

different samples and h is a parameter. In this case, the comparison problem reduces to testing

h ¼ 0 and they suggested using the score test, which they referred to as the log-rank test.

Assuming the proportional hazards model, a special case of Lehmann-type alternatives,

Finkelstein (1986) investigated the general k-sample comparison problem. For the problem,

she also suggested applying the score test for testing regression parameters equal to zero.

Following Finkelstein (1986), Sun (1996) studied the same problem without assuming the

proportional hazards model and developed a non-parametric test using the idea behind the
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log-rank test for right-censored data (cf. Kalbfleisch & Prentice, 2002). Other existing test

procedures for interval-censored data can be found in Sun (1998).

A main drawback for most of the existing test procedures for survival comparison based on

interval-censored failure time data is that they are ad hoc methods and their properties are

unknown. In particular, the variance estimation of the test statistics was usually heuristically

derived and/or is complicated. In this paper, we propose a class of non-parametric tests for the

problem; the proposed tests are generalizations of the log-rank test given in Peto & Peto

(1972). The tests are presented in section 2, which also discusses their relationship with some

existing tests. In section 3, the asymptotic distributions of the proposed test statistics are

derived and section 4 reports some simulation results for evaluating the proposed methodo-

logy. They suggest that the approach works well for the situations considered. Also in

section 4 we apply the approach to a real set of interval-censored data from a cancer study.

Section 5 contains some concluding remarks.

2. Generalized log-rank tests

Consider a survival study that involves n independent subjects from k different populations.

Let Ti denote the survival time of interest for subject i and nl the number of subjects from

population l with survival function Gl(t) and distribution function Fl(t) ¼ 1 � Gl(t),i ¼
1, . . ., n, l ¼ 1, 2, . . ., k, where n1 + � � � + nk ¼ n. Also let xi be the k � 1 vector of treat-

ment indicators associated with subject i whose lth element is equal to 1 if it is from population

l, and zero otherwise. Suppose that for subject i, we observe fxi,Ui,Vi,Di ¼ I(Ti � Ui),Ci ¼
I(Ui < Ti � Vi)g, where Ui and Vi are non-negative random variables independent of Ti such

that Ui < Vi with probability 1, i ¼ 1, . . ., n. Define

ðLi;Ri� ¼
ð0;Ui�; Ti � Ui ,
ðUi; Vi�; Ui < Ti � Vi,
ðVi;1Þ; Ti > Vi

8<
:

to be the interval to which Ti is observed to belong. Our goal is to test the hypothesis

H0 :G1(t) ¼ � � � ¼ Gk(t).

Let G0(t) denote the common survival function under H0 and ĜnðtÞ the non-parametric

maximum likelihood estimator of it, whose determination will be discussed below. To test H0,

we propose the following test statistic

Un ¼
Xn
i¼1

xi
nfĜnðLiÞg � nfĜnðRiÞg

ĜnðLiÞ � ĜnðRiÞ
;

where n is a known function over (0,1) and will be defined more formally in the next section.

Obviously, different n can be used and will yield different test statistics in practice. The above

statistics were motivated by Peto & Peto (1972), who studied Un with n(x) ¼ x log x for the

case of k ¼ 2 and referred it the log-rank test statistic. Rabinowitz et al. (1995) considered

similar statistics for regression analysis of interval-censored data under the accelerated failure

time model. In addition to complex covariance estimation, they did not give the proof of the

asymptotic distribution of the statistics.

To see the relationship between Un and some existing test statistics, let 0 ¼
s0 < s1 < � � � < sm ¼ 1 denote the ordered distinct time points in fLi, Ri; i ¼ 1, . . ., ng and

define aij ¼ I((sj�1, si] � (Li, Ri]), where I is the indicator function. Also define

p̂j ¼ ĜnðsjÞ=Ĝnðsj�1Þ and ĝj ¼ Ĝnðsj�1Þ � ĜnðsjÞ, j ¼ 1, . . ., m. Then the score test statistic

for H0 proposed by Finkelstein (1986) under the proportional hazards model has the form
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UF ¼
Xn
i¼1

xi
Xm
j¼1

log p̂j
Pm

k¼j aik ĝkPn
r¼1 airĝr

� log p̂j
1� p̂j

� �
aijĝjPn
r¼1 airĝr

( )
:

It can be shown that the inside term in UF can be rewritten as

ĜnðLiÞ log ĜnðLiÞ � ĜnðRiÞ log ĜnðRiÞ
ĜnðLiÞ � ĜnðRiÞ

:

Thus UF is equal to Un with n(x) ¼ x log x. It can also be proved that the test statistic given in

Sun (1996), which has the form

US ¼
Xn
i¼1

xi
Xm
j¼1

dij � nijdj
nj

� �
;

is asymptotically equivalent to Un with n(x) ¼ x log x, where

dij ¼
aijĝjP
u aiuĝu

; nij ¼
Xm
r¼j

airĝrP
u aiuĝu

; dj ¼
Xn
i¼1

aijĝjP
r airĝr

; nj ¼
Xm
u¼j

Xn
i¼1

aiuĝuP
r airĝr

:

In the above, we need to determine ĜnðtÞ. The simplest method for this, which is used below in

simulation studies and the example, is perhaps the direct application of the Turnbull’s self-

consistency algorithm (cf. Turnbull, 1976). An alternative is to use, for example, the approach

given by Gentleman & Geyer (1998); Sun (1998) gave a brief review of other available algo-

rithms.

3. Asymptotic distributions

In this section, we will establish the asymptotic distribution of Un. Let g(x) ¼ 1 � n(1 � x)

and assume that limx!0g(x) ¼ limx!1g(x) ¼ c0, where c0 is a constant. Also let H and h

denote the distribution and density functions of (Ui,Vi), respectively, F0(t) ¼ 1 � G0(t) and

F̂nðtÞ ¼ 1 � ĜnðtÞ. Then we can rewrite Un as

Ug ¼
Xn
i¼1

xi Di
gfF̂nðUiÞg � c0

F̂nðUiÞ
þ Ci

gfF̂nðViÞg � gfF̂nðUiÞg
F̂nðViÞ � F̂nðUiÞ

"
þ ð1� Di � CiÞ

c0 � gfF̂nðViÞg
1� F̂nðViÞ

#
:

Let k2 and m2 denote the Lebesgue measure on R2 and counting measure on the set

f(0,1),(1,0),(0,0)g, respectively. Define

qF0;H ðu; v; d; cÞ ¼ hðu; vÞfF0ðuÞgdfF0ðvÞ � F0ðuÞgcf1� F0ðvÞg1�d�c

with respect to k2 � m2, which is the density function of (Ui,Vi,Di,Ci). Also define dQ0 ¼
qF0,H

d(k2 � m2),

Qnðu; v; d; cÞ ¼
1

n

Xn
i¼1

1fðUi;ViÞ�ðu;vÞ;ðDi;CiÞ¼ðd;cÞg

and

K0ðu; v; d; cÞ ¼ d
gfF0ðuÞg � c0

F0ðuÞ
þ c

gfF0ðvÞg � gfF0ðuÞg
F0ðvÞ � F0ðuÞ

þ ð1� d� cÞ c0 � gfF0ðvÞg
1� F0ðvÞ

:

We assume that the regularity conditions given in Groeneboom and Wellner (1992) for the

strong consistency of F̂n hold. Also we assume that F0(t) has a support in [0,M] with a
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continuous density function and that there exist 0 < d0, e0 < M/2 and M0 < M such that

Pr(U < d0) ¼ 0, Pr(U + e0 � V � M0) ¼ 1, 0 < F0(d0) < F0(M0) < 1 and mind0 � t � M0

� e0[F0(t + e0) � F0(t)] 6¼ 0, where M is a constant. The asymptotic distribution of Un is

given in the following theorem.

Theorem 1

Suppose that the above assumptions hold and g is a bounded Lipschitz function on [a,1] for any

finite positive number a. Also suppose that as n ! 1, nl/n ! pl, where 0 < pl < 1 and

p1 + p2 + � � � + pk ¼ 1. Then under H0 and as n ! 1, Ug=
ffiffiffi
n

p
has an asymptotic normal

distribution with mean zero and covariance matrix R ¼ (rlr)k�k, where

rlr ¼
plð1� plÞQ0ðK2

0 Þ; if l ¼ r,
�plprQ0ðK2

0 Þ; otherwise.

�

The proof of the above theorem is sketched in the appendix. Let K̂n denote K0 with F0 replaced

by F̂n. Then it can be easily seen that the covariance matrix R can be consistently estimated by

R̂ ¼ ðr̂lrÞk� k , where

r̂lr ¼
nlðn� nlÞ

n2
QnðK̂2

n Þ; if l ¼ r,

�nlnr
n2

QnðK̂2
n Þ; otherwise.

8><
>:

Let U0 denote the first k � 1 components of Ug and R̂0 the matrix by deleting the last row and

column of R̂. Then the hypothesis H0 can be tested by using the statistic v0 ¼ Ut
0R̂

�1
0 U0=n,

which has asymptotically the v2 distribution with (k� 1) degrees of freedom. This is because

the sum of the components of Ug is equal to zero.

4. Numerical results

To assess the finite sample performance of the proposed approach, simulation studies were

conducted with a focus on the size and power of the test procedure and the normal

approximation to the distribution of the test statistic Un. In the simulation, we considered the

two-sample comparison problem and generated the survival times Ti’s from the exponential

distribution with mean exp (a + bxi), where a and b are constants and xi ¼ 0 or 1. For

censoring intervals, we first generated U1 and U2 independently from the uniform distributions

U(0,h1) and U(0,h2), respectively. Here h1 and h2 are positive constants chosen to give the

proper percentages of left-censored, interval-censored and right-censored observations in

simulated data. Then U and V were defined as the nearest integer to U1 and the maximum of

the nearest integer to U1 + U2 and U + 1, respectively. The results reported below are based

on n1 ¼ n2 ¼ 100, a ¼ 2 and 5000 replications.

For function n in the simulation, we used the class of functions n(x) ¼ (x log x)xq(1 � x)c

motivated by the weight functions commonly used for weighted log-rank test statistics for

right-censored data (Fleming & Harrington, 1991), where q and c are some constants. Table 1

presents the empirical sizes and powers of the proposed test based on simulated interval-

censored data for different values of b. In the table, we considered four different situations in

terms of the percentages of left-censored, interval-censored and right-censored observations in

the data, which are given in the first column of the table. The second and third columns give

the values of parameters used in n(x). For comparison, we also calculated and included in the

table the empirical sizes and powers of the parametric score test for b ¼ 0 assuming that
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we know the underlying distribution. It can be seen from the table that the proposed test

procedure seems to have correct sizes and its power is close to that of the parametric score test,

suggesting that it performs well under these situations. We noticed that for several situations,

the proposed test gave slightly larger powers than the score test and one possible reason for

this is that the convergence of the score test is slower than that of the presented test.

In the simulation study, suggested by a referee, we also considered the set-up that yields

interval-censored data analogous to those arisen from periodic follow-up studies. Specifically,

the Ti’s were generated in the same way as above. For censoring intervals, we started by

generating a sequence of observation times W1 < W2 < � � � < Wk by first generating k from a

Poisson distribution with mean k0K and defining the Wj’s as the order statistics of a random

sample of size k from the uniform distribution U(0,K), where k0 and K are some constants.

Then U and V are defined as Wj and Wj+1 if T2(Wj,Wj+1]. If T � W1, define U and V to be

W1 and W2 and if T > Wk, define U and V to be Wk�1 and Wk. Note that here U and V are

not completely independent of T. Table 2 presents the estimated sizes and powers of the

proposed test based on simulated interval-censored data with all other set-ups the same as for

Table 1 and with k0 ¼ 0.4 and K ¼ 10. For the data here, the percentages of left-censored,

Table 1. Estimated powers and sizes with independent censoring intervals

Percentages of censoring q c

b

�1.0 �0.8 �0.4 0.0 0.4 0.8 1.0

1/3�1/3�1/3 0 0 1.000 0.997 0.645 0.053 0.580 0.982 0.998

1 1.000 0.993 0.590 0.051 0.512 0.960 0.994

1 0 0.994 0.950 0.462 0.054 0.444 0.946 0.992

1 0.992 0.988 0.578 0.054 0.552 0.978 0.997

Score test 0.998 0.987 0.571 0.048 0.641 0.993 1.000

1/4�1/2�1/4 0 0 1.000 0.996 0.617 0.054 0.606 0.987 0.999

1 1.000 0.988 0.547 0.053 0.522 0.967 0.996

1 0 0.991 0.930 0.403 0.056 0.385 0.923 0.988

1 0.999 0.977 0.516 0.053 0.542 0.978 0.998

Score test 0.996 0.975 0.529 0.050 0.687 0.998 1.000

1/2�1/4�1/4 0 0 1.000 0.997 0.653 0.050 0.625 0.991 1.000

1 1.000 0.994 0.613 0.048 0.578 0.982 0.999

1 0 0.986 0.927 0.440 0.052 0.464 0.961 0.996

1 0.999 0.977 0.558 0.052 0.570 0.985 0.999

Score test 0.996 0.976 0.565 0.044 0.703 0.999 1.000

1/4�1/4�1/2 0 0 1.000 0.994 0.579 0.053 0.477 0.946 0.992

1 1.000 0.985 0.500 0.049 0.401 0.893 0.969

1 0 0.995 0.962 0.471 0.056 0.415 0.917 0.985

1 1.000 0.989 0.554 0.056 0.455 0.932 0.986

Score test 1.000 0.988 0.517 0.048 0.530 0.961 0.993

Table 2. Estimated powers and sizes with dependent censoring intervals

Percentages of censoring q c

b

�1.0 �0.8 �0.4 0.0 0.4 0.8 1.0

1/4�1/2�1/4 0 0 1.000 0.998 0.690 0.049 0.627 0.992 1.000

1 1.000 0.997 0.620 0.054 0.563 0.977 0.998

1 0 0.988 0.929 0.430 0.049 0.460 0.959 0.998

1 0.999 0.988 0.603 0.051 0.592 0.987 0.999

Score test 1.000 0.998 0.700 0.053 0.620 0.992 0.999
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interval-censored and right-censored observations were approximately 25, 50 and 25 percent,

respectively. It can be seen that the results are similar to those given in Table 1 and the power

for the current set-up is similar to or a little higher than that given in Table 1. This could be

because the set-up here gives more information than the one used for Table 1. We also

considered other percentages of left-censored, interval-censored and right-censored observa-

tions and obtained similar results.

To evaluate the normal approximation given in theorem 1 to the finite distribution of the

proposed test statistic, we studied the probability plot of the standardized test statistic against

the standard normal distribution under different set-ups. They all suggest that the normal

approximation seems reasonable.

Next we applied the proposed test procedure to the set of interval-censored failure time data

discussed in Finkelstein (1986). The data arose from a breast cancer study and involve 94 early

breast cancer patients. The objective of the study was to compare the patients who had been

treated with radiotherapy alone (treatment 1, 46 patients) with those treated with primary

radiation therapy and adjuvant chemotherapy (treatment 2, 48 patients). The survival time of

interest is the time until the appearance of breast retraction and, in the study, the patients were

monitored for breast retraction every 4–6 months. However, they often missed visits as their

recovery progressed and returned in a changed status. Thus only interval-censored data on the

survival time were observed.

To compare the two treatments, define xi ¼ 0 for the patients with treatment 1 and 1

otherwise. Then by using the function n used above and taking q ¼ c ¼ 0, the application of

the presented method yielded U1 ¼ � 9.9443 (the first component of Un) with the estimated

standard error of 3.6854. This corresponds to a p-value of 0.007 according to the standard

normal distribution and suggests that the patients with treatment 1 survived significantly

longer than those with treatment 2. In other words, the adjuvant chemotherapy added to the

radiation therapy increased the hazards of breast retraction compared with radiation therapy

alone. If using q ¼ c ¼ 1, we obtained U1 ¼ � 3.0266 with its estimated standard error was

0.8548, resulting in a p-value of 0.0004. Finkelstein (1986) gave a p-value of 0.004 and

obtained a similar result.

5. Concluding remarks

This paper discussed the non-parametric comparison of survival functions when only interval-

censored failure time data are available. For the problem, a class of non-parametric tests was

proposed and both finite sample and asymptotic properties of the presented approach were

established. The proposed test statistics are generalizations of the log-rank test statistic dis-

cussed in Peto & Peto (1972). In comparison with the test procedures given in Finkelstein

(1986) and Sun (1996), in addition to the given asymptotic distribution, the proposed pro-

cedure has the advantage that the calculation of its variance estimate is straightforward. In

contrast, the determinations of the variance estimates of both UF and US involve dealing with

high dimension matrices. Note that although the asymptotic result given in theorem 1 requires

the independence between (U,V) and T, the simulation suggests that the approach works

well when the data arise from periodic follow-up studies, where (U,V) and T may not be

independent.

In comparison with right-censored failure time data, only limited research exists for inter-

val-censored failure time data although they frequently occur in public health and medical

studies such as clinic trials. One obstacle to this is that interval-censoring is much harder to

deal with than right-censoring. One consequence resulting from interval-censoring is that the

counting process and martingale theory that make the study of right-censored data relatively
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easy are no longer available for interval-censored data. Instead, the empirical process theory

and others seem be to needed to study interval-censored data (Wellner, 1992; Groeneboom &

Groeneboom, 1996).

In the above, we have assumed that covariates do not exist. In general, this may not be true

and in this case some regression models and related inference procedures would be needed.

Also in the proposed method, it is assumed that no exact observation of survival time is

observed. This assumption is often needed to study asymptotic properties of the methods for

interval-censored data and is required here to guarantee that the statistic Un is valid. Otherwise

Un could approach infinity since the denominator term in it may approach zero. As mentioned

above, it holds for many periodic follow-up studies and, in particular, the results presented

above hold if F0 has only finite support points. In spite of this, it would still be useful to

generalize the proposed approach to situations where observed data include both exact and

interval-censored observations on the survival time of interest.

Another direction for future research would be to generalize the proposed approach to

situations where the underlying censoring distribution H may be different for different

treatment groups. This could occur, for example, if subjects in different treatment groups have

different follow-up patterns in a periodic follow-up study. One such example is given by a

clinical trial in which patients receiving placebo treatment may feel worse compared with other

patients and thus visit doctors more often. Among others, Sun (1999) discussed this problem

for current status data, a special case of interval-censored data.
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Appendix: Proof of theorem 1

Let Ul denote the lth element of Ug and define

Qnlðu; v; d; cÞ ¼
1

nl

X0

i

1fðUi;ViÞ�ðu;vÞ;ðDi;CiÞ¼ðd;cÞg ;

where
P0

i denotes the summation over subjects i in population l, l ¼ 1, . . ., k. Then we have

1ffiffiffi
n

p Ul ¼
nlffiffiffi
n

p QnlðK̂nÞ ¼
nlffiffiffi
n

p QnlðK0Þ �
nlffiffiffi
n

p QnðK0Þ

þ
ffiffiffiffi
nl
n

r ffiffiffiffi
nl

p ðQnl � Q0ÞðK̂n � K0Þ þ
nl
n

ffiffiffi
n

p
ðQ0 � QnÞðK̂n � K0Þ þ

nlffiffiffi
n

p QnðK̂nÞ:

It is easy to see that both Qnl
(K0) and Qn(K0) are U-statistics and

fðn1=
ffiffiffi
n

p ÞQn1ðK0Þ � ðn1=
ffiffiffi
n

p ÞQnðK0Þ; . . . ; ðnk=
ffiffiffi
n

p ÞQnk ðK0Þ � ðnk=
ffiffiffi
n

p ÞQnðK0Þg has the asymp-

totic distribution given in the theorem. Thus, for the proof, it is sufficient to show that the

other three terms at the right hand side of the above equation converge to zero in probability.

For the last term QnðK̂nÞ, it follows from the proposition 3.2 of Groeneboom (1996) that

QnðK̂nÞ ¼ 0. For the other two terms, define

F ¼ fF : F is a distribution function defined on ½0; M �g;

G ¼ fF : F 2 F ; 0 < F ðd0Þ < F ðM0Þ < 1; min
d0�t�M0�e0

½F ðt þ e0Þ � F ðtÞ� 6¼ 0g

and

H ¼ d
gðF ðuÞÞ � c0

F ðuÞ þ c
gðF ðvÞÞ � gðF ðuÞÞ

F ðvÞ � F ðuÞ þ ð1� d� cÞ c0 � gðF ðvÞÞ
1� F ðvÞ

�

� d
gðF0ðuÞÞ � c0

F0ðuÞ
þ c

gðF0ðvÞÞ � gðF0ðuÞÞ
F0ðvÞ � F0ðuÞ

�
þ ð1� d� cÞ c0 � gðF0ðvÞÞ

1� F0ðvÞ

�
: ðu; vÞ 2 D; F 2 G�
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where D ¼ f(u,v) : u 	 d0, u + e0 � v � M0g. Because F is a P-Donsker from the proof of

corollary 5.1 of Huang & Wellner (1995), G is a P-Donsker by theorem 2.10.1 of van der Vaart

& Wellner (1996). Note that for any F1,F2 2 G, (u,v) 2 D,

d
gðF1ðuÞÞ � c0

F1ðuÞ
þ c

gðF1ðvÞÞ � gðF1ðuÞÞ
F1ðvÞ � F1ðuÞ

þ ð1� d� cÞ c0 � gðF1ðvÞÞ
1� F1ðvÞ

����
� d

gðF2ðuÞÞ � c0
F2ðuÞ

þ c
gðF2ðvÞÞ � gðF2ðuÞÞ

F2ðvÞ � F2ðuÞ
þ ð1� d� cÞ c0 � gðF2ðvÞÞ

1� F2ðvÞ

����
� c jF1ðuÞ � F2ðuÞj þ jF1ðvÞ � F2ðvÞj½ �

for some constant c. Then it can be shown by using the bracket entropy theorem of van der

Vaart & Wellner (1996, pp. 127–159) and the arguments similar to those used in Huang &

Wellner (1995) that H is P-Donsker. Also note that F̂n 2 G for all n sufficiently large and as

n ! 1, we have thatZ
fjF̂nðuÞ � F0ðuÞj2 þ jF̂nðvÞ � F0ðvÞj2gdP �! 0

in probability from the strong consistency of F̂n (Groeneboom & Wellner, 1992, p. 85). It thus

follows from this and the uniform asymptotic equicontinuity of the empirical process resulting

from the Donsker property (van der Vaart & Wellner, 1996, pp. 168–171) thatffiffiffiffi
nl

p ðQnl � Q0ÞðK̂n � K0Þ �! 0

and ffiffiffi
n

p
ðQn � Q0ÞðK̂n � K0Þ �! 0

in probability as n ! 1. This completes the proof.
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