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Semiparametric Regression Analysis of Longitudinal
Data With Informative Observation Times

Jianguo SuUN, Do-Hwan PARK, Liuquan SUN, and Xinggiu ZHAO

Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of
the research have focused on situations where observation times are independent of or carry no information about the response variable
and therefore rely on conditional inference procedures given the observation times. This article considers a different situation, where the
independence assumption may not hold; that is, the observation times may carry information about the response variable. For inference,
estimating equation approaches are proposed, and both large-sample and final-sample properties of the proposed methods are established.
The methodology is applied to a bladder cancer study that motivated this investigation.
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1. INTRODUCTION

This article discusses regression analysis of longitudinal
data, which commonly occur in many types of studies, includ-
ing medical follow-up studies and observational investigations.
In this analysis, one major difficulty is that observation times
often differ from subject to subject. Most of the proposed meth-
ods focus on the situation where observation times are inde-
pendent of response variables completely or given covariates
(Diggle, Liang, and Zeger 1994; Laird and Ware 1982; Zhang
2002). Here we consider a different situation, where the inde-
pendence assumption may not hold, in other words, the obser-
vation times may be dependent on the response variables, and
the question is how to carry out the analysis. Estimating equa-
tion approaches are proposed for the analysis.

A common situation where informative observation times oc-
cur is that observation times are subject- or response variable—
dependent. For example, they may be hospitalization times of
subjects in the study (Wang, Qin, and Chiang 2001). Such an
example is given by a set of longitudinal data arising from a
bladder cancer follow-up study conducted by the Veterans Ad-
ministration Cooperative Urological Rescarch Group (Sun and
Wei 2000; Zhang 2002). All patients had superficial bladder tu-
mors when they entered the study, and these tumors were re-
moved transurethrally. Many patients had multiple recurrences
of tumor during the study, and these recurrent tumors were also
removed at clinical visits. The observed data include the num-
bers of recurrent tumors between clinical visits, and one ob-
jective of the study was to compare tumor recurrence rates.
One problem with the dataset is that some patients in the study
had significantly more clinical visits than others (Sun and Wei
2000); this indicates that the number of clinical visits may con-
tain some information about the tumor occurrence rate. Thus an
important question is how to take into account or make use of
this information for inference about the tumor recurrence rate.
More details about the study are given later in the article.

A number of methods have been proposed for the analysis
of longitudinal data if observation times are independent of the
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response variable completely or given covariates. In this case,
two commonly used approaches are the estimating equation and
random-effects model approaches (Diggle et al. 1994; Laird
and Ware 1982; Zeger and Diggle 1994). Among others, Diggle
et al. (1994) gave an excellent review of these methods in ad-
dition to other methods. More recently, Hoover, Rice, Wu, and
Yang (1998), Lin and Ying (2001), and Welsh, Lin, and Carroll
(2002) discussed general semiparametric analysis of longitudi-
nal data.

One situation that is similar to that considered here, but dif-
ferent, is the analysis of longitudinal data in the presence of
informative or nonignorable dropouts or informative censor-
ing times (Little 1995; Roy and Lin 2002; Wang and Taylor
2001; Wu and Carroll 1988; Wulfsohn and Tsiatis 1997). In
this case there exists an event time representing dropout or
censoring time, such as death, that is related to the underly-
ing longitudinal variable of interest and must be modeled to-
gether with the longitudinal variable to obtain valid inference.
For the analysis, a common approach is to use either selection
models (Diggle and Kenward 1994) or pattern-mixture models
(Little 1995), which model the longitudinal variable or the event
variable marginally, depending on the objective of the study,
and then use the conditional model for the other variable given
the marginally modeled variable. Another approach is to jointly
model the two variables together (Wulfsohn and Tsiatis 1997).
In both approaches, normality is often assumed for the longi-
tudinal variable, and the likelihood function is commonly used
for inference. Note that for the situation discussed later, instead
of dealing with longitudinal and survival processes together, we
have general longitudinal and counting processes, and there do
not seem to exist established statistical methods for their joint
analysis. For inference, we focus on semiparametric methods
that do not require normality assumption.

In what follows, we begin in Section 2 by introducing no-
tation and assumptions and describing models as well as some
motivations for the presented models. For the analysis, we treat
observation times as realizations of counting processes. For
longitudinal processes of interest, we generalize general lin-
ear models used by Hoover et al. (1998) and Lin and Ying
(2001), among others, to allow the dependence of response
process on the counting process characterizing the observation
times. In Section 3 we present inference procedures and estab-
lish the consistency and asymptotic normality of the proposed
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estimators. We report simulation resulits on the proposed meth-
ods in Section 4 and they indicate that the methods work well
for situations considered. In Section 5 we apply the proposed
methodology to the bladder cancer study. We conclude with
some discussion in Section 6.

2. NOTATION, MOTIVATIONS, AND
STATISTICAL MODELS

Consider a longitudinal study that consists of a random sam-
ple of n subjects. For subject i, let Y;(r) denote the response
variable and X;(¢) denote a p-dimensional vector of covariates
that may depend on time ¢, i = 1, ..., n. Suppose that Y;(¢) is
observed at time points Tj) < Tp < --- < Tj g, where K; is
the total number of observations on subject i. In the following,
we regard these observation times arising from an underlying
counting process Nl-* (r) characterized by N;(¢) = Z/K:’ Ty =
1) = N¥(min(z, C)), where C; is the follow-up or censoring
time for subject i, i = 1, ..., n. Then the process Y;(¢) is ob-
served only at the time points where N;(¢) jumps. We assume
that the covariate history {X;(1):0 < ¢ < C;} is observed for
each subject.

Before presenting the model for Y;(f) and N} (1), we note that
for inference about Y;(¢), if they are independent completely or
conditional on covariates, then a marginal approach is usually
used for inference (Lin and Ying 2001). For the situation where
Y;(r) and N7 (¢) may depend on each other, one could have three
choices: modeling them jointly, modeling Y;(¢) marginally and
then N} (¢) conditional on Y;(¢), or modeling N7 (r) marginally
and then Y;(¢) conditional on N} (r). As for the case of longitu-
dinal data with informative dropouts discussed earlier, to apply
the first two approaches, one usually needs a normality assump-
tion for inference, and it is difficult to establish asymptotic the-
ory for the inference procedure. Also, it seems natural, as in the
case where there exist both longitudinal and survival processes
(Hogan and Laird 1997), that the second approach (correspond-
ing to the selection model approach) should be used if the
counting process is of primary interest, whereas the third ap-
proach (corresponding to the mixture model approach) should
be chosen if the longitudinal process is of primary interest, as
is the case here. If Y;(¢) and N7(¢) are independent, then the
second and third approaches are equivalent.

Note that another basis for choosing a model is the purpose
of the analysis. In addition to the evaluation of covariate ef-
fects on the longitudinal process, prediction and the indepen-
dence test between the two processes are also often of interest.
For these, the foregoing third, or conditional, approach is much
more natural and convenient than the second, or marginal, ap-
proach. This is partly because it is hard or not straightforward to
directly incorporate the observation process into marginal mod-
els about the longitudinal process, such as the model proposed
by Lin and Ying (2001). Motivated by all of these reasons, we
propose to use the conditional model approach, which allows
direct testing of the independence and prediction in addition to
easy derivation of the marginal covariate effects. In contrast, the
marginal model approach only allows inference about the mar-
ginal covariate effects. The presented model is a generalization
of the marginal model given by Lin and Ying (2001) and thus
allows direct comparison of the results with and without taking
into account the dependence.
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Define F;; = {N;(s),0 < s < t}. For the analysis, we assume
that ¥;(r) follows the marginal model

E{Y: )X, Fi) = po(d) + B'Xi() + ' H(Fi) (1)

given X;(r) and Fj, where uo(f) is an unspecified smooth func-
tion of ¢, B is a vector of unknown regression parameters, o is
a g-dimensional vector of regression coefficients, and H(:) is a
vector of known functions of the counting process N;(f) up to
time ¢—. For the observation process, we assume that N;(f) may
depend on X;(¢) and let N/ (¢) is a nonhomogeneous Poisson
process with

E{dNF (DX (0} = e XD d Ay (1) 2)

for i = 1,...,n. In the foregoing, y is a vector of unknown
regression parameters and Ag(f) is an arbitrary nondecreasing
function representing the mean cumulative number of observa-
tions by time 7. We give some comments about model (2) later.

As mentioned earlier, the main interest here is on the lon-
gitudinal process, rather than the observation process, which
makes the foregoing conditional approach a natural choice. As
suggested by the associate editor, one way to see the current
situation is that one faces two confounding processes in terms
of covariate effects, and it is necessary to adjust for the effect
on the observation process to correctly evaluate the effect on
the longitudinal process. By directly including the former ef-
fect, the foregoing conditional models allow one to actually
correct for it. In contrast to the foregoing approach, a marginal
approach would use, for example, model (1) without the third
term on the right side and model E{dN} (1)|X;(#), Y;(r)} instead
of E{dN}(1)|X;(H)}. A joint model approach would use some
latent variables to connect E{Y;(#)|X;()} and E{a’N,-*(t)|X,-(t)}.
For both cases, it seems difficult to directly adjust for the co-
variate effect on the observation process and establish sound
inference procedures.

The model (1) specifies that the process Y;(¢) depends on the
process Ni(f) in a linear fashion through function H, which
can be chosen according to situations. A natural and simple
choice for H may be H(F;;) = N,(1—), which means that Y;(¢)
and F;, are related through or all information about Y;(z) in
Fi is given by the total number of observations. An alterna-
tive is that Y;(¢) depends on Fj; only through a recent number
of observations, say, in u time units, and this corresponds to
H(Fi) = N;(t—) — N;(t — u). One could define H as a vector
given by the foregoing two choices if both the total and recent
numbers of observations may contain information about Y;(#).
If & = 0, then model (1) reduces to the model considered by
Lin and Ying (2001) and Zeger and Diggle (1994). In the fol-
lowing, we assume that the censoring time C; may depend on
covariates X;(#) in an arbitrary fashion, but is independent of
N7 (1) and Y;(1) given X;(2).

3. INFERENCE PROCEDURES

In this section we present inference procedures for models
(1) and (2) with the focus on estimation of regression para-
meters. To motivate the proposed estimators given herein, first
consider situations in which y = 0; that is, observation times
are independent of covariates. In this case, inference about
mode] (1) can be made conditional on observation times, and
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a natural way for estimating B and « is to use the least squares
principle by minimizing

n K

LB e, no) =Y | Y WTP{YATy) — po(Ty)

i=l j=1

— B'Xi(Ty) — «'H(Fi 1))

-y /0 W) {Yi() — 10(0)
i=1

~ B'Xi(1) — &' H(Fin) )2 dN;(0),

where W () is a possibly data-dependent weight function.

For estimation of 1o (1), note that
E{Yi(t) — po(1) — B'Xi(1) — «'H(Fi)} =0, i=1,...,n

Thus a natural estimator of po(t) is given by fig(t) = Y@ —

B'X(t) — «’H(F;) given B and «, where

Do ENX(D)
Z?:] g0

U =
® a0

H(F) =

’

and
Y EOYE@)
i1 &) ’
where &;(t) = I(C; > 1) and Y}(¢) is the measurement of ¥; at

the time point nearest to ?.
By replacing uo(f) in L(B, e, o) with fig(f), we have

L(B,a, jip)

Y() =

-y /0 WY — ) - B0 — X))
=1

- 2
— o' (H(Fy) — H(F)}] dNi ().
The resulting estimating function for 8 and & has the form

[ Xi(t) — X(0)
Vi = ;/0 v (H(fi;) - ﬁ(ﬁ))
x [Yi(e) = V(1) — B'{X:(0) — X (1))
— o' {H(F) — H(F}]dNi(t) = 0.

Now we consider the general situation where observation
times depend on covariate processes through model (2). For
given p, define

Y EOXi () exp{y’ X0}

X N = m
“y) D1 &0 explyXi(n)
~ S EOH(Fy) exply'Xi(1))
H(F; y) = -
ir) = S e exply X))
and
P ) = izl SO D exply'Xi(0)

Yo &0 exply’Xi (D)
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Motivated by U(B, a), we can estimate # and o using the esti-
mating equation U(#, a; y) = 0 given y, where

UB,a;p)
=Z/°Ow<r>( Xi(0) = X(57) )
—~ Jo H(Fy) - H(F; )
x [Yi(e) = Yt ) — B'{X:(®) — X(t; )}

— o/ {H(Fyy) — H(F;; )} dNi 0.

The parameter y can be consistently estimated by the solution
to

> [ %0 = Xy avin =0
i=1

(Andersen, Borgan, Gill, and Keiding 1993). Let  denote the
solution to the foregoing equation. Given y, the solution to
U(B, a; ) = 0 has a closed form,

[3)2 - wa ( Xi(t) = X (5 9) >®2dN‘
<& E:o Nuy-aEn) N0

B X:(t) — X(t; §)
XZ/O Wo <H(fit)—ﬁ(ﬂ;f')>

x {Yi(t) — Y(t; P)}dNy(0),

~1

where a®2 = aa’. It is easy to show that the foregoing estimates
are consistent.
To establish the asymptotic normality of 8 and &, define

. L (1Y) — B'Xi(s) — &H(Fiy)] dNi(s)
A = / n ~ E)
(t) ; 0 > i1 £i(s) exp{p'X;(s)}

N Ny dN;(s)
A(t) = )
(’) ;./o SROESDen)

t ~
i) = /0 [17:() — B'Xi(s) — &' H(F3)) dNi(s)
— Ei(s)e? X d/i(s)],

t
K0 = Ni(t) — / E(s)e" ) R (s),
0
t A -
Ritt) = B1(0) — /0 [F(s: 7) — B (s: §)
— &'H(Fy; §)1dM(s),
Y EOX X exp{p X (1)

E‘ =
xO i1 E@ exp{p/Xi(0)
Ex(n) = el éi(fl)H(ﬂt)X;(f)Aexp{}A’/Xi(t)}
Yo & exp{p'Xi(1)
and
Ey(p = i1 &Y (OX(1) exp{P ' Xi (1))

2o &0 exp{P/Xu(1))

Then fl(t) and f\(t) are consistent estimators of 4y(¢) =
f(; uo(s) dAo(s) and Ag(9). Let B, and ag denote the true val-
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ues of B and «. It can be shown that as n — ©0, n1/2(ﬁ - Bo)
and n'/2(& — ag) have asymptotically a joint normal distribu-
tion with mean 0 and covariance matrix that can be consistently
estimated by ﬁ“1Vﬁ_1, where

N R Xi(t) — X 7) >®2
D:— W — dN,t
n§fo O (s —mgy) MO

g1 UOOW(O< Xi<r>~)_<<t;y>A )dki(t)
ni=1 0 H(J:it)—H(]:t;)’)
wa] [O° _ . ®2
P / (X — X 9>}dMi<r>} ,
0
where
5 1 foo W ( Ex() = X(; ;?A)X_gt; ﬁ3 )
n=J Ea(t) —H(F; )X (1 p)
X {Yi(2) — Y (t; §)} dNi (1)
1 3 /00 W ( Ex() - X y}X_Ez; y3 )
n=Jo E(t) — H(F; )X (1 9)
x & {H(F) — H(Fy; P)}dNi (1)
1< [ 0
- w _
T ;/o ® (H(Fa) - ?))
x [Ey(®) = Y (1, )X (15 9)
— B'{Ex(n) — X(1; )X/ (r; )} | dN: (1)
_EZH:/OO W(t)( 0 )
ne=Jy H(Fy) — B(F; )
x & {En(t) — H(Fr; )X (1 7)) dNi (1)
and

Q== (Bx(t) — X(; 9)X(t; )} dNi(1).
i=1

S [ =

The proof is given in Appendix A.

Note that model (1) gives only the conditional mean of the
longitudinal process Y;(¢). Given g, B, &, and y, one can eas-
ily estimate the marginal mean of Y;(¢), E{Y;(6)|X;(£)}, and test
treatment effects using models (1) and (2). For example, as-
suming that H(F;) = N;(t—) — N;(t — u) and that X;(¢) is time-
independent, we then have

E(Yi(0)|Xi} = to(t) + B'X; + ae? Fi{Ao(r—) — Aot — )}
3

Also note that in the foregoing, only the joint asymptotic distri-
bution of fi and & is presented. Using the same approach, one
can easily show that the joint distribution of 8, &, and  can be
asymptotically approximated by a normal distribution, which is
given in Appendix B.
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4. SIMULATION STUDIES

This section reports some results from simulation studies
conducted to evaluate the performance of the methods proposed
in the previous section. In these studies, following Lin and Ying
(2001), we considered the situation where there exist two co-
variates and first generated X;|’s and X;»’s from Bernoulli dis-
tribution with success probability .5 and the standard normal
distribution. Given the X;;’s and X;»’s, the observation times
T;’s were generated from model (2) with Ag(f) = Aot, and the
censoring times C; were assumed to follow the uniform distrib-
ution over interval (7/2, T), where T was selected to give the de-
sired number of real observation times. Finally, observations of
the response variable were generated from the random-effects
model

Yi(t) = po(t) + B1Xon + BoXip + aN;(t—) + b + €(t),

i=1,...,n In the foregoing, we took uo(f) = ¢/ and as-

sumed that the b;’s and €;(¢)’s were independent normal vari-
ables with mean 0 and standard deviations 1 and 5. The results
presented here are based on Ag = 1, 5,000 replications and sam-
ple size n = 100 or 300.

In the simulation studies, we considered both covariate-
independent (y = () and covariate-dependent (y # 0) obser-
vation time situations. Table 1 presents the simulation results
for estimation of 8] and « given by the proposed method with
the true values of o as —1, 0, or 1 and both §; and 8, equal
to 1 for covariate-independent observation times (y| =y, = 0).
The results on By are similar and omitted. Here we took the
weight function W(r) = L. The table includes the biases (Bias)
given by the sample means of the point estimates ﬁ | and & mi-
nus the true values, the sampling means of the estimated stan-
dard errors of ﬁl and & (SEE), the sampling standard errors of
Bl and & (SSE), and the 95% empirical coverage probabilities
for 81 and « (CP). For the results in the table, T was set to
be 6 or 15, which gave about 5 or 11 observations on average.
It can be seen from the table that the estimates 31 and & are
basically unbiased and that the proposed variance estimation
method seems to work well. Also, with increasing sample sizes
and/or the numbers of observations, as expected, the variances
decrease and the coverage probabilities are more accurate.

The results for covariate-dependent observation times are
given in Table 2, where we took y| = —.25 and y = .5. The
other setups in Table 2 are the same as those in Table 1. It can
be seen that Table 2 gives basically the same conclusions as
Table 1. To assess the bias given using Lin and Ying (2001)’s
model [the model (1) without the third term at the right], in the
presence of the dependence, we also estimated regression pa-
rameters using the approach given by Lin and Ying (2001) and
obtained Bias = .0081 for 8; for the situation corresponding to
a=0,n=100,and t =6 in Table 2. With o = 1 and —1 and
other parameters the same, we got Bias = —.2797 and .7004
again for fBj, indicating that ignoring the dependence could
yield significant biases. We also conducted simulation studies
with large sample sizes or different values of 8 and y and ob-
tained similar results, with biases and estimated variances get-
ting smaller when the sample size is larger.
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Table 1. Simulation Results With Covariate-Independent Observation Times

n=100 n= 300
T=6 =15 T=6 t=15
B1 o B1 o Bi o Bi o
=0
Bias .02069 .00103 —.00193 —.00347 .00620 —.00011 —.00212 —.00044
SSE .53892 .16869 .38995 .07764 .30280 .09953 .21867 04525
SEE 51798 .16591 37311 .07635 .30106 .09621 .21683 .04440
cpP .93660 .94460 .93600 .94260 .94920 .93940 .94500 .94680
o =
Bias —.00693 -.00303 .00798 -.00267 .00295 -.00233 --.00080 —.00053
SSE .52985 17478 .39138 .07933 .30365 .09817 .21986 .04509
SEE 51878 17574 .37332 07642 .30126 .09637 21709 04437
CP .94200 93440 93720 93560 .94600 94340 .94520 .94400
o=—1
Bias .00763 .00674 —.00298 .00163 .00514 —.00030 .00016 .00230
SSE .54070 16924 .38768 .07759 .30965 .09666 .21982 .04532
SEE 51846 16948 .37366 .07825 30172 .09846 21738 .04558
CcP .93680 .84540 .93840 84780 .94440 .95240 .94900 .95120

5. ANALYSIS OF THE BLADDER CANCER STUDY

Now we apply the proposed approach to the bladder can-
cer study discussed earlier. The dataset, given by Sun and Wei
(2000), includes the clinical visit or observation times and the
number of bladder tumors that occurred between clinical vis-
its for 85 patients in the placebo group (47) and the thiotepa
treatment group (38). The unit for observation times is months,
with the largest observation time being 53 months. The dataset
also gave two baseline covariates, the number of initial tumors
before entering the study and the size of the largest initial tu-
mor. Several authors have analyzed the dataset, but all of the
analyses assumed that observation times were independent of
tumor recurrence completely or given covariates (Sun and Wei
2000; Zhang 2002). The goal here is to test the dependence be-
tween tumor recurrence and clinical visits and to compare the
two treatments in terms of tumor recurrence rates with adjust-
ment for the possible informative clinical visit times.

To analyze the dataset, for subject i we define Y;(f) as the
natural logarithm of the number of observed tumors at time ¢
on the subject plus 1 to avoid 0. We also set X;; as 0 if the

patient is in the placebo group and as 1 if the patient is in the
thiotepa group, and set Xj; to be the number of initial tumors,
i=1,...,85. Note that here we do not consider the size of the
largest initial tumor, because several analyses have suggested
that it had no effect on either tumor recurrences or observation
times. For the analysis, it seems natural to assume that Y;(f)
depends on Fj; through the number of observations during the
6-month period before ¢, because it is usually the most recent
visits that may carry information about the response variable;
that is, H(Fj;) = N;i(t—) — N;(t — 6). Applying the method with
W(t) = 1 yielded & = —.0317 with an estimated standard er-
ror of .0096, indicating that the tumor recurrence process and
observation process are significantly negatively correlated. One
explanation for this finding is that the more often the patient vis-
ited the clinic, had tumors removed and received treatment, the
lower the tumor recurrence rate. In other words, this means that
the recurrence of bladder tumors may depend on the number
of existing tumors. Another reason for the negative correlation
could be that more visits means less time for tumor growth.
With respect to the effects of treatment and the number of ini-
tial tumors, we obtained f; = —.1350, B, = .0472, 7 = .5023,

Table 2. Simulation Results With Covariate-Dependent Observation Times

n=100 n=300
T=6 T=15 T=6 t=15
B1 o B1 Bi a B1 o

a=0

Bias —.00745 —.00445 —.00287 —.00153 .00034 —.00155 --.00650 .00034
SSE 55022 13505 40567 .05450 31954 .07476 22936 .03032
SEE 53737 12622 .39281 .05088 31171 07317 .22920 .02984
CP .93920 .92140 93700 .92500 .94300 .94000 .94740 .94200
a=1

Bias .01232 —.00878 —.00994 —.00224 —.00423 —.00769 .00181 —.00158
SSE 55367 .13621 40776 .05296 31578 .07670 .22881 .02914
SEE .53465 12647 .39273 04776 31241 .07360 .22882 .02777
cP .93260 .92420 .93920 91360 .94660 .93560 .94240 93140
o=-1

Bias .01025 .00762 .00605 .00142 .00768 .00553 —.00098 .00108
SSE .54546 .13468 40147 .05330 31542 .07570 23169 .02853
SEE 53702 .12835 .39255 .04868 31259 .07436 22957 .02822
CP .94380 .92920 .94240 .92060 .94900 .94260 .94880 94060
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and p, = —.0089, with estimated standard errors of .0501,
.0132, .1197, and .0334. Note that here ,31 represents the di-
rect treatment effect on tumor recurrence and ; denotes the
indirect treatment effect on tumor recurrence through the ob-
servation process. The same is true for 8, and 72 with respect
to the effect of the number of initial tumors. To test the treat-
ment effect on tumor recurrence, we considered the hypothesis
B1 = y1 = 0 based on model (3) and used the chi-squared sta-
tistic based on the joint normal distribution of B | and 1, which
gave a p value <.001. We used the same method for testing the
effect of the number of initial tumors on tumor recurrence and
obtained a p value of .001. The results suggest that both thiotepa
treatment and the number of initial tumors significantly affect
the tumor recurrence rate. Also, the observation process seems
to be related to thiotepa treatment, but not to the number of ini-
tial tumors.

For comparison, we further analyzed the data by assum-
ing that there is no direct relationship between tumor recur-
rence and the observation process, except that both depend
on covariates as in the simulation study; that is, we set o =
0 in model (2). In this case we obtained ,él = —.1946 and
ﬁz = .0492, with estimated standard errors of .0456 and .0131.
It is interesting to note that ignoring informative observation
times does significantly affect the treatment effect on the tumor
recurrence rate, but not the effect of the number of initial tumors
on tumor recurrence rate. This could be because the number of
initial tumors had no effect on the observation process.

As suggested by a referee, corresponding to the aforemen-
tioned number of recent visits, we also considered the situation
where Y;(f) may depend on N;(¢) through the time since the pre-
vious visit. In this case we obtained ,31 = —.1746, /§2 =.0493,
and @ = .0150 with estimated standard errors of .0484, .0133,
and .0078, and the same . It can be seen that all results are
similar to these given earlier except &, which again indicates
that the tumor recurrence process and the observation process
are related, but in a different way. The results here suggest that,
as expected, the longer the time since the last visit, the more
tumors would occur.

6. CONCLUDING REMARKS

This article has discussed the analysis of longitudinal data in
the presence of informative observation times, for which there
do not seem to exist methods to our knowledge. To estimate
regression parameters, we have proposed an estimating equa-
tion that yields consistent and asymptotically normal estima-
tors. The approach can be considered a generalization of the
mcthod given by Lin and Ying (2001) for longitudinal data with
noninformative observation times. Note that in the foregoing
we have assumed that the observation process is a nonhomo-
geneous Poisson process for simplicity of presentation, and it
should be straightforward to generalize the proposed method to
general point processes.

In the proposed method, we have adopted a conditional ap-
proach. One may ask why we did not use the marginal ap-
proach. As discussed earlier, there are several reasons for this;
the key is that except for the longitudinal process of interest,
we face an additional dependent or confounding process. As for
the longitudinal analysis in the presence of informative dropout
times, it is hard or impossible to use a simple marginal model
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for the analysis. Another reason is that in addition to allowing
one to easily make inference about the marginal mean of the
longitudinal process, the conditional approach presented here
allows one to directly test the dependence or confounding ef-
fect between the two processes and to perform prediction based
on one’s recent history. Also, one can actually correct for the
confounding effect using the conditional approach. In contrast,
the marginal approach gives results only about the marginal
mean. In other words, for the situation considered here, the con-
ditional approach provides more information than the marginal
approach. Chen and Cook (2003), among others, have proposed
a similar approach for a similar problem, but in a different con-
text.

As commented before, a situation that is similar to, but
not the same as, that discussed here and has been considered
throughout the literature is the analysis of longitudinal data with
informative dropout times. Another similar situation was con-
sidered by Sun and Wei (2000), who discussed the analysis of
longitudinal data where both observation process and dropout
process may depend on covariates but are independent of the
underlying longitudinal process given covariates. It would be
useful and interesting to generalize these existing and proposed
methods to situations where the longitudinal process may be di-
rectly related to both observation process and dropout process
instead of through covariate process.

APPENDIX A: JOINT ASYMPTOTIC
NORMALITY OF 8 AND &

In this appendix we use the same notation defined earlier and take
all limits at n — 0o. Assume that the X;(f)’s are external covariates
and have bounded variations. Define

[ X,
$Ottyy = =3 &iwer X0,

i=1

] n .
0y = =Y s@er MOXi0),

i=1

13
1 1 e
Sy ==Y g X Oy,

i=1

n
| | X,
Sy Gy = - > s M OuE),

i=1

n
2 1 X,
$P @y = = 3 s M OX (),

i=1
5 1 n ,
SRy = - smer MOy oX]0),
i=1
and

1 n .
Sie (7)== 3 & NOHFENX 0.

i=1
Also define
dM;(8) = (Y;(5) — BuXi(t) — agH(Fin)} dNi(1) — &(£)e? 0XiD g A (1)
and

AM;(1) = dNi(t) — Ei(1)e? 0 XD g A g (),
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i=1,...,n It is easy to show that M;(t) and M;(t) are mean-0
stochastic processes. Let s(O), s,(Vl), sﬁl) ), s,(11), S}((Z)’ sﬁ-), and sgli)
denote the limits of SO (1; yo), S (5 7). S (5 v9), S5 (@ vo),
$Pt: v, SPye), and 52 yg). Also, let x1) = st 1)/
sO @), 30 = sV (1) /5@ (1), and h(t) = s\ () /s ).

To see the joint asymptoticA distribution of B and &, note that the
Taylor series expansion of U(B,&; ) at f =By, e =g, and y =J
yields

n'/? (ﬂ - ﬂo) =D~ {n2U(Bo, a0: 1)} + 0p(D)

&—ot()

asymptotically, where

o0 X1 (1) — %) \®?
D=E/ w(t)( - > dN (1)
0 H(F},) —h@)

is the limit of n~19U(B, a; 7#)/9(B, o) and can be consistently esti-
mated by ) given in Section 3, where w(¢) is the limit of W(¢). Thus it
is sufficient to show that n”l/zU(ﬁO, ag; ) has an asymptotic normal
distribution with mean 0 and covariance matrix that can be consistently
estimated by \Y given in Section 3.

For n_1/2U(,BO, ag; ¥), again using the Taylor series expansion of
U(Bg, @g; ) at B = By, = «g, and y = y(, we have, asymptoti-
cally,

n~ V20 (B, wo; §)
=n"120(Bg, ag; vo)

_peipm12 Z/OOO{Xi(’) — X} AM;(1) +0p(1), (A1)
i=1

based on the consistency of y and equation (A.5) of Lin, Wei, Yang,
and Ying (2000), where

Q= E[ f X1 () — X019, (9e?0X10 dAom]
0

and

Peg /oo ) .9)(52) (t)/s(O) ) — S)(Cl)(t)s,(vl)(l‘)//{s(o) 012
0\l 0500 =57 0V 0 16O 0

x {Y (1) — y(O)} dN) (t)}
@ @ gy
0 si) (/5O ) —
x o {H(F\¢) — h()} dN; (t)}

Sy 0
E _
+ [/o W”)(H(m—hm)

x (820 /590 - hoX @)

sV osP @) /(5@ (0?2
sPosP ) /(s )2

— B (P 10)/s5Q 0 — 20X 1)} dNy <t)]

0 0
[0 )
0 H(F11) —h()

x o {5820/ (1) ~ h(OF (1)} dN, (z)] :
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to which —n~! aU(Bg, ag; y)/0y at y = pq converges in probability.
Note that U(B(, @g; ¥) can be rewritten as
U(Bo, @0; ¥0)
f B X0 — X t;
:Z/ W(t)( i@ _( yo) )
~Jo H(F;) - H(Fs; y0)
x [aMi(t) — (Y (55 v9) — BoX (55 v0) — ¢gH(F y0)} dMi(1)].

Furthermore, following the arguments similar to those given in appen-
dix 2 of Lin and Ying (2001), we have, asymptotically,

n~ Y20 (B, ao; 7o)

e [ Xi (1) — X(0)
" ;1/0 Mo <H<f,-,) - h(r))

x [dM;(t) = (3() = ByR() — agh(D} dM ()] + 0p(1),  (A2)

a sum of n independent mean-0 random vectors plus an asymptotically
negligible term.

It then follows from the multivariate central limit theorem and
(A.1) and (A.2) that n_l/zU(ﬂo, «o; ) converges in distribution to
a mean-0 normal random vector with covariance matrix

oo X1 () —x() )
V=F _ dR
Uo o <H(71z) i) H©

) ®2
—po-! /O {x1<t>—i<z)}d/w1<z>] ,

where
dRy (£) =AM, (1) — (3(t) — BoX(2) — aph()} d M ().

By using the method in appendix A.3 of Lin et al. (2000), it can be
shown that V is a consistent estimate of V. This proves the joint as-
ymptotic normality of § and &.

APPENDIX B: NORMAL APPROXIMATION TO THE
DISTRIBUTION OF B, &, AND

Using the same method as that used in Appendix A, we can show
that the joint distribution of n'/2(8 — By), n!/?(& — ag), and nl /% (p —
7o) can be asymptotically approximated by the normal distribution
with mean 0 and covariance matrix D=1 D!, where, using the same

notation,
. ) )
$_ ( A/11 > 12)
Zip In

. .1 n co . ®2A_1
£ = "'IZ(/O {Xi(l)—i(t)}d/\/li(f)) o',
i=1

and

. PR o0 X;(t) — X(t; ) 5
sttt B[ v (0 56 4
12 n ; A 146! H(Ey) — A(F: ) dR;(1)

aa—] [O° _ R
- PQ /0 {Xi(t>—X(t;f')}dMi(t)}
o0 B . . ]
X/O {Xi(t)—X(t;f')}/dMi(t)]Sl .
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