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Summary

The analysis of doubly censored failure time data has recently attracted a great deal of attention and for
this, a number of methods have been proposed (De Gruttola and Lagakos, 1989; Kim et al., 1993; Pan,
2001; Sun, 2004). To simplify the analysis, most of these methods make an independence assumption:
the distribution of the survival time of interest is independent of the occurrence of the initial event that
defines the survival time. Although it is well-known that the assumption may not be true, there does
not seem to be any existing research discussing the checking of the assumption. In this article, a Wald
test is developed for testing this assumption and the method is applied to an AIDS cohort study.

Key words: Estimating equation; Interval-censoring; Proportional hazards model; Regression
analysis.

1 Introduction

This paper discusses the analysis of doubly censored failure time data (De Gruttola and Lagakos,
1989; Sun, 2004). By doubly censored failure time data, we mean that the survival time of interest is
defined as the elapsed time between two related events, called initial and subsequent events. Further-
more, observations on the occurrences of both events could be right- or interval-censored. A well-
known example of such data arises from follow-up studies of patients who have been or are at risk of
being infected by the human immunodeficiency virus (HIV) and thus are also at risk of developing
the acquired immune deficiency syndrome (AIDS) (De Gruttola and Lagakos, 1989; Joly and Com-
menges, 1999).

Doubly censored failure time data include usual right- and interval-censored failure time data as
special cases (Kalbfleisch and Prentice, 1980; Sun, 1998). For example, they reduce to interval-cen-
sored data if the occurrence of initial event can be exactly observed and observations on the occur-
rence of subsequent event are interval-censored (Chi and Tseng, 2002). Furthermore, if observations
on the occurrence of subsequent event are right-censored, we then have usual right-censored failure
time data for the survival time of interest.

The analysis of doubly censored data has recently attracted much attention, especially in the context
of the analysis of AIDS incubation time, the time between the HIV infection and the diagnosis of
AIDS. For example, De Gruttola and Lagakos (1989), Fang and Sun (2001), G�mez and Calle (1999)
and Sun (1997) considered joint estimation of the distribution functions of HIV infection and AIDS
incubation time based on AIDS cohort follow-up studies. Kim et al. (1993), Sun et al. (1999) and Pan
(2001) investigated regression analysis of doubly censored data under the proportional hazards model.
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For the analysis, most of the authors assume that the distribution of the survival time (e.g., AIDS
incubation time) is independent of the occurrence of the initial event (e.g., HIV infection), which
results in a simple likelihood function and greatly simplifies the analysis. However, there does not
seem to be any existing test procedure for testing the assumption. In the following, a Wald test is
developed for the problem. Note that data with doubly censoring could also occur in, for example,
other disease progression studies and bird nesting studies (He, 2003).

We will begin with introducing notation and assumptions in Section 2. To formulate the problem,
we will assume that the survival time of interest depends on the occurrence time of initial event
through the proportional hazards model (Kalbfleisch and Prentice, 1980). Some comments on this will
be given below. Note that this will yield an inference problem about the proportional hazards model
with interval-censored continuous covariates, for which no established method is available. For the
problem, Section 3 presents an estimating equation approach for estimating regression parameters,
which naturally gives a Wald test procedure. Asymptotic properties of the proposed estimates are
given. Section 4 reports some results from a simulation study conducted for evaluating the finite
sample properties of the proposed estimate. In Section 5, we apply the method to an AIDS cohort
study and Section 6 contains some concluding remarks.

2 Notation and assumptions

Consider a survival study that involves n independent subjects experiencing two related events. For
subject i, let Xi and Si* denote the times of occurrences of initial and subsequent events, respectively,
i ¼ 1; . . . ; n. Define Ti ¼ Si* � Xi, the survival time of interest. In an AIDS cohort study, Xi and Si*
represent ages at HIV infection and AIDS diagnosis, respectively, and Ti corresponds to AIDS incuba-
tion time. For the relationship between Xi and Ti, we will assume that given Xi ¼ xi, the hazard
process of Ti is given by the proportional hazards model and has the form

liðt j xiÞ ¼ Yiðt j xiÞ l0ðtÞ exp ð xib Þ ð1Þ
(Andersen and Gill, 1982). In the above, l0ðtÞ is an unknown baseline hazard function, Yiðt j XiÞ is a
predictable process defined below, and b denotes the regression parameter characterizing the depen-
dence of Ti on Xi.

Note that the model (1) specifies that in AIDS context, AIDS incubation time depends on HIV
infection time in a multiplicative fashion and patients infected by HIV in early days could have longer
or shorter AIDS incubation time depending on situations. This seems to be a reasonable assumption
since, for example, the patients infected by HIV later could in general benefit from more available
and efficient treatments and thus have longer AIDS incubation time. Also it is well-known that the
proportional hazards model provides good approximations to the majority of survival problems. Under
model (1), the independence assumption between Xi and Ti is equivalent to the hypothesis
H0 : b ¼ 0. It should be noted that if the Xi’s can be exactly observed, this would become a standard
testing problem. However, this is not the case here as we describe below.

To describe observed data, let ½Li;Ri� denote the interval to which the occurrence time Xi of initial
event is observed to belong, i ¼ 1; . . . ; n. That is, we have interval-censored data on the Xi’s. For the
Si*’s, suppose that right-censored data are observed and given by f ðSi ¼ min ðSi* ;CiÞ ; di ¼ IðSi

¼ Si*Þ Þ; i ¼ 1; . . . ; n g, where Ci is the censoring time associated with subject i and assumed to be
independent of Si*. If Li ¼ Ri or Xi ¼ 0 for all i, the observed data on the Ti’s reduce to usual right-
censored data.

For inference, in the following, we will assume as others (Sun, 1998) that the mechanism yielding
right- and interval-censoring is independent of occurrences of initial and subsequent events. More
specifically, it will be assumed that for each i, Li and Ri are independent of ðXi ; CiÞ and Si* and Ci

satisfy the usual random right-censorship model. That is, the censoring is non-informative and the
distributions of censoring variables fLi;Ri;Cig are independent of parameters of interest. The distribu-
tions of Li, Ri and Xi are all assumed to be of the discrete type with finite support.
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For given Xi ¼ xi, define Yiðt j xiÞ ¼ Ið Si � xi � tÞ and Niðt j xiÞ ¼ Ið Si � xi � t ; di ¼ 1 Þ. Also
define X ¼ ðX1; . . . ;XnÞ and

SðjÞðb; t; xÞ ¼ n�1Pn
i¼1

Yiðt j xiÞ xj
i exi b ;

j ¼ 0; 1, where xj
i ¼ 1 and xj

i ¼ xi for j ¼ 0 and j ¼ 1, respectively, and x ¼ ðx1; . . . ; xnÞ. For estima-
tion of b, note that if Li ¼ Ri, one can easily estimate it by the maximum partial likelihood estimator
defined as the solution to the partial likelihood score equation

Uðb j xÞ ¼
ðt
0

Pn
i¼1

xi �
Sð1Þðb; t; xÞ
Sð0Þðb; t; xÞ

� �
dNiðt j xiÞ ¼ 0 ð2Þ

(Andersen and Gill, 1982), where t denotes the longest follow-up time. One advantage of the above
estimation approach is that it does not involve the unknown baseline hazard function l0ðtÞ and can
easily be implemented.

For current situations, however, it is obvious that the maximum partial likelihood estimator is not
available. In next section, we propose an estimating equation approach for the problem.

3 Test Procedure

To test the hypothesis H0, we first consider estimation of b in model (1). For this purpose, note that
the score function Uðb j xÞ given in (2) can be regarded as a conditional score function given the Xi’s
or as a score function about both parameters b and the Xi’s if we treat the Xi’s as nuisance param-
eters. Thus by using the idea of the marginal likelihood method, it is natural to integrate out the
unknown Xi’s conditional on observed data. This motivates the following estimating equation

Uðb; ĤHÞ ¼
Qn
i¼1

âa�1
i

� � ÐR1

L1

. . .
ÐRn

Ln

Uðb j xÞ
Qn
i¼1
f dĤHðxiÞ g ¼ 0 ð3Þ

for the estimation of b. In the above, âai ¼
ÐRi

Li

dĤHðxÞ, i ¼ 1; . . . ; n, and ĤH denotes the nonparametric

maximum likelihood estimator of the cumulative distribution function H of the Xi’s based on interval-
censored data f ½Li;Ri� ; i ¼ 1; . . . ; n g. Some comments on ĤH will be given below.

Note that the idea behind equation (3) is similar to the one used in both the profile likelihood approach
and random effects model methods. The same idea was used in Sun et al. (1999) for regression analysis
of doubly censored failure time data, where unlike here covariates were assumed to be exactly observed.
As based on equation (2), the method based on equation (3) has the same advantage that it does not
require estimation of l0ðtÞ, which makes the study of the asymptotic properties of the method possible.

In equation (3), we need to determine ĤH. For this, we will use the self-consistency algorithm pro-
posed by Turnbull (1976) for both simulation study and the example. Note that ĤH is a step function
and not completely and uniquely defined on Rþ (Turnbull, 1976). However, dĤH is completely defined
and thus so does the equation (3). More discussion on ĤH can be found in Ng (2002), Sun (1998) and
Turnbull (1976) among others.

Let b̂b denote the estimator of b given by the solution to equation (3) and b0 the true value of b. It
is apparent that b̂b reduces to the maximum partial likelihood estimator of b if exact observations on
the Xi’s are available. We will show in the Appendix that b̂b is a consistent estimate of b0. It will also
be shown in the Appendix that under mild regularity conditions, n1=2 ð b̂b � b0 Þ has an asymptotic
normal distribution with mean zero and variance that can be consistently estimated by Gðb̂bÞ =A2ðb̂bÞ,
where AðbÞ ¼ � n�1 @Uðb; ĤHÞ =@b and GðbÞ ¼ n�1Pn

i¼1
b̂b2

i ðbÞ, where

b̂biðbÞ ¼
ðt
0

ðR1

L1

. . .

ðRn

Ln

xi �
Sð1Þðb; t; xÞ
Sð0Þðb; t; xÞ

� �
dNiðt j xiÞ �

Yiðt j xiÞ exp ð xibÞ d �NNðt j xÞ
nSð0Þðb; t; xÞ

� � Qn
l¼1

dĤHðxlÞ
âal

;

�NNðt j xÞ ¼
Pn
i¼1

Niðt j xiÞ.
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Once b̂b is obtained, one can test the hypothesis H0 by employing the Wald statistic nb̂b2 A2ðb̂bÞ =Gðb̂bÞ
based on the c2 distribution with degree of freedom one. For calculation of b̂b, one way is to directly
solve equation (3) using existing optimization algorithms, which are available in many statistical soft-
wares. This is usually feasible for small data sets and some large data sets for which the resulting
estimator ĤH does not have many jumps. For general situations, we propose to use the following sim-
ple Monte Carlo method (Sun et al., 1999). Let K be a given integer.

Step 1. For each k ¼ 1; . . . ;K and i ¼ 1; . . . ; n, sample a XðkÞi from ĤH conditional on observed
interval ½Li;Ri�, that is, XðkÞi � ĤHð� jX 2 ½Li;Ri�Þ.

Step 2. Let XðkÞ ¼ ðXðkÞ1 ; . . . ;XðkÞn Þ and calculate Uðb jXðkÞ ¼ xðkÞÞ in equation (2).

Step 3. Solve the equation K�1 PK
k¼1

Uðb j xðkÞÞ ¼ 0 to obtain b̂b.

If K is large, we should expect that the left side of the above equation will give a good approxima-
tion to Uðb; ĤHÞ. Note that the above Monte Carlo method is used only to compute b̂b, not the variance
estimate. Once b̂b is obtained, its variance can be estimated by the closed formula given above. We
remark that an alternative to the above Monte Carlo method is to use the multiple imputation (Pan,
2001). The multiple imputation may be simpler, but the theoretical result given above about b̂b may
not be appropriate for finite sample situations.

4 Simulation Studies

A simulation study was conducted to evaluate finite sample properties of the proposed estimator b̂b. In
the study, for simplicity, we assumed that all concerned variables are discrete and take integer values.
The doubly censored data were generated as arising from AIDS cohort follow-up studies such as the
example discussed in the next section. First we generated Xi from the uniform distribution Uf1; . . . ; 7g
and Ti from a discretized exponential distribution with the hazard function given in (1) and
l0ðtÞ ¼ 0:1. Then Si* was defined as Si* ¼ Xi þ Ti with the common censoring time Ci ¼ 15 for all
i ¼ 1; . . . ; n. The observed interval for Xi was generated by letting Li ¼ max f1;Xi � að1Þi g and
Ri ¼ min fXi þ að2Þi ; 7g, where að1Þi and að2Þi were generated from the uniform distribution Uf0; 1; . . . ; bg,
where b is a constant and used to control the extent of interval-censoring. The results reported below
are based on n ¼ 100 and K ¼ 100 with 1000 replications.

In the study, we mainly focused on the comparison of the proposed point estimate and the max-
imum partial likelihood estimate, b̂bp say, of b that would be obtained if the Xi’s were exactly ob-
served. Also we were interested in investigating the approximation of the asymptotic normal distribu-
tion given in the previous section to the estimate. Table 1 presents the means of b̂b and their MSE
(values in brackets) based on simulated data for different true values of b with b ¼ 1 and b ¼ 2,
respectively. For the comparison, for each situation, assuming that the exact time of occurrence of
initial event was known, we also obtained the corresponding b̂bp and MSE and included their means in
Table 1. It can be seen from the table that the results from the two methods are quite close to each
other for most cases considered, indicating that the proposed method works reasonably well.

For the above simulation set-ups, we also calculated powers for testing b ¼ 0 based on the proposed
Wald statistic and b̂bp, respectively. The procedure based on b̂b gave powers of 0.320 and 0.224 for
b ¼ 0:1 and �0:1, respectively, for the case of b ¼ 1 with the significance level of 0.05, while the proce-
dure based on b̂bp yielded powers of 0.346 and 0.238. These suggest that the proposed method has reason-
able power. To assess the approximation of the asymptotic normal distribution to the distribution of b̂b, the
probability plots of the standardized b̂b against the standard normal distribution were studied and com-
pared to the corresponding plots of the standardized b̂bp. Figures 1 and 2 display such plots of the standar-
dized b̂bp and b̂b, respectively, for the situation b ¼ 0 considered in Table 1. They suggest that the approx-
imation is quite satisfactory and similar plots were obtained for other situations.

Note that for a given situation or particular problem, one needs to choose K for the Monte Carlo
method for determining b̂b. A general and simple rule is to try several values of K or to increase K
until a stable b̂b is obtained. In the study here, we also tried K ¼ 200 and K ¼ 500 and no significant
differences were observed.
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5 Illustration: Application to an AIDS Study

In this section, we apply the proposed methodology to the AIDS cohort study discussed by De Gruttola
and Lagakos (1989) and Sun et al. (1999) among other authors. The study consists of patients with
Type A or B hemophilia who were at risk for HIV infection through the contaminated blood factor
they received for their treatments. One of the main objectives of the study is to estimate the distribu-
tion of AIDS incubation time (Ti), the time between HIV infection (Xi) and AIDS diagnosis (Si*). For
the analysis, most authors assumed that the AIDS incubation time is independent of HIV infection
time. The goal here is to assess this independence assumption.

The observed data can be found in Table 1 of Sun et al. (1999) and include observed intervals for Xi and
right-censored AIDS diagnosis times. Here interval-censored observations occurred due to the fact that
HIV infection was detected through periodic blood tests and the reason for right-censoring on AIDS diag-
nosis time is that the study ended before the development of AIDS for many subjects. Assume that model
(1) holds for AIDS incubation time. The application of the proposed method yielded b̂b ¼ �0:0639 with
the estimated standard deviation of 0:0621 with K ¼ 100. This corresponds to a p-value of 0:3035 accord-
ing to the c2 distribution and suggests that the independence assumption seems to hold for the case consid-
ered here. We also tried some larger values of K as in simulation and got similar estimates.
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Table 1 Means of regression parameter estimates and their
MSE.

b ¼ 1 b ¼ 2

True b b̂b b̂bp b̂b b̂bp

0.00 �0.0026
(0.0081)

�0.0002
(0.0082)

�0.0047
(0.0089)

�0.0002
(0.0082)

0.10 0.0885
(0.0141)

0.0941
(0.0154)

0.0825
(0.0138)

0.0941
(0.0154)

�0.10 �0.0966
(0.0205)

�0.0979
(0.0206)

�0.0937
(0.0211)

�0.0979
(0.0206)
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Figure 1 Quantile plot for exactly observed HIV
infection time.
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Figure 2 Quantile plot for interval-censored HIV
infection time.
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In the original study, the subjects were classified into two groups, lightly and heavily treated
groups, according to the amount of blood they received. Corresponding to this, we also applied the
method separately to each of the two groups and similar results were obtained.

6 Concluding Remarks

This paper considered the problem of testing independence assumption between HIV infection and
AIDS incubation time. The assumption has been commonly used in the analysis of AIDS cohort
studies and has not been addressed before. For the problem, we proposed an estimating equation-
based approach assuming that the proportional hazards model can be used to describe the relationship
between HIV infection and AIDS incubation time, and a Wald test statistic was presented. The simula-
tion results suggested that the method works reasonably well.

It should be noted that the approach given here depends on model (1), the use of which makes the
problem tractable. In other words, the hypothesis H0 is equivalent to the independence assumption
under the model (1) and the approach may not be able to detect the dependence of Ti on Xi if the true
relationship between them does not satisfy the model (1). For example, in some situations, rather than
model (1), their relationship may be better described by the additive hazards model or the proportional
odds model. Another possibility is that their relationship may fit better the Cox model with time-
varying covariate effect. This of course leads to a related question: the checking of the validity of
model (1), which is beyond this investigation and for which some extra information or data sets may
be needed. If there is evidence against model (1), then a different approach would be needed to test
the independence assumption.

For the problem considered here, an alternative method is to use the full likelihood approach based
on the likelihood function

Qn
i¼1

ÐRi

Li

f l0ðtiÞ exp ðxibÞgdi exp �exib
Ðti
0

l0ðuÞ du

� �
dHðxiÞ : ð5Þ

Several authors have used this approach to study AIDS incubation time (De Gruttola and Lagakos,
1989; Frydman, 1995; Goggins et al., 1999). In comparison to the method given here, although it
could be more efficient, the full likelihood approach has the disadvantage that it is complicated in
computation since some iterative algorithms such as self-consistency algorithm or Monte Carlo EM
algorithm have to be used. More importantly, the asymptotic properties are unknown and thus no
rigorous test can be constructed.

In the preceding sections, we have focused on testing H0 assuming that there do not exist covariates.
However, this may not be the case in many situations. Suppose that for subject i, there exist a vector of
covariates zi whose effects on the Ti’s are of interest. In this case, the model (1) can be generalized to

liðt j xiÞ ¼ Yiðt j xiÞ l0ðtÞ exp ð xibþ zig Þ

and it is straightforward to develop methods similar to the proposed approach for testing H0 and
making inference about g, where g represents the effect of zi on Ti. Note that in the above model we
use Yiðt j xiÞ instead of Yiðt j xi; ziÞ because Yi is an indicator function that may directly depend on xi,
but not on zi (Andersen and Gill, 1982). More specifically, estimating equations for both b and g
together can be similarly developed and all derivations and properties of b̂b given above should hold for
the estimates of b and g defined by these equations. Note that if the test of the hypothesis H0 is not
significant, the above problem reduces that discussed in Sun et al. (1999).

A more general situation, whose discussion is beyond this paper and will be reported elsewhere,
that may occur in practice is that in addition to interval-censoring on Xi, some or all components of zi

also suffer interval-censoring. In this case, we have an inference problem about the proportional ha-
zards model with right-censored failure time data and interval-censored covariates if the test of the
hypothesis H0 is not significant, or that with doubly censored data and interval-censored covariates
otherwise. For either case, there does not seem to exist well-established methods.
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Appendix: Proofs

Let b0, b̂b, Uðb j xÞ, and Uðb; ĤHÞ be defined as before and use the notation given in the previous
sections. Assume that the regularity conditions given in Andersen and Gill (1982) for the case of
right-censored failure time data and in Groeneboom and Wellner (1992) and Yu et al. (1998) for the
strong consistency of ĤH hold.

Consistency of b̂b. Define for fixed x ¼ ðx1; . . . ; xnÞ

Xnðb; t j xÞ ¼ n�1Pn
i¼1

ðt
0

ðb� b0ÞxidNiðuÞ �
ðt
0

log

Pn
i¼1

Yiðu j xiÞexib

Pn
i¼1

Yiðu j xiÞexib0

8>><
>>:

9>>=
>>; d �NNðu j xÞ ;

Anðb; t j xÞ ¼
ðt
0

ðb� b0ÞSð1Þ ðb0; u; xÞ � log
Sð0Þðb; u; xÞ
Sð0Þðb0; u; xÞ

� �
Sð0Þðb0; u; xÞ

� �
l0ðuÞ du ;

and Miðt j xiÞ ¼ Niðt j xiÞ �
Ðt
0

l0ðsÞ Yiðs j xiÞ exp ðxib0Þ ds, i ¼ 1; 2; � � � ; n. Then we have

Xnðb; t j xÞ � Anðb; t j xÞ ¼ n�1Pn
i¼1

ðt
0

ðb� b0Þxi � log
Sð0Þðb; u; xÞ
Sð0Þðb0; u; xÞ

� �
dMiðu j xiÞ ;

which is a locally square integrable martingale. Using arguments similar to those in Anderson and

Gill (1982), we see that Xnðb; t j xÞ � Anðb; t j xÞ!
P

0 as n!1.

Also note that Anðb; t j xÞ!
P

Aðb; tÞ, where

Aðb; tÞ ¼
ðt
0

ðb� b0Þ sð1Þ ðb0; uÞ � log
sð0Þðb; uÞ
sð0Þðb0; uÞ

� �
sð0Þ ðb0; uÞ

� �
l0ðuÞ du

and sð0Þ and sð1Þ are the stochastic limits of Sð0Þ and Sð1Þ, respectively. It thus follows that

Xnðb; t j xÞ !
P

Aðb; tÞ and

Xnðb; tÞ ¼
ÐR1

L1

� � �
ÐRn

Ln

Xnðb; t j xÞ
Qn
l¼1

âa�1
l dĤHðxlÞ ! Aðb; tÞ

both in probability due to the strong uniform consistency of ĤH (Groeneboom and Wellner, 1992; Yu et al.,
1998). The above convergence statement and the fact that both Xnðb; tÞ and Aðb; tÞ are concave func-
tions of b with a unique maximum at b ¼ b̂b and b ¼ b0, respectively, show that asymptotically,
b̂b! b0 in probability. That is, b̂b is (weakly) consistent.

Asymptotic Normality of b̂b. To prove the asymptotic normality, first note that the application of
Taylor series expansion to Uðb; ĤHÞ yields, asymptotically,

n�
1
2 Uðb0; ĤHÞ ¼ �n�1 @Uðb; ĤHÞ

@b
j

b¼b*

� �
fn1

2ðb̂b� b0Þg ;

where b* is on the segment between b0 and b̂b. Following Anderson and Gill (1982), we can easily
show that as n!1, Aðb*Þ ¼ �n�1 @Uðb; ĤHÞ= @b j

b¼b* converges in probability to

ðt
0

sð2Þðb0; tÞ
sð0Þðb0; tÞ

� sð1Þðb0; tÞ
sð0Þðb0; tÞ

� �2
" #

sð0Þðb0; tÞ l0ðtÞ dt ;
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where sð2Þðb; tÞ ¼ @2sð0Þðb; tÞ=@b2. Thus, for the proof, it is sufficient to show that n�1=2Uðb0; ĤHÞ is
asymptotically normally distributed with mean zero and variance that can be estimated by Gðb̂bÞ given
in Section 3.

For this, as in Sun et al. (1999), we can show that

n�
1
2Uðb0; ĤHÞ ¼ n�

1
2
Pn
i¼1

âa�1
i

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dĤHðxiÞ þ oPð1Þ ;

where uiðb0; t j xiÞ ¼ xi � sð1Þðb0; tÞ=sð0Þðb0; tÞ. Let Dn* denote the quantity at the right side of the
above equation. Define

Dn ¼ n�
1
2
Pn
i¼1

a�1
i

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dHðxiÞ

with ai ¼
ÐRi

Li

dHðxiÞ. Dn can be easily shown to converge in law to a normally distributed variate with

mean zero and variance that can be consistently estimated by Gðb̂bÞ as defined in Section 3. Thus to
prove the asymptotic distribution of n�1=2Uðb0; ĤHÞ, we only need to prove that for any e > 0,

Pð jDn*� Dn j � eÞ ! 0 : ð5Þ

For this, note that

Pð jDn*� Dn j � eÞ � 1
ne2

Pn
i¼1

E âa�1
i

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dĤHnðxiÞ
"

�a�1
i

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dHðxiÞ
#2

: ð6Þ

Let GðXiÞ ¼
Ðt
0

uiðb0; t jXiÞ dMiðt jXiÞ, which is a a right-continuous function with bounded variation on

any finite interval. Then we have

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dĤHnðxiÞ ¼ GðRiÞ ĤHnðRiÞ � GðLiÞ ĤHnðLiÞ �
ÐRi

Li

ĤHnðxiÞ dGðxiÞ ð7Þ

and

ÐRi

Li

Ðt
0

uiðb0; t j xiÞ dMiðt j xiÞ dHðxiÞ ¼ GðRiÞ HðRiÞ � GðLiÞ HðLiÞ �
ÐRi

Li

HðxiÞ dGðxiÞ : ð8Þ

Therefore the equation (5) follows by plugging in (7) and (8) into (6), which completes the proof.
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