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An accelerated life test (ALT) is often well planned to yield the most statistical information given
limited test resources. Nevertheless, ALT planning requires rough estimates of the model parameters as
an input, called planning values. The discrepancy between the planning values and the true values may
result in insufficient or even no failures at the low-stress level, making the subsequent data analysis difficult.
Motivated by the need in the ALTs of data acquisition devices used in smart grids, an adaptive ALT scheme
is proposed. The key idea is based on the observation that, when the product reliability is underestimated
during the ALT design phase, it is unlikely to observe failures at the early stage of the test. Therefore,
the low-stress level should be elevated to protect against insufficient failures. Under this adaptive ALT
framework, order statistics techniques are used to derive the likelihood function by assuming a general log-
location-scale distribution for the product lifetime. Confidence intervals for the parameters are constructed
based on the large-sample approximation as well as the accelerated bootstrap method. A simulation study
is conducted to demonstrate the advantages of the adaptive ALT compared with the simple constant-stress
ALT. Its application is illustrated using the motivating example from smart grids.
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1. Introduction
1.1. Motivation
&. CCELERATED LIFE TESTS (ALTs) have become an

important tool in the evaluation of product re-
liability during the design phase. During an ALT,
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testing units are exposed to harsher-than-normal use
conditions, such as high temperature, voltage, and
humidity, so that failure times of these units can be
collected within a timely fashion. An ALT is usu-
ally stopped after a certain amount of test time, i.e.,
type-I censoring, or when a certain number of fail-
ures have been observed, i.e., type-1I censoring. Sta-
tistical methods are then used to fit the ALT data
and extrapolate the results to normal use conditions.
Both constant-stress ALT and step-stress ALT can
be used for the test. Although there are some ad-
vantages of step-stress ALTs (e.g., see Han and Ng
(2013)), constant-stress ALTs are still widely used
in industry due to their simplicity. Some comprehen-
sive reviews of accelerated-life testing include Nelson
(2009) and Bagdonavicius and Nikulin (2010).

To efficiently use the test units and the testing
rigs, an ALT is often carefully designed by optimally
choosing the stress levels and the proportion of test
units to each level. The design usually requires a
knowledge of the parametric form of the lifetime dis-
tribution, the stress-life relation, and the values of
the parameters involved. Given these inputs, an ALT
can be designed under a certain criterion, e.g., min-
imizing the (asymptotic) variance of an estimated
quantile at use conditions (e.g., Liu (2012)), maxi-
mizing the determinant of the asymptotic variance

covariance matrix (e.g., Guan et al. (2014)), min-
imizing the average variance of a predicted quan-
tile over the entire use condition region (e.g., Pan
and Yang (2014)) or optimizing the energy efficiency
(e.g., Zhang and Liao (2014)). This type of design
is called locally optimal design because of the prior
inputs required. In practice, the parametric form of
the lifetime distribution and the stress-life accelera-
tion relationship are usually known if we already have
abundant experience on this type of product. Never-
theless, planning values of the model parameters are
usually subject to uncertainty. When the planning
values underestimate the product reliability, which
is often the case due to the conservation of the man-
ufacturers, no sufficient failures will be generated at
the low-stress level. The insufficiency in failure data
poses problems in the subsequent data analysis. A
motivating example of this kind is from the China
Electric Power Research Institute as follows.

Advanced Metering Infrastructure (AMI) is an
integrated network processing system for measure-
ment, collection, storage, analysis, and usage of elec-
trical data, which is the basis of a smart grid. A
central hub in the AMI is the data-acquisition de-
vices, the reliability of which is extremely important
to the AMI. A schematic figure of the AMI data-
acquisition devices is shown in Figure 1. The Re-
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FIGURE 1. A Schematic of the AMI Data Acquisition Devices (Q/GDW 374.2, 2009).
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search Institute is responsible for quality certifica-
tion of AMI data acquisition devices before the de-
vices are launched into the market. ALTs with two
constant-stress levels and type-1 censoring are com-
monly used to assess the reliability. There have been
industrial standards on the lifetime distribution and
the acceleration relations for the device, while dis-
tribution parameters of different brands/models of
the device differ significantly. Therefore, prior relia-
bility information required in the ALT planning is
often provided by the manufacturers. Nevertheless,
some manufacturers tend to over engineer the de-
vice and provide conservative reliability values much
lower than the actual values. When the ALT is de-
signed based on the conservative reliability informa-
tion, ALT engineers often find that very few failures,
or even no failures, are observed under the low-stress
level. With few failure data at the lower stress level,
extrapolation of the failure time to the use condition,
if not infeasible, leads to very high variability. Such
a “bad” ALT is a great waste to the institute, as the
devices are often very expensive and the experiment
takes a few months. The institute is thus looking for
modifications to the current ALT design to mitigate
the effect of conservative reliability estimation at the
planning stage. Motivated by this need, this study
proposes an adaptive scheme for the constant-stress
ALTs.

Under the adaptive ALT, we look at the number
of failures until a predetermined time under the low-
stress level. The low stress is increased if the num-
ber is smaller than a threshold. The idea is based
on the observation that, if the reliability is underes-
timated during the ALT design, then it is unlikely
to observe failures at the early stage of the testing.
Thus, the insufficient total number of failures before
a predetermined time serves as a good indicator of
the underestimation. After knowing the underesti-
mation, an increase in the stress level induces more
failures. The adaptive scheme can be regarded as an
emergency control for the ALT planner to control
the progress of the test. In practice, the ALT plan-
ner is usually different from the ALT experimenters.
The ALT planner is usually well equipped with ALT
knowledge and s/he takes care of the ALT design and
the data analysis, while the experimenters who im-
plement the test usually do not have sufficient knowl-
edge on ALT. When there is no underestimation, the
chance of increasing the low stress is slim. There-
fore, the experiment goes to a regular constant-stress
ALT, which can be readily handled by experimenters.
In the presence of underestimation, nevertheless, the
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planner should step into the experiment and provide
a hands-on guide to the experimenters in implement-
ing the emergency measure. With this scheme, the
risk of no failures would be greatly mitigated.

Another advantage of the adaptive ALT is that
it may improve the estimation efficiency. ALT plan-
ners obtain the low-stress level based on the tradi-
tional optimal design for a constant-stress ALT by
assuming that the planning values are equal to the
true values. When there is no or mild misspecifica-
tion of the parameter values, the chance of moving
up the low-stress level is very small. This means that
our adaptive method will not compromise the effi-
ciency of the ALT in this case. However, when there
is severe misspecification such that the reliability is
highly underestimated, the true optimal value for the
low stress should be higher than the design value. In
this case, moving up the low-stress level to a higher
level may increase the estimation efficiency.

1.2. Related Literature

The planning values of an ALT are often deter-
mined from past experience, industrial obligation, or
expert knowledge. It is not uncommon for them to
differ from the true values. A locally optimal design
may be sensitive to the discrepancies between the
planning values and the true values. There have been
a slew of studies on mitigating the negative effect of
the discrepancies. For instance, Ginebra et al. (1998)
applied a minimax approach to minimize the deter-
minant of the information matrix when the planning
values are believed to be in a specified parameter
region. Zhang and Meeker (2006) presented a gen-
eral Bayesian framework for planning constant-stress
ALTs. Tang and Liu (2010) proposed a sequential
ALT design to plan or adjust subsequent tests by a
better estimation of parameters from the first batch
of samples. However, the sequential method requires
heavy work for the planner (usually differs from the
experimenters) to control the whole progress of the
test, which is difficult for a large institute doing many
ALTs simultaneously. In addition, the low-stress test
has to be conducted after the high-stress test, which
prolongs the total test duration.

Limited literature directly discussed the lack of
failures in the low-stress level, the main problem we
encountered in the motivation example. Nelson and
Kielpinski (1976) suggested a compromise plan with
more than two levels of stress to avoid no failures un-
der the lowest stress level of the statistically optimum
plan. Meeker and Hahn (1985) then presented some
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practical guidelines on designing a compromise plan.
They proposed a three-level constant-stress compro-
mised plan with a fixed 4:2:1 allocation to the low,
middle, and high levels of stress, respectively. Nelson
(2009) recommended a three- or four-level constant-
stress test to avoid lack of failures. The key idea
of those methods is to ensure enough failures from
at least two stress levels by adding extra stress lev-
els. The compromise ALT is sometimes unpractical
due to equipment constrains. In the data-acquisition
device example, each stress level requires an expen-
sive thermostat. In addition, more stress levels entail
more test samples. On the other hand, the adaptive
ALT provides an emergency measure for engineers
to flexibly change the test setting during the experi-
ment. It uses two stress levels only and it is easy to
control for the ALT planner.

1.3. Overview

The rest of the paper is organized as follows. Sec-
tion 2 presents the new adaptive ALT scheme. The
likelihood function is then derived by assuming a log-
location-scale distribution to the lifetime. Section 3
develops a large-sample approximation and the boot-
strap method to construct confidence intervals of pa-
rameters. In view of the fact that the exponential dis-
tribution provides a good fit to the lifetime of data-
acquisition devices, Section 4 derives closed forms of
maximnn-likelihood estimators and the Fisher infor-
mation matrix under the exponential distribution.
Section 5 presents simulation results that compare
the performances between the constant-stress ALT
and the adaptive ALT. Section 6 provides a real-
life example from China Electrical Power Institute.
The real experiment shows its application in prac-
tice. Because the real example is in the form of a
constant-stress ALT, we further generate a simulated
dataset to illustrate the case where the low-stress
level is switched. Section 7 includes some conclud-
ing remarks and suggestions for future research.

2. Model Description and
the Log Likelihood

2.1. Notations and the Model

Consider a constant-stress ALT with two stress
levels. Denote the low and the high levels as s; and
sH, respectively. The number of test units under s;
is ng, 4+ = L,H. Let n = ny, + ny. The duration of
the ALT is denoted as 5. To avoid too few failures
at sp, suppose an adaptive scheme is implemented.
The adaptive scheme sets a check-time 7, and moni-
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FIGURE 2. A Adaptive ALT.

tors failures under s; . If the number of failures until
71, denoted as J, is less than a threshold m, s is
increased to a middle level sy, s; < sp < sy, at
7. Otherwise, no change is made to the test. Figure
2 gives a schematic representation of the adaptive
ALT. For convenience, the stress levels are normal-
ized as follows:

Y(su) — ¥(si)
Y(sv) — Y(su)’

where sy is the use stress and () is a function of
the stress, the form of which depends on the accel-
eration relation. For example, ¢(s) = Ins for the
inverse power law and ¢(s) = 1/s for the Arrhenius
law. After the normalization, &y = 0, £y = 1, and
0<¢& <& <1

&= it=ULMH, (1)

The log-location-scale family of distributions are
commonly used as lifetime distributions. See Liao
and Elsayed (2010) and Chen et al. (2016a, b) to
name a few. Suppose the product lifetime T under
stress £ follows a general log-location-scale distri-
bution with cumulative distribution function (CDF)
and probability density function (PDF)

Fi(t)zé[h’—t%‘@], t>0 (2)
e e R ET NC

respectively. ®(-) is the standard log-location-scale
CDF and ¢(-) is the corresponding PDF. The above
display has implicitly assumed that the location pa-
rameter is a function of the stress as u(§) = 8o+ 3£,
and the scale o is constant. This is a common as-
sumption used in the ALT literature, e.g., see Xu
et al. (2015), Wang et al. (2014), and Ye et al.
(2013). The exponential distribution is a special log-
location-scale distribution with ¢ = 1 and ® =

1 — exp (—exp(x)).
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Under the low-stress level £, the stress level in-
creases to £xr at 71 when the number of failures .J at
7, is less than m. To model the effect of the stress
increment on product failures, the cumulative expo-
sure model proposed by Nelson (1980) is used. This
model has been widely used in ALT. See Lin et al.
(2014), Liu and Qiu (2011), and Yuan et al. (2012)
for some recent examples. The model assumes that,
given survival up to t, the distribution of the remain-
ing life depends only on the probability of failure up
to t and the current stress level, regardless of the
exposure history.

After the experiment, R, ordered failures, denoted
as X = (Xl:n,,w cee ~XJfI:n,,~,X.]:nL« s ~XR|:1LL) are
observed for units allocated to &, and Rs ordered
failures, denoted as Y = (Yiny, - - Yr,:n,, ) are ob-
served for units allocated to £y. The likelihood con-
tributed from Y is easy to derive because all failures
are under the same stress level £5. Nevertheless, fail-
ures of the units allocated to the low stress are not
independent, as the failure process after 7 depends
on the number of failures before 7. This dependency
motivates us to adopt order statistics. The method
of order statistics is a useful tool to model censored
data in reliability analysis (Arnold et al. (1992}, Bal-
akrishnan et al. (2012)). By using properties of the
order statistics, the likelihood from X can be readily
obtained.

Log-Likelihood Function

Let @ = (/. 81,0) be the parameters of interest.
As X and Y are independent, we decompose the log-
likelihood function as [(8 | X,Y) =1(6 | X) + (8 |
Y). Under the adaptive scheme, [(8 | X) cannot be
simply obtained by summing the log likelihood of
cach individual unit as they are not mutually inde-
pendent. Therefore, order statistics are used.

9X,0, (t | Ti—lingaers 4171:111,)

( ("L —i+ 1) fL(t) (1 — Fll(.t))nl‘_i
(1~ FL(.’L‘i_l:”L))"L—H—] .

(ng, —i+ Dfput—7+7) 1= Fpy(t—mn + 7)) "

Using the order statistics, we have

16| X) =Ingx,,, (T1n,)

R,
+ Z lll!lx,:,,,' (-ri:nL | Titmgpe--- a-’rl:nl,)a
i=2
and
[(0 | Y) = l]l.(lyl:n” (.‘/l:n”)
Ry
+ Z In .(]y._,,” (yi:nu | Yivmpy~---s .’/I:n“)-
i=2

Here., gx,.,, () and gy, () arc the respective PDFs
of X|., and Y1, . while 9xi ., iz oo lny)
and gy, C | Yictmyeo- - Yi:n, ) are the conditional
PDFs of X.,,, and Yi,,,, given all prior failure times.
respectively. Because all units allocated to the high-
stress level operate under the constant stress £y, it
is casy to see that

9y, 0y (1) = nn (01 = Fig ()"

and

.(]Y,;..“ (t l Yi—lnggeeos '1/1:““)
= (”H —it+ l)fll(f)(l —_ F}{(f))""_i
(1—FH(!/FI:n,‘))"H—iH .

On the other hand, the distribution for X,.,,, is much
more complicated. For X1, . it is readily seen that

gx,.., (1)
npfL)(1 - Fp ()",

npfa(t — 7 +T’)
X(l — F]\[(f -7 + Tl))""~l.

if Ty, < T

if Ly, > T1s

where 7/ = Fy,'(FL(m1)) = 71 exp(81(€ar —€1)) is the
equivalent operating time under sp; for 7 under sg,.
It is obtained from the cumulative exposure model.
The distribution of X;.,,, given all i—1 failures before
it is more involved. After some tedious calculation,
it can be shown that

if 2y, <7morifai,, >m andJ>m;

(1 - FL("I’i—l:nL))"”_i’+l

(np —i+ Dfpu(t—m+7)1= Fy(t—m+1)""

if @i, > 11 @wici, <71 and J <o
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Combining the above results, the log-likelihood func-
tion when m < J <ng is
(6]X,Y)
Ry

=Dy + Z In(fr(Zimn,))

i=]

+ (n — Rl) ln(l — FL(TQ))

Ry
+ Z ln(fH(yi:nH ))

i=1
+ (77,1-] - RQ) ln(l - FH(TQ)). (4)
When 0 < J < m,
1(8]X,Y)

J
=Dy + Z In(fr(xin,))

i=1
Ry

+ Z ln(fhl(wi:nL -7 +T,))

i=J+1
+(n—Ry)In(1 — Fy(t — 7 + 7))

Ry
+ lel(f[-]('yi:ny))

i=1
+ (ng — R2) In(1 — Fy(r)),

where

nL! TI,H! )
Dy=1
o= ((nL —R1)! (nu — Ry)!

is a constant. The second term of Equation (5) will
vanish if J = 0 and so will the third term if J = R;.
Detailed expressions of the log-likelihood functions
for different log-location-scale distributions are pro-
vided in the Appendix.

Maximum-likelihood estimators (MLEs) of 81, B,
and o can be obtained by maximizing Equation (4)
or Equation (5). The MLEs do not exist when no
failures are observed on either stress level, i.e., ei-
ther Ry or Ry is zero. Therefore, a rational ALT
should minimize the chance of no failures, which is
the case for our adaptive scheme. When J > m, the
log-likelihood function is the same as that from a
simple constant-stress ALT. In which case, the MLEs
are the same as those from the constant-stress. How-
ever, we will show later that the interval estimations
differ. Usually, the MLEs do not have closed forms
under a general log-location-scale distribution. Nu-
merical methods can be used to do the optimization.
Nevertheless, closed forms of the MLEs exist for the
exponential distribution when m < J < ny. See Sec-
tion 4 for more details.

Journal of Quality Technology

3. Interval Estimation

In this section, we present two different methods
to construct confidence intervals (Cls) for the param-
eters By, (1, and o. First, we present approximate
CIs for By, 1, and o by using large-sample approx-
imation. Then the parametric bootstrap method is
used.

3.1. Large-Sample Approximate Confidence
Intervals

When the sample size is not very small, normal
approximation to the MLEs is often an accurate
method for confidence intervals. The large-sample
approximate covariance-variance matrix of [31, BO
and &, denoted by X, is the inverse of the Fisher
information matrix (FIM) I(8). It is the expectation
of the observed information matrix 71(8), which is
the negative of the second partial derivatives of the
log-likelihood function with respect to parameters.
When the expectation is difficult to compute, which
is the case in our problem, X4 can be alternatively
obtained by inverting the observed information ma-
trix, which is given by

VarA(ﬁAOZ
g = | Covifh, A1)
Cov(fp, o)
=I17(0).

Then the two-sided 100(1 — a)% confidence intervals
of By, B1, o are

Go + Za/21/ Var(ﬁo)
Bi %24/ V Var(f)

G+ 2591/ Var(G).

Details of the observed information matrix I(8)
for some common log-location-scale distributions are
given in the Appendix. Under the special case of ex-
ponential distributions with 8 = (5o, 1), the explicit
expression of the Fisher information matrix is avail-
able, as shown in the next section. The closed-form
expressions enable us to compare the difference be-
tween our adaptive scheme and the simple constant-
stress ALT.

COV(,BOA, Bl) Cov(ﬂio, é)
Var(ﬁl) Cov(,6)
Cov(f,0) Var(4)

3.2. Parametric Bootstrap Confidence
Intervals

The confidence intervals can also be constructed
based on the parametric bootstrap. The biased-cor-
rected and accelerated (BCa) percentile introduced
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in Efron and Tibshirani (1994) is adopted. The algo-
rithm, when applied to our inference problem, is as
follows:

1. Obtain the MLEs § = (/30, /3},&) based
on the observed data X and Y. Let 7 =
FA_,,I(FL(Tl;O);é).

2. Generate two sets of standard uniform ran-
dom samples of size n;, and ny, respectively.
Obtain the two samples of order statistics
(Utnps- s Unping) and (Viings oo, Vaging )-

3. Find J* such that Uj.,, < Fi(r:0) <
Ujys 41.n,,- Generate a pseudo-random sample
for units allocated to the low stress as

e If 0 < J* < m, find R} such that Ug;.n, <

FM( T2 —T1 + 7;8) < Up; 4+1:m,,- Then, we set

rr, = Fp (Um,, 9) for 1 < i < J* and 7,

= FM (U,_n,l,O) +7—7Ffor J+1<i <R}

olf m < J* < n, find R} such that

UR‘ imi, < Fp(12;0) < Ugsqim,- Then set
xp, = F "Uin,;8) for 1 <i <R},

4. Find Rj such that Vgsn, < F]{(TQ;é) <

VR;H;,, .- Generate a pseudo-random sample
for units allocated to the high stress as y;.,,,, =

Fy' (Viny38), 1 S0 < R},
. If R}, Ry > 0, obtain a bootstrap estimate §* =
(A5, 37,6*) based on the data generated.
6. Repeat steps 2-5 to obtain B bootstrap esti-
mates **) k=1,2,...,B.

4]

and

=¢ {Z(),

In the above display, ®(-) is the standard normal
CDF and

3kl _
:Q{M} fel. B

Zoi + 21-a/2 }
1— &i(Z0i + 21-a72) |

B

A good estimate of the acceleration factor «; is

RH'Rz(ﬂ( [§(k)):l

T

(AY«,;— 3/2° k:1,2.

where ﬁfk) is the MLE of j;, based on the original
sample combined X and Y ascending with the ith
observation deleted (i.e., the jackknife estimate), and

Ri+R>

ﬁ() Z ﬂ(k)/ (R1 + Ry),

k=1

k=12

4. Inference Under
Exponential Distribution

Under the special case of the exponential distribu-
tion with 8 = (g, 81), the closed form of the Fisher
information matrix is available. The log-likelihood
function given the exponential lifetime is

0] X,Y)

(11 = Do — (Ry + R2)f3
Let 6; be the ith element of @ for convenience. Sort -B1(JEL + (Ry — J)ém
6 ¥ in ascending order. Then a two-sided 100(1-a)% +Ry€n)
BCa bootstrap confidence interval of §; is given by = —D{ — Dy — D5, if J < m;
(9‘:[:1.,3179‘:[::2.-8])’ i=0,1,2, l, = Dy — (R, + R2)fo
where - (RiéL + Robn)
’ ) 501+ Za/2 —D{ - D4y — Dy, if J > m,
a1y = ‘I) 204 + N
1 — &i(20i + 2a/2) (6)
where
p -l —(Bo+pi€L) (Z i, + 10 - J)) g >0
e_("“*’/j‘f")rlnL, if J =0,
_ e—(ﬁo-HilfM) (ZiR:IJ+1 Tim, —T1 (nL — J) + ('n,L — RI)T2) R if Ry > J;
y =
e—(ﬁu+ﬂ1§M)(7—2 — Tl)'nLa if Ry = J,
R
D3 = e~ WotMén) (Z Yimg + T2(ny — R'z)) )
=1
and
Dy = ~([5(1+ﬂ151) (Z =J+1Limg, — T (nL - J) + (nL - R])T’).) ’ it Ry > J;
(ﬂ()+ﬁl£l‘)( T — Tl)n[n if Rl = .I.
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When J > m, the closed forms of MLEs of 6 are

as follows:

. Eu(Bo+ BiéL) In (Qlﬂ‘
0T &n — &L

€1(60 + i) n (B2)
- €n — &L
(Bo + Bn) 111( )

€n — &L

(Bo + Brén) In (22:La

- €n — &L

When J < m, the MLEs have to be obtained by
numerical methods as the closed forms are not avail-
able.

B =

The Fisher information matrix can be obtained by
the observed information conditioned on J as

1(6) = E[E[I ) 1)

= Z E[,(6
=0

+ > E[L(6)

)| J = j]Pr(J = )
| J = j]Pr(J =

where I;(6) is the corresponding observed informa-
tion matrix of ;(6). Therefore, the entries of the
Fisher information matrix are given by

ng
T = ~€ " |E[D1) + ) _E[Dy | J = j]Pr(J = j)
j=m
] m—1
M2 E[Dy | J=j]Pr(J =
7=0
— &4 *E[Ds),

where ¢,k = 1,2. With the aid of the zero expecta-
tion of the first-order derivatives to the log-likelihood
functions, we have

E[D,] + i E(D4 | J = j]Pr(J =

j=m

ng
=EJ]+ Y _E[R —J|J=4]Pr(J =
j=m
m—1

Y E[D;|J=j]Pr(J =

=0

Journal of Quality Technology

m—1

= Y ElR - J|J=j|Pi(J =
§=0

E[Ds] = E[Ry].

Based on the above results, I,; can be simplified as

Tie = EEPF 2| EJ) + XL: E[R, - J|J=j]Pr(J =

ji=m
m—1
+61 77 Y B[R~ J | J =] Pr(J =)
j=0
+ &V PE[Ry).

Details of the derivation of I, are shown in the Ap-
pendix. Under the simple constant-stress ALT, the
second term of the entries of the Fisher information
matrix vanishes and m is 0. This implies that confi-
dence intervals constructed by the Fisher information
matrix of the adaptive ALT differ from those of the
constant-stress one.

5. Simulation Study

Comprehensive Monte Carlo simulations are con-
ducted to compare the performances of the adap-
tive ALT with the simple constant-stress ALT un-
der different lifetime distributions. The simulations
are based on three commonly used log-location-scale
distributions, namely, the Weibull, log normal, and
exponential distributions. The simulation settings
mimic the experiment reported in Section 6. In all
simulations, we let £, = 0.587, n;, = 30, and ny =
13. The nominal confidence level is set to be 90%.
The duration of the test is 75 = 160.

For each distribution, we assume that planning
values of 89 = (85,67, 05) are provided by the
manufacturer, as shown in Table 1. These values are
similar to MLEs of parameters for each distribution
based on the real data in Section 6. In our simu-
lations, we first consider the scenario that the true
values are the same as the planning values. Then
we consider underestimation of the reliability by let-
ting the true value of one parameter differ from its
planning value by 3% or —3%, whichever leads to
underestimation in reliability. For each scenario, we
simulate both the simple constant-stress ALT and six
adaptive schemes by varying m, £xs. The values of m
are from 1 to 2 and &y = 0.618, 0.647, 0.676.

Regarding the choice of 71, if we know the true val-
ues of the model parameters when there is misspec-
ification, we can determine the optimal switch time
71 using some statistical criterion. This is similar to
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TABLE 1. Planning Values of the Model Parameters
for the Three Distributions

Distribution B i o
Weibull 10.733 ~-6.713 1.022
Lognormal 12.400 —8.349 2.500
Exponential 11.560 -8.293

the determination of control limits in the design of a
control chart. The challenge is that we do not know
the true values of the model parameters when there
is misspecification. Therefore, it might be difficult
to quantitatively determine the optimal switch set-
ting. However, we can still choose 71 by some heuris-
tic criteria as follows. (a) If the model parameters
0 arc close to the planning values 6", the misspec-
ification is mild and we may not need to change
the stress. Therefore, we should choose 7y such that
Pr(J(m) < m | 69) is small, say, less than 0.1. For
a fixed m, this implies that a small 7y is preferred.
(b) On the other hand, if the model parameters 6 are
far from the planning values 85, we should choose 7y
such that Pr(J(r) < m | ) is large enough. This
entails a large 7, when m is fixed. (¢) To have an ef-
fective adaptive plan, we also want to choose 71 such
that the discrepancy between Pr(J(r) < m | 89)
and Pr(J(m) < m | 8) is as large as possible. In order
to achieve a balance between (a) and (b), 7 should
neither be too large nor too small. In the simula-
tion, the choice of 71 is mainly based on the Weibull
model and a conservative m = 1. In the settings for
the Weibull distribution, the most significant mis-
specification (in terms of MTTF) happens when
is 3% larger than the plan value. In this scenario,
one finds that, when 7, = 60, 61, 62, criteria (a) and
(b) are satistied. Meanwhile, the difference between
Pr(J(60) < m | 89) and Pr(J(60) < m | @) is the
largest when 7 = 60. Therefore, a good choice of
7, is 60 for this scenario. When the same analysis is
applied to the exponential model, the choice of 7y is
similar. On the other hand, the best 7| for the log-
normal model is circa 45. Because we want to com-
pare the three models under the same testing scheme,
we choose 71 = 60 in our simulation.

In each scenario, 10,000 Monte Carlo replications
are used to obtain the root-mean squared errors
(RMSESs) of the MLEs as well as the coverage proba-
bilities of the confidence intervals. In the bootstrap,
the bootstrap sample size is B = 2,000. We also re-
port the percentage of replications with R; <1, un-
der which the MLEs are erratic. Tables 2 4 present
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the simulation results on the log-normal, Weibull,
and exponential distributions.

Several important observations are readily made.
The percentage of experiments with number of fail-
ures no more than one at the low stress can be very
high {nearly 10%) under the simple constant-stress
ALTs when there is underestimation in reliability.
The adaptive scheme effectively mitigates, though
not cradicates, the problem of lack of failures un-
der the low stress. This observation provides a strong
motivation in adopting the adaptive ALT to mitigate
the lack of failures. An interesting observation from
Tables 2 4 is that the RMSEs of /3y and /31 of all
the adaptive tests are smaller than those from the
simple ALTs. This might be explained by the larger
number of failures under the adaptive scheme. Nev-
ertheless, the RMSEs of & tend to be slightly larger
under some cases of the adaptive scheme. This might
be explained by the fact that the increase from &,
to £ay reduces the spacing between the stresses and
thus increases the difficulty in the failure-time re-
gression. Thercfore, there seems to be a trade-off be-
tween the estimation accuracies of o and 3;'s. How-
ever. our simulation experiments with other parame-
ter settings suggest that, when the reliability is seri-
ously underestimated, the RMSEs of all the three es-
timators [}0, /31 , & under the adaptive scheme tend be
smaller than those under the simple constant-stress

ALT.

The adaptive ALT also provides better interval
estimation. It is clear that the bootstrap confidence
intervals under the adaptive ALT have higher cover-
age probabilities than those of the simple ALT if €,
is not very large. Moreover, the bootstrap confidence
intervals of the adaptive ALT maintain satisfactory
coverage probabilities close to the nominal level when
£as is relatively small. This might be because the
adaptive ALT tends to yield more failures in each
bootstrap replication and thus more accurate param-
eter estimation when &,y is not too high. Meanwhile,
under Weibull and log-normal distributions, confi-
dence intervals constructed by the observed infor-
mation matrix have worse performances under the
adaptive test than the simple ALT. Under the ex-
ponential distribution, coverage probabilities of all
three methods are similar or slightly larger than the
nominal levels. Considering heavy computation effort
of the bootstrap method, the large sample approxi-
mation is preferred if the model is exponential. In
conclusion, we recommend the bootstrap method for
the Weibull and log-normal lifetimmes and large sam-
ple approximation for the exponential distribution.
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TABLE 2. RMSEs of the Log-Normal MLEs and the Coverages Probabilities with Nominal Confidence Level 1 — a = 90%
of the Normal Approximation Method (App.) and the Bootstrap (BS) Under the Simple Constant-Stress ALT and
the Adaptive ALTs. The percentage of number of failures at the low stress no more than one and the
percentage of changing stress for each scenario are also presented, respectively

Coverage probability (in %)

Deviation % Number
(in %) of of failures % Stress RMSE App- BS
Bo/Bh/o €M m <1 change Gy [ o Bo B G B B 0o
0/0/0 Simple 3.07 0.0 241 2.74 0557 876 87.5 84.3 875 87.3 89.8
0.618 1 2.45 6.3 2.41 2.74 0.557 87.1 87.3 83.0 87.7 87.2 89.7
2 1.76 25.3 238 272 0.557 846 863 77.7 87.6 87.1 89.7
0.647 1 1.98 6.3 239 273 0557 87.1 87.3 82.8 883 87.8 894
2 0.92 25.3 234 269 0557 843 86.1 77.3 883 87.6 89.5
0.676 1 1.75 6.3 239 2.73 0558 87.1 87.3 82.7 88.8 882 894
2 0.44 25.3 233 269 0559 838 86.0 76.8 883 87.9 895
3/0/0 Simple 8.49 0.0 263 291 0602 869 87.1 838 86.2 859 90.1
0.618 1 6.89 12.8 262 290 0603 854 868 809 869 86.2 90.0
2 5.49 40.7 260 289 0601 779 832 719 872 865 900
0.647 1 9.67 12.8 261 290 0.603 853 86.7 809 879 87.1 89.8
2 3.39 40.7 258 2.8 0600 76.8 828 715 883 87.3 898
0.676 1 4.72 12.8 2.61 290 0.604 851 86.7 80.5 88.6 87.7 89.8
2 1.86 40.7 2.58 291 0600 754 824 70.6 88.7 87.5 899
0/-3/0 Simple 4.71 0.0 250 280 0.580 87.1 87.6 84.0 87.0 869 89.8
0.618 1 3.77 8.6 248 2.79 0581 86.2 87.4 82.0 87.7 87.0 89.7
2 2.96 30.7 246 2.78 0579 820 855 758 87.8 87.1 89.6
0647 1 3.06 8.6 247 279 0581 86.2 874 81.8 884 875 89.5
2 1.67 30.7 2.44 2.77 0.580 81.5 853 75.1 88.2 875 89.5
0676 1 2.53 8.6 2.46 2.78 0582 86.1 874 81.6 88.9 880 &89.5
2 0.83 30.7 2.42 276 0581 80.6 85.0 74.5 88.9 &87.8 89.6
0/0/-3 Simple 3.82 0.0 237 269 0541 874 877 84.3 87.2 86.9 89.8
0618 1 3.02 7.9 236 2.68 0542 86.8 87.6 82.6 87.50 87.0 89.5
2 2.28 29.0 234 2.66 0.541 84.1 86.6 769 876 87.1 89.7
0.647 1 2.38 7.9 235 2.67 0542 86.8 87.6 824 88.1 878 89.7
2 1.21 29.0 231 265 0.b42 83.8 864 764 881 875 89.7
0.676 1 2.05 7.9 2.34 2.67 0.543 86.7 87.6 82.2 888 883 895
2 0.54 29.0 229 264 0542 833 862 76.0 88.7 88.1 89.6

The simulation results imply that the heuristic
method used to determine 71 is reasonable. Com-
pared with the Weibull model, the adaptive scheme
has less RMSE reduction in 8, for the log-normal
model, especially when [y is 3% larger than the plan-
ning value. This is because a good choice of 7, for the
log-normal model is 45, which is less than 60. When
the emergency measure is initiated and the low-stress
level is increased, the remaining test time is not suf-
ficient to yield enough failures. With insufficient fail-
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ures, the adaptive ALT for the log-normal model is
not as effective as the Weibull model. The above ob-
servation reveals the benefits of the heuristic method
in choosing 7.

The simulations also provide some suggestions on
how ta choose m and £ps. It is immediately seen that
small or moderate m and &y are preferred as large
m and £ps could lead to worse interval estimation
and larger RMSEs of 0. Some ALTs aim to esti-
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TABLE 3. RMSEs of the Weibull MLEs and the Coverages Probabilities with Nominal Confidence Level 1 ~ v = 90%
of the Normal Approximation Method (App.) and the Bootstrap (BS) Under the Simple Constant-Stress ALT and
the Adaptive ALTs. The percentage of number of failures at the low stress no more than one and the
percentage of changing stress for each scenario are also presented, respectively

Deviation % Number

Coverage probability (in %)

(in %) of of failures % Stress RMSE App- Bs
ﬁ()/ﬂ] /(7 Enm m <1 change Bo el & Fo o) a o A a
0/0/0 Simple 2.75 0.0 1.65 1.78 0.217 88.5 88.7 84.2 88.6 88.2 89.6
0.618 1 1.90 11.6 1.63 1.77 0.217 88.1 884 839 888 884 896
2 1.39 37.8 1.61 1.75 0.218 &87.1 87.7 83.3 88.9 883 89.6
0.647 1 1.47 11.6 1.61 1.75 0.218 879 883 83.7 888 883 895
2 0.61 37.8 1566 1.71 0.218 86.3 87.2 827 88.6 88.0 89.6
0.676 1 1.19 11.6 1.60 1.74 0.218 87.6 88.0 834 888 885 89.9
2 0.23 37.8 154 1.69 0.219 853 862 819 884 880 89.9
3/0/0 Simple 9.35 0.0 1.92 204 0235 88.1 885 849 87.2 87.1 899
0.618 1 7.22 20.7 1.91 203 0235 870 878 84.6 88.0 87.5 89.8
2 6.05 54.1 1.89 2.01 0.235 85.2 87.0 83.8 88.1 87.6 89.8
0.647 1 5.56 20.7 1.90 2.02 0.236 869 87.8 84.3 88.7 88.3 898
2 3.47 54.1 1.87 199 0.234 848 869 833 88.7 884 899
0.676 1 4.37 20.7 1.89 2.01 0.236 86.5 87.5 84.1 88.9 88.6 89.8
2 1.71 94.1 1.84 198 0.235 83.7 863 830 889 881 899
0/-3/0 Simple 4.56 0.0 1.76 1.88 0.226 884 888 84.6 885 88.1 89.8
0.618 1 3.39 14.5 1.74 187 0.226 87.7 882 84.1 89.0 884 89.6
2 2.68 44.0 1.72 1.85 0.226 86.5 87.5 835 889 88.2 89.6
0647 1 2.48 14.5 1.73 1.86 0.227 874 881 84.0 89.1 88.6 89.6
2 1.30 44.0 1.69 1.83 0.227 85.8 87.1 83.2 89.0 882 89.8
0.676 1 2.01 14.5 1.71 1.84 0.227 874 88.1 83.8 89.3 887 89.7
2 0.52 44.0 1.65 1.80 0.227 853 86.7 826 88.9 881 90.1
0/0/-3 Simple 3.49 0.0 1.65 1.77 0.212 884 88.7 843 883 87.9 894
0.618 1 2.43 13.6 1.63 1.76 0.212 877 88.2 839 885 881 &893
2 1.76 42.1 1.60 1.73 0.212 86.8 875 83.1 888 881 894
0.647 1 1.73 13.6 1.61 1.74 0.212 87.7 88.0 836 88.6 88.1 894
2 0.74 421 1.55 1.69 0.212 86.2 869 825 884 88.0 89.7
0.676 1 1.47 13.6 1.60 1.73 0.213 87.2 &87.7 835 888 884 898
2 0.31 42.1 153 1.68 0.213 850 859 81.8 883 87.6 90.0

mate a certain percentile of the failure time at the
use stress level. Too small spacing between the stress
levels causes more extrapolation of the use conditions
and hence may lead to less accurate prediction of the
lifetime percentile. Moreover, the moderate level of
En = 0.647 sufficiently diminishes the probability of
no failures when the parameter values are misspeci-
fied. This achieves the main purpose of the adaptive
ALT and hence there is no need to increase the low-
stress level too much. To sum up, for practitioners,
we recommend that m be small, say 1 or 2, and £
be less than the middle point of £;, and £g.
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6. Illustrative Example

6.1. A Real Example

This section uses a real experiment from China
Electrical Power Research Institute to demonstrate
the applicability of the proposed adaptive schemes
and the inference procedures. Recently, smart-grid
technology has been a very hot topic in the energy
area. One of the main objectives of a smart grid is to
achieve an interactive grid. The crux of an interac-
tive smart grid is to handle energy data in an intelli-
gent way via AMI data-acquisition devices. In order
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TABLE 4. RMSEs of the Exponential MLEs and the Coverages Probabilities with Nominal Confidence Level 1 — o = 90%
of the Normal Approximation Method Constructed by Fisher Information Matrix (FIM) and Observed Information
Matrix (OIM) as well as the Bootstrap (BS) Under the Simple Constant-Stress ALT and the Adaptive ALTs.

The percentage of number of failures at the low stress no more than one and the percentage of
changing stress for each scenario are also presented, respectively

% Number
of failures
<1

Deviation
(in %) of
Bo/Bi/o

% Stress
change

Em

m

Coverage probability (in %)

RMSE

FIM OIM BS

Fo

B B B b B K b

1.88
1.18
0.69
0.89
0.24
0.75
0.03

0.0
10.5
35.2
10.5
35.2
10.5
35.2

0/0 Simple

0.618
0.647

0.676

1.26
1.23
1.22
1.22
1.19
1.21
1.16

90.0
90.3
90.2
90.5
90.4
90.5
90.3

1.38
1.36
1.34
1.35
1.32
1.34
1.30

91.9
91.6
91.5
91.3
91.2
91.1
90.9

91.0
90.8
90.7
90.6
90.6
90.5
90.5

91.9
91.7
91.4
91.6
91.0
914
90.6

91.0
90.9
90.7
90.8
90.4
90.7
90.3

89.6
90.1
90.3
90.6
90.6
90.6
90.7

8.54
6.02
4.61
4.35
2.06
3.34
0.68

0.0
20.2
53.3
20.2
53.3
20.2
53.3

Simple
0.618

0.647

1.676

1.44
1.42
1.40
1.40
1.37
1.38
1.34

92.8
92.4
92.0
91.8
91.3
91.6
90.9

88.0
88.8
88.9
89.0
89.4
89.3
90.3

87.3
88.8
89.0
89.3
89.6
89.5
90.2

1.58
1.53
1.52
1.52
1.49
1.50
1.47

93.4
92.8
92.6
92.0
91.7
914
91.2

92.8
92.2
92.0
91.7
91.5
91.3
91.1

934
92.8
92.6
92.1
91.6
91.8
91.0

3.89
2.59
1.82
1.84
0.67
1.53
0.22

Simple 0.0

0.618
0.647

0.676

1.34
1.32
1.30
1.30
1.27
1.29
1.24

92.2
91.6
91.4
91.5
91.0
91.4
90.7

91.8
914
91.2
91.2
90.9
91.1
90.6

89.2
89.6
89.9
90.0
90.4
90.2
90.8

89.5
89.9
90.1
90.3
90.2
90.3
90.3

1.45
1.44
1.42
1.42
1.40
1.41
1.38

92.2
91.6
91.6
91.3
91.2
91.0
90.7

91.7
91.3
91.2
91.1
90.9
90.9
90.6

to ensure accurate acquisition of electrical data, the
data-acquisition devices in the AMI are required to
be highly reliable and robust under different oper-
ating environments. However, the high reliability of
the devices under normal operating posts a challenge
on reliability assessment during the design phases.
ALTs are effective in shortening the test time. The
temperature as an important environmental factor is
selected as the accelerating stress in the test. The
standard approach to the ALT planning of data-
acquisition devices is mainly based on IEC 62059-
31-1-2008. The standard requires a guess of product
reliability as an input, which is often provided by
manufacturers.

After the adaptive ALT scheme discussed in this
study was proposed to the Research Institute in early
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2014, an ALT has been conducted based on the
scheme. For the device in the ALT, the reliability
estimate provided by the manufacturer was 10% fail-
ures in 7.5 years under room temperature sy = 20°C.
Based on the reliability information, the duration of
the test was scheduled to be 3 months (1 = 90 days)
by the Institute, and the low- and high-temperature
levels were set as s; = 55°C and sy = 85°C. The
number of samples allocated to the low- and the
high-stress levels were 30 and 13, respectively. To
hedge against any underestimation in the reliability,
the adaptive scheme was adopted with check-time
71 = 45 days and m = 1. That is, if no failures in the
low-stress test are observed in one month and a half,
the temperature will be increased by 5°C.

The Arrhenius relation is a common model used to
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TABLE 5. Settings of the Adaptive ALT Scheme
for an AMI Data-Acquisition Device

Normalized Sample

TABLE 6. Failure Data of the AMI Data Acquisition
Devices Under the Adaptive ALT Scheme: 27 Units Were
Censored Under s; and 3 Units Were Censored Under
sy, with Censoring Time 72 = 90 Days

Stress level  Temperature stress size

Low 338K (55°C) 0.587 30 The failure time (days)
Medium 348K (60°C) 0.662

High 358K (85°C) 1 13 Low level 8 31 60

describe the temperature acceleration to the lifetime.
When this model is applied to the log-location-scale
family, it is equivalent to requiring that the scale pa-
rameter i be a linear function of the inverse tem-
perature ¢(s) = 1/s, where the temperature is in
the Kelvin scale. After normalizing the stress using
Equation (1), we have

1/.5‘(/ - l/S
1/.‘)’1] - l/SH '
A summary of the test is given in Table 5.

1= o+ B, where £ =

The failure data are reported in Table 6. During
the test, two failures in the low-stress test were ob-
served in 45 days, and so the low-stress level was
unchanged throughout the test.

The Weibull, log-normal, and exponential distri-
butions are used to fit the data. For each distribu-
tion, the maximum log-likelihood 1(6) and the corre-
sponding Akaike’s Information Criterion (AIC) value
2k — 21(8) with k being the number of model parame-
ters are presented in Table 7. The exponential distri-
bution has the smallest AIC value and thus is chosen
for the data. We also plot an exponential-probability
plot of failure times from high-stress level in Figure 3
to verify the goodness of fit of the exponential model.

Using the inference methods developed above, pa-
rameters in the exponential ALT model can be esti-
mated, as shown in Table 8. The confidence level used
here is 80%. Even if the test is operated under con-

Highlevel 7 9 12 15 23 23 28 31 66 73

stant stresses, the inferential conclusions are still
diferent from those from a simple constant-stress
ALT. Assuming the data is from a simple constant-
stress ALT, the estimation for the parameters under
the exponential model is shown in Table 9. It is seen
that, even though the point estimation is exactly the
same, the confidence intervals are slightly different.
It can be seen that this quantile is higher than that
provided by the manufacturer, which supports our
argument that the manufacturer tends to report a
lower reliability. We can also obtain the pointwise
confidence band for the quantile function. The con-
fidence intervals are computed by substituting the
FIM confidence interval boundaries of /f() into the
quantile function. The results are presented in Fig-
ure 4.

6.2. A Simulated Dataset

To demonstrate the emergency measure, we gener-
ate a simulated dataset under the exponential model
such that J is smaller than m. The MLEs in the pre-
vious section are used as the planning values, while
the true values are assumed to be Fy = 11.0 and
31 = —6.590. This setting mimics the situation that
the true values of the model parameters are very dif-
ferent from the planning values. The true 0.1 quantile
to.1 is 17.283 years, which is much larger than 11.702
years, the 0.1-quantile under the planning values. All

TABLE 7. MLEs, Values of Log-Likelihood Function and AIC Under Different Models

Exponential Weibull Log normal
Bo p Ao 2 a Bo i a
MLE 10.610 —6.590 10.733 -6.713 1.022 9.803 —6.190 1.429
Log likelihood —42.550 —42.545 —42.634
AIC 89.099 91.091 91.268
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Standard Quantile

r
Lifetime
FIGURE 3. The Exponential Probability Plot of 10 Fail-

ure Times from the High-Stress Level with Three Test Units
Censored. The R square of fitted line is 0.966.

other experiment settings are the same as the real
test. A simulated dataset is presented in Table 10.
No failures are observed before 7 = 45 and hence
the low-stress level is elevated to sps.

" L
0.4 08

Probability of Failing

FIGURE 4. The Estimated Quantile Function of Lifetime
and the 80% Confidence Band of the Quantile Function of
Lifetime Under 20°C.

From Table 11, the exponential distribution has
the smallest AIC and is chosen again. Table 12 shows
the MLEs and confidence intervals for the adaptive
ALT when the low-stress level is increased. The con-

TABLE 8. MLEs Under the Exponential Distribution and the 80% Confidence Intervals Constructed by Fisher Information
Matrix (FIM), Observed Information Matrix (OIM), and the Bootstrap Method, Respectively

Confidence interval

MLE BS

FIM OIM

(8.753, 12.620)
(—8.621, —4.559)

10.610
—6.590

(8.725, 12.495)
(—8.668, —4.451)

(8.739, 12.481)
(—8.636, —4.544)

TABLE 9. Assuming the Data |s Obtained by a Simple Constant-Stress ALT, MLEs Under the Exponential
Distribution and the 80% Confidence Intervals Constructed by Fisher Information Matrix (FIM),
Observed Information Matrix (OIM), and the Bootstrap Method, Respectively

Confidence interval

MLE BS

FIM OIM

(8.904, 12.853)
(—8.657, —4.567)

10.610
—6.590

(8.725, 12.495)
(—8.636, —4.544)

(8.739, 12.481)
(—8.617, —4.563)

TABLE 10. Simulated Failure Data of the AMI Data-Acquisition Devices Under the Adaptive ALT Scheme: 27 Units
Were Censored Under s; and 4 Units Were Censored Undersy, with Censoring Time 7, = 90 Days

72.194
17.418

69.441
15.220

Low level 54.509
High level 6.970

21.718

54.945 59.930 70.054 79.997 85.963
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TABLE 11. MLEs, Values of Log-Likelihood Function and AIC Under Different Models Based on the Simulated Sample

Exponential Weibull Lognormal
Ao A Ao A a o By a
MLE 10.962 —6.5370 8.704 —4.291 0.680 8.812 —4.755 1.032
log-likelihood —42.273 —42.249 —41.880
AIC 88.546 90.499 89.761

TABLE 12. MLEs Under the Exponential Distribution and the 80% Confidence Intervals Constructed by Fisher Information
Matrix (FIM), Observed Information Matrix (OIM), and the Bootstrap Method Based on the Simulated Sample

Confidence interval

MLE BS

FIM OIM

Bo 10.962
3 ~6.537

(9.004, 13.257)
(—8.956. —4.234)

(8.732, 13.193)
(—8.934, —4.139)

(8.756, 13.169)
(—8.912, —4.161)

fidence level used here is also 80%. Based on the ex-
ponential model, the estimated 0.1 quantile £y, is
16.63 years.

Likewise, we plot the pointwise confidence band
for the quantile function in Figure 5. The confidence
intervals are also calculated by substituting the FIM
confidence interval boundaries of 3, into the quantile
function.

7. Conclusion

In this study, we have successfully proposed an
adaptive ALT scheme and implemented it in an accel-
erated test on data acquisition devices used in smart
grids. When the manufacturer underestimates the
product reliability or when the planning values of the
test are significantly different from the true values,
there is a high chance to observe no failures under the
low-stress level. The adaptive scheme monitors the
failure process at the low-stress level and it effectively
mitigates this possibility. The adaptive scheme serves
like an emergency control for the ALT planner. When
there is no serious underestimation of the product re-
liability, the low-stress level remains unchanged with
high probability. Therefore, the test is the same as
the simple constant-stress ALT, which can be easily
implemented by the experimenters. When there is
serious underestimation, the ALT planner can step
into the test midway and guide the experimenters to
make necessary change to the low-stress level.

Vol. 49, No. 3, July 2017

Based on the adaptive scheme, we have devel-
oped inference techniques to analyze ALT data col-
lected from the test. The log-location-scale distri-
butions were assumed for the product lifetime and
the log-likelihood function was derived. Large-sample
normal approximation and the bootstrap were used
to construct confidence intervals. The simulation re-
vealed that the adaptive scheine greatly mitigates the
problem of lack of failures and improves the estima-
tion accuracy in the presence of reliability underes-
timation. The developed methods were successfully
applied to the ALT dataset from the data-acquisition
devices.

Do 02 04 0‘0 0‘! 10
Probability of Failing
FIGURE 5. The Estimated Quantile Function of Lifetime
from the Simulated Data and the 80% Confidence Band of
the Quantife Function of Lifetime Under 20°C.
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In an adaptive ALT, m, 7y, and £s are main fac-
tors to influence estimation efficiency. We have pro-
vided a useful heuristic method to determine 7. It
would be also useful to rigorously determine the opti-
mal values of those parameters for an adaptive ALT
in future research.

Appendix

This Appendix provides the first-order and
second-order derivatives of the log likelihood under
the general log-location-scale distributions and the
exponential distribution. Based on the second-order
derivatives of the exponential distribution, the closed
form of Fisher information matrix under exponential
distribution is also derived.

A.l. Step-Stress Condition

When J < m — 1, the log-likelihood function is

1 iiny - &
16| X,Y)=Do— (R + Ra)In(c +Zln[(nx )Uﬁo ﬁl&)]—;ln(asm)

A. Derivatives of Log Likelihood Under
Log-Location-Scale Distributions

For convenience, we define
In(z)—Bo-61€:
¢l ( nx 0-0 1 )
In(z)-Bo-5&i ) '
fe==)
In(x)—Bo—B1&;
(e
1—& <1n z)»ﬁo—ﬁlei) ’
a

- 4128]
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and ol e
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The first-order partial derivatives of the log likelihood with respect to each parameters 3y, 31, ¢ are expressed

J
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A.2. Constant-Stress Condition

When J > m, we have the log-likelihood function as
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The first-order partial derivatives are

R
[Zwb Tim,, ) — (np — Ry) g (12) + Zwu (Ying) — (nu — R2) ¥y (T‘z)} .

0/’()

im1
dl 1
oo —£L ZWL (Tin, ) — (np — Ry) (=€L) YL —&n Zwy Yimy ) + (g — R2) Envon (7-2)} ,
i1
ﬂ . _R] + Ry
do o
1 [&
-3 [Z wi, (Zim, ) (10g (Tim, ) — Bo — $1€L) — (np — Ry) ¥ (12) (log (12) — B0 — éL)
i=1

Ra
+ZWH (Yirmy ) (108 (Yimy ) — Bo — 5én) — (ng — Ra) Yy (12) (log (2) — Bo — ﬂlfH)] .
i=1

The second-order partial derivatives are
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Table 13 gives the detailed formulas for commonly
used log-location-scale distributions.

B. Derivation of Fisher Information Matrix
Under Exponential Distribution

Under the exponential model with 8 = (3, 51),
the mean failure time under each stress level is e#,
where p; = 3y + 1€ and the parameter o = 1.

If 0 < J < m —1, the derivatives of Equation (6)
with respect to 8y and f3; are

ol
yi}z—(R1+R2)+D1+D2+D3,
ol

(‘3/—;1 = —J& — (Ry — J)érr — Rabn

+&.D1 + & D2 + En Ds,
respectively. Then. the second-order derivatives are
92l
sy o8]
where 1 = 0,1, 2.

—£;, D1 — &4y Dy — & D3,
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When m < J < ny, the first-order partial deriva-
tives are

9 = —(R1+ Rp) + D1 + Dy + D3,

0B

ol

- —(R1&p + Robp) + &L (D1 + Dy) + Ep Ds.

TABLE 13. Detailed Formulas Under Some Commonly
Used Log-Location-Scale Distributions

Log-normal Weibull
P JZ. o)t 1—e
¢ (1/\/%)6_‘52/2 ear—e‘
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¢(z)/[1 - &(x)]
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¢(z)/[1 - &(x)] e’
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The second-order partial derivatives are i . ,
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and Given those equations. we can obtain Equation (7).
ni, To calculate Equation (7). the joint distribution of J
&L | E[Dy) + Z E[Dy|J =j]Pr(J = j) and R and the distribution of Ry are needed. It is
j=m obvious that the joint probability mass function of J

and Ry is
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Besides. J ~ B(ng.1 — exp(=71/exp(i3 + €1:31))) and Ry ~ B(ny,1 — exp(=72/exp(io + €uB1))). Here,
B(n,p) stands for a binomial distribution with the number of trials n and the success probability p. Hence.
those expectations are given by

E[J] = ng (1 = exp(—711/ exp(ia + £1.31)))
E[R2] = ny (1 — exp (=7a/(exp(Fo + {u31)))
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(nn = )R ey if J > m.
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