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Abstract: In this paper we focus on regression analysis of irregularly observed longitudinal data that often
occur in medical follow-up studies and observational investigations. The analysis of these data involves two
processes. One is the underlying longitudinal response process of interest and the other is the observation
process that controls observation times. Most of the existing methods, however, rely on some restrictive
models or assumptions such as the Poisson assumption. For this we propose a class of more flexible joint
models and a robust estimation approach for regression analysis of longitudinal data with related observation
times. The asymptotic properties of the proposed estimators are established and a model checking procedure
is also presented. The numerical studies indicate that the proposed methods work well for practical situations.
The Canadian Journal of Statistics 43: 519–533; 2015 © 2015 Statistical Society of Canada

Résumé: Les auteurs s’intéressent à la régression pour des données longitudinales observées de façon
irrégulière, une situation fréquente dans les études comportant un suivi médical et dans les études observation-
nelles. De telles données émergent de deux processus : le processus de réponses longitudinales sous-jacent
et le processus qui contrôle les temps d’observation. La plupart des méthodes existantes se basent sur des
hypothèses ou un modèle restrictifs telle que l’hypothèse de Poisson. Les auteurs proposent une classe plus
flexible de modèles conjoints et une approche robuste d’estimation de la régression pour des données lon-
gitudinales et leur temps d’observation. Ils établissent les propriétés asymptotiques de l’estimateur proposé
et présentent des procédures de vérification des hypothèses. Les auteurs présentent également des études
numériques qui indiquent que les méthodes proposées fonctionnent bien dans des situations pratiques. La
revue canadienne de statistique 43: 519–533; 2015 © 2015 Société statistique du Canada

1. INTRODUCTION

The analysis of longitudinal data has become more and more important as such data frequently
occur in medical follow-up studies and observational investigations. For the analysis of longi-
tudinal data, various methods have been developed, mostly under the fixed observation scheme
or the assumption that the longitudinal response process and the observation process are inde-
pendent completely, or given the covariates, that is, the observation process is non-informative.
For example, Diggle, Liang & Zeger (1994) provided an excellent summary on commonly used
methods such as the generalized estimating equation and random-effect modelling approaches.
Lin & Ying (2001) and Welsh, Lin, & Carroll (2002) discussed general semiparametric regression
analysis of longitudinal data assuming the response variable, observation times, and censoring
times are independent given the covariates.
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In practice, the longitudinal response and observation processes may still be related even given
the covariates, which means that the observation times may contain potential information about
the response variable of interest, that is, the observation times may be informative. For example,
informative observation processes may be hospitalization times of subjects in the study (Wang Qin,
& Chiang, 2001), or clinical visit times of patients in medical follow-up studies (Sun & Wei, 2000;
Zhang, 2002; Liu, Huang, & O’Quigley, 2008). In a bladder cancer follow-up study conducted by
the Veterans Administration Cooperative Urological Research Group (Byar, 1980), some patients
had significantly more clinical visits than others, which implies that the visit times may be related
to the occurrence rate of bladder tumours. In the medical cost data, some patients were more likely
to visit hospital, and paid more for their visits, which indicates that the patients’ visiting times are
informative on medical costs. Lipsitz et al. (2002) also presented a set of longitudinal data from a
study of children with acute lymphoblastic leukemia where the response and observation processes
may be correlated. However there is limited research that addresses the analysis of such correlated
longitudinal data. Sun et al. (2005) discussed conditional semiparametric models that allow ob-
servation times to be correlated with the longitudinal process by treating the observation process
as covariates; Sun, Sun, & Liu (2007) proposed a joint model for the longitudinal process and the
observation process through a shared latent variable; Liang, Lu, & Ying (2009) presented a joint
model through two random effects and made a valid inference by specifying the relationship be-
tween the random effects and using a parametric distribution assumption for a random effect; Zhu
et al. (2011) proposed a joint modelling approach through a shared unobserved random variable;
Zhu et al. (2011) proposed a general joint model for longitudinal and observation processes through
a latent variable and an unspecified link function. All these methods require a common and key as-
sumption that the observation process is a mixed Poisson process, which may not be true in practice.
There is limited research on non-Poisson observation processes. For example, Lin, Scharfstein, &
Rosenheck (2004) studied a class of marginal regression models for longitudinal responses, where
an intensity model with respect to the visit process was required to be correctly specified. Liu,
Huang, & O’Quigley (2008) proposed a joint Gaussian random effects model and analyzed medi-
cal cost data. Song, Mu, & Sun (2012) developed a joint modelling approach for the two correlated
longitudinal and observation processes through two dependent variables. However these methods
mentioned above require estimation of observation process models for making a valid inference on
the longitudinal response process. The aim of this paper is to consider more general joint models for
longitudinal data with dependent observation times and to develop a robust estimation approach.

The remainder of this work is organized as follows. In Section 2 we will begin by introducing
the notation and assumptions and then present the models that will be used below. A robust
estimation procedure is also presented in Section 2 for the parameters of interest and the asymptotic
properties of the resulting estimators are established. In Section 3 a model checking procedure
is provided. Section 4 reports some simulation results obtained for assessing the finite sample
properties of the proposed estimates and diagnostic tests, and an illustrative example is given in
Section 5. Section 6 concludes with some discussion and remarks.

2. JOINT MODELLING AND ESTIMATION PROCEDURE

Consider a longitudinal study that consists of n independent subjects and let Yi(t) denote the longi-
tudinal response variable of interest before or at time t for subject i. Suppose that for each subject,
there exists a p-dimensional vector of covariates denoted by Xi. Given Xi and an unobserved
positive random variable Zi that is independent of Xi, the mean function of Yi(t) has the form

E{Yi(t)|Xi, Zi} = μ0(t) + X′
iβ + g(Zi). (1)

Here, μ0(t) is a completely unknown continuous baseline mean function, β is a vector of unknown
regression parameters, and g(·) is a completely unspecified link function. For identifiability reasons
we assume that E(g(Zi)) = 0.
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For subject i, suppose that Yi(·) is observed only at finite time points Ti1 < · · · < TiKi , where
Ki denotes the potential number of observation times. That is, only the values of Yi(t) at these
observation times are known and we have panel data on the Yi(t). Let Ci denote the follow-
up time associated with subject i and thus Yi(t) is observed only at these Tij with Tij ≤ Ci,
i = 1, . . . , n. Define Õi(t) = Oi(min(t, Ci)), where Oi(t) = ∑Ki

j=1 I(Tij ≤ t), i = 1, . . . , n. Then
Õi(t) is a point process characterizing the ith subject’s observation process and jumps only at the
observation times.

For the observation process we will assume that Oi(t) satisfies the following rate function
model:

E{dOi(t)|Xi, Zi} = Zih(Xi)d�0(t), (2)

where h(·) is a completely unspecified positive function and �0(·) is a completely unknown con-
tinuous baseline function. Under model (2), one does not need the Poisson assumption anymore.
In the following, it will be assumed that given (Xi, Zi), Yi(t), and Oi(t) are independent. Also Ci is
independent of {Yi, Oi, Xi, Zi} and {Yi(t), Oi(t), Ci, Xi, 0 ≤ t ≤ τ}ni=1 are independent and iden-
tically distributed, where τ denotes the length of the study. Our focus is to estimate the regression
parameter β.

Remark 1. The g(·) is an unknown link function that is used to characterize the association be-
tween the two processes Yi(t) and Oi(t). To see this we suppose that Yi(t) follows a semiparametric
random effects model

Yi(t) = μ0(t) + X′
iβ + Vi + εi(t),

where Vi is a random variable of subject-specific effect, and εi(t) is a zero mean measurement
error process. Taking the conditional expectation of Yi(t) given Xi and Zi we obtain model (1)
with g(Zi) = E(Vi|Zi).

To estimate β, note that if the latent variables Zi are known, model (1) would become the usual
linear mean model. Unfortunately, the Zi’s are unknown in practice. One natural approach is to
estimate the Zi first and then treat them as known. In the following we take a different approach
motivated by that proposed in Sun & Wei (2000) among others.

Specifically, define

Ȳi =
mi∑
j=1

Yi(Tij)I(Tij ≤ τ) =
∫ τ

0
Yi(t)dÕi(t),

where mi = Õi(Ci), the total number of observations on subject i, i = 1, . . . , n. Then we have

E(Ȳi|Xi) = E(Zi)E(�0(Ci))h(Xi)(X′
iβ)

+ h(Xi)
∫ τ

0
[E(Zi)μ0(t) + E{g(Zi)Zi}]P(Ci ≥ t)d�0(t). (3)

Note that Equation (3) involves unknown parameters and unspecified functions. However the
existing estimation approaches (Lawless & Nadeau, 1995; Sun & Wei, 2000; Wang, Qin, &
Chiang, 2001) are no longer applicable to model (2) as h(·) is completely unspecified. To solve
this problem we consider the conditional mean of mi given Xi. Under model (2) we have

E(mi|Xi) = E(Zi)E{�0(Ci)}h(Xi). (4)
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Thus, combining (3) and (4) yields

E(Ȳi|Xi) = E(mi|Xi)(X′
iβ + θ), (5)

where

θ =
∫ τ

0 [E(Zi)μ0(t) + E{g(Zi)Zi}]P(Ci ≥ t)d�0(t)
E(Zi)E(�0(Ci))

is an unknown parameter.

Remark 2. Here, θ is a nuisance parameter. As our main focus is on estimation of covariate
effects on the response process we can estimate θ to avoid estimating two unknown functions
μ0(t) and �0(t) and an unknown association term E(g(Zi)Zi) between the longitudinal response
and observation processes. If we specify E(Zi) = 1, then

θ =
∫ τ

0 μ0(t)P(Ci ≥ t)d�0(t)
E(�0(Ci))

+ Cov(g(Zi), Zi),

where the first component of θ depends on the baseline mean functions of two processes and the
survival distribution of the follow-up time and can be regarded as the integrated baseline mean
function of the longitudinal response process, and the second component of θ characterizes the
relation between the two processes. When the longitudinal response and observation processes
are independent we have g(Zi) = 0, and so the second component of θ is 0. The proposed method
in this paper provides a robust solution for estimating covariate effects on the response process
no matter whether the two processes are related or not, while estimation of Cov(g(Zi), Zi) is
beyond the scope of this paper.

For estimation of β, motivated by Equation (5) we propose to use the following class of
estimating functions

U(β1) =
n∑

i=1

WiX1i{Ȳi − miX
′
1iβ1} = 0, (6)

where the Wi are some weights that could depend on Xi, X′
1i = (X′

i, 1) and β′
1 = (β′, θ).

Remark 3. Clearly, when Wi depends on Xi only, E{U(β10)} = 0 for the true value β10 of
β1. Naturally, one may ask whether the weight can be taken as Wi = mi. To answer this ques-
tion we consider a simple case where the longitudinal response and observation processes are
independent and mi given Xi and Zi follows a Poisson distribution. By direct calculations we
have

E
[
miX1i{Ȳi − miX

′
1iβ10}

] = −E(Zi)E{�0(Ci)}E[h(Xi)X1iX
′
1iβ10] �= 0.

Hence, the estimating equation with Wi = mi is biased for this case.

Let β̂1 = (β̂′, θ̂)′ denote the solution to Equation (6). Then we have

β̂1 =
[

n∑
i=1

WimiX1iX
′
1i

]−1 n∑
i=1

WiX1iȲi. (7)
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Then we will show in Appendix A.1 that under some regularity conditions, the estimator β̂1
is a consistent estimator of true parameter β10 and

√
n(β̂1 − β10) has asymptotically a normal

distribution with mean zero and covariance matrix that can be consistently estimated by �̂−1�̂�̂−1,
where

�̂ = 1
n

n∑
i=1

WimiX1iX
′
1i and �̂ = 1

n

n∑
i=1

φ̂iφ̂
′
i

with φ̂i = WiX1i{Ȳi − miX
′
1iβ̂1}.

3. MODEL CHECKING PROCEDURE

In practice, in addition to the estimation of β, one may also be interested in checking the adequacy
of model (1). Following Lin et al. (2000) we develop a model checking procedure using certain
cumulative sums of the residuals. For this, define

A(t) =
∫ t

0 [E(Zi)μ0(u) + E{g(Zi)Zi}]P(Ci ≥ u)d�0(u)
E(Zi)E(�0(Ci))

.

As E
[∫ t

0{Yi(u) − β′
0Xi}dÕi(u)|Xi

]
= E(mi|Xi)A(t) we can estimate A(t) by

Â(t) =
∑n

i=1
∫ t

0{Yi(u) − β̂′Xi}dÕi(u)∑n
i=1 mi

.

Furthermore, for each i, i = 1, . . . , n, define the residual

R̂i(t) =
∫ t

0
{Yi(u) − β̂′Xi}dÕi(u) − miÂ(t).

To check the functional form for the jth component of X formally we consider the process

Fj(x) = 1√
n

n∑
i=1

I(Xji ≤ x)R̃i,

where R̃i = R̂i(τ).
Let

S0 = 1
n

n∑
i=1

mi, Sj(x) = 1
n

n∑
i=1

I(Xji ≤ x)mi,

and

Bj(t, x) = 1
n

n∑
i=1

{
I(Xji ≤ x) − Sj(x)

S0

}
XiÕi(t).

To apply the statistic Fj(x), we show in Appendix A.2 that its null distribution can be approx-
imated by the zero-mean Gaussian process

F̂j(x) = 1√
n

n∑
i=1

{
I(Xji ≤ x) − Sj(x)

S0

}
R̃iGi − Bj(τ, x)′

1√
n

n∑
i=1

d̂iGi,
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where d̂i is the vector �̂−1φ̂i without the last entry and (G1, . . . , Gn) are independent standard
normal variables independent of the data. This suggests that one can approximate the distribu-
tion of Fj(x) by the empirical distribution of a large number of realizations of F̂j(x) given by
repeatedly generating the standard normal random sample (G1, . . . , Gn) given the observed data.
For checking the functional form of the jth component of covariates in model (1) we can apply
the supremum test statistic supx |Fj(x)|, where the P-value can be obtained by comparing the
observed value of supx |Fj(x)| to a large number of realizations of supx |F̂j(x)|.

Finally, to test the goodness-of-fit of model (1) we propose to apply the statistic

φ(t, x) = 1√
n

n∑
i=1

I(Xi ≤ x)R̂i(t),

where the event I(Xi ≤ x) means that each of the components of Xi is not larger than the corre-
sponding component of x. It is easy to see that φ(t, x) is the cumulative sum of R̂i(t) over the values
of Xi. In Appendix A.2 we show that the null distribution of φ(t, x) can be approximated by the
zero-mean Gaussian process φ̂(t, x), which is obtained from the expression for F̂j(x) by replac-
ing I(Xji ≤ x) with I(Xi ≤ x), R̃i with R̂i(t), and Bj(τ, x) with B(t, x). Graphical and numerical
procedures can be conducted in the same fashion as for Fj(x). Thus for checking the overall fit of
models (1) and (2) based on φ(t, x), the P-value of the omnibus test can be obtained by comparing
the observed value of supt,x |φ(t, x)| to a large number of realization of supt,x |φ̂(t, x)|.

4. SIMULATION STUDIES

We conducted three simulation studies to assess the performance of the proposed inference pro-
cedure with the focus on estimation of regression parameter β. The purpose of the first one was
to evaluate the finite sample properties of the proposed estimator, whereas in the second study
we compared the proposed estimator to that given in Zhu et al. (2011). In the third simulation
study we evaluated the sizes and powers of the diagnostic tests when the sample size is finite.
In particular, to demonstrate the robustness of the proposed approach we considered linear and
non-linear forms of the link function g and different patterns of the observation scheme in each
simulation study.

For the first study we considered the situation where there exist two covariates, X1i and X2i,
which follow the Bernoulli distribution with success probability 0.5 and the uniform distribution
over interval [0, 1], respectively. The latent variables Zi were generated from the gamma distribu-
tion with shape parameter 10 and scale parameter 10 (equivalently, mean 100 and variance 1,000).
We considered two cases of g(Zi). In the first case we took g(Zi) = ρ{Zi − E(Zi)}/

√
Var(Zi). In

the second case we took g(Zi) = ρ{log(Zi) − E(log(Zi))}/
√

Var(log(Zi)). Here ρ characterizes
the relationship between the observation process and the longitudinal response process. When
ρ > 0, the two processes are positively correlated; when ρ = 0, the two processes have no corre-
lation given the covariates; when ρ < 0, the two processes are negatively correlated. Here, three
situations with ρ = −0.5, 0, and 0.5 were considered. The follow-up time Ci was generated from
the uniform distribution over [τ/2, τ] with τ = 18.

With respect to the observation process Oi(t), three set-ups were considered as follows:

(i) Given Xi, Zi, and Ci, the number of observation times mi was assumed to follow the Poisson
distribution with mean

�(Ci|Xi, Zi) = Zi�0(Ci) exp(X′
iγ) = ZiCi exp(X′

iγ)
τ

,
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i = 1, 2, . . . , n. The observation times (Ti1, . . . , Tim) were taken to be the order statistics of
a random sample of size mi from the uniform distribution over (0, Ci).

(ii) Given Xi, Zi, and Ci, the number of observation times mi was assumed to follow the Poisson
distribution with mean

�(Ci|Xi, Zi) = Zi�0(Ci) exp(X′
iγ) = ZiCi(Ci/2 + 1) exp(X′

iγ)
τ(τ/2 + 1)

,

i = 1, 2, . . . , n. The observation times (Ti1, . . . , Tim) were taken to be the order statistics of
a random sample of size mi from the cumulative distribution function

t2/2 + t

C2
i /2 + Ci

I(0 ≤ t ≤ Ci).

(iii) Given Xi, Zi, and Ci, the interarrival times were assumed to follow the Weibull distribution
with shape parameter 0.5 and scale parameter τ/(ZiCi exp(X′

iγ)). The mi was the number of
observation times which were less than Ci.

For the response variable, it was assumed that

Yi(t) = μ0(t) + X′
iβ + g(Zi) + εi(t),

where μ0(t) = sin(t) and εi(t) ∼ N(0, 0.1). We took γ = (1, 1)′ and β = (1, 1)′, representing the
covariate effects on the observation scheme and the response variable, respectively. For each
setting we considered n = 120 and 240. All the results reported here were based on 1,000 Monte
Carlo replications.

Tables 1–3 present the simulation results obtained on estimation of β1 and β2 with weight
Wi = 1 for sample size n = 120 and 240. All tables include the estimated bias (BIAS) given by
the average of proposed estimates of β minus the true value, the sample standard error (SSE)
of the proposed estimates, the mean of the estimated standard error (ESE), and the empirical
95% coverage probabilities (CP). These results indicate that the proposed estimate seems to be
unbiased and the proposed variance estimation procedure provides reasonable estimates. Also the
results on the empirical coverage probabilities indicate that the normal approximation seems to
be appropriate.

To further investigate the robustness of the proposed estimation procedure and also why one
may need to use the proposed estimator instead of the estimators developed under the restricted
models such as that given in Zhu et al. (2011) we conducted a simulation study to compare the
performance of the proposed estimators and those presented in Zhu et al. (2011).

For this second study we considered the situation where there exists one covariate. The co-
variate Xi and the latent variable Zi were generated from the Bernoulli distribution with success
probability 0.5 and the gamma distribution with shape parameter 5 and scale parameter 5 (equiv-
alently, mean 25 and variance 125), respectively. The two forms of g(Zi), the generation of the
follow-up time Ci, the three set-ups for the observation process Oi(t) were as defined in the first
simulation study. For the longitudinal response variable, it was assumed that

Yi(t) = μ0(t) + Xiβ + g(Zi) + εi(t),

where μ0(t) = sin(t) or log(1 + t) and εi(t) ∼ N(0, 0.1). We took β = 1. For each setting we
considered n = 100 and 200, and ρ = 0.5, 0, and −0.5.

Table 4 provides the BIAS of the estimates proposed here and in Zhu et al. (2011), and the
relative efficiency (RE) which is the ratio of the mean squared error of the estimator given in Zhu
et al. (2011) to that of the proposed estimator, where ZTS denotes the estimator presented in Zhu
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Table 1: Estimation results of β1 and β2 with a homogeneous Poisson observation process.

Linear g(Zi) Non-linear g(Zi)

n = 120 n = 240 n = 120 n = 240

β1 β2 β1 β2 β1 β2 β1 β2

ρ = 0.5

BIAS −0.0047 −0.0073 −0.0023 0.0080 0.0018 −0.0029 −0.0032 0.0018

SSE 0.1128 0.2103 0.0807 0.1575 0.0933 0.1707 0.0723 0.1307

ESE 0.1111 0.2054 0.0808 0.1500 0.0933 0.1713 0.0704 0.1309

CP 0.9410 0.9370 0.9430 0.9480 0.9450 0.9460 0.9480 0.9490

ρ = 0

BIAS 0.0002 0.0006 0.0003 −0.0004 −0.0002 −0.0009 0.0000 0.0012

SSE 0.0140 0.0243 0.0098 0.0177 0.0142 0.0262 0.0100 0.0178

ESE 0.0142 0.0248 0.0100 0.0177 0.0141 0.0247 0.0101 0.017

CP 0.9450 0.9450 0.9500 0.9490 0.9520 0.9370 0.9510 0.9420

ρ = −0.5

BIAS −0.0003 0.0000 −0.0013 0.0019 −0.0061 0.0122 −0.0004 0.0065

SSE 0.1180 0.2136 0.0841 0.1509 0.0944 0.1711 0.0677 0.1368

ESE 0.1123 0.2066 0.0809 0.1502 0.0889 0.1656 0.0690 0.1291

CP 0.9360 0.9340 0.9390 0.9440 0.9300 0.9430 0.9460 0.9370

et al. (2011). It can be seen from the table that the proposed estimator seems to be unbiased and
more efficient for all the situations considered here, whereas the ZTS estimator is clearly biased
for the third case due to the misspecification of the observation process. A possible reason is
that the ZTS method is a two-step estimation procedure depending on estimation of observation
process model parameters. In general, the proposed estimation procedure does not rely on the
form of the link function g or the pattern of observation process Oi(t), and thus it is more robust.

In the third study we examined the finite sample properties of the proposed diagnostic tests.
For the purpose we considered the situation where there exists one covariate Xi which follows the
uniform distribution over {1, 2, 3, 4, 5}. For the latent variable Zi, the follow-up time Ci, the link
function g, and the observation process Oi(t), the same set-ups were considered as in the second
simulation study.

In order to evaluate the performance of the diagnostic tests with respect to the functional
form of the covariate and the goodness-of-fit of models, the longitudinal response variables were
assumed to satisfy, respectively,

Yi(t) = μ0(t) + Xν
i β + g(Zi) + εi(t),

and

Yi(t) = μ0(t) + (Xiβ)ν + g(Zi) + εi(t),

where μ0(t) = sin(t) and εi(t) ∼ N(0, 0.25). We took β = 1. For each setting we considered
n = 100 and 200, ρ = 0.5, and ν = 1, 1.2, 1.4, . . . , 2.8. Again, all the results reported here were
based on 1,000 Monte Carlo replications.
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Table 2: Estimation results of β1 and β2 with a non-homogeneous Poisson observation process.

Linear g(Zi) Non-linear g(Zi)

n = 120 n = 240 n = 120 n = 240

β1 β2 β1 β2 β1 β2 β1 β2

ρ = 0.5

BIAS −0.0021 0.0009 −0.0019 0.0037 0.0001 −0.0091 0.0002 0.0066

SSE 0.1174 0.2234 0.0873 0.1567 0.0994 0.1806 0.0789 0.1467

ESE 0.1150 0.2101 0.0834 0.1553 0.0959 0.1772 0.0774 0.1443

CP 0.9440 0.9330 0.9400 0.9510 0.9510 0.9410 0.9500 0.9430

ρ = 0

BIAS −0.0005 0.0005 −0.0003 0.0009 0.0004 0.0000 −0.0003 0.0003

SSE 0.0138 0.0237 0.0102 0.0173 0.0138 0.0240 0.0096 0.0168

ESE 0.0137 0.0232 0.0097 0.0166 0.0136 0.0234 0.0097 0.0166

CP 0.9400 0.9420 0.9440 0.9450 0.9450 0.9390 0.9500 0.9470

ρ = −0.5

BIAS 0.0038 −0.0024 0.0019 0.0018 0.0007 0.0037 0.0005 −0.0046

SSE 0.1225 0.2307 0.0859 0.1621 0.1001 0.1940 0.0722 0.1330

ESE 0.1167 0.2127 0.0835 0.1552 0.0997 0.1840 0.0708 0.1323

CP 0.9400 0.9330 0.9470 0.9460 0.9450 0.9380 0.9510 0.9520

Tables 5 and 6 include the empirical sizes and powers of the proposed tests. It can be seen from
the tables that the estimated sizes of the tests are close to the nominal size 5%, and the estimated
powers are reasonable and increase when ν increases or n increases, as expected. These simulation
results suggest that the null distributions of the proposed test statistics are well approximated and
the tests have good power properties.

5. AN ILLUSTRATIVE EXAMPLE

In this section we apply our proposed methodology in the previous sections to a set of longitu-
dinal data from a bladder cancer study conducted by the Veterans Administration Cooperative
Urological Research Group (Byar, 1980; Andrews & Herzberg, 1985; Sun & Wei, 2000; Wellner
& Zhang, 2000; Zhang, 2002). In the study, all the patients had superficial bladder tumours, and
there were three treatment groups: placebo, thiotepa, or pyridoxine. At the beginning of the study,
the patients were randomly assigned to one of the treatment groups. During the study, many
patients had multiple recurrences of the bladder tumours and all recurrences between visits were
recorded and the new tumours were removed at clinical visits. From the observed data we found
that the number of visits and visit time points varied from patient to patient. In addition, for each
patient, the number of initial tumours and the size of the largest initial tumour were reported as
two important baseline covariates.

For the analysis we took Yi(t) to be the logarithm of the number of observed tumours at time t,
plus 1 to avoid 0, i = 1, . . . , 116. We set the first component of Xi to be 1 if the ith patient was given
the pyridoxine treatment and 0 otherwise, the second component of Xi to be 1 if the ith patient was
given the thiotepa treatment and 0 otherwise, the third and the fourth components of Xi to be the
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Table 3: Estimation results of β1 and β2 with a non-Poisson observation process.

Linear g(Zi) Non-linear g(Zi)

n = 120 n = 240 n = 120 n = 240

β1 β2 β1 β2 β1 β2 β1 β2

ρ = 0.5

BIAS 0.0021 −0.0178 −0.0039 −0.0030 −0.0028 −0.0102 0.0003 0.0022

SSE 0.1162 0.2246 0.0836 0.1544 0.1099 0.2071 0.0705 0.1303

ESE 0.1158 0.2115 0.0840 0.1548 0.1078 0.1993 0.0698 0.1295

CP 0.9380 0.9360 0.9560 0.9460 0.9440 0.9340 0.9490 0.9430

ρ = 0

BIAS 0.0003 0.0012 0.0002 0.0008 0.0001 −0.0007 −0.0005 0.0004

SSE 0.0123 0.0221 0.0085 0.0155 0.0127 0.0230 0.0089 0.0158

ESE 0.0124 0.0217 0.0088 0.0156 0.0124 0.0220 0.0088 0.0155

CP 0.9470 0.9440 0.9560 0.9550 0.9470 0.9310 0.9500 0.9460

ρ = −0.5

BIAS 0.0009 −0.0071 −0.0022 0.0045 0.0023 0.0069 −0.0001 −0.0033

SSE 0.1204 0.2263 0.0848 0.1606 0.1012 0.1880 0.0671 0.1276

ESE 0.1169 0.2152 0.0836 0.1541 0.0991 0.1828 0.0673 0.1247

CP 0.9440 0.9330 0.9530 0.9480 0.9430 0.9340 0.9460 0.9440

number of initial tumours and the size of the largest initial tumour of the ith patient, respectively.
Suppose that the longitudinal process of the bladder tumours Yi(t) and the clinical visit process
were described by models (1) and (2), respectively. The application of the proposed estimation pro-
cedure with Wi = 1 gave β̂ = (−0.0085, −0.3232, 0.0729, −0.0102)′ with the estimated standard
errors (0.1437, 0.0928, 0.0269, 0.0267)′, and thus P-values (0.9530, 0.0005, 0.0069, 0.7016)′.
These results indicate that the thiotepa treatment significantly reduced the occurrence rate of the
bladder tumours and the number of initial tumours has a significant positive effect on the tumour
recurrence rate. However the pyridoxine treatment and the size of the largest initial tumour did
not have significant effects on the occurrence rate of the bladder tumours. Sun, Sun, & Liu (2007)
applied their method to analyze the same data with the focus on the placebo and the thiotepa
groups and obtained that the thiotepa treatment had a significant effect in reducing the recurrence
of bladder tumours, but they did not detect the effect of the initial number of bladder tumours on the
recurrence rate of the bladder tumour. The reason for this difference between the two application
results may be due to the misspecification of the link function between the longitudinal response
process and the observation process in Sun, Sun, & Liu (2007). Liang, Lu, & Ying (2009) and
Zhu et al. (2011) also analyzed a subset of bladder tumour data and found that both the treatment
indicator and the initial tumour number had significant effects on tumour recurrence rate. These
results are consistent with those obtained by our proposed approach.

We furthermore applied the model-checking procedures given in Section 3 to the data. For each
of the four covariates we computed the proposed test statistics and obtained supx |F1(x)| = 2.650
with the P-value of 0.441, supx |F2(x)| = 3.210 with the P-value of 0.121, supx |F3(x)| = 2.451
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Table 4: Estimation results of β based on the proposed method and ZTS method.

n = 100 n = 200

μ0(t) ZTS Proposed RE ZTS Proposed RE

ρ = 0.5

Homogeneous Poisson sin(t) 0.0029 −0.0020 1.1179 −0.0065 0.0002 1.0815

log(1 + t) 0.0059 −0.0017 2.0788 −0.0035 0.0008 1.9560

Non-homogeneous Poisson sin(t) 0.0270 0.0020 1.0519 0.0299 0.0054 1.0978

log(1 + t) 0.0301 0.0005 1.6661 0.0345 0.0050 1.7591

Non-Poisson sin(t) −0.3469 0.0034 3.0331 −0.3465 0.0034 3.1248

log(1 + t) −0.3376 −0.0011 2.8982 −0.3491 0.0024 2.7552

ρ = 0

Homogeneous Poisson sin(t) −0.0003 0.0007 1.8728 0.0001 0.0015 1.5488

log(1 + t) −0.0026 0.0010 11.4730 0.0005 −0.0004 10.9011

Non-homogeneous Poisson sin(t) 0.0333 0.0001 1.5154 0.0322 0.0005 1.5624

log(1 + t) 0.0335 −0.0005 5.1719 0.0308 −0.0007 5.2976

Non-Poisson sin(t) −0.3508 0.0005 8.5140 −0.3427 −0.0006 9.2894

log(1 + t) −0.3501 −0.0003 4.1698 −0.3408 −0.0023 3.8843

ρ = −0.5

Homogeneous Poisson sin(t) 0.0026 −0.0016 1.0547 −0.0051 −0.0022 1.1340

log(1 + t) 0.0009 −0.0053 1.6433 −0.0037 −0.0013 1.8634

Non-homogeneous Poisson sin(t) 0.0254 −0.0026 1.1616 0.0275 0.0067 1.1144

log(1 + t) 0.0282 −0.0048 1.6780 0.0292 0.0063 1.4315

Non-Poisson sin(t) −0.3551 −0.0008 2.6833 −0.3390 −0.0007 2.6811

log(1 + t) −0.3349 −0.0057 2.4942 −0.3455 0.0022 2.4725

with the P-value of 0.725, and supx |F4(x)| = 3.039 with the P-value of 0.349. All four P-values
suggest that the linear form of the covariates is appropriate.

To assess the overall fit of model (1) we calculated the proposed test statistics and obtained
supt,x |φ(t, x)| = 3.133 with the P-value of 0.486. This suggests that the model seems to be
appropriate for fitting the bladder cancer data considered here.

6. CONCLUDING REMARKS

This paper investigated regression analysis of irregularly observed longitudinal data when the
observation process may be related to the underlying recurrent event process of interest. For the
problem, a class of joint models for the two processes has been proposed through a completely
unspecified link function of a latent variable and a corresponding estimating equation-based
estimation procedure has been developed for the covariate effect on the recurrent event process.
The resulting estimator is consistent and is asymptotically normally distributed. The simulation
studies indicate that the estimation approach and model checking procedure perform well and are
robust with respect to different forms of the link function and patterns of the observation process.
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Table 5: Empirical sizes and powers of diagnostic tests for the functional form of a covariate.

n = 100 n = 200

Linear g(Zi) Non-linear g(Zi) Linear g(Zi) Non-linear g(Zi)

ν I II III I II III I II III I II III

1.0 0.056 0.050 0.047 0.055 0.052 0.047 0.059 0.053 0.044 0.055 0.055 0.052

1.2 0.138 0.132 0.079 0.121 0.137 0.108 0.197 0.181 0.191 0.248 0.237 0.190

1.4 0.299 0.270 0.257 0.269 0.308 0.255 0.511 0.527 0.529 0.660 0.652 0.569

1.6 0.388 0.448 0.338 0.349 0.420 0.334 0.818 0.814 0.764 0.879 0.866 0.764

1.8 0.452 0.525 0.426 0.412 0.512 0.428 0.945 0.955 0.890 0.973 0.967 0.883

2.0 0.542 0.613 0.514 0.508 0.610 0.514 0.991 0.996 0.967 0.995 0.995 0.957

2.2 0.661 0.698 0.620 0.618 0.695 0.611 0.999 1.000 0.994 0.999 1.000 0.984

2.4 0.722 0.801 0.682 0.718 0.810 0.700 0.999 0.999 0.996 1.000 1.000 0.997

2.6 0.812 0.880 0.798 0.815 0.873 0.782 1.000 1.000 1.000 1.000 1.000 1.000

2.8 0.884 0.917 0.835 0.875 0.918 0.844 1.000 1.000 1.000 1.000 1.000 1.000

Note: I, II, and III refer to three setups with respect to observation processes.

The proposed inference procedure has two key advantages. One is that it allows the correlation
between the recurrent event process of interest and the observation process in a general format.
This is very important as the format of the relationship between the two processes is generally
unknown in practice and could be very complicated and thus a flexible model may be preferred.
Another is that the proposed approach does not require any estimation for the observation process
model. Compared to the existing estimation procedures such as that presented in Zhu et al. (2011),
our method is more robust.

Table 6: Empirical sizes and powers of diagnostic tests for the goodness-of-fit.

n = 100 n = 200

Linear g(Zi) Non-linear g(Zi) Linear g(Zi) Non-linear g(Zi)

ν I II III I II III I II III I II III

1.0 0.051 0.054 0.044 0.053 0.052 0.043 0.050 0.052 0.048 0.054 0.053 0.050

1.2 0.145 0.142 0.079 0.136 0.126 0.095 0.179 0.187 0.175 0.227 0.209 0.155

1.4 0.282 0.317 0.244 0.298 0.303 0.266 0.514 0.512 0.557 0.657 0.650 0.540

1.6 0.365 0.392 0.355 0.359 0.400 0.358 0.793 0.808 0.752 0.854 0.871 0.753

1.8 0.430 0.513 0.443 0.415 0.501 0.425 0.947 0.955 0.894 0.965 0.976 0.885

2.0 0.514 0.606 0.496 0.501 0.609 0.505 0.993 0.995 0.965 0.992 0.994 0.961

2.2 0.648 0.695 0.627 0.603 0.698 0.591 1.000 1.000 0.980 0.998 0.999 0.992

2.4 0.755 0.796 0.722 0.713 0.784 0.703 0.999 1.000 0.995 1.000 1.000 0.997

2.6 0.795 0.887 0.776 0.801 0.855 0.790 1.000 1.000 0.999 1.000 1.000 0.999

2.8 0.863 0.917 0.832 0.868 0.905 0.851 1.000 1.000 1.000 1.000 1.000 1.000

Note: I, II, and III refer to three setups with respect to observation processes.
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Note that we took the weight function W(·) as 1 in our simulations and applications for
simplicity. Theoretically, the weight function would be chosen by minimizing the variance of
the estimator. However the selection problem of weight functions is complicated (Lin & Ying,
2001), and it seems impossible to find the optimal weight based on our flexible models where the
dependence structure on the underlying longitudinal process is completely unspecified. Further,
a more efficient inference procedure needs to be developed.

Also note that covariates were assumed to be time-invariant. When longitudinal data involve
both time-independent and time-dependent covariates we propose the following joint models for
the underlying recurrent event process and observation process

E{Yi(t)|Xi(t), Zi} = μ0(t) + X′
i(t)β(t) + g(Zi),

and

E{dOi(t)|Xi(t), Zi} = Zih(Xi(t))d�0(t),

and extend the proposed approach to these situations for future research.

APPENDIX
Proofs. In this appendix we will sketch the proofs for the consistency and asymptotic normality of
the proposed estimate β̂1 and also for the asymptotic properties of the goodness-of-fit test statistic
φ(t, x). For this we will employ the notation defined in the previous sections and assume that
P(Ci ≥ τ) > 0. Define � = E{WimiX1iX

′
1i} and assume that � is positive definite.

A.1 Asymptotic Normality of β̂1

First we will show the consistency of β̂1. For this, note the two facts:

(i)

U(β10)
n

=
∑

φi

n

p→ 0

where φi = WiX1i{Ȳi − miβ
′
10X1i};

(ii)

1
n

∂

∂β1
U(β1) = −1

n

n∑
i=1

WimiX1iX
′
1i

converges uniformly to a negative matrix −E{WimiX1iX
′
1i} over β1 for any value of β10.

Therefore, the solution β̂1 of the estimating equation U(β1) = 0 is unique with a large n. Note
that n−1 ∑n

i=1 WiX1iȲi converges in probability to E(WiX1iȲi) = �β10 by (5). Then it follows
from the expression of β̂1 in (7) that β̂1 is a consistent estimator of β10.

Now we turn to prove the asymptotic normality of the proposed estimator β̂1. For this, note
that by the Taylor series expansion we have

√
n(β̂1n − β10) = �−1

√
n

U(β10) + op(1)

= �−1
√

n

n∑
i=1

φi + op(1)
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where φi = WiX1i{Ȳi − miβ
′
10X1i}. It thus follows that

√
n(β̂1n − β10) has an asymptotic normal

distribution with mean zero and covariance matrix �−1�(�−1)′ that can be consistently estimated
by �̂−1�̂(�̂−1)′ where � = E{φiφ

′
i}, and �̂ and �̂ are given as

�̂ = 1
n

n∑
i=1

WimiX1iX
′
1i and �̂ = 1

n

n∑
i=1

φ̂iφ̂
′
i

with φ̂i = WiX1i{Ȳi − miX
′
1iβ̂1}.

A.2 Proof of the Asymptotic Property of φ(t, x)
In the following we will sketch the proof for the weak convergence of φ(t, x) under models (1)
and (2); the weak convergence of Fj(x) can be derived similarly.

Assume that the limits of S0, S(x), and B(t, x) exist and are denoted by s0, s(x), and b(t, x),
respectively. Define

Ri(t) =
∫ t

0
{Yi(u) − β′

0Xi}dÕi(u) − miA(t).

To prove the weak convergence of φ(t, x), using Lemma A.1 of Lin & Ying (2001) we have

φ(t, x) = 1√
n

n∑
i=1

{
I(Xi ≤ x) − s(x)

s0

}
Ri(t) − b(t, x)

√
n(β̂ − β0) + op(1).

The tightness of the first term on the right-hand side of the above follows from the arguments
given in Appendix A.5 of Lin et al. (2000). The second term is also tight because

√
n(β̂ − β0)

converges in distribution and b(t, x) is a deterministic function. Thus φ(t, x) is tight. Let di be the
vector �−1φi without the last entry. Then we can further write φ(t, x) as

φ(t, x) = 1√
n

n∑
i=1

{
I(Xi ≤ x) − s(x)

s0

}
Ri(t) − b(t, x)

1√
n

n∑
i=1

di + op(1).

It thus follows from the multivariate central limit theorem and the tightness of φ(t, x) that
φ(t, x) converges weakly to a zero-mean Gaussian process that can be approximated by the zero-
mean Gaussian process

φ̂(t, x) = 1√
n

n∑
i=1

{
I(Xi ≤ x) − S(x)

S0

}
R̂i(t) − B(t, x)

1√
n

n∑
i=1

d̂i.

Thus, using the simulation approach presented in Lin et al. (2000), the null distribution of
φ(t, x) can be approximated by that of φ̂(t, x). �
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