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a b s t r a c t

For ultrahigh-dimensional data, sure independent screening methods can effectively re-
duce the dimensionality while ensuring that all the active variables can be retained
with high probability. However, most existing screening procedures are developed for
ultrahigh-dimensional complete data and cannot be applicable to censored survival data.
To address the new challenges from censoring, a novel model-free screening method was
proposed through the Kolmogorov–Smirnov test statistic that is specially tailored to the
ultrahigh-dimensional survival data. The sure screening property was established under
some mild regularity conditions, and its superior performance over existing screening
methods is demonstrated by our extensive simulation studies. A real data example of
gene expression is used to illustrate the application of the proposed fully nonparametric
screening procedure.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ultrahigh-dimensional survival data are widely encountered in many fields such as genomics, medicine, and public
health. Examples of such data include the breast cancer data (Van Houwelingen et al., 2006; Song et al., 2014) and themantle
cell lymphoma data (Rosenwald et al., 2003) that motivated this research. For high-dimensional variable selection, there are
numerous regularization methods available, such as the LASSO (Tibshirani, 1996), the smoothly clipped absolute deviation
(Fan and Li, 2001), the adaptive LASSO (Zou, 2006), the Dantzig selector (Candes and Tao, 2007), and the minimax concave
penalty (Zhang, 2010). These penalized procedures, however, may not perform well for a very large number of covariates
because ultrahigh dimensionality brings simultaneous challenges of computational expediency, statistical accuracy and
algorithmic stability (Fan et al., 2009). Thus, to apply the well-developed regularization methods, the first important step is
to study the dimension reduction for ultrahigh-dimensional data.

To effectively reduce the dimensionality, several model-based and model-free screening methods have been proposed.
For example, Fan and Lv (2008) and Fan and Song (2010) presented sure independence screening (SIS) methods based on
linear and generalized linear regression models; Fan et al. (2011) proposed a nonparametric screening procedure based on
the ultrahigh-dimensional additive models using the B-spline approximation; Wu and Yin (2015) developed a conditional
quantile screening procedure based on a nonparametric regression model with heterogeneous errors. To avoid specifying
a particular model structure, He et al. (2013), Li et al. (2012a), Zhu et al. (2011), Li et al. (2012b), and Mai and Zou (2013,
2015) among others developed different model-free screening methods using the quantile-adaptive approach, Kendall’s τ

correlation, ranking, the distance correlation learning, and the fused Kolmogorov filter, respectively.
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The methods mentioned above are mainly designed for ultrahigh-dimensional complete data, while some of them may
be applicable to ultrahigh-dimensional censored data through some particular treatment. In contrast, there is limited
research for ultrahigh-dimensional censored data. For example, Fan et al. (2010), Tibshirani (2009), and Zhao and Li
(2012) investigated SIS methods for the Cox proportional hazards model; Gorst-Rasmussen and Scheike (2013) proposed
a screening procedure for a general class of single-index hazard rate models; Song et al. (2014) developed a model-free rank
independence screening method.

Note that model-free screening procedures are much more robust in the sense that the sure screening property can hold
under much weaker conditions, and choice of statistical modeling approaches after variable screening can be much more
flexible (Mai and Zou, 2015). In particular, the fused Kolmogorov filter proposed by Mai and Zou (2015) has the superior
performance over existing screening methods for ultrahigh-dimensional data. However, the fused Kolmogorov filter in Mai
and Zou (2015) cannot handle the censored survival data. So, our goal is to develop a new fully nonparametric model-free
variable screening method for ultrahigh-dimensional survival data using an appropriate Kolmogorov–Smirnov measure.

The remainder of the article is organized as follows. In Section 2, we introduce a different Kolmogorov–Smirnovmeasure
by taking censoring into account and propose a model-free screening procedure for different types of covariates. The sure
screening property of the proposed procedure is presented in Section 3. We assess the finite-sample performance of the
proposed screening procedure in Section 4 via extensive simulation studies. A gene expression data example from themantle
cell lymphoma study is analyzed in Section 5. Some concluding remarks are made in Section 6. All technical proofs are
presented in Appendix.

2. Screening procedures via fused Kolmogorov–Smirnov statistic

For ultrahigh-dimensional survival data, suppose that the observations {Xi, ∆i, Zi ≡ (Zi1, . . . , Zip)T : i = 1, . . . , n} are
independent copies of {X, ∆, Z = (Z1, . . . , Zp)T}, where Z is a p-dimensional vector of covariates, T and C denote the survival
and censoring times, respectively, X = min(T , C), and ∆ = I(T ≤ C). For ease of exposition, we assume that the censoring
mechanism is random, i.e., the survival time T and the censoring time C are conditionally independent given Z. Let τ denote
the end time of the study.

Consider the conditional survival function

S(t|Z) = Pr(T > t|Z)

given Z. In an ultrahigh-dimensional setting, the dimensionality p greatly exceeds sample size n. A popular assumption is
the sparsity assumption that only a small subset of covariates actually contribute to the conditional survival function S(t|Z).
To identify those active ones from p covariates, we define the set of active covariates as

A = {j : S(t|Z) depends on Zj, j = 1, . . . , p}.

Our goal is to recover the active set A as precisely as possible based on the censored observations.
To accommodate the continuous or general discrete covariates, we need to use the idea of slicing as used in Mai and Zou

(2015) and construct a Kolmogorov–Smirnov statistic tomeasure the dependence between each covariate and survival time.
For each covariate Zj, we define a partition

Λj = {[ajl, a
j
l+1) : ajl < ajl+1, l = 0, . . . , Λj − 1 and

Λj−1⋃
l=0

[ajl, a
j
l+1) \ {aj0} = R},

where aj0 = −∞, ajΛj
= ∞ and j = 1, . . . , p. Each [ajl, a

j
l+1) is called a slice. Then define a random variable Ij ∈ {1, . . . , Λj}

such that Ij = l + 1 if and only if Zj ∈ [ajl, a
j
l+1). Let

K
Λj
j = max

l1,l2
sup
0≤t≤τ

|Sj(t|Ij = l1) − Sj(t|Ij = l2)|,

where Sj(t|Ij = l1) = Pr(T > t|Ij = l1). It is obvious that when Zj (j = 1, . . . , p) takes finite values such that each possible
value forms a slice, Zj is independent of T if and only if K

Λj
j = 0. If Zj is continuous or discrete, the following lemma shows

that K
Λj
j also sheds light on the dependence between Zj and T . Following Lemma 1 of Mai and Zou (2015), we have the

following results:

(i) Zj is independent of T if and only if K
Λj
j = 0 for any partition Λj;

(ii) If Zj is not independent of T and for any fixed z ∈ R, Pr(Zj ≤ z|T = t) is not a constant in t , then K
Λj
j ̸= 0 for any

partition Λj.

The above results play the theoretical foundation so that we can use K
Λj
j to judge if Zj is independent of T . Given the

observed data {Xi, ∆i, Zi ≡ (Zi1, . . . , Zip)T : i = 1, . . . , n}, the estimate of K
Λj
j is defined as

K̂
Λj
j = max

l1,l2
sup
0≤t≤τ

|̂Sj(t|Ij = l1) − Ŝj(t|Ij = l2)|,
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where Ŝj(t|Ij = l) is the Kaplan–Meier estimator of Sj(t|Ij = l) based on the subsample {Xi, ∆i, Zi : i ∈ Dlj} with
Dlj = {i : Zij ∈ [ajl−1, a

j
l), i = 1, . . . , n}. To be specific,

Ŝj(t|Ij = l) =

∏
i∈Dlj

{
1 −

1∑
k∈Dlj

I(Xk ≥ Xi)

}∆iI(Xi≤t)

.

To evaluate K̂
Λj
j , we suggest an intuitive uniform slicing to partition data into Λj slices as follows:

(a) If Zj is categorical with levels 1, . . . , Λj or Zj is discrete with finite possible values 1, . . . , Λj, we set Ij = Zj;
(b) If Zj is discrete and can take infinite values such as 1, 2, . . . , we set Ij = Zj if Zj < Λj and Ij = Λj if Zj ≥ Λj;
(c) If Zj is continuous, we let the partition Λj contain the intervals bounded by the l

Λj
th sample quantiles of Zj for

l = 0, 1, . . . , Λj.

Furthermore, motivated by Cook and Zhang (2014) and Mai and Zou (2015), we use the idea of fusion to improve the
efficiency of the Kolmogorov–Smirnov measure. Suppose that for Zj in cases (b) and (c), we have Nj different partitions Λkj
(k = 1, . . . ,Nj), where each partition Λkj contains Λkj intervals. Then we set

K̂j =

Nj∑
k=1

K̂
Λkj
j

as an estimate of Kj =
∑Nj

k=1K
Λkj
j . As Mai and Zou (2015) suggested, we choose Λkj ≤ ⌈log n⌉ for all 1 ≤ k ≤ Nj so that there

is a decent sample size within each slice for all slicing schemes, where ⌈x⌉ denotes the integer part of x. In practice, we take
Λkj = 3, . . . , ⌈log n⌉ for each partition Λkj. Naturally, for Zj in case (a), we set Nj = 1. Then based on K̂j (j = 1, . . . , p), we
define the estimated active set as

Â(dn) = {1 ≤ j ≤ p : K̂j is amongst the first dn largest of all K̂j},

where dn is a prespecified positive integer. In the following, the proposed procedure is called the fused Kolmogorov–Smirnov
statistic-based sure independence screening (KS-SIS).

3. Sure screening property

In this section, we establish the sure screening property of the proposed screening method. If we know the distribution
of Zj, then we can consider an oracle uniform slicing to form partitions Λkj (k = 1, . . . ,Nj) by replacing the l

Λkj
th sample

quantiles of Zj with the l
Λkj

th theoretical quantiles of Zj for each continuous covariate Zj in an intuitive uniform slicing scheme.

For this slicing, we set K (o)
j (Λkj) = K

Λkj
j , K (o)

j =
∑Nj

k=1K
(o)
j (Λkj), K̂

(o)
j (Λkj) = K̂

Λkj
j and K̂ (o)

j =
∑Nj

k=1K̂
(o)
j (Λkj). Here, if Zj is

discrete, these oracle quantities are the same as those under an intuitive uniform slicing scheme. Then we can obtain the
oracle active set as

Â(oracle) = {1 ≤ j ≤ p : K̂ (o)
j is amongst the first dn largest of all K̂ (o)

j }.

Let G(·) denote the survival function of censoring time. Throughout this paper, c denotes a generic positive constant which
may take different values in different places. To establish the sure screening property, we need the followingmild regularity
conditions.

C1. There exists a set B such that A ⊂ B and

∆B = min
j∈B

min
1≤k≤Nj

K (o)
j (Λkj) − max

j̸∈B
max
1≤k≤Nj

K (o)
j (Λkj) > 0.

C2. If Zj is continuous, then for any d1, d2 with Pr(Zj ∈ [d1, d2)) ≤
2

Λ0j
,

|Sj(t|z1) − Sj(t|z2)| ≤
∆B

8
for all t , j and z1, z2 ∈ [d1, d2), where Λ0j = mink{Λkj}.

Condition C1 is the key condition which has been widely used for establishing the sure screening property of marginal
screening methods in the literature. Condition C2 guarantees that the sample quantiles of Zj (j = 1, 2, . . . , p) are close
enough to the population quantiles of Zj. Obviously, this result is expected for many distributions of Zj. Here, we can see that
the conditions for our method are much weaker than those required for many existing nonparametric screening methods.
We make no assumption on the distribution of the covariates. Moreover, we do not impose any moment conditions for
predictors Zj’s. Compared with the exponential moment condition C1 in Li et al. (2012b) and C3 in Zhu et al. (2011), ours are
weaker. Conditions C1 and C2 are similar to those given in Mai and Zou (2015) with more detailed discussions.
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Theorem 1. Suppose conditions C1 and C2 hold. Define

η1 = cNp(log2n) exp
(

−c
n∆2

B

log n
+ c∆B

√
n
)

+ cNp(log2n) exp
(

−c
n

log2n
+ c∆B

√
n
)

,

and

η2 = cNp(log2n) exp
(

−c
n∆2

B

log n
+ c∆B

√
n
)

+ cNp exp
(

−c
n

log2n

)
with N = max(Nj, j = 1, . . ., p). If Λkj ≤ [log n] for k = 1, 2, . . . ,Nj and dn ≥ |B|, we have the following conclusions:

(1) Pr(A ⊂ Â(oracle)) ≥ 1 − η1;

(2) Pr(A ⊂ Â(dn)) ≥ 1 − η2.

Therefore, both the oracle fused KS-SIS and the fused KS-SIS enjoy the sure screening property with probability going to 1 if
∆B ≫ n−1/2

{log n log(pN log n)}1/2.

From the two results in Theorem 1, we can see that the fused method by an intuitive uniform slicing is as efficient as
one by an oracle uniform slicing. On the other hand, we can see that our method enjoys the sure screening property with a
probability tending to one for a reasonably large dn. This can be easily achieved in practice.

4. Simulation studies

We examined the finite sample performance of the proposed method and made comparisons with existing methods
via simulation studies. For convenience, we denoted the proposed Kolmogorov–Smirnov statistic-based sure independence
screening procedure as fused KS-SIS, the feature aberration at survival times screening procedure of Gorst-Rasmussen and
Scheike (2013) as FAST-SIS, the principled sure independent screening procedure of Zhao and Li (2012) as P-SIS, the censored
rank independence screening of Song et al. (2014) as CRIS, and the quantile adaptive screening procedure of He et al. (2013)
at quantile level 0.5 as QASIS. To demonstrate the robustness of the proposedmethod, we considered survival data generated
from different models including the Cox proportional hazards model, nonlinear model, and linear transformation model.

Example 1. Suppose that survival time T followed the Cox proportional hazardsmodel with the conditional hazard function
given by

λ(t|Zi) = λ0(t) exp(ZT
i β0),

where the baseline hazard functionwas set to be λ0(t) = (t−0.5)2 and the ultrahigh-dimensional covariate Z = (Z1, . . . , Zp)
followed a multivariate normal distribution with mean 0 and correlation matrix Σ = (0.8|i−j|) for i, j = 1, . . . , p. We set
the true parameter β0 = (0.35, 0.35, 0.35, 0.35, 0.35, 0, . . . , 0)T, i.e., only the first five predictors are active. We took the
censoring time C = C̃ ∧ τ , where C̃ was generated from Unif(0, τ + 2) and the study duration τ was chosen to yield the
desirable censoring rates (CR) of 20% and 40%, respectively.

Example 2. We generated the survival time T from the following nonlinear model with interaction:

log T = (2 + sin Z1)2 + (1 + Z5)3 + 3Z2
10 + Z1Z10 + ϵ,

where the error term ϵ followed the standard normal distribution. The setup for censoring time C was the same as those in
Example 1. Here, the predictor Z1 was generated from the discrete uniform distribution over {−2, −1.5, . . . , 2, 2.5}, which
is a categorical variable taking each value with an equal probability of 0.1, and the remaining (p − 1) covariates (Z2, . . . , Zp)
followed a multivariate normal distribution with mean 0 and correlation matrix Σ = (0.8|i−j|) for i, j = 1, . . . , (p − 1).

Example 3. Suppose that the survival time T took the following general transformation model adapted from Song et al.
(2014)

H(T ) = −β′Z + σ (Z)ϵ,

where H(t) = log{0.5(e2t − 1)}, and ϵ followed the standard normal distribution. We set the true parameter β =

(1, 0.7, 0′

6, 0.8, 1.0, 0
′

p−10)
T, i.e., only four predictors are active. The setups for covariate Z and censoring time C were the

same as those in Example 1. For σ (Z), we considered two cases: σ (Z) = σ1(Z) = 1 or σ (Z) = σ2(Z) = exp(Z20 + Z21 + Z22).
For KS-SIS, CRIS, FAST-SIS, P-SIS and CSIRS, the sizes of the true active predictor set for these two cases are p1 = 4 and p2 = 7,
respectively. As QASIS with quantile level 0.5 can only detect the predictors affecting the median, the corresponding sizes
are p1 = p2 = 4.

We took the sample sizes n = 50, 100, 200, the number of covariates p = 2000 and the censoring rates CR = 20%, 40%.
For each configuration, we repeated 500 times.
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Table 1
The median and IQR of S, the selection proportions Pe and Pa among 500 replications for Example 1 with the censoring rate CR = 20%, 40%.

CR n Method Median IQR Pe Pa

X1 X2 X3 X4 X5

20% 50 Fused KS-SIS 44 131 0.538 0.770 0.790 0.728 0.554 0.204
CRIS 80 227 0.436 0.646 0.678 0.600 0.402 0.174
FAST-SIS 6 5 0.880 0.976 0.990 0.986 0.916 0.800
P-SIS 6 3 0.904 0.990 1.000 0.998 0.946 0.856
QASIS 128 195 0.220 0.370 0.436 0.336 0.240 0.014

100 Fused KS-SIS 5 1 0.976 1.000 1.000 0.998 0.986 0.964
CRIS 7 9 0.890 0.970 0.988 0.946 0.884 0.808
FAST-SIS 5 0 0.998 1.000 1.000 1.000 0.998 0.996
P-SIS 5 0 1.000 1.000 1.000 1.000 0.998 0.998
QASIS 11 14 0.890 0.966 0.984 0.970 0.880 0.758

200 Fused KS-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
CRIS 5 0 0.994 1.000 1.000 1.000 0.998 0.992
FAST-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
P-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
QASIS 5 1 1.000 1.000 1.000 1.000 1.000 1.000

40% 50 Fused KS-SIS 90 234 0.388 0.586 0.650 0.592 0.402 0.102
CRIS 103 297 0.350 0.514 0.612 0.530 0.392 0.104
FAST-SIS 8 13 0.802 0.956 0.970 0.950 0.848 0.664
P-SIS 7 9 0.844 0.970 0.986 0.972 0.870 0.716
QASIS 525 700 0.044 0.072 0.100 0.088 0.070 0.000

100 Fused KS-SIS 6 4 0.958 0.992 0.996 0.998 0.952 0.904
CRIS 8 19 0.848 0.944 0.966 0.934 0.850 0.726
FAST-SIS 5 0 0.996 1.000 1.000 1.000 0.998 0.994
P-SIS 5 0 0.996 1.000 1.000 1.000 1.000 0.996
QASIS 120 251 0.408 0.602 0.698 0.588 0.420 0.118

200 Fused KS-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
CRIS 5 1 0.994 1.000 1.000 1.000 0.996 0.990
FAST-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
P-SIS 5 0 1.000 1.000 1.000 1.000 1.000 1.000
QASIS 7 9 0.944 0.994 0.992 0.988 0.936 0.874

To assess the performance of the screening procedures, we employed three criteria used in Li et al. (2012b). The first one
is the minimum model size to include all active predictors, denoted by S. Note that S can be used to measure the model
complexity obtained from a screening procedure. The closer it is to the true minimum model size, the better the screening
procedure is. We presented the median and interquartile range (IQR) of S out of 500 replications. The second one is the
proportion that an individual active predictor is selected for a given model size over 500 replications, denoted by Pe. The
third one is the proportion that all active predictors are selected for a given model size over 500 replications, denoted by Pa.
An effective screening procedure is expected to yield S close to the true minimum model size and both Pe and Pa close to
one. We chose the model size to be dn = ⌈n/log n⌉.

The simulation results for S , Pe and Pa are summarized in Tables 1–3. Tables 1 and 2 include the results obtained by
the proposed fused KS-SIS, CRIS (Song et al., 2014), FAST-SIS (Gorst-Rasmussen and Scheike, 2013), P-SIS (Zhao and Li,
2012), and QASIS (He et al., 2013) for Examples 1 and 2, respectively. Table 3 displays the results by the proposed KS-
SIS under a single slicing (Λkj = 3, 4, 5) and a fusion as well as the other four screening methods for Example 3 with
n = 200.

In summary, we have the following findings:

(i) The proposed Kolmogorov–Smirnov statistic-based independence screening method through a single slicing works
well and performs stably with the choice of number of slices, while the fused screening procedure tends to be more
efficient.

(ii) The proposed fused KS-SIS procedure outperforms the other two model-free screening methods CRIS (Song et al.,
2014) and QASIS (He et al., 2013) for all the situations considered here.

(iii) For the Cox model considered in Example 1, the two model-based screening procedures FAST-SIS (Gorst-Rasmussen
and Scheike, 2013) and P-SIS (Zhao and Li, 2012) outperform the proposed fused KS-SIS and the other two model-
free screening methods when the sample size is 50, as they take into account the Cox proportional model structure
while the fully nonparametric screening methods do not rely on the specific model structure. When the sample size
is increased to 100, the simulation results by the model-free screening methods are comparable to those by the two
model-based screening methods.

(iv) For the nonlinear model with interaction considered in Example 2, the proposed screening procedure performs best
among these five methods.
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Table 2
The median and IQR of S, the selection proportions Pe and Pa among 500 replications for Example 2 with the censoring rate CR = 20%, 40%.

CR n Method Median IQR Pe Pa

X1 X5 X10

20% 50 Fused KS-SIS 189 543 1.000 0.692 0.148 0.096
CRIS 1346 986 0.062 0.442 0.006 0.000
FAST-SIS 575 952 0.254 0.948 0.094 0.022
P-SIS 739 947 0.292 0.904 0.034 0.002
QASIS 580 673 0.010 0.436 0.142 0.000

100 Fused KS-SIS 10 31 1.000 1.000 0.696 0.696
CRIS 1254 1092 0.186 0.712 0.016 0.008
FAST-SIS 185 641 0.684 1.000 0.226 0.162
P-SIS 317 806 0.692 1.000 0.116 0.082
QASIS 241 411 0.060 0.888 0.516 0.026

200 Fused KS-SIS 5 3 1.000 1.000 0.996 0.996
CRIS 1053 1193 0.394 0.922 0.066 0.054
FAST-SIS 35 176 0.968 1.000 0.536 0.514
P-SIS 84 300 0.974 1.000 0.372 0.362
QASIS 65 152 0.360 0.988 0.914 0.332

40% 50 Fused KS-SIS 283 664 1.000 0.584 0.109 0.079
CRIS 1667 747 0.020 0.178 0.000 0.000
FAST-SIS 828 978 0.436 0.871 0.020 0.000
P-SIS 937 956 0.475 0.802 0.020 0.000
QASIS 1732 872 0.040 0.366 0.119 0.000

100 Fused KS-SIS 15 51 1.000 0.990 0.586 0.578
CRIS 1734 636 0.080 0.278 0.004 0.000
FAST-SIS 525 1001 0.846 1.000 0.046 0.042
P-SIS 640 1017 0.854 0.998 0.026 0.026
QASIS 1969 253 0.046 0.470 0.152 0.000

200 Fused KS-SIS 5 4 1.000 1.000 0.976 0.976
CRIS 1837 506 0.110 0.436 0.006 0.006
FAST-SIS 278 709 0.996 1.000 0.224 0.222
P-SIS 377 790 0.998 1.000 0.136 0.136
QASIS 2000 4 0.040 0.572 0.156 0.004

(v) For the transformationmodel with homoscedastic normal error considered in Example 3, the simulation results show
that our proposed procedure is comparable to the other four methods. But for the model with heteroscedastic error,
the proposed method performs much better than the other four screening methods.

(vi) The proposed procedure also performs well when the censoring rate is increased to 40%, but the QASIS seems not to
be applicable to the cases of high censoring.

Therefore, we can conclude that the proposedmodel-free screeningmethod ismore robust and it is a superiormodel-free
screening technique which can be widely applicable to ultrahigh-dimensional survival analysis.

5. An application

As an illustration, we applied the proposed method to the mantle cell lymphoma (MCL) data, which was studied by
Rosenwald et al. (2003). The data contain expression values of 8810 cDNA elements and can be downloaded from the web
site http://llmpp.nih.gov/MCL. The primary goal of this study was to identify genes that have great influence on patients’
survival risk. Among 101 untreated patients with no history of previous lymphoma, 92 were classified as having MCL based
on themorphologic and immunophenotypic criteria. During the follow-up, 64 patients died ofMCL and the other 28 patients
were censored. The mean observed survival time was 2.8 years (ranging from 0.02 to 14.05 years). Given such small sample
size and huge number of predictors, feature screening serves as a preliminary step prior to any other complicated statistical
modeling techniques can be applied subsequently.

For comparison, we also applied CRIS, P-SIS, FAST-SIS, and QASIS to analyze this data. By excluding the geneswithmissing
values, we first screened the important predictors among the 6312 genes and set the model size to be 20 (= ⌈92/log(92)⌉).
The gene unique identification (UNIQID) of these genes were summarized in Table 4. By observing the results, we can see
that the gene with UNIQID 28872 was selected by all the five considered screening methods, indicating that this gene could
be strongly associated with patients’ survival risk; seven genes with UNIQID 32737, 24794, 30142, 17198, 27310, 32049,
and 28805 were uniquely selected by our method. In particular, as pointed out by Rosenwald et al. (2003), the selected gene
with UNIQID 30142 had an important effect on the survival time, but it was not selected by other screening methods.

To compare the predictive accuracy of these methods, we further adopted the C-statistic estimator proposed by Uno et
al. (2011) to evaluate the fitted models using the 20 selected predictors by different screening methods. In practice, the
true model is unknown. Here, we took the Cox model as a working model. Then risk scores were obtained from the fitted

http://llmpp.nih.gov/MCL
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Table 3
The median and IQR of S, the selection proportion Pa among 500 replications for Example 3.

σ Method CR = 20% CR = 40%

Median IQR Pa Median IQR Pa

σ1 KS-SIS
Λ = 3 5 2 1.000 5 2 1.000
Λ = 4 5 2 1.000 5 2 1.000
Λ = 5 5 3 1.000 5 3 1.000
Fused 5 2 1.000 5 2 1.000

CRIS 5 2 0.996 5 2 1.000
FAST-SIS 5 1 1.000 4 1 1.000
P-SIS 4 1 1.000 4 1 1.000
QASIS 6 3 1.000 1861 650 0.022

σ2 KS-SIS
Λ = 3 25 31 0.682 62 124 0.340
Λ = 4 33 44 0.540 103 174 0.216
Λ = 5 55 72 0.346 170 243 0.122
Fused 21 16 0.804 55 99 0.388

CRIS 1357 1062 0.008 636 996 0.050
FAST-SIS 265 784 0.142 1487 897 0.000
P-SIS 265 770 0.132 1478 915 0.004
QASIS 8 6 0.962 1995 38 0.000

Table 4
The screened UNIQIDs of the first 20 selected genes of the five screening
methods for the mantle cell lymphoma data.

Fused KS-SIS CRIS P-SIS FAST-SIS QASIS

28346 30334 30157 30157 30834
28990 28872 34771 27095 34546
30334 17326 27095 34771 24816
32737 28990 27019 34790 33457
30157 17370 27762 32699 28058
27762 34790 30282 29330 27884
17176 34771 16587 28346 31571
25234 31420 28872 24713 28872
24794 27049 28346 16587 31413
30142 25234 34790 27762 30951
17198 16528 24723 15936 27935
34771 32699 25234 30282 30040
27310 30157 34687 25234 26589
31420 30282 32699 24723 28150
34790 27095 24734 27049 16960
32049 32187 24656 27019 24448
28872 33549 16528 28872 17815
32187 24710 17343 29209 31573
24723 24404 27049 31420 32081
28805 17176 31420 17343 24493

Table 5
The C-statistic and the standard deviation (SD) under a working Cox model
using the predictors selected by each of the five screening methods for the
mantle cell lymphoma data.

Fused KS-SIS CRIS P-SIS FAST-SIS QASIS

C-statistic 0.764 0.748 0.753 0.747 0.744
SD 0.036 0.043 0.037 0.047 0.044

models after screening and the corresponding C-statistic was computed. The standard deviation (SD) of the C-statistic was
obtained from a perturbation resampling method with 200 times. Table 4 reports the values of C-statistic and SD obtained
from different methods, respectively. According to Uno et al. (2011), the larger the C-statistic is, the stronger predictive
power the method possesses. It can be seen from the results in Table 5 that our proposed method has the best performance
under the working Cox model for the data after screening. This suggests that the set of active predictors selected by the new
nonparametric screening method is the most reasonable one.

According to the referees’ suggestions, we randomly split the full data into a training set (n1 = 55) and a testing set
(n2 = 37) by the ratio of 3:2, while maintaining the censoring rate roughly the same in each set. For each split, we first
applied the five screening methods to select top 13 (= ⌈55/log(55)⌉) covariates using the training set, and then computed
the C-statistic using these selected covariates in the testing set. A total of 200 splits wasmade and the average C-statistic and



Y. Liu et al. / Computational Statistics and Data Analysis 119 (2018) 74–85 81

Table 6
The average C-statistic and the standard deviation (SD) under a working Cox
model and testing set using the predictors selected by training set for the
mantle cell lymphoma data.

Fused KS-SIS CRIS P-SIS FAST-SIS QASIS

C-statistic 0.789 0.780 0.785 0.793 0.754
SD 0.041 0.045 0.040 0.039 0.050

the SDwere reported in Table 6. By observing the results, the performance of our proposedmethod and the twomodel-based
methods P-SIS, FAST-SIS are comparable, and better than the CRIS and QASIS methods. Our proposedmethod does not show
its distinctive superiority over the two model-based methods P-SIS and FAST-SIS. There are two possible reasons: (i) when
we split the full data into training and testing sets, the sample sizes are very small in these two sets so that we do not have
enough samples within each slice for our method; (ii) the Cox hazards model may be suitable for fitting such data; in this
case, our analysis results are consistent with the simulation results.

6. Conclusion

To accommodate censoring in ultrahigh-dimensional survival data, we have considered replacing the conditional distri-
bution of each covariate given a response variable inMai and Zou’s (2015) Kolmogorov filterwith a conditional distribution of
a response variable given each covariate, and then used the Kaplan–Meier estimator for estimation of unknown conditional
distributions. The proposed Kolmogorov–Smirnov statistic-based independence screening method can deal with discrete,
categorical or continuous covariates, and has several distinctive advantages over the existing screening procedures for
ultrahigh-dimensional survival data. First, our procedure does not rely on any model assumption. Second, our approach
is invariant under the monotone transformation of the response. Third, the newmethod enjoys the sure screening property
under much weaker conditions without any moment conditions. Fourth, the simulation studies demonstrate that the
proposed model-free screening method is more robust than the model-based screening approaches (Gorst-Rasmussen and
Scheike, 2013; Zhao and Li, 2012), the rank-based (Song et al., 2014) and the quantile-adaptive-based screening procedures
(He et al., 2013). All these advantages greatly facilitate its implementation in real applications.
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Appendix. Proofs of theoretic results

We note that the Dvoretzky–Kiefer–Wolfowitz inequality plays a key role in proving the sure screening property
of the fused Kolmogorov filter in Mai and Zou (2015). Bitouzé et al. (1999) established a Dvoretzky–Kiefer–Wolfowitz
type inequality for the Kaplan–Meier estimator of the survival function in a right censored data model. We will use this
exponential inequality to show the sure screening property of the proposed Kolmogorov–Smirnov statistic-based screening
method for ultrahigh-dimensional censored data. As a preparation, we state this result as the following lemma.

Lemma 1. Let ŜKM (·) be the Kaplan–Meier estimator of the survival function S(·). There exists an absolute constant µ such that,
for any positive λ,

P
(

√
n sup

0≤t≤τ

⏐⏐⏐G(t)(̂SKM (t) − S(t)
)⏐⏐⏐ > λ

)
≤ 2.5 exp(−2λ2

+ µλ),

where S(·) and G(·) represent the survival functions of the survival time and the censoring time, respectively, and τ denotes the
largest observed time.

Next, we use this result to show the following lemma.

Lemma 2. For any partition Λj with Zj, define

Kj(Λj; l1, l2) = sup
0≤t≤τ

⏐⏐⏐Sj(t|Ij = l1) − Sj(t|Ij = l2)
⏐⏐⏐.
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Then for any ϵ > 0, we have

Pr
(⏐⏐⏐̂Kj(Λj; l1, l2) − Kj(Λj; l1, l2)

⏐⏐⏐ > ϵ

)
≤ ηj(ϵ),

where

ηj(ϵ) = 2.5
[
exp

{
−

Plj1nϵ
2

4
G2(τ ) + µ1

ϵ
√
n

2
G(τ )

}
+ exp

{
−

c1nP2
lj1

4
+ µ1

ϵ
√
n

2
G(τ )

}

+ exp

{
−

Plj2nϵ
2

4
G2(τ ) + µ2

ϵ
√
n

2
G(τ )

}
+ exp

{
−

c2nP2
lj2

4
+ µ2

ϵ
√
n

2
G(τ )

}]
with Pjl = Pr(Ij = l) for positive constants c1, c2, µ1, µ2.

Proof. Note that

Pr
(⏐⏐̂Kj(Λj; l1, l2) − Kj(Λj; l1, l2)

⏐⏐ > ϵ
)

≤ Pr
(

sup
0≤t≤τ

⏐⏐⏐̂Sj(t|Ij = l1) − Sj(t|Ij = l1)
⏐⏐⏐ ≥

ϵ

2

)
+ Pr

(
sup
0≤t≤τ

⏐⏐⏐̂Sj(t|Ij = l2) − Sj(t|Ij = l2)
⏐⏐⏐ ≥

ϵ

2

)
,

and by Lemma 1,

Pr
(

sup
0≤t≤τ

⏐⏐⏐̂Sj(t|Ij = l) − Sj(t|Ij = l)
⏐⏐⏐ ≥

ϵ

2
|Zj

)
≤ Pr

(
√
njl sup

0≤t≤τ

⏐⏐⏐(̂Sj(t|Ij = l) − Sj(t|Ij = l)
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G(t)
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ϵ

2
√
njlG(τ )|Zj

)
≤ 2.5 exp

{
−

njlϵ
2G2(τ )
2

+ µ

√
njlϵG(τ )

2

}
,

where njl is a sum of n independent and identically distributed Bernoulli random variables with the probability of success
being Pjl. Thus, by the Chernoff bound, we have

Pr
(
njl <

nPjl
2

)
< exp

(
−

cnP2
jl

4

)
which completes the proof of the lemma. □

To prove Theorem 1, we need more lemmas.

Lemma 3. Consider p pairs of random variables (T , Zj) for j = 1, 2, . . . , p, and let fj(z) denote the probability density function
of Zj and Sj(t|Zj) = Pr(T > t|Zj). For any interval [a, b) such that fj(z) > 0 for z ∈ [a, b), we have

inf
z∈[a,b)

Sj
(
t|Zj = z

)
≤ Sj

(
t|Zj ∈ [a, b)

)
≤ sup

z∈[a,b)
Sj
(
t|Zj = z

)
for all t.

This lemma is similar to Proposition 1 of Mai and Zou (2015) and thus the proof is omitted here. Also by Lemma 4 of Mai
and Zou (2015), we have the following lemma.

Lemma 4. For Zj, we define a partition

Λj =
{
[ajl, a

j
l+1) : ajl < ajl+1, l = 0, . . . , Λj − 1

}
,

where ajl is the
l

Λj
th sample quantile of Zj. Then we have

Pr
{
Pr(ajl ≤ Zj < ajl+1

⏐⏐Λj) <
2
Λj

}
≥ 1 − c exp

(
−c

n
Λ2

j

)
.

Moreover, a direct application of Lemma 2 to the special partition formed from the oracle uniform slicing yields the
following lemma.
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Lemma 5. Under the conditions in Theorem 1, for any ϵ > 0, we have

Pr
(
|̂K (o)

j − K (o)
j | ≥ Njϵ

)
≤ cN(log2n) exp

(
−c

nϵ2

log n
+ cϵ

√
n
)

+ cN(log2n) exp
(

−c
n

log2n
+ cϵ

√
n
)

.

Lemma 6. Under the conditions in Theorem 1, for any ϵ > 0, we have

Pr
(⏐⏐̂Kj − Kj

⏐⏐ ≥ Njϵ
)

≤ cN(log2n) exp
(

−c
nϵ2

log n
+ cϵ

√
n
)

.

Proof. The lemma can be shown by using Lemma 1 and the similar arguments as those used in the proof of Lemma 5 of Mai
and Zou (2015), and thus the detailed proof is omitted here. □

Lemma 7. Under the conditions in Theorem 1, we have

Pr
(⏐⏐⏐Kj − K (o)

j

⏐⏐⏐ ≥ Nj∆B/4
)

≤ cN exp
(

−c
n

log2n

)
,

where ∆B is defined in condition C1.

Proof. This lemma can be proved by using Lemmas 3 and 4 with condition 2 and the similar arguments used in the proof of
Lemma 6 of Mai and Zou (2015), and so the detailed proof is omitted here. □

Proof of Theorem 1. In order to prove part (1), we first show that if⏐⏐⏐̂K (o)
j − K (o)

j

⏐⏐⏐ <
Nj∆B

4

for all j, then A ⊂ Â(oracle). Straightforward calculations entail that

−
Nj∆B

4
< K̂ (o)

j − K (o)
j <

Nj∆B

4
.

For any j ∈ B, we obtain that

K̂ (o)
j > K (o)

j −
N∆B

4
.

By the definition of ∆B , for any k, we have

min
j∈B

K (o)
j (Λkj) − max

j̸∈B
K (o)
j (Λkj) ≥ ∆B,

and so

K (o)
j =

Nj∑
k=1

K (o)
j (Λkj) ≥ Nj∆B + max
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K (o)
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Therefore

K̂ (o)
j > K (o)
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4
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K (o)
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4
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On the other hand,

K̂ (o)
j < K (o)

j +
Nj∆B

4
≤ max

j̸∈B
K (o)
j +

Nj∆B

4
, for j ̸∈ B.

Then we can conclude that

max
j̸∈B

K̂ (o)
j < min

j∈B
K̂ (o)
j .
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Because of dn ≥ |B|, then we can obtain that B ⊂ Â(oracle) and so A ⊂ Â(oracle). By Lemma 5, we have

Pr(A ⊂ Â(oracle)) ≥ Pr

⎧⎨⎩
p⋂

j=1

(⏐⏐⏐̂K (o)
j − K (o)
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= 1 − Pr
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)⎫⎬⎭
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p∑
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Pr
(⏐⏐⏐̂K (o)

j − K (o)
j
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N∆B

4

)
≥ 1 − η1,

where η1 is as defined in Theorem 1.
By a similar argument as above, we can show that if⏐⏐⏐̂Kj − K (o)

j

⏐⏐⏐ <
Nj∆B

4
for all j, then A ⊂ Â(dn). Combining Lemmas 6 and 7 yields that

Pr
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≤ cN(log2n) exp
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n∆2
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log n
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Then we have

Pr
(
A ⊂ Â(dn)

)
≥ Pr

⎧⎨⎩
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(⏐⏐⏐̂Kj − K (o)
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Pr
(⏐⏐⏐̂Kj − K (o)

j

⏐⏐⏐ ≥
N∆B

4

)
≥ 1 − η2,

where η2 is given in Theorem 1. It is easy to see that when n → ∞, η1 → 0 and η2 → 0. Therefore both the oracle fused
KS-SIS and the fused KS-SIS enjoy the sure screening property with probability going to 1.
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