
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2018-0010 

Title Reliability Estimation from Left-Truncated and 

Right-Censored Data Using Splines 

Manuscript ID SS-2018-0010 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202018.0010 

Complete List of Authors Zhisheng Ye 

Weiwei Jiang and  

Xingqiu Zhao 

Corresponding Author Zhisheng Ye 

E-mail yez@nus.edu.sg 

Notice: Accepted version subject to English editing. 



Reliability Estimation from Left-Truncated and Right-Censored

Data Using Splines

May 15, 2018

Abstract

Reliability data collected from the field are often left truncated and right censored, be-

cause the data collection process usually starts much later than the installation of the first

product unit, and some units are still in service at the end of the data collection. The trun-

cation introduces sampling biases and makes analysis of the lifetime data complicated. This

study develops a nonparametric likelihood-based estimation procedure for left-truncated and

right-censored data using B-splines. In terms of small sample performance and large sam-

ple efficiencies, the proposed spline-based estimators for the reliability function are shown

to be more efficient than the existing nonparametric estimators. We further consider non-

parametric two-sample tests for left-truncated and right-censored data. The new class of

tests is useful for comparing reliability of similar products. The test statistics are based on

the cumulative weighted differences between the two estimated failure rates. Asymptotic

distributions of proposed statistics are derived and their finite-sample properties are eval-

uated through Monte Carlo simulations. The performance of the proposed test statistics

is compared with that of the weighted Kaplan-Meier statistics. A real-life example from

high-voltage power transformers is used to illustrate this method.

Keywords: B-splines, Convergence rate, Asymptotic normality, Two-sample tests.

1 Introduction

Lifetime data collected from field operations contain important reliability information that is

useful for asset management, such as preventive maintenance and remaining useful life pre-

diction. Compared with reliability data collected from life tests, field failure data are usually

subject to serious multiple censoring and truncation. In particular, the data are typically left

truncated and right censored. The left truncation arises when the data collection starts later

than the product launch/installation (Ye and Tang 2016). Because of the high reliability, most

products will be still functioning when the data collection stops, leading to right censoring.

The phenomenon is common for assets used in infrastructure facilities, such as pipes in a water

supply network (Carrión et al. 2010) and power transformers used in a power grid (Hong et al.

2009). An illustration of the data generation mechanism is provided in Figure 1. The starting

date is fixed for all product units. However, the installation dates (or sales dates) are generally

random across the product population. The randomness in the left-truncation time results from
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Figure 1: A schematic of the mechanism that generates left-truncated and right-censored
data. The observation window in calendar date is [Ts, Te]. Here, ‘o’ represents installation at
date TI , ‘×’ represents the failure event. The respective truncation and censoring times are
L = max{0, Ts − TI} and C = max{0, Te − TI}.

the random installation dates. If a unit is installed before the starting date of data collection,

then it is subject to left-truncation. Further, if its lifetime is longer than the truncation time, it

is a left-truncated observation (possibly subject to censoring); otherwise, the unit is truncated,

unobserved and the existence of the unit is unknown. The un-truncated population corresponds

to those units whose installation dates are later than the starting date of data collection. The

same data format is also common in survival study of clinical trials. For some further real

examples, see Tsai et al. (1987), Kevin et al. (2011) and Su and Wang (2012), among others.

The vast of the literature on reliability data analysis has mainly focused on right-censored

data, as life tests are an important source of reliability data. The problem of left-truncation

gradually attracts research interest in recent years due to its prevalence in the increasingly

important area of asset management. The recent literature on left-truncated and right-censored

data features parametric models and the related inference. Hong et al. (2009) fitted a Weibull

distribution to lifetime data of high-voltage power transformers from an energy company in

the United States. The maximum likelihood (ML) estimates were obtained through direct

maximization. An alternative method for ML estimation of the Weibull distribution is the

EM algorithm developed in Balakrishnan and Mitra (2012). Parametric inferences for other

distributions, such as lognormal and gamma, were developed in Balakrishnan and Mitra (2011,

2013, 2014) and Emura and Shiu (2016), among others.

A problem with the parametric inference is that the estimation results, such as the reliability

function and lifetime quantiles, could be sensitive to distributional assumptions. In addition,

it may be difficult, if not impossible, to check the distributional assumption in the presence

of heavy truncation (Kevin et al. 2011). In view of these deficiencies, it is desirable to use

nonparametric inference methods that impose less assumptions on the lifetimes. A breakthrough

is found in Turnbull (1976), who proposed a nonparametric maximum likelihood estimation

(NPMLE) procedure for arbitrarily censored and truncated data. He further developed a self-
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consistent algorithm to compute the NPMLE, which turns out to be a special case of the EM

algorithm. Frydman (1994) corrected Turnbull’s algorithm to make it applicable when the

data is truncated as well as interval censored. Consistency and efficiency of the NPMLE were

established in a number of studies, e.g., Wang et al. (1986) and Tsai et al. (1987). The EM

algorithm convergences quite slowly if the collected failure data are heavily truncated, and it can

be sensitive to the initial values. With appropriate adjustment of the definition of the risk set,

Tsai et al. (1987) showed that the NPMLE of the survivor function and the cumulative failure

rate can be directly obtained by using the analogue of the Kaplan-Meier and Nelson-Aalen

estimators.

In the study, we propose nonparametric inference for left-truncated and right-censored data

using splines. A spline is a piecewise polynomial function that possesses a high degree of smooth-

ness at the places where the polynomial pieces connect. These connection points are known as

knots. Once the knots are given, it is easy to compute the splines recursively for any desired

degree of the polynomial (Schumaker 2007, Chapter IV). The main advantages of the spline

interpolation are its stability and calculation simplicity. When applied in nonparametric esti-

mation, the number of parameters in the spline is usually much smaller than those in traditional

nonparametric methods. This makes the estimation easier and computation less time. There-

fore, spline-based nonparametric estimation has received considerable attention in recent years.

In Rosenberg (1995), nonnegative B-splines, also called M -splines, are applied to estimate the

hazard function of censored survival data, where the nonnegativity is guaranteed by the non-

negativity coefficients. To be specific, M -splines can be considered as a normalized version of

B-splines with unit integral within the domain (Ramsay 1988). Monotonic B-splines are also

widely applied in the literature (e.g., Lu et al. 2009; Xie et al. 2018), where the monotonicity

is guaranteed by the nondecreasing order of coefficients. On the other hand, I-splines, whose

bases are integrals from the B-splines (Ramsay 1988) are used to approximate the cumulative

distribution function (CDF) in Wu and Ying (2012). I-splines naturally yield monotonicity with

nonnegative coefficients, while B-splines require nondecreasing order of coefficients to ensure

monotonicity. Therefore, I-splines are often used to approximate monotone functions, which

may simplify the numerical computation (Wu and Ying 2012; Hong et al. 2015; Lu et al. 2007).

Motivated by the promising performance, spline basis functions are adopted for left-truncated

and right-censored data. Although splines come in many different forms, they have intimate

relations (Ramsay 1988; Lu et al. 2007). Using B-splines to approximate the failure rate is

the same as using M -splines for the failure rate, which is further the same as using I-splines

to approximate the cumulative failure rate. In our paper, we use B-splines with nonnegative

constraints on the spline coefficients to approximate the failure rate, and the I-splines to approx-

imate the cumulative failure rate. We do not pursue approximating the cumulative distribution

and reliability function because the approximation induces a normalization constraint on the

spline function, which complicates the maximum likelihood estimation. We show that the con-

vergence rate of the estimated failure rate is faster than O(n1/3). Based on the inferential

results, we further develop spline-based two-sample tests for comparison of two left-truncated

and right-censored datasets. The results are useful to compare reliability of similar products.

The rest of the paper is organized as follows. Section 2 formulates the spline-based likelihood
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estimation problem for left-truncated and right-censored data. The asymptotic properties of the

spline estimators are presented in Section 3. Based on the asymptotic results, a nonparametric

two-sample test is proposed to compare lifetime data from two products in Section 4. Section 5

conducts simulation studies to evaluate finite sample performance of the spline estimators.

Section 6 applies the proposed spline methods to the power transformer example in Hong et al.

(2009). Some technical lemmas and the proofs of the theorems are sketched in the Appendix.

2 B-Spline Approximation of the Failure Rate

Consider the lifetime T of a product unit with reliability R(t), failure rate λ0(t) and cumulative

failure rate Λ0(t), t ≥ 0. The lifetime T is subject to left truncation with truncation time

L, L ≥ 0. A unit is observed only when T > L. The unit is further subject to right censoring

with random censoring time C and C > L. If the observation window of the product is a fixed

interval, then C−L equals the length of the interval if L > 0. See Figure 1 for an illustration. In

calendar date, we let TI be the installation date of a random unit and [Ts, Te] be the obvervation

interval. Then in terms of product age, the left-truncation time is L = max{0, Ts − TI} and

the right-censoring time is C = max{0, Te−TI}. Naturally, the truncation times and censoring

times are bounded because TI cannot be earlier than the product launch date (Shen and Yan

2008; Shen 2014; Balakrishnan and Mitra 2012). Therefore, we let [L, L̄] and [C, C̄] be the

respective supports of L and C, and assume L̄, C̄ <∞. Furthermore, suppose T and (L,C) are

independent. Because of left-truncation and right-censoring, the lifetime information is only

available within the interval [L, C̄]. As a result, the failure rate of T is identifiable in [L, C̄].

When T ≥ L, the unit enters into our observation, and the observed lifetime is denoted as

Y = min(T,C), Y ≥ L. Let δ = I(T ≤ C) be the censoring indicator. That is, δ = 1 if the

lifetime is observed, and 0 if censored. The observation from the unit is thus X = (L, Y, δ).

Let Xi = (Li, Yi, δi), i = 1, · · · , n be n i.i.d. copies of X, and D = {X1, X2, · · · , Xn}. We are

interested in estimating the failure rate λ(t) using D. It suffices to consider the conditional

log-likelihood (Wang 1987)

L(λ|D) =

n∑
i=1

{
δi lnλ(Yi)−

∫ Yi

Li

λ(s)ds

}
.

In order to implement the spline approximation, a finite closed interval [a, b] is identified first.

The guideline for choosing a and b is that, they should include all the observed Li’s and Yi’s.

In an application, we can let a = min{Li, i = 1, · · · , n}, and b = max{Yi, i = 1, · · · , n}. Given

[a, b], let T = {tj}mn+2l
1 , with

a = t1 = · · · = tl < tl+1 < · · · < tl+mn < tl+mn+1 = · · · = tmn+2l = b,

be a sequence of knots that partition [a, b] into mn + 1 subintervals Jj = [tl+j , tl+j+1), j =

0, 1, · · · ,mn. To ensure the large-sample property as discussed in the next section, the number

mn of inner knots is usually chosen as O(nν) for some ν ∈ (0, 1/2). A common choice is

mn = dn1/3e, e.g., Lu et al. (2007, 2009), and Hua and Zhang (2012). With fixed mn, the inner
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knots {tj}l+mnl+1 can be either equally spaced (Lu et al. 2007), or placed at the corresponding

quantiles of the distinct observation times {Yi}n1 (Hua and Zhang 2012), or even the Chebyshev

points. According to our simulation experience, as well as the simulation experiments reported

in the literature, e.g., Zhao et al. (2013), the estimation results are insensitive to the selection of

mn and the placement of knots. For ease of implementation, we would recommend mn = dn1/3e
and equally-spaced inner knots.

With the knot sequence, qn = mn + l spline bases, denoted as Bk, 1 ≤ k ≤ qn, can be

constructed using a recursive formula (Schumaker 2007, Chapter IV). The class of polynomial

splines of order l with the knot sequence T is the linear space spanned by these bases (Schumaker

2007, Theorem 4.18). To satisfy the nonnegativity constraint of the failure rate approximation,

we single out a subclass of ψl,T as

ψl,T =

{
qn∑
k=1

αkBk : αk ≥ 0

}
.

According to theorem 5.9 of Schumaker (2007), ψl,T is a class of nonnegative polynomial splines

on [a, b]. The nonnegativity of the B-splines is guaranteed by the nonnegative coefficients. For

each h(·) ∈ ψl,T , h is a polynomial of order l in the interval Jj for 0 ≤ j ≤ mn, and h is

l − 2 times continuously differentiable on [a, b]. Define Ik(t) =
∫ t
a Bk(s)ds. Using the spline

approximation, the log-likelihood function can be written as

L(α|D) =
n∑
i=1

{
δi ln

[
qn∑
k=1

αkBk(yi)

]
+

qn∑
k=1

αkIk(Li)−
qn∑
k=1

αkIk(yi)

}
. (1)

Let α̂ = (α̂1, · · · , α̂qn) be the spline coefficients that maximize (1) subject to the nonnegativity

constraints αk ≥ 0, k = 1, · · · , qn. The spline log-likelihood function (1) is concave with

respect to the unknown coefficients. Therefore, the spline estimation problem is equivalent to

a nonlinear convex programming subject to linear inequality constraints. The optimization can

be easily solved by most software packages for scientific/statistical computation. Based on α̂,

the spline-based likelihood estimator for the failure rate is λ̂n(t) =
∑qn

k=1 α̂kBk(t).

3 Statistical Properties

In this section, we study the statistical properties of the spline-based likelihood estimator α̂

with the L2-metric d given by

d(λ1, λ2) = ‖λ1 − λ2‖2 =

{∫
|λ1(t)− λ2(t)|2dF ∗(t)

}1/2

,

where F ∗(t) = P (L ≤ T ≤ C, T ≤ t) and λ1, λ2 are non-negative functions. To ensure the

asymptotic convergence, we first require mn = O(nν), for some ν ∈ (0, 1/2) (Stone 1994).

Below, we list the technical assumptions for the theoretical results of the proposed spline-based

NPMLE.
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� Condition 1: The maximum spacing of the knots satisfies

∆ = max
l+1≤j≤mn+l+1

|tj − tj−1| = O(n−ν).

Moreover, there exists a constant M > 0 such that ∆/δ ≤ M uniformly in n, where

δ = minl+1≤j≤mn+l+1 |tj − tj−1|.

� Condition 2: The interval [a, b] satisfies P ({Y ∈ [a, b]}) = 1.

� Condition 3: there exists a constant C0 > 0 such that λ0(t) ≥ C0 for t ∈ [a, b]. In addition,

the true failure rate λ0 is differentiable up to order r and all the dirivatives are uniformly

bounded by a constant M in [a, b], where r ≥ 1.

Remark 1. Condition 1 is a weak restriction on the knot sequence, which is satisfied when

equally-spaced knots are used. This condition is also adopted by Stone (1994). Condition 2

requires that [L, C̄] ⊂ [a, b]. Condition 3 is needed in the proof of the asymptotic normality

in Theorem 3. It usually holds in practice. Product lifetime is a nonnegative and continuous

random variable. Continuous parametric lifetime distributions, such as Weibull, lognormal

and inverse Gaussian distributions have been widely used to model the lifetime data. See

Balakrishnan and Mitra (2011, 2012, 2013), among others. All the parametric distributions have

smooth hazard rate functions. As an extension from parametric to nonparametric estimation,

the smoothness assumption in Condition 3 is natural and reasonable. This assumption is also

used in Wang (2005) and Zhao and Zhang (2017).

Theorem 1 (Consistency) Suppose that Conditions 1-3 hold. Then the estimated failure rate

λ̂n converges to the true failure rate λ0 in probability, that is,

‖λ̂n − λ0‖2 →p 0, as n→∞.

Theorem 2 (Rate of convergence) Suppose that Conditions 1-3 hold. If ν is chosen to be

1/(2r + 1), then

n
r

2r+1 ‖λ̂n − λ0‖2 = Op(1).

Remark 2. Theorem 2 shows that the spline likelihood estimators have a convergence rate

slower than n−1/2 but faster than n−1/3.

To discuss the asymptotic distributions of functions of λ̂n, define

Hr =
{
h(·) : |h(r−1)(s)− h(r−1)(t)| ≤ c0|s− t| for all a ≤ s, t ≤ b

}
,

where h(r−1) is the (r − 1)th derivative of h, and c0 > 0 is a constant. Let Uλ denote a

neighborhood of the failure rate λ0. We also define a sequence of maps Gn, mapping Uλ in the

parameter space for λ into L∞(Hr) as

Gn(λ)[h] = n−1
n∑
i=1

{
δi
h(Yi)

λ(Yi)
−
∫ Yi

Li

h(t)dt

}
= Pnφ(λ;X)[h].
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The limit map G : Uλ 7→ L∞(Hr) is

G(λ)[h] = Pφ(λ;X)[h] = P

{
δ
h(Y )

λ(Y )
−
∫ Y

L
h(t)dt

}
,

where X = (L, Y, δ), Pn and P denote the empirical measure and probability measure with

Png = n−1
∑n

i=1 g(Xi) and Pg =
∫
gdP , respectively.

Theorem 3 (Asymptotic normality) Suppose Conditions 1-3 hold. Then for h ∈ Hr,

√
n

∫ b

a

h(t)

λ2
0(t)
{λ̂n(t)− λ0(t)}dF ∗(t) =

√
n(Gn −G)(λ0)[h] + op(1). (2)

Remark 3. Theorem 3 does not require λ̂n be
√
n-consistent. Since we assume λ0 is differ-

entiable, it is easy to see that F ∗ is differentiable with derivative denoted as f∗(t). Consider

the situation L = 0 and f∗(t) > 0 for all t ∈ [0, C̄]. For any fixed time τ ∈ [0, C̄], choose

h(t) = I(0,τ ](t)λ
2
0(t)/f∗(t) to see that the estimated cumulative hazard Λ̂n(τ) is

√
n consistent

for Λ0(τ). Further, a routine evaluation of the right-hand side of (2) shows that the asymp-

totic variance of Λ̂n(τ) is the same as that for the NPMLE of Λ0 given in Wang et al. (1986).

This means that the proposed method leads to efficient estimation of the cumulative failure

rate. Moreover, the asymptotic normality can be used to construct new tests for the problem

of multi-sample nonparametric comparison of reliabilities of left-truncated and right-censored

data, as shown in the next section.

4 Nonparametric Tests

Due to technological advances and the availability of multiple suppliers, the fleet of assets used

in the field usually consists of different brands or different generations of the same brand (Ye

et al. 2013). The difference naturally stratifies the field failure data into several categories. The

transformer failure data analyzed in Hong et al. (2009) is a typical example of this kind. It is

important to know if there is any difference between categories in terms of product reliability.

A knowledge of the difference can be used to select a more reliable product. If there is no dif-

ference in the reliability, the field data can be combined to achieve a more accurate estimation

of the product lifetime distribution. In the literature of left-truncated and right-censored data,

some extensions of nonparametric tests have been developed for two-sample comparison, such as

the Wilcoxon test, the weighted Kaplan-Meier (WKM) statistics (Shen 2007) and the weighted

log-rank statistics (Shen 2014). The above tests are based on estimates of the failure rates, the

cumulative failure rates or the survival functions. Similarly, we use the spline-based smooth es-

timatior of the failure rate developed above and further propose a flexible class of nonparametric

test statistics based on integrated weighted differences between the two estimated failure rates.

The performance will be compared with the weighted Kaplan-Meier statistics (Shen 2007) in

Section 5.

Consider two homogeneous groups. In group k, k = 1, 2, the ith observed lifetime is

X
(k)
i = (L

(k)
i , Y

(k)
i , δ

(k)
i ). The observed data of group k are Dk =

{
X

(k)
i , i = 1, 2, · · · , nk

}
. Let

n = n1 +n2. Assume that the failure rate and the cumulative failure rate functions of units from
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group k are λk and Λk, respectively. The goal is to test H0 : λ1 = λ2 = λ0 where λ0 denotes

the unknown common failure rate function when H0 is true. The test statistics proposed here

capitalize on the spline-based estimator developed in Section 3. Let λ̂
(k)
n (t) and λ̂n(t) be the

B-spline maximum likelihood estimators of λk(t) and λ0(t) based on Dk and the pooled data

D = D1 ∪D2, respectively. Motivated by a method that is commonly used in survival analysis

(e.g., Pepe and Fleming 1989; Balakrishnan and Zhao 2009), we propose the following test

statistic

Un =
√
n

∫ b

a
Wn(t){λ̂(1)

n (t)− λ̂(2)
n (t)}dF ∗n(t), (3)

where Wn is a bounded weight process (Zhao and Zhang 2017; Balakrishnan and Zhao 2009;

Andersen et al. 1993, Chapter V), and F ∗n(t) =
∑n
i=1 δiI(Yi≤t)∑n

i=1 δi
. The presence of the weight

process Wn(t) makes the above statistic flexible. A simple and natural choice for the weight is

W
(1)
n (t) = 1. Another natural choice is W

(2)
n (t) = Zn(t) = 1

n

∑n
i=1 I(Li < t ≤ Yi), in which case

weights are proportional to the number of subjects under observation. In addition, one may

choose the weight process as

W (3)
n (t) =

Zn1(t)Zn2(t)

Zn(t)
, W (4)

n (t) = 1− Zn(t),

where Znk(t) is defined as Zn(t) with the summation being only over subjects in sample k.

Some weight processes similar to W
(3)
n and W

(4)
n have been used for recurrent event data (e.g.,

Andersen et al. 1993, Chapter V). Now, we state the asymptotic distribution of Un.

Theorem 4 Suppose λ1 = λ2 = λ0, and Conditions 1-3 hold for λ0 and the spline estimators

λ̂
(1)
n , λ̂

(2)
n , λ̂n. Further suppose Wn are bounded weight processes and that there exists a bounded

function W (t) such that W ∈ Hr, and[∫ b

a
{Wn(t)−W (t)}2dt

]1/2

= op

(
n
− 1

2(1+2r)

)
.

Also suppose that n1/n → p as n → ∞ with 0 < p < 1. Then, Un has an asymptotic normal

distribution N(0, σ2
w), where

σ2
w =

1

p(1− p)
E{φ2(λ0;X)[hw]}

that can be consistently estimated by

σ̂2
w =

n

n1n2

n∑
i=1

{φ2(λ̂n;Xi)[ĥw]}

with hw(t) = W (t){λ0(t)}2 and ĥw(t) = Wn(t){λ̂n(t)}2.

Remark 4. For the asymptotic normality of the proposed test statistics, we do not need the

bounded Lipschitz condition for the selection of the weight processes, which is required by

Balakrishnan and Zhao (2009).
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5 Simulation Studies

To verify the performance of the proposed spline-based estimators under finite samples, a Monte

Carlo simulation is conducted. In the simulation study, we choose cubic B-splines with order

l = 4, which are popular in the literature (Lu et al. 2009; Hong et al. 2015; Xie et al. 2018).

In addition, mn is set as dn1/3e. The other simulation settings follow the work of Balakrishnan

and Mitra (2012).

In detail, the starting date Ts of data collection is fixed as 1980 and the end date Te is

2008. Let n be the size of observed units and p be the proportion of truncated observations,

i.e., 100p% of the observed units are installed before 1980. Let TI,i be the installation time of

unit i, i = 1, · · · , n, which are assigned as follows. The earliest installation date T I is 1960.

For the period 1960− 1979, a proportion of 0.15 is attached to each of the first five years, and

the remaining proportion is distributed equally over the rest of the years of this period. For

the period 1980 − 1995, a proportion of 0.1 was attached to each of the first six years, and a

proportion of 0.04 is attached to each of the rest of the years of this period. Accordingly, the

left-truncation time of unit i is Li = max{0, Ts − TI,i} and the right-censoring time of unit i is

Ci = max{0, Te − TI,i}, i = 1, · · · , n. See more details in Balakrishnan and Mitra (2012).

Four distributions are considered for the product lifetime T , i.e., Weibull, Lognormal, a

mixture of two Weibull distributions, and a mixture of Lognormal and Gamma distributions

(Balakrishnan and Mitra 2012, 2011, 2013). The generated data are fitted using the proposed

spline method and Turnbull’s NPMLE (Tsai et al. 1987). Here, we consider two fixed propor-

tions of truncated observations, i.e., p = 40% and p = 80%, and two sample sizes, i.e., n = 100

and 200. Based on 50,000 Monte Carlo replications, the squared biases and the Mean Squared

Errors (MSEs) of the reliability estimators using the two methods are computed. The results

are presented in Figures 2 - 5. From the plots, we can see that the squared biases and the mean

square errors of spline-based reliability estimators are smaller than the Turnbull’s NPMLE in

both proportions of truncated observations. Furthermore, comparisons between Figures 2 and

3 (or Figures 4 and 5) show that when the sample size n doubles, the mean square errors of

spline-based reliability estimators drop substantially, which supports the asymptotic consistency

of these estimators (Theroem 1).

Next, we examine the finite-sample properties of the proposed two-sample test statistic Un.

Assume the lifetimes of units in the two groups follow the Weibull distributions with different

values of the scale parameter α and shape parameter β. To guarantee truncation and censoring,

we generate data by following the simulation setting of Balakrishnan and Mitra (2012) for each

group. The null hypothesis H0 : λ1 = λ2 = λ0 is equivalent to α1 = α2 and β1 = β2. If the null

is true, then Tn = Un/σ̂w is approximately standard normal, where Un in (3) can be expressed

as

Un =

√
n∑n

i=1 δi

n∑
i=1

δiWn(Yi)
{
λ̂1(Yi)− λ̂2(Yi)

}
,

and σ̂w is given in Theorem 4. Let TH denote the weighted Kaplan-Meier (WKM) statistics

developed by Shen (2007). Here we focus on evaluating the performance of Tn and comparing

them to those of TH . We consider two scenarios as follows:
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(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8).
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(d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 2: Comparisons of the spline estimator and the NPMLE (Turnbull 1976) for estimating
the reliability function when n = 100 and p = 40%.
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(d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 3: Comparisons of the spline method and the NPMLE (Turnbull 1976) for estimating
the reliability function when n = 200 and p = 40%.
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(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8).
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(d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 4: Comparisons of the spline method and the NPMLE (Turnbull 1976) for estimating
the reliability function when n = 100 and p = 80%.
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Figure 5: Comparisons of the spline method and the NPMLE (Turnbull 1976) for estimating
the reliability function when n = 200 and p = 80%.
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Table 1: Estimated sizes and powers of Tn = Un/σ̂w and TH with Weibull Distribution (α, β),
where the shape parameters β1 = β2 = 1.5, and the scale parameters α1 = 30, α2 = 30, 40, 80.

Here, W
(k)
n are the weight processes, k = 1, 2, 3, 4.

Tn TH

α1/α2 W
(1)
n W

(2)
n W

(3)
n W

(4)
n α1/α2 W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = n2 = 100
30/30 0.058 0.052 0.052 0.056 30/30 0.065 0.062 0.062 0.064
30/40 0.697 0.583 0.585 0.650 30/40 0.705 0.657 0.657 0.683
30/80 1.000 0.981 0.981 0.997 30/80 1.000 1.000 1.000 1.000

n1 = n2 = 200
30/30 0.052 0.049 0.049 0.053 30/30 0.060 0.058 0.058 0.061
30/40 0.769 0.718 0.720 0.750 30/40 0.827 0.654 0.670 0.716
30/80 1.000 1.000 1.000 1.000 30/80 1.000 1.000 1.000 1.000

� Case 1. Two groups with the same shape parameter and different scale parameters.

� Case 2. Two groups with the same scale parameter and different shape parameters.

In Case 1, the two failure rates do not overlap. While the true failure rates intersect in Case

2. For each case, we consider two sample sizes, n1 = n2 = 100 and 200, respectively. As with

Section 4, we choose the four weight processes

W (1)
n (t) = 1, W (2)

n (t) = Zn(t) =
1

n

n∑
i=1

I(Li < t ≤ Yi),

W (3)
n (t) =

Zn1(t)Zn2(t)

Zn(t)
, W (4)

n (t) = 1− Zn(t),

where Znk(t) is defined as Zn(t) with the summation being only over subjects in group k. All

the results reported here are based on 50000 Monte Carlo replications. Tables 1 and 2 present

the estimated sizes and powers of the proposed test statistics Tn and the weighted Kaplan-Meier

(WKM) statistics TH (Shen 2007) at significance level α = 0.05 for different cases and the four

weight processes. As expected, the powers of all test statistics increase with the sample size.

Under H0, when the proportion of truncated observations is serve (40%), the proposed test Tn

performs better than TH . For Case 1, Table 1 shows good power properties of the proposed test

Tn for the four weight processes. The proposed test with weight W
(1)
n (t) has the best power

performance. On the other hand, the powers heavily rely on the choices of the weight processes

in Case 2, as can be seen from Table 2. The simulation results suggest that the proposed test

Tn with W
(4)
n (t) has the best power performance. The different performance of the four test

statistics is due to the intersection between the two failure rate functions. The difference of the

failure rate functions changes sign at the intersection point. If the weight Wn is approximately

the same at the two sides of the intersection point, the value of Un will be small, leading to

poor powers of the test. The weight W
(4)
n (t) puts unequal weight on the two sides, and thus it

has the best performance. From the simulation, we would suggest using W
(4)
n (t) for the test.

14

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Table 2: Estimated sizes and powers of Tn = Un/σ̂w and TH with Weibull Distribution
(α, β), where the scale parameters α1 = α2 = 30, and the shape parameters β1 = 1.5, β2 =

1.5, 1.2, 0.8, 0.5. Here, W
(k)
n are the weight processes, k = 1, 2, 3, 4.

Tn TH

β1/β2 W
(1)
n W

(2)
n W

(3)
n W

(4)
n β1/β2 W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = n2 = 100
1.5/1.5 0.058 0.052 0.052 0.056 1.5/1.5 0.065 0.062 0.062 0.064
1.5/1.2 0.264 0.073 0.078 0.401 1.5/1.2 0.093 0.082 0.085 0.191
1.5/0.8 0.643 0.189 0.192 0.981 1.5/0.8 0.202 0.119 0.122 0.411
1.5/0.5 0.499 0.325 0.377 0.998 1.5/0.5 0.407 0.421 0.473 0.813

n1 = n2 = 200
1.5/1.5 0.052 0.049 0.049 0.053 1.5/1.5 0.060 0.058 0.058 0.061
1.5/1.2 0.399 0.080 0.085 0.627 1.5/1.2 0.265 0.111 0.092 0.380
1.5/0.8 0.870 0.201 0.214 0.999 1.5/0.8 0.394 0.157 0.168 0.553
1.5/0.5 0.668 0.477 0.565 1.000 1.5/0.5 0.637 0.558 0.563 0.895

6 A Real Example: Power Transformer Failure Data

The power transformer is one of the most important components in a power grid. Unexpected

failures of transformers cause power shortage and lead to large economic losses. Therefore,

it is important to know the failure behaviors of a transformer in the field. Such information

can be extracted from field failure data of the transformers. Due to the long lifetime of a

transformer and the late development of data recording systems, transformer lifetime data are

left truncated and right censored. Figure 6 displays the data set “MC Old65”, which is recorded

in operating time (Hong et al. 2009). The data set “MC Old65” consists of 80 transformers

and the installation dates of these transformers are recorded. The starting year of observation

Ts is 1980 and the end of data collection date Te is 2008. The earliest installation date T I is

1950 and 69 transformers are installed before 1980. As a result, their lifetime observations are

left-truncation observed. The proportion of truncated observations of tranformers is 86%. In

the data set, 65 transformers continue to function after 2008 and the proportion of censored

observed transformers is 81%.

We use the proposed spline method with mn = 5 equally spaced inner knots, Turnbull’s

NPMLE and the Weibull distribution (Hong et al. 2009; Balakrishnan and Mitra 2012) to fit

the data. Figure 7 presents the estimated reliability functions based on the three methods. We

also tried mn = 4 and 6 (no shown), and the estimated reliability function is almost the same

as that with mn = 5 here. Generally, the spline estimate and the empirical estimate agree quite

well. The empirical estimate becomes constant when t is greater than the largest failure time,

which is 42.1 in this example. By contrast, the spline method estimates the reliability function

up to the largest observation time, which corresponds to a censoring time of 58. The wider

range shows a greater flexibility of the spline method. Moreover, it is clear that spline-based

estimator is more smooth. The comparisons of spline-based estimator and the Weibull estimator

show that spline-based method can be used to assess the goodness-of-fit of a parametric model.

To quality the uncertainty in the spline estimates, the random weighted bootstrap procedure

(Hong et al. 2009) with 50,000 resamples is used to construct pointwise 95% confidence band
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Figure 6: Service-time event plot of a subset of the transformer lifetime data: “o” represents
the install time, “×” represents the failure time, “.” represents the censored time.

of the reliability function, as shown in Figure 8.

Hong et al. (2009) also collected failure times of transformers which are from the same

manufacturer as “MC Old65” but different generations. We choose the dataset “MC Old55” as

the second group. The difference between the two groups is the type of insulation. The problem

of interest here is to compare the two groups and check whether data from the two groups can be

merged. The test statistics (3) developed in Section 4 are used for the comparison. We obtain

Tn = 7.643, 10.392, 6.028 and 4.653 with Wn(t) = W
(k)
n (t), k = 1, 2, 3, 4, defined in Section 5.

All the values correspond to p-values� 0.0001. The proposed tests suggest that the two groups

are significantly different. Therefore, the effect of insulation type can not be ignored, and the

two data sets “MC Old65” and “MC Old55” can not be combined.
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Appendix

Proof of Theorem 1 (Consistency)

The log-likelihood function for λ is

L(λ|D) =

n∑
i=1

{δi lnλ(Yi)− [Λ(Yi)− Λ(Li)]} .

With the knot sequence T = {tj}mn+2l
1 specified in Section 2, there exists a spline λn(t) ∈ ψl,T

with order l ≥ r+2 such that ‖λn(t)−λ0‖∞ = supt∈[a,b] |λn(t)−λ0(t)| = O(n−νr), according to

Corollary 6.21 of Schumaker (2007, page 227). Choose a positive function hn ∈ ψl,T such that

‖hn‖22 = O(n−2νr+n−(1−ν)/2). Therefore, for any α > 0, ‖λn−λ0+αhn‖22 = O(n−2νr+n−(1−ν)/2)

for sufficiently large n.

Denote nMn(λ) = L(λ|D) and Hn(α) = Mn(λn +αhn). The first and second derivatives of

Hn are

H ′n(α) = n−1
n∑
i=1

{
δihn(Yi)

λn(Yi) + αhn(Yi)
−
∫ Yi

Li

hn(x)dx

}
,

H ′′n(α) = −n−1
n∑
i=1

δih
2
n(Yi)

[λn(Yi) + αhn(Yi)]2
< 0.

Thus H ′n(α) is a non-increasing function. Therefore, to prove Theorem 1, it is sufficient to

show that, for any α0 > 0, H ′n(α0) < 0 and H ′n(−α0) > 0 except on an event with probability

converging to zero. Then λ̂n must be between λn − α0hn and λn + α0hn with probability

converging to one, so that P (‖λ̂n−λn‖2 ≤ α0‖hn‖2)→ 1 as n→∞. We first show H ′n(α0) < 0.

Express H ′n(α0) as

H ′n(α0) = (Pn − P )

{
δhn(Y )

λn(Y ) + α0hn(Y )
−
∫ Y

L
hn(x)dx

}
︸ ︷︷ ︸

In1

+P

{
δhn(Y )

λn(Y ) + α0hn(Y )
−
∫ Y

L
hn(x)dx

}
︸ ︷︷ ︸

In2

Given η > 0, define the class Fη,n = {λ : λ ∈ ψl,T , d(λ, λn) ≤ η}. According to Condition 1,

there exists a positive integer N such that when n > N ,

d(λ, λ0) ≤ d(λ, λn) + d(λn, λ0) ≤ η +O(N−µr) < 2η,

where λ ∈ Fη,n, n > N . Let Fη = ∪n≥NFη,n. Corollary 6.21 of Schumaker (2007, page

227) shows that for any function λ ∈ Fη, λ has uniformly bounded derivatives up to order

l − 1. Then according to Corollary 2.7.4 of van der Vaart and Wellner (1996, page 158),

we can find that given ε such that 0 < ε ≤ η, Fη can be covered by a set of ε-brackets

{[λk, λ̄k] : k = 1, 2, · · · , (1/ε)
c0
l }, where c0 is a constant depending on l. For any λ ∈ Fη, there

exists a bracket [λk, λ̄k], such that λk(t) ≤ λ(t) ≤ λ̄k(t) for all t ∈ [a, b], where d2(λk, λ̄k) =∫
|λk − λ̄k|2dF ∗(t) ≤ ε2, k = 1, 2, · · · , (1/ε)

c0
l . Then we have

d(λk, λ0) ≤ d(λk, λ) + d(λ, λn) + d(λn, λ0) < ε+ 2η,
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where λ ∈ Fη, n > N . Then by the converse of Lemma 7.1 from Wellner and Zhang (2007,

Page 2140), we get supt∈[a,b] |λk − λ0| ≤ c1(ε + 2η)2/3, c1 is constant. Since λ0 is positive and

bounded on [a, b], there exists c2 > 0 such that λk > c2 > 0. Similarly , there exists a positive

c3 such that λ̄k > c3 > 0. That means λk and λ̄k have the positive lower bounds.

Define the class sequence

Fη,n =

{
δ

λ
(λ− λn)−

∫ Y

L
(λ− λn)dx : λ ∈ Fη,n

}
,

and let

Fη = ∪n>NFη,n =

{
δ

λ
(λ− λn)−

∫ Y

L
(λ− λn)dx : λ ∈ Fη

}
.

Then let

mk(X) = δ − δ

λk
λn −

∫ Y

L
(λ̄k − λn)dx

and

m̄k(X) = δ − δ

λ̄k
λn −

∫ Y

L
(λk − λn)dx.

Clearly, the class Fη is covered by the set [mk, m̄k], k = 1, 2, · · · , (1/ε)
c0
l . Therefore, to prove

that the uniformly bounded class Fη is a Donsker class, we need to show P (m̄k −mk)
2 . ε2.

Let

f = m̄k −mk =
δλn
λkλ̄k

(λ̄k − λk) +

∫ Y

L
(λ̄k − λk)dx.

By the Cauchy-Schawartz inequality,

Pf2 . P (λ̄k − λk)2 . d2(λ̄k, λk) ≤ ε2.

It is followed that

sup
f∈Fη

ρP (f) = sup
f∈Fη
{P (f − Pf)2}1/2 ≤ sup

f∈Fη
{Pf2}1/2 . ε→ 0,

as ε→ 0. Due to the relationship between P -Donsker and asymptotic equicontinuity (Corollary

2.3.12 van der Vaart and Wellner 1996, page 115), we can show that Fη is a Donsker class. And

this is equal to the following fact : (Fη, ρP ) is totally bounded and E
√
n‖Pn − P‖Fη → 0 for

ε→ 0. Hence, In1 = Op(n
−1/2).

For the second term, since

P

{
δhn(Y )

λ0(Y )
−
∫ Y

L
hn(x)dx

}
= 0,

we have, by adding and subtracting terms,

In2 = P

{
δhn(Y )

λn(Y ) + α0hn(Y )
− δhn(Y )

λ0(Y )

}
.

Define m(s) = 1
λ0+s∆ , where ∆ = λn − λ0 + α0hn, 0 ≤ s ≤ 1. By the Taylor expansion, there
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exists θ ∈ (0, 1) such that

m(s) = m(0) +m′(θ)s =
1

λ0
+

(
− ∆

(λ0 + θ∆)2

)
s.

Therefore,

In2 ≤ E
{
− ∆

(λ0 + θ∆)2

}
hn . −Eh2

n = O(n−2νr + n−(1−ν)/2).

Since n−2vr + n−(1−v)/2 > n−1/2, we have

H ′n(α0) ≤ Op(n−1/2)−O(n−2νr + n−(1−ν)/2) < 0,

except on an event with probability converging to zero. The same arguments show that

H ′n(−α0) > 0 with probability converging to 1.

Proof of Theorem 2 (Rate of Convergence)

Denote mλ(X) = δ lnλ(Y ) −
∫ Y
L λ(u)du and define M(λ) = Pmλ(X) and Mn(λ) = Pnmλ(X).

Then the log-likelihood function can be written as nPnmλ(X). Given η > 0, define the class

Fη = {λ|λ ∈ ψl,T , d(λ, λ0) ≤ η}.

By the result of Theorem 1, λ̂n ∈ Fη for sufficiently large n. For η > 0 and any ε < η,

logN[ ]{ε, ψl,T , L2(P )} ≤ cqn log(η/ε), J[ ]{η, ψl,T , L2(P )} ≤ c0q
1
2
n η,

where qn = mn + l is the number of spline base functions, c and c0 are constants (Shen and

Wong 1994, Page 597). Therefore for each λ ∈ Fη, there exists a bracket [λk, λ̄k], such that

λk(t) ≤ λ(t) ≤ λ̄k(t)

for all t ∈ [a, b], where d2(λk, λ̄k) =
∫
|λk − λ̄k|2dF ∗(t) ≤ ε2, k = 1, 2, · · · , (η/ε)cqn . Moreover,

λk and λ̄k are bounded on [a, b] and have positive lower bounds.

Since λ0 is the maximum of M(λ), the first derivative is zero at λ0 and the second derivative

is negative definite. According to the Taylor expansion,

M(λ) = M(λ0) + 0 +
M ′′(λ0)

2
(λ− λ0)2 + o(λ− λ0)2.

Thus, for λ ∈ Fη, M(λ0)−M(λ) & d2(λ, λ0). Next, define the class

Mη = {mλ(x)−mλ0(x) : λ ∈ Fη}.

Let

mk(X) = δ lnλk(Y )−
∫ Y

L
λ̄k(x)dx−mλ0(x)

20

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



and

m̄k(X) = δ ln λ̄k(Y )−
∫ Y

L
λk(x)dx−mλ0(x).

Clearly, the class Mη is covered by the set [mk, m̄k], k = 1, 2, · · · , (η/ε)cqn . To prove the

uniformly bounded classMη is a Donsker class, we need to show that (equicontinuity condition)

‖m̄k −mk‖22 . ε2.

Let

f = m̄k −mk = δ
(
log λ̄k − λk

)︸ ︷︷ ︸
I1

+

∫ Y

L

(
λ̄k − λk

)
dx︸ ︷︷ ︸

I2

.

Since supt∈[a,b] |λk−λ0| ≤ ε1 and supt∈[a,b] |λ̄k−λ0| ≤ ε2 by converse theorem of Lemma 7.1 from

Wellner and Zhang (2007, Page 2140), the boundedness of Y,L, δ and λ0 yields the boundedness

of I1 and I2 on [a, b]. Then according to Cauchy Schwartz inequality,

|f |2 ≤ 2

{
δ2

(
log

λ̄k
λk

)2

+

[∫ Y

L
(λ̄k − λk)dx

]2
}
.

By taylor expansion,

log
λ̄k
λk

=
1

θ

(
λ̄k − λk

)
,

where θ between λ̄k and λk. Since λ̄k and λk are bounded functions on [a, b], there exists a

constant c1 such that

log
λ̄k
λk

< c1

(
λ̄k − λk

)
.

Therefore

P (|f |2) . d2(λ̄k, λk) ≤ ε2.

Then according to the Lemma 3.4.2 of van der Vaart and Wellner (1996, Page 324), we obtain

EP ‖n1/2(P− P )‖Mη . J[ ](η,Mη, L2(P ))

{
1 +

J[ ](η,Mη, L2(P ))

η2n1/2

}
. (4)

The right-hand side of (4) yields φn(η) = c2(q
(1/2)
n η + qn/n

1/2). It is easy to see that φ(η)/η is

decreasing in η, and

r2
nφ(

1

rn
) = rnq

1/2
n + r2

nqn/n
1/2 ≤ n1/2

yields rn = n
1−ν
2 , where 0 < ν < 1/2. Hence, n

1−ν
2 d(λ̂n, λ0) = Op(1) by Theorem 3.4.1 of

van der Vaart and Wellner (1996, Page 322). If ν = r
2r+1 , the rate of convergence of λ̂n is r

2r+1 ,

which is the same as the optimal rate in nonparametric regression.

proof of Theorem 3 (Asymptotic normality)

According to Theorem 1 of Zhao and Zhang (2017, page 933), we need the following conditions

to establish the asymptotic normality.
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� A1.
√
n(Pn − P )(φ(λ̂n;X)[h]− φ(λ0;X)[h]) = op(1).

� A2.
√
n(Gn−G)(λ0)[h] convergences in distribution to a tight Gaussian process on l∞(Hr).

� A3. G(λ0)[h] = 0 and Gn(λ̂n)[h] = op(n
−1/2).

� A4. G(λ)[h] is the Fréchet-differentiable at λ0 with a continuous derivative, denoted by

Ġλ0 [h].

� A5. G(λ̂n)[h] − G(λ0)[h] − Ġλ0(λ̂n − λ0)[h] = op(n
−1/2), where Ġλ0(λ̂n − λ0)[h] is the

directional derivative at λ0 in the direction (λ− λ0).

Then we need to verify conditions A1-A5 above.

For A1, given ε > 0, define the class

Gn(ε)[h] = {φ(λ;X)[h]− φ(λ0;X)[h] : λ ∈ ψl,T such that d(λ, λ0) ≤ ε, h ∈ Hr} .

Let

g
k
(X) = P

[
δ

λ̄k
h− δ

λ0
h

]
and

ḡk(X) = P

[
δ

λk
h− δ

λ0
h

]
,

where λk and λ̄k are similar defined in the proof of Theorem 2. Clearly, the class Gn(ε)[h] is

covered by the set [g
k
, ḡk], k = 1, 2, · · · , (η/ε)cqn . Let

f = ḡk − gk = P

[
δ

λk
h− δ

λ̄k
h

]
= P

[
δh(Y )

λ̄k − λk
λ̄kλk

]
.

By the Cauchy-Schawartz inequality,

Pf2 = P

[
δh(Y )

λ̄k − λk
λ̄kλk

]2

. P

[
1

λ̄kλk

]2 (
λ̄k − λk

)2
,

where the last inequality bolds due to h ∈ Hr. Due to the result of Theorem 1, we can

find λ ∈ ψl,T such that d(λ, λ0) ≤ ε. Therefore, d(λk, λ0) ≤ d(λk, λ) + d(λ, λ0) < 2ε. Then by

converse theorem of Lemma 7.1 from Wellner and Zhang (2007, Page 2140), we get supt∈[a,b] |λk−
λ0| ≤ c1ε

2/3, c1 is constant. Since λ0 is positive and bounded on [a, b], there exists a constant

c2 > 0 such that λk > c2 > 0. Similarly as λ̄k. So λ̄k and λk have the positive lower bounds.

Furthermore, using the fact that λ̄kand λk have the positive lower bounds, we have

Pf2 . P
(
λ̄k − λk

)2
. d2

(
λ̄k − λk

)
≤ ε2.

Then according to the Lemma 3.4.2 of van der Vaart and Wellner (1996, Page 324), we obtain

EP ‖n1/2(P− P )‖Gn(ε)[h] . J[ ](ε,Gn(ε)[h], L2(P ))

{
1 +

J[ ](ε,Gn(ε)[h], L2(P ))

ε2n1/2

}
. (5)

Theorem 1 shows that d(λ̂n, λ0)→ 0 almost surely. Hence that by converse theorem of Lemma
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7.1 from Wellner and Zhang (2007, Page 2140), we have

sup
t∈[a,b]

|λ̂n(t)− λ0(t)| → 0 almost surely.

Moreover, Theorem 2 shows that n
r

2r+1 ‖λ̂n − λ0‖2 = Op(1) with r > 1. Therefore we have

φ(λ̂n;X)[h]− φ(λ0;X)[h] ∈ Gn(εn)[h] with εn = O(n−r/(1+2r)). Moreover, for any φ(λ;X)[h]−
φ(λ0;X)[h] ∈ Gn(εn)[h], exists M > 0, such that

P (φ(λ;X)[h]− φ(λ0;X)[h])2 . ε2
n and sup

h∈Hr
|φ(λ;X)[h]− φ(λ0;X)[h]| < M.

Hence, we have

EP ‖n1/2(P− P )‖Gn(εn)[h] . J[ ](εn,Gn(εn)[h], L2(P ))

{
1 +

J[ ](εn,Gn(εn)[h], L2(P ))

εn2n1/2

}
. q1/2

n εn + qnn
−1/2

= O(n1/2(1+2r)−r/(1+2r)) +O(n1/(1+2r)−1/2)

= o(1).

Therefore, we have
√
n(Pn − P )(φ(λ̂n;X)[h]− φ(λ0;X)[h]) = op(1)

uniformly in h.

For A2, since Hr is a Donsker class and the function φ(λ0;X)[h] is a bounded Lipschitz

function with respect to Hr, we have the class {φ(λ0;X)[h] : h ∈ Hr} is Donsker (Theorem

2.10.6 van der Vaart and Wellner 1996, Page 192). Then based on Theorem 3.10.12 (van der

Vaart and Wellner 1996, Page 407),
√
n(Gn −G)(λ0)[h] convergences in distribution to a tight

Gaussian process on l∞(Hr).
To prove the third part A3, clearly G(λ0)[h] = 0. Note that λ̂n =

∑qn
j=1 α̂jBj(t) satisfies

the following score function

n−1
n∑
i=1

{
δiBj(Yi)

λ̂n(Yi)
−
∫ Yi

Li

Bj(x)dx

}
= 0, j = 1, · · · , qn.

Thus, for any hn =
∑qn

j=1 αjBj ∈ ϕl,T , we have

n−1
n∑
i=1

{
δihn(Yi)

λ̂n(Yi)
−
∫ Yi

Li

hn(x)dx

}
= 0,

that is, Gn(λ̂n)[hn] = 0 for any hn ∈ ϕl,T . Moreover, for any h ∈ Hr, there exists hn ∈ ϕl,T
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such that ‖h− hn‖∞ = O(n−rν). Therefore, we have

Gn(λ̂n)[h] = Gn(λ̂n)[h− hn] =
{
Gn(λ̂n)[h− hn]−Gn(λ0)[h− hn]

}
+Gn(λ0)[h− hn]−G0(λ0)[h− hn]

= n−1
n∑
i=1

δi

{
1

λ̂n(Yi)
− 1

λ0(Yi)

}
[h(Yi)− hn(Yi)] + (Gn −G) (λ0)[h− hn]

. d(λ̂n, λ0)‖h− hn‖∞ + op(n
−1/2)

= op(n
−1/2),

where the proof of A2 leads to that (Gn −G) (λ0)[h−hn] convergences in distribution to a tight

Gaussian process.

For A4, by the assumption of smoothness, G(λ)[h] is the Fréchet-differentiable at λ0 with a

continuous derivative, denoted by Ġλ0 [h]. Moreover, the directional derivative Ġλ0(λ̂n − λ0)[h]

at λ0 in the direction (λ− λ0) can be defined as

Ġλ0(λ̂n − λ0)[h] = 5(λ−λ0)G(λ0)[h] = lim
ε→0

G(λ0 + ε(λ− λ0))[h]−G(λ0)[h]

ε

= −P
[
δh(Y )

λ(Y )− λ0(Y )

λ2
0(Y )

]
= −

∫
h(t)

λ2
0(t)

(λ(t)− λ0(t))dF ∗(t),

where F ∗(t) = P (L ≤ T ≤ C, T ≤ t).
Then for A5, we can prove

G(λ̂n)[h]−G(λ0)[h]− Ġλ0(λ̂n − λ0)[h] = P

[
δh(Y )

(
1

λ̂n(Y )
− 1

λ0(Y )

)]
+ P

[
δh(Y )

λ̂n(Y )− λ0(Y )

λ2
0(Y )

]

= P

[
δh(Y )

λ̂n(Y )λ2
0(Y )

{
λ̂n(Y )− λ0(Y )

}2
]

= Op(d
2(λ̂n, λ0)) = Op(n

−2r/(1+2r)) = op(n
−1/2).

Thus it follows from Theorem 1(Zhao and Zhang 2017, Page 934) that

√
n

∫
h(t)

λ2
0(t)

(λ(t)− λ0(t))dF ∗(t) = −
√
nĠλ0(λ̂n − λ0)[h] =

√
n(Gn −G)(λ0)[h] + op(1).

Proof of Theorem 4

We first note that Un can be rewritten as

Un =

√
n∑n

i=1 δi

n∑
i=1

δiWn(Yi)
{
λ̂(1)
n (Yi)− λ̂(2)

n (Yi)
}

=
√
nPn

[
W (k)
n (Y )

{
λ̂(1)
n (Y )− λ̂(2)

n (Y )
}]

=
√
nPn

[
W (k)
n (Y )

{
λ̂(1)
n (Y )− λ0(Y )

}]
−
√
nPn

[
W (k)
n (Y )

{
λ̂(2)
n (Y )− λ0(Y )

}]
= U (1)

n − U (2)
n .
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Then we define U =
[
U

(1)
n , U

(2)
n

]
and note that U

(l)
n can be written as

U (l)
n = U

(l)
1n + U

(l)
2n +

√
n

nl
U

(l)
3n ,

where, for l = 1, 2,

U
(l)
1n =

√
n(Pn − P )

[
W (k)
n (Y )

{
λ̂(l)
n (Y )− λ0(Y )

}]
,

U
(l)
2n =

√
nP
[(
W (k)
n (Y )−W (Y )

){
λ̂(l)
n (Y )− λ0(Y )

}]
,

U
(l)
3n =

√
nlP

[
W (Y )

{
λ̂(l)
n (Y )− λ0(Y )

}]
.

Firstly consider U
(l)
1n =

√
n(Pn − P )

[
W

(k)
n (Y ){λ̂(l)

n (Y )− λ0(Y )}
]
. Set

G = {ξ : [0, b]→ [0, τ ]} ,

where τ is the uniform upper bound of weight process W
(k)
n , k = 1, 2, 3, 4. Let

ψλ(ξ,D) = ξ(Y ){λ(Y )− λ0(Y )},

where ξ ∈ G, λ ∈ Fη and Fη = {λ|λ ∈ ψl,T , d(λ, λ0) ≤ η}. For a fixed ξ ∈ G, let

Ψη(ξ) = {ψλ(ξ,D) : λ ∈ Fη} ,

where η > 0. By the conclusion of Theorem 1, λ̂
(l)
n ∈ Fη for any η > 0 and sufficiently large n.

Note that it follows from Corollary 2.7.2 of van der Vaart and Wellner (1996, page 157) that

N[ ](ε,Fη, L2(P )) ≤ ec1/ε1/2 ,

for some constant c1. Then, we have

N[ ](ε,Ψη(ξ), L2(P )) ≤ ec1/ε1/2 .

It can be easily shown that |ψλ(ξ,D)| . η, and Pψ2
λ(ξ,D) . η2. Thus,

J[ ](η,Ψη(ξ), L2(P )) =

∫ η

0

√
logN[ ](ε‖ψ‖P,2,Ψη(ξ), L2(P )) + 1dε . η.

Hence, from Theorem 2.14.2 of van der Vaart and Wellner (1996), we have

E∗

{
sup

ψλ(ξ,X)∈Ψη(ξ)

∣∣√n(Pn − P )ψλ(ξ,X)
∣∣} .

[
J[ ](η,Ψη(ξ), L2(P ))‖ψ‖P,2 +

√
nPψ{ψ >

√
na(η)}

+ ‖ψ‖P,2
√

logN[ ](η‖ψ‖P,2,Ψη(ξ), L2(P )) + 1
]
,

where

a(η) = η‖ψ‖P,2/
√

logN[ ](η‖ψ‖P,2,Ψη(ξ), L2(P )) + 1.
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Then, it is easily shown that

lim sup
n→∞

E∗

{
sup

ψλ(ξ,X)∈Ψη(ξ)

∣∣√n(Pn − P )ψλ(ξ,X)
∣∣} . η1/2.

It follows from d(λ̂
(l)
n , λ0)

a.s.→ 0 that

lim sup
n→∞

E
{
|
√
n(Pn − P )ψ

λ̂
(l)
n

(W (k)
n , X)|

}
. η1/2.

Let η → 0 to see

lim
n→∞

E
{
|
√
n(Pn − P )ψ

λ̂
(l)
n

(W (k)
n , X)|

}
= 0,

which yields U
(l)
1n = op(1).

Next consider U
(l)
2n =

√
nP
[
(W

(k)
n (Y )−W (Y ))

{
λ̂

(l)
n (Y )− λ0(Y )

}]
.

U
(l)
2n =

√
nP
{(
W (k)
n (Y )−W (Y )

) [
λ̂(l)
n (Y )− λ0(Y )

]}
≤
√
n

∫ ∣∣∣W (k)
n (t)−W (t)

∣∣∣ ∣∣∣λ̂(l)
n (Y )− λ0(Y )

∣∣∣ dF ∗(t)
.
√
n

{∫ b

0

(
W (k)
n (t)−W (t)

)2
dF ∗(t)

}1/2{∫ b

0

(
λ̂(l)
n (Y )− λ0(Y )

)2
dF ∗(t)

}1/2

.

Since [∫ b

a

{
W (k)
n (t)−W (t)

}2
dt

]1/2

= op

(
n
− 1

2(1+2r)

)
and {∫ b

0

(
λ̂(l)
n (Y )− λ0(Y )

)2
dF ∗(t)

}1/2

= Op(n
− r

1+2r ),

we have U
(l)
2n = op(1).

From the result of Theorem 3, we have , for l = 1, 2,

U
(l)
3n =

√
nl(Pnl − P ) [φ(λ0;X)[h]] + op(1) = Z(l)

n + op(1),

where Pnlf = 1
nl

∑
i∈Sl f(Zi) and Sl denotes the set of indices for subjects in group l, l = 1, 2.

Moreover, Z
(l)
n ’s converge to Uw in distribution as n→∞, where Uw has a normal distribution

with mean zero and variance σ2 = E
[
φ2(λ0;X)[h]

]
. Evidently, Z

(l)
n ’s are independent and

identically distributed, because Pnl is the empirical measure based on group l respectively.

Hence, we have

Un =

√
n

n1
Z(1)
n −

√
n

n2
Z(2)
n + op(1),

where Un convergences in distribution to N(0, 1
p(1−p)σ

2). Thus it follows that Un has an asymp-

totic normal distribution N(0, σ2
w), where

σ2
w =

1

p(1− p)
E{φ2(λ0;X)[hw]}.
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To show that σ̂2
w − σ2

w = op(1). We set σw
2 = Pφ2(λ0;X)[hw] and σ̂2

w = Pnφ2(λ̂n;X)[ĥw].

Note that

σ̂2
w − σ2

w =Pnφ2(λ̂n;X)[W (k)
n λ̂2

n]− Pφ2(λ0;X)[Wλ2
0]

=Pn
{
φ2(λ̂n;X)[W (k)

n λ̂2
n]− φ2(λ0;X)[W (k)

n λ2
0]
}

+ (Pn − P )φ2(λ0;X)[Wλ2
0]

+ Pn
{
φ2(λ0;X)[W (k)

n λ2
0]− φ2(λ0;X)[Wλ2

0]
}
.

It can be easily shown that

Pn
{
φ2(λ̂n;X)[W (k)

n λ̂2
n]− φ2(λ0;X)[W (k)

n λ2
0]
}

= op(1)

and

(Pn − P )φ2(λ0;X)[Wλ2
0] = op(1).

On the other hand, based on the conditions imposed on Wn and W , we have∣∣∣φ(λ0;X)[W (k)
n λ2

0]− φ(λ0;X)[Wλ2
0]
∣∣∣ =

∣∣∣φ(λ0;X)[(W (k)
n −W )λ2

0]
∣∣∣ = op(1),

and ∣∣∣φ(λ0;X)[W (k)
n λ2

0] + φ(λ0;X)[Wλ2
0]
∣∣∣ =

∣∣∣φ(λ0;X)[(W (k)
n +W )λ2

0]
∣∣∣ = O(1).

The above two displays imply that∣∣∣φ2(λ0;X)[W (k)
n λ2

0]− φ2(λ0;X)[Wλ2
0]
∣∣∣ . ∣∣∣φ(λ0;X)[W (k)

n λ2
0]− φ(λ0;X)[Wλ2

0]
∣∣∣ = op(1).

Therefore,

Pn
{∣∣∣φ2(λ0;X)[W (k)

n λ2
0]− φ2(λ0;X)[Wλ2

0]
∣∣∣} = op(1).
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