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Abstract: In this article, we propose a variable selection approach in the Cox model

when there is a group structure in a diverging number of covariates. Most of the

existing variable selection methods are designed for either individual variable se-

lection or group selection, but not for both. The proposed methods are capable

of simultaneous group selection and individual variable selection within selected

groups. Computational algorithms are developed for the proposed bi-level selec-

tion methods, and the properties of the proposed selection methods are established.

The proposed group bridge penalized methods are able to correctly select the im-

portant groups and variables simultaneously with high probability in sparse models.

Simulation studies indicate that the proposed methods work well and two exam-

ples are provided to illustrate the applications of the proposed methods to scientific

problems.
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gression, group bridge penalty, survival data, variable selection consistency.

1. Introduction

Many survival analysis problems focus on estimating the covariate effects on

the censored survival outcome. It is increasingly frequent that the number of

covariates is large and that it grows as the sample size increases. In these situ-

ations, it is desirable to build a valid model selection criteria to identify the im-

portant variables and estimate their effects simultaneously. For uncensored data,

many variable selection procedures have been proposed, see e.g., the least abso-

lute shrinkage and selection operator (LASSO) (Tibshirani (1996)), the smoothly

clipped absolute deviation (SCAD) penalty (Fan and Li (2001)), adaptive LASSO

(Zou (2006)), the minimum concave penalty (Zhang (2010)), and the seamless-L0

(SELO) penalty (Dicker, Huang, and Lin (2011)), among others. Some of the

variable selection techniques have been extended to censored survival data. For

example, Tibshirani (1997) and Zhang and Lu (2007) extended, respectively, the

LASSO and the adaptive LASSO variable selection procedures to the Cox model.

Fan and Li (2002) extended their nonconcave penalized likelihood approach to
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the Cox model. Gui and Li (2005) developed a modified least angle regression

(LARS) procedure for the LASSO estimation of Cox model. Cai et al. (2005)

studied variable selection for multivariate survival data with a diverging number

of covariates. Johnson (2009), Wang et al. (2009) and Du, Ma, and Liang (2010)

addressed the problem by combining the LASSO, group LASSO and adaptive

LASSO penalties under different models for right-censored survival data.

The aforementioned methods are designed for selecting individual variables.

However, grouping structures arise naturally in many statistical modeling prob-

lems. For example, as pointed by Ma and Huang (2007), complex diseases such

as cancer are often caused by mutations in gene pathways, and it is reasonable

to select groups of related genes rather than individual genes. Another example

is the additive model with polynomial or nonparametric components, where each

component in the additive model may be expressed as a linear combination of

a number of basis functions of the original measured variable. In a multi-factor

analysis-of-variance (ANOVA) problem, each factor may have several levels that

can be expressed through a group of dummy variables. In all these cases, the se-

lection of important measured variables corresponds to the selection of groups of

basis functions. Many authors have considered the problem of group selection un-

der various statistical models, see e.g., Yuan and Lin (2007), Antoniadis and Fan

(2001), Kim, Kim, and Kim (2006), Meier, van de Geer, and Bühlmann (2008),

Zhao, Rocha, and Yu (2009) and references therein. Among others, Huang et

al. (2009) considered the problem of simultaneous group and individual variable

selection and proposed a group bridge method. To the best of our knowledge,

only a few studies have considered group selection methods for survival data.

Ma, Song, and Huang (2007) proposed the supervised group lasso for survival

data. Most recently, Kim et al. (2012) extended the group LASSO approach

of Yuan and Lin (2007) to the Cox model, but did not consider its theoretical

properties.

Motivated by the group bridge approach of Huang et al. (2009), we consider

Cox regression with a group bridge penalty. The asymptotic properties include

the group oracle property, meaning that the proposed estimator consistently

identifies the correct group and correct model simultaneously, and is asymptoti-

cally normal under some regularity conditions. Furthermore, our oracle selection

property allows that the number of regression coefficients d = dn grows with the

number of observations n, provided d4n/n → 0.

Tuning parameter selection is an important issue in practice and we compare

three selectors: AIC (Akaike (1973)), BIC (Schwarz (1978)), and GCV (Wahba

(1990)) through simulation studies. All three can consistently identify the correct

group. For variable selection, AIC and GCV selectors perform better than BIC;

the classical BIC selector tends to underfit the model. We propose an adjusted
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BIC selector by using the idea of Wang et al. (2009) for diverging parameters.

Simulation studies show that the adjusted BIC selector performs as well as AIC

and GCV selectors in model selection.

The remainder of the paper is organized as follows. In Section 2 we describe

the group bridge method for Cox regression and present a coordinate descent

algorithm for computation. Asymptotic properties are stated in Section 2, while

proofs are given in the Appendix. In Section 3 the proposed selection procedures

are evaluated via simulation studies, and in Section 4 we apply the proposed

methods to the primary biliary cirrhosis data and breast cancer data. Some

concluding remarks are made in Section 5.

2. Model Selection with Group Bridge Penalty

2.1. Cox regression with group bridge penalty

Suppose there are n independent subjects in a large study cohort. For sub-

ject i, let T̃i be the failure time and Ci be the potential censoring time, respec-

tively. With right-censoring, one observes the bivariate vector (Ti, δi), where

Ti = min(T̃i, Ci) and δi = I(T̃i ≤ Ci), where I(·) is the indicator function. Let

Zi(t) be a possibly time-dependent dn-vector of covariates. Assume T̃i and Ci

are conditionally independent given Zi(·), and that the censoring mechanism is

noninformative.

Suppose the conditional hazard function of T̃i follows the Cox proportional

model

h(t|Zi(s), s ≤ t) = h0(t) exp{β′Zi(t)}, (2.1)

where h0(t) is the unspecified baseline hazard function and β = (β1, . . . , βdn)
′ is

a vector of unknown regression parameters.

Let Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≥ t). Assume the process

Y(t) = (Y1(t), . . . , Yn(t))
′ is left continuous with right-hand limits and satisfies

P (Yi(t) = 1, 0 ≤ t ≤ τ) > 0. The negative log partial likelihood function for

(2.1) is

ln(β) = −
n∑

i=1

δi

[
β′Zi(Ti)− log

{ n∑
j=1

Yj(Ti)e
β′Zj(Ti)

}]
.

Using the counting process notation, we can rewrite ln(β) as

ln(β) = −
n∑

i=1

∫ T0

0

[
β′Zi(t)− log

(
S(0)(β, t)

)]
dNi(t),

where T0 is the end time of study and

S(k)(β, t) = n−1
n∑

i=1

Yi(t)Zi(t)
⊗k exp{Z ′

i(t)β}, for k = 0, 1, 2,
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with a⊗k = 1, a, and aa′ for k = 0, 1, 2.

We extend the group bridge approach in Huang et al. (2009) to the Cox

proportional hazards model. Suppose the vector of regression coefficients is par-

titioned into J groups. Let A1, . . . , AJ be subsets of {1, . . . , dn} representing

known groupings of the design vectors. For S ⊆ {1, . . . , dn}, let |S| be the car-

dinality of S and βS = (βj)j∈S the |S|-dimensional sub-vector of β containing

entries indexed by S. Denote the jth group by βAj = (βk, k ∈ Aj)
′. We consider

a group bridge penalized partial likelihood (GBPPL) function

Gn(β) = ln(β) + λn

J∑
j=1

cj∥βAj∥
γ
1 , (2.2)

where ∥a∥q is the Lq norm for a vector a, λn > 0 is the penalty level, and the cj ’s

are constants for the adjustment of the different dimensions of Aj . According

to Huang et al. (2009), a simple choice of cj is cj ∝ |Aj |1−γ , where |A| is the

cardinality of A.

We call the β̂ that minimizes (2.2) a group bridge estimator (GBE). Here

the groups Aj ’s are allowed to overlap and their union is allowed to be a proper

subset of the whole so that variables not in
∪J

j=1Aj are not penalized. When

|Aj | = 1, j = 1, . . . , J , (2.2) simplifies to the standard bridge criterion. As

explained below, when 0 < γ < 1, the group bridge criterion (2.2) can be used

for variable selection at the group and individual variable levels simultaneously.

2.2. Asymptotic properties

In this section, we present the asymptotic properties of the group bridge

estimator β̂. We show that, for 0 < γ < 1, the group bridge estimators correctly

select groups of nonzero coefficients with probability converging to one under

reasonable conditions. The asymptotic distributions of the estimators of the

coefficients in nonzero groups are derived. Proofs are in the Appendix.

Without loss of generality, suppose that

βAj ̸= 0, 1 ≤ j ≤ J1, βAj = 0, J1 + 1 ≤ j ≤ J.

Let B2 =
∪J

j=J1+1Aj be the union of the groups with zero coefficients and

B1 = Bc
2. Assume without loss of generality that the index is arranged so that

β = (β′
B1

, β′
B2

)′. Denote by β0 the true value of β, write β0B1 and β0B2 the true

values of β with index belonging to B1 and B2, respectively. The true model is

fully explained by the first J1 groups since β0B2 = 0.

LetMi(t) = Ni(t)−
∫ t
0 h0(s) exp{β

′
0Zi(s)}ds be the corresponding martingale

for Ni(t). The following conditions are needed:

(C1)
∫ τ
0 h0(t)dt < ∞;
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(C2) There exists a neighborhood B of the true value β0 that satisfies the follow-
ing.

(i) There exist a scalar, vector, and a matrix function s(l), l = 0, 1, 2, de-
fined on B × [0, τ ] such that sup

t∈[0,τ ],β∈B
∥S(l)(β; t) − s(l)(β; t)∥2 → 0 in

probability;

(ii) For l = 0, 1, 2, the functions s(l)(β, t) are bounded and s(0)(β, t) is
bounded away from zero on B × [0, τ ]; the family functions s(l)(·, t)
are absolutely continuous, for β ∈ B, uniformly in t ∈ [0, τ ].

(iii)For e(β, t) = s(1)(β, t)/s(0)(β, t), v(β, t) = s(2)(β, t)/s(0)(β, t)−(e(β, t))⊗2,
and I(β) =

∫ τ
0 v(β, t)s(0)(β0, t)h0(t)dt, the Fisher information matrix

I(β0) is positive definite.

(C3) There exists a matrix Γ = Γ(β0) such that ∥n−1
n∑

i=1
V ar(Di) − Γ∥ → 0,

where Di =
∫ τ
0 [Zi(t) − e(β0; t)]dMi(t). There exist constants C1 and C2

such that 0 < C1 < ρmin(Γ) ≤ ρmax(Γ) < C2 < ∞ for all n, where ρmin(Γ)
and ρmax(Γ) are the minimal and maximal eigenvalues of Γ, respectively.

(C4) WithDij the jth element ofDi, there exists a constant C such that sup1≤i≤n

E(D2
ijD

2
il) < C < ∞ for all 1 ≤ j, l ≤ dn.

(C5) d4n/n → 0.

(C6) If ρn and ρ∗n are the smallest and largest eigenvalues of I(β0). C∗
n =

maxk
∑J

j=1 I(k ∈ Aj) is bounded and

λn
2

n

J1∑
j=1

cj
2∥β0Aj∥

2γ−2
1 |Aj | ≤ dnMn, Mn = Op(1),

where the constants cj ’s satisfy min
1≤j≤J

cj ≥ 1 and λn/(n
γ/2ρ∗nd

1−γ/2
n ) → ∞.

(C7) There exists a constant r > 0 such that ρn > r. For fixed unknown
{B1, β0B1 , J1},

λnn
−1/2 → λ0,

1

ρn
+ ρ∗n +

J∑
j=1

cj
2 = O(1),

λn

nγ/2d
1−γ/2
n

→ ∞ as n → ∞.

Conditions (C1)−(C5) were required in Cai et al. (2005) for diverging dn, which
guaranteed the local asymptotic quadratic property for the partial likelihood
function and hence the asymptotic normality.

Theorem 1. Under (C1)−(C6), we have ∥β̂ − β0∥2 = Op(
√

dn/n).

Theorem 2. Suppose (C1)−(C7) hold. If {B1, β0B1 , J1} are fixed and unknown,
and β̂nB1 and β̂nB2 are the estimators of β0B1 and β0B2 from β̂ , respectively,
then the followings hold.
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(i) Pr(β̂nB2 = 0) → 1.

(ii)
√
n(β̂nB1 − β0B1) →d argmin{V1(a) : a ∈ R|B1|}, where

V1(a) = a′W +
1

2
a′I11(β0)a

+γλ0

J1∑
j=1

cj∥β0Aj∥γ−1
∑

k∈Aj∩B1

{aksgn(β0k)I(β0k ̸= 0) + |ak|I(β0k = 0)},

with W distributed as N(0, I11(β0)), and I11(β0) the leading |B1| × |B1| sub-
matrix of I(β0) with β0B2 = 0. In particular, when λ0 = 0,

√
n(β̂nB1 −

β0B1) →d I−1
11 (β0)W ∼ N(0, I−1

11 (β0)).

Theorem 2 establishes the asymptotic oracle property in group selection.
Further, the estimator of coefficients in non-zero groups is

√
n/dn-consistent

and, in general, converges to the argmin of the Gaussian process V1.

2.3. Computation

Direct minimization of Gn(β) is difficult, since the group bridge penalty is
not a convex function for 0 < γ < 1. Following Huang et al. (2009), we formulate
an equivalent minimization problem that is easier to solve computationally. For
0 < γ < 1, let

Qn(β, θ) = ln(β) +
J∑

j=1

θ
1−1/γ
j cj

1/γ ||βAj ||1 + τ
J∑

j=1

θj ,

where τ is a penalty parameter. The following is a direct extension of Proposition
1 in Huang et al. (2009), and the proof is omitted.

Proposition 1. Suppose 0 < γ < 1. If λn = τ1−γγ−γ(1 − γ)γ−1, then β̂ mini-
mizes Gn(β) if and only if (β̂, θ̂n) minimizes Qn(β, θ) subject to θ > 0 for some
θ̂n > 0.

Take ∇ln(β) = ∂ln(β)/∂β and ∇2ln(β) = ∂2ln(β)/∂β
2 as the gradient

vector and Hessian matrix, respectively. Consider the Cholesky decomposi-
tion of ∇2ln(β), ∇2ln(β) = X ′X, and set the pseudo response vector as Y =
(X ′)−1{∇2ln(β)β − ∇ln(β)}. Under the conditions in Section 2.2, we see that
the log partial likelihood function is smooth with respect to β so that its first
two partial derivatives are continuous. By the arguments in Hastie and Tib-
shirani (1990, pp. 213-214), ln(β) can be approximated by the quadratic form
(1/2)(Y −Xβ)′(Y −Xβ). Thus, at each step, we only need to minimize

Q̃n(β, θ) =
1

2
(Y −Xβ)′(Y −Xβ) +

J∑
j=1

θ
1−1/γ
j cj

1/γ ||βAj ||1 + τ

J∑
j=1

θj .

The algorithm proceeds as followings.
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Step 1. Obtain the initial value of β(0) by minimizing the negative log partial

likelihood ln(β).

Step 2. At the kth step, compute Y , X based on the current value of β(k).

Step 3. Compute

θ
(k)
j = cj

(
1− γ

τγ

)γ

∥βAj
(k)∥γ1 , j = 1, . . . , J. (2.3)

Step 4. Determine the new estimate by coordinate descent as

β(k+1) = argminβ

{1

2
∥Y −Xβ∥22 +

J∑
j=1

(θ
(k)
j )1−1/γcj

1/γ∥βAj∥1
}
. (2.4)

Step 5. Repeat Steps 2-4 until ∥β(k+1) − β(k)∥/∥β(k)∥ is small.

The algorithm always converges since at each step the non-negative objective

function Q̃n(β, θ) decreases. It returns a local minimizer of Q̃n(β, θ) depending

on the initial value β(0) for a fixed tuning parameter τ , since the group bridge

penalty is not convex. To speed up the implementation, we utilize warm starts.

We consider a grid of τ values, τmax = τ0 > · · · > τM = 0, for some large number

M . We start with a large value of τ = τ0 such that all the solutions are zero,

and run the procedure until convergence. Then we decrease τ using the previous

solution as a warm start.

The tuning parameter selection procedures is described in Section 2.5. In

order to implement it, one must find the penalized partial likelihood path. We

employ the efficient adaptive shrinkage method introduced by Zou (2008) to

obtain group bridge penalized partial likelihood solution paths.

2.4. Variance estimation

Let (β̂, θ̂) = (β̂(τ), θ̂(τ)) be the proposed estimator for a fixed tuning param-

eter τ . Following Tibshirani (1996) and Fan and Li (2002), the standard errors

of β̂ can be estimated by using a quadratic approximation. Let

Πn(β, θ) = diag
{ ∑

Aj∋k
θ
1−1/γ
0j cj

1/γ I(β0k ̸= 0)

β0k
, k = 1, . . . , d

}
,

Σn(β, θ) = Πn(β, θ)β,

where β0k is the kth element of β, and θ0j is the jth element of θ. It can be

shown that

Πn(β̂, θ̂) = diag
{
γλn

∑
Aj∋k

cj∥β̂nAj∥γ−1 I(β̂nk ̸= 0)

|β̂nk|
, k = 1, . . . , d

}
.
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Given the initial value of the parameter (β(0), θ(0)), the Newton-Ralphson

update is

β(1) = β(0) − [∇2ln(β
(0)) + Πn(β

(0), θ(0))]−1[∇2ln(β
(0)) + Σn(β

(0), θ(0))].

Using the method of Fan and Li (2002), we can approximate the covariance

matrix of the group bridge estimator β̂ by the sandwich formula

∇2ln(β̂) + Πn(β̂, θ̂)]
−1 ̂

Cov(∇ln(β̂))[∇2ln(β̂) + Πn(β̂, θ̂)]
−1,

where
̂

Cov(∇2ln(β̂)) = [∇2ln(β̂) + Πn(β̂, θ̂)](∇2ln(β̂))
−1[∇2ln(β̂) + Πn(β̂, θ̂)].

Write β̂ = (β̂′
C1
, β̂′

C2
)′, where β̂C1 corresponds to the d1 nonzero components.

Correspondingly, we decompose the Hessian matrix as

G = ∇2ln(β̂) =

(
G11 G12

G21 G22

)
,

where G11 denotes the first d1 × d1 submatrix. Take G22.1 = G22 −G21G
−1
11 G12.

Similarly, let Π11 be the first d1 × d1 submatrix of Π = Πn(β̂, θ̂), and let G̃11 =

G11 +Π11. It can be shown that the covariance matrix of β̂1 is estimated by

Ĉov(β̂1) = G−1
11 + (G−1

11 − G̃−1
11 )G12G

−1
22.1G21(G

−1
11 − G̃−1

11 ). (2.5)

2.5. Tuning parameter selection

The practical performance of penalized likelihood procedures depends heav-

ily on the choice of a tuning parameter. It is often processed by finding estimators

corresponding to a range of tuning parameter values. The preferred estimator is

the one corresponding to a tuning parameter value which optimizes some criteria,

such as AIC, BIC, or GCV. Let d̂(λn) be the set of nonzero coefficients for fixed

λn. An AIC-type criterion for choosing λn is

AIC(λn) = log
{ ln(β̂)

n

}
+

2d̂(λn)

n
,

while a BIC score is defined as

BIC(λn) = log
{ ln(β̂)

n

}
+

log(n)d̂(λn)

n
.

Since the number of parameters is diverging, we make an adjustment to the BIC

criterion by replacing log(n) in BIC with a positive number kn > log(n) to obtain

model selection consistency, as suggested by Wang et al. (2009). This adjusted
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BIC selector is refereed as BICa. We use kn = n1/(2+d̂(λn)) in our simulations
and demonstrate that this adjusted BIC selector performs well in a variety of
settings.

The generalized cross-validation (GCV) function is

GCV (λn) =
ln(β̂)

n(1− d̂(λn)/n)2
.

The tuning parameter is selected via minimization of AIC(λn), GCV(λn), or
BICa(λn).

3. Simulation Studies

We compared the proposed estimator with the ideal oracle estimator in terms
of the model error,

ME(β̂) = E
[
exp(−β̂′Z)− exp(−β′

0Z)
]2

.

The ideal oracle estimator was calculated assuming the true important covari-
ates are known to be the only covariates in the model and their coefficients are
estimated by standard partial likelihood method. All the estimating procedures
were carried out using tuning parameter selectors AIC, GCV, and BICa with
kn = n1/(2+d(λn)). The relative model error (RME) of the ideal oracle proce-
dure versus the proposed procedure is the ratio of ME(β̂c)/ME(β̂), where β̂c is
the ideal oracle estimator. For each estimate, we recorded the average number
of groups selected, the average number of variables selected, and an indicator
of whether or not the model produced contains exactly the same groups and
variables as the underlying model.

Failure times were generated from (2.1) with h0(t) = 1 in two scenarios. In
both, censoring times were Uniform(c/2, c), where c was chosen to obtain around
20% censoring rate. We fixed γ = 0.5 and considered n = 100, 150, or 200. The
covariates were as generated in Examples 1 and 2. Simulation results were based
on 400 replications.

Example 1. There were 5 groups and 3 covariates within each group. We gen-
erated the covariates (z1, . . . , z15) as follows. We first simulated R1, R2, . . . , R15

as independently standard normal variables, and Z1, Z2, . . . , Z5 from an AR(1)
structure model with the initial standard normal distribution and Cov(Zj1 , Zj2) =
0.4|j1−j2| for j1, j2 = 1, . . . , 5. Then the (z1, z2, . . . , z15) were obtained as zj =
(Zgj +Rj)/4 (j = 1, . . . , 15), where gj is the smallest integer greater than (j −
1)/3 and the zj ’s with the same value of gj belonging to the same group. The true
value of β was taken as (β1, β2, β3)

′ = (0.5, 1, 1.5), (β4, β5, β6)
′ = (1, 1, 1), (β7, . . .,

β15)
′ = (0, . . . , 0). Thus, the coefficients within each group are either all nonzero

or all zero.
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Example 2. We considered a polynomial effect model where the group sizes

varied and there were zero coefficients in a nonzero group. There were groups

(A1, . . . , A4), 14 covariates with two groups each of size 4 and another two groups

each of size 3. With Z ′ = (Z ′
1, Z

′
2, Z

′
3, Z

′
4) the group covariate vector, the sub-

vector within group j was Z ′
j = (z|A1|+···+|Aj−1|+1, . . . , z|A1|+···+|Aj |), |Aj | the

cardinality of jth group Aj . To generate the covariates Z ′ = (z1, . . . , z14), we

first generated the covariates (X1, X2, X3, X4) from an AR(1) structure with the

initial standard normal distribution and Cov(Xj1 , Xj2) = 0.4|j1−j2| for j1, j2 =

1, . . . , 4. Then the covariate Z was obtained as Z ′
j = (X1

j , . . . , X
|Aj |
j ), j =

1, . . . , 4. The true value of β was (β1, . . . , β4) = (0.5, 1, 0, 0), (β5, . . . , β8) =

(1, 0, 0, 0), (β9, β10, β11) = (0, 0, 0), (β12, β13, β14) = (0,−1, 0).

Tables 1 and 2 summarize the group and variable selection results for Exam-

ples 1 and 2 by using the group bridge, adaptive Lasso, and group Lasso penalties.

We also report the rates of correctly identifying the true group and variable in

Tables 1 and 2. The results indicate that the group bridge penalized partial

likelihood consistently reduces model complexity and selects the correct group

and variable frequently for all considered tuning parameter selection scores. The

three tuning selectors performed well in terms of the percentage of correct group

selected. For the number of variables selected, AIC and GCV always selected a

smaller set of variables more frequently than BICa. In terms of the model error,

it seems that BICa performed better than AIC and GCV. It can be seen from

the tables that the proposed method outperforms the adaptive Lasso method in

group selection and the group Lasso method in variable selection.

To test the accuracy of the proposed standard error (SE) formula, we also

estimated the standard deviation using (2.5) for each of the 400 simulated data

sets. Results based on the three tuning selectors were similar and we only report

those of AIC in Tables 3 and 4. It can be seen that the estimated standard

deviation corresponding to non-zero entries approximates the sample standard

deviation in a reasonable way. The accuracy of SE increases as the sample size

increases.

In the following, we consider examples with a large number of covariates.

Example 3. There were ten groups, each with 4 covariates. The covariates were

generated as in Example 1 with the true β taken as

(β1, . . . , β4)
′ = (1, 0.5, 1, 0.5), (β5, . . . , β8)

′ = (0, . . . , 0),

(β9, . . . , β12)
′ = (−1.5,−1.5,−1.5,−1.5),

(β13, . . . , β16)
′ = (1.5,−1,−1.5, 1), (β17, . . . , β40)

′ = (0, . . . , 0).
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Table 1. Simulation results for Example 1.

n Penalty Tuning Group size Model size % Corr. sel % Corr. mod MRME

100 GBridge AIC 2.03(0.412) 5.23(1.323) 0.935(0.148) 0.915(0.123) 0.928
BICa 2.19(0.633) 5.71(1.693) 0.926(0.160) 0.911(0.132) 0.917
GCV 2.02(0.415) 5.21(1.329) 0.935(0.147) 0.915(0.122) 0.928

ALasso AIC 2.57(0.685) 5.14(1.064) 0.886(0.137) 0.863(0.063) 0.823
BICa 2.87(0.960) 5.67(1.848) 0.806(0.172) 0.838(0.078) 0.812
GCV 2.55(0.672) 5.10(1.020) 0.890(0.134) 0.863(0.063) 0.823

GLasso AIC 1.66(0.755) 4.98(2.265) 0.752(0.233) 0.752(0.233) 0.390
BICa 2.60(1.128) 7.80(3.384) 0.748(0.204) 0.748(0.204) 0.801
GCV 1.63(0.720) 4.89(2.160) 0.754(0.236) 0.754(0.236) 0.374

150 GBridge AIC 2.00(0.296) 5.57(0.981) 0.972(0.111) 0.955(0.098) 0.979
BICa 2.10(0.442) 5.82(1.155) 0.953(0.122) 0.954(0.101) 0.979
GCV 2.00(0.296) 5.56(0.982) 0.972(0.111) 0.954(0.098) 0.979

ALasso AIC 2.28(0.586) 5.17(1.042) 0.944(0.117) 0.902(0.062) 0.884
BICa 2.67(0.863) 5.97(1.470) 0.866(0.173) 0.889(0.081) 0.884
GCV 2.27(0.582) 5.14(1.032) 0.946(0.116) 0.901(0.062) 0.883

GLasso AIC 2.09(0.877) 6.27(2.632) 0.782(0.222) 0.782(0.222) 0.872
BICa 2.97(1.020) 8.91(3.059) 0.754(0.195) 0.754(0.195) 0.907
GCV 2.00(0.853) 6.00(2.558) 0.784(0.223) 0.784(0.223) 0.865

200 GBridge AIC 2.02(0.200) 5.83(0.583) 0.989(0.062) 0.981(0.058) 0.998
BICa 2.10(0.351) 6.03(0.680) 0.975(0.079) 0.980(0.057) 0.993
GCV 2.02(0.200) 5.82(0.585) 0.989(0.062) 0.980(0.058) 0.998

ALasso AIC 2.23(0.445) 5.32(0.923) 0.954(0.089) 0.923(0.054) 0.933
BICa 2.72(0.828) 6.23(0.903) 0.856(0.166) 0.903(0.074) 0.923
GCV 2.23(0.445) 5.32(0.923) 0.954(0.089) 0.923(0.054) 0.933

GLasso AIC 2.63(0.939) 7.89(2.817) 0.790(0.185) 0.790(0.185) 0.945
BICa 3.19(0.982) 9.57(2.944) 0.734(0.189) 0.734(0.189) 0.938
GCV 2.60(0.943) 7.80(2.828) 0.792(0.184) 0.792(0.184) 0.945

True
2 6 1 1

model

GBridge: group bridge penalty; ALasso: adaptive Lasso penalty; GLasso: group lasso;
Group size: number of groups selected; Model size: number of variables selected; % Corr.
sel.: the portion of occasions on which the model produced contains exactly the same
groups as the underlying model; % Corr. mod: the portion of occasions on which the
model produced contains exactly the same variables as the underlying model; MRME:
median of relative model errors; estimated standard errors in parentheses.

Example 4. There were six groups with three large and three small. The co-

variates were generated as in Example 1 with the true β taken as

(β1, . . . , β10)
′ = (0, 1, 0, 1, 0, 0, 1, 0, 1, 0), (β11, . . . , β20)

′

= (−1,−1,−1,−1, 0, . . . , 0),
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Table 2. Simulation results for Example 2.

n Penalty Tuning Group size Model size % Corr. sel % Corr. mod MRME

100 GBridge AIC 3.01(0.187) 5.33(1.044) 0.994(0.046) 0.897(0.075) 0.870
BICa 3.07(0.265) 6.20(1.329) 0.981(0.066) 0.838(0.097) 0.786
GCV 3.01(0.187) 5.31(1.040) 0.994(0.046) 0.898(0.076) 0.877

ALasso AIC 3.64(0.481) 6.36(1.360) 0.840(0.120) 0.809(0.108) 0.763
BICa 3.83(0.381) 7.38(1.509) 0.794(0.095) 0.740(0.113) 0.613
GCV 3.62(0.487) 6.31(1.334) 0.845(0.122) 0.813(0.106) 0.763

GLasso AIC 1.63(1.070) 6.15(3.647) 0.583(0.192) 0.539(0.104) 0.060
BICa 3.35(1.029) 11.95(3.322) 0.758(0.120) 0.376(0.131) 0.229
GCV 1.39(0.863) 5.33(2.968) 0.553(0.175) 0.558(0.082) 0.056

150 GBridge AIC 3.01(0.100) 5.27(0.865) 0.998(0.025) 0.909(0.063) 0.901
BICa 3.06(0.238) 6.07(1.171) 0.985(0.059) 0.851(0.084) 0.841
GCV 3.01(0.100) 5.24(0.847) 0.998(0.025) 0.911(0.062) 0.906

ALasso AIC 3.56(0.499) 6.29(1.343) 0.860(0.125) 0.826(0.105) 0.903
BICa 3.76(0.429) 7.25(1.438) 0.810(0.107) 0.759(0.110) 0.794
GCV 3.53(0.502) 6.25(1.329) 0.868(0.125) 0.829(0.104) 0.903

GLasso AIC 2.61(1.399) 9.44(4.654) 0.668(0.151) 0.434(0.141) 0.210
BICa 3.27(1.109) 11.68(3.601) 0.773(0.119) 0.376(0.127) 0.542
GCV 2.40(1.385) 8.75(4.620) 0.655(0.158) 0.458(0.140) 0.115

200 GBridge AIC 3.00(0.000) 5.13(0.843) 1.000(0.000) 0.919(0.060) 0.959
BICa 3.04(0.190) 5.84(1.109) 0.991(0.048) 0.868(0.079) 0.908
GCV 3.00(0.000) 5.11(0.838) 1.000(0.000) 0.921(0.060) 0.960

ALasso AIC 3.56(0.499) 6.45(1.242) 0.860(0.125) 0.821(0.092) 0.871
BICa 3.78(0.416) 7.46(1.352) 0.805(0.104) 0.749(0.098) 0.845
GCV 3.56(0.499) 6.43(1.225) 0.860(0.125) 0.822(0.091) 0.871

GLasso AIC 2.69(1.253) 9.82(4.108) 0.708(0.142) 0.443(0.137) 0.435
BICa 3.48(0.847) 12.42(2.602) 0.755(0.094) 0.360(0.118) 0.667
GCV 2.66(1.257) 9.72(4.127) 0.705(0.144) 0.446(0.137) 0.421

True
3 4 1 1

model

GBridge: group bridge penalty; ALasso: adaptive Lasso penalty; GLasso: group lasso;
Group size: number of groups selected; Model size: number of variables selected; % Corr.
sel.: the portion of occasions on which the model produced contains exactly the same
groups as the underlying model; % Corr. mod: the portion of occasions on which the
model produced contains exactly the same variables as the underlying model; MRME:
median of relative model errors; estimated standard errors in parentheses.

(β21, . . . , β30)
′ = (0, . . . , 0), (β31, . . . , β34)

′ = (0, 0,−1, 1),

(β35, . . . , β38)
′ = (−1, 1, 0, 0), (β39, . . . , β42)

′ = (0, . . . , 0).

The failure and censoring times were generated as in Examples 1 and 2 and

the sample sizes n = 100, 200, and 300 were considered. The simulation results
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Table 3. Variability of the proposed estimators for non-zero entries in sim-
ulation study under AIC selection criterion for Example 1. Mean estimated
standard deviations across 400 simulated datasets and empirical standard
deviation (in parentheses).

n β1 β2 β3 β4 β5 β6

100 0.412 0.414 0.425 0.423 0.416 0.418
(0.305) (0.424) (0.490) (0.423) (0.403) (0.413)

150 0.332 0.335 0.342 0.336 0.337 0.337
(0.268) (0.343) (0.405) (0.337) (0.350) (0.355)

200 0.286 0.289 0.296 0.290 0.290 0.289
(0.256) (0.275) (0.327) (0.294) (0.294) (0.302)

Table 4. Variability of the proposed estimators for non-zero entries in sim-
ulation study under AIC selection criterion for Example 2. Mean estimated
standard deviations across 400 simulated datasets and empirical standard
deviation (in parentheses).

n β1 β2 β5 β13

100 0.161 0.172 0.177 0.147
(0.167) (0.189) (0.196) (0.193)

150 0.127 0.135 0.139 0.120
(0.133) (0.133) (0.151) (0.149)

200 0.107 0.111 0.118 0.104
(0.111) (0.115) (0.123) (0.137)

of Examples 3 and 4 are summarized in Tables 5 and 6. They indicate that

the group bridge method performs well in selecting both the correct group and

variable, and gets more gains than the adaptive Lasso method in group selection

and than the group Lasso method in variable selection, the same conclusions as

drawn from Examples 1 and 2.

4. Applications

4.1. PBC data analysis

We illustrate the proposed group bridge method by an analysis of a dataset

from the Mayo Clinic trial study given in Appendix D of Fleming and Harring-

ton (1991). This study was conducted between 1974 and 1984 containing 312

randomized patients with primary biliary cirrhosis (PBC), a fatal chronic liver

disease. Among 312 patients, 152 were assigned to the drug D-penicillanmine,

while others were assigned to a control group with placebo drug. Some baseline

covariates, such as age, gender, and albumin, were recorded. 140 patients died

due to PBC disease during the follow-up. The primary interest was to investigate



1800 JIAN HUANG, LI LIU, YANYAN LIU AND XINGQIU ZHAO

Table 5. Simulation results for Example 3.

n Penalty Tuning Group size Model size % Corr. sel % Corr. mod MRME

100 GBridge AIC 2.64(0.597) 8.89(2.127) 0.949(0.056) 0.916(0.052) 0.597
BICa 3.75(1.289) 12.48(3.445) 0.907(0.123) 0.925(0.076) 0.673
GCV 2.58(0.582) 8.68(2.102) 0.945(0.056) 0.912(0.052) 0.576

ALasso AIC 5.80(1.576) 11.97(2.372) 0.716(0.157) 0.832(0.062) 0.284
BICa 7.65(1.321) 16.20(3.104) 0.535(0.132) 0.768(0.079) 0.130
GCV 5.78(1.554) 11.90(2.368) 0.718(0.155) 0.832(0.062) 0.284

GLasso AIC 1.33(0.514) 5.32(2.054) 0.823(0.063) 0.823(0.063) 0.171
BICa 2.57(1.628) 10.28(6.514) 0.861(0.125) 0.861(0.125) 0.506
GCV 1.27(0.468) 5.08(1.873) 0.817(0.059) 0.817(0.059) 0.166

200 GBridge AIC 2.92(0.302) 10.94(1.394) 0.990(0.030) 0.973(0.035) 0.913
BICa 3.36(0.788) 12.37(1.627) 0.965(0.079) 0.978(0.042) 0.942
GCV 2.90(0.321) 10.87(1.443) 0.989(0.032) 0.971(0.036) 0.903

ALasso AIC 3.55(0.833) 10.22(1.612) 0.945(0.083) 0.927(0.031) 0.767
BICa 5.84(1.650) 14.25(2.587) 0.716(0.165) 0.884(0.056) 0.666
GCV 3.52(0.797) 10.16(1.613) 0.948(0.080) 0.927(0.031) 0.767

GLasso AIC 2.29(0.640) 9.16(2.561) 0.921(0.061) 0.921(0.061) 0.568
BICa 3.41(1.074) 13.64(4.296) 0.917(0.084) 0.917(0.084) 0.878
GCV 2.22(0.629) 8.88(2.516) 0.918(0.061) 0.918(0.061) 0.555

300 GBridge AIC 3.00(0.123) 11.73(0.583) 0.999(0.012) 0.993(0.014) 0.985
BICa 3.22(0.542) 12.27(0.946) 0.978(0.054) 0.990(0.023) 0.976
GCV 2.99(0.100) 11.69(0.636) 0.999(0.010) 0.992(0.016) 0.985

ALasso AIC 3.43(0.714) 11.13(1.284) 0.957(0.071) 0.956(0.026) 0.888
BICa 5.69(1.727) 14.64(2.423) 0.731(0.173) 0.904(0.059) 0.826
GCV 3.40(0.667) 11.05(1.242) 0.960(0.067) 0.955(0.026) 0.888

GLasso AIC 2.83(0.667) 11.32(2.670) 0.959(0.055) 0.959(0.055) 0.936
BICa 3.74(0.960) 14.96(3.840) 0.924(0.094) 0.924(0.094) 0.939
GCV 2.77(0.664) 11.08(2.658) 0.957(0.055) 0.957(0.055) 0.933

True
3 12 1 1

model

GBridge: group bridge penalty; ALasso: adaptive Lasso penalty; GLasso: group lasso;
Group size: number of groups selected; Model size: number of variables selected; % Corr.
sel.: the portion of occasions on which the model produced contains exactly the same
groups as the underlying model; % Corr. mod: the portion of occasions on which the
model produced contains exactly the same variables as the underlying model; MRME:
median of relative model errors; estimated standard errors in parentheses.

the effectiveness of D-penicillanmine in curing PBC disease. The PBC data have

been analyzed by many authors (e.g., Zhang and Lu (2007)).

To compare with the analysis in Zhang and Lu (2007)), we focus on the main

effects of the observed 17 risk factors of interest for 276 complete cases in the

full model. The 17 covaraites include 10 continuous and 7 categorical variables



GROUP SELECTION IN THE COX MODEL 1801

Table 6. Simulation results for Example 4.

n Penalty Tuning Group size Model size % Corr. sel % Corr. mod MRME

100 GBridge AIC 2.92(0.829) 10.92(2.982) 0.790(0.142) 0.808(0.056) 0.464
BICa 3.68(1.042) 15.03(4.802) 0.835(0.155) 0.788(0.075) 0.374
GCV 2.91(0.826) 10.85(2.972) 0.788(0.141) 0.808(0.056) 0.463

ALasso AIC 4.84(0.927) 11.25(2.400) 0.767(0.147) 0.817(0.067) 0.276
BICa 4.83(0.930) 11.37(2.607) 0.763(0.138) 0.816(0.067) 0.283
GCV 4.83(0.923) 11.25(2.394) 0.768(0.147) 0.817(0.067) 0.276

GLasso AIC 1.22(0.543) 11.84(4.336) 0.533(0.092) 0.657(0.030) 0.158
BICa 1.45(1.158) 13.06(7.588) 0.538(0.094) 0.642(0.078) 0.154
GCV 1.20(0.471) 11.76(4.103) 0.530(0.080) 0.657(0.030) 0.162

200 GBridge AIC 2.95(0.704) 12.13(2.136) 0.820(0.117) 0.869(0.048) 0.652
BICa 3.87(0.569) 16.09(2.353) 0.944(0.090) 0.868(0.051) 0.759
GCV 2.92(0.696) 12.02(2.108) 0.815(0.115) 0.869(0.048) 0.645

ALasso AIC 4.29(0.767) 11.43(1.810) 0.888(0.113) 0.925(0.040) 0.674
BICa 4.44(0.727) 12.15(1.777) 0.870(0.119) 0.923(0.041) 0.700
GCV 4.29(0.767) 11.43(1.810) 0.888(0.113) 0.925(0.040) 0.674

GLasso AIC 1.19(0.394) 11.90(3.943) 0.528(0.067) 0.656(0.029) 0.106
BICa 2.64(1.411) 21.12(8.186) 0.727(0.184) 0.614(0.069) 0.554
GCV 1.18(0.386) 11.80(3.861) 0.527(0.066) 0.656(0.029) 0.105

300 GBridge AIC 3.30(0.710) 13.12(2.129) 0.882(0.120) 0.900(0.047) 0.780
BICa 3.97(0.342) 16.45(1.829) 0.981(0.054) 0.886(0.041) 0.893
GCV 3.27(0.713) 13.03(2.082) 0.878(0.120) 0.897(0.048) 0.775

ALasso AIC 4.20(0.620) 12.10(1.425) 0.940(0.090) 0.964(0.027) 0.847
BICa 4.56(0.592 13.29(1.282) 0.907(0.099) 0.956(0.029) 0.881
GCV 4.19(0.615) 12.09(1.422) 0.942(0.090) 0.964(0.027) 0.847

GLasso AIC 1.52(0.810) 14.36(5.890) 0.587(0.135) 0.649(0.023) 0.112
BICa 3.71(1.149) 27.20(5.700) 0.868(0.147) 0.586(0.085) 0.714
GCV 1.45(0.716) 13.96(5.527) 0.575(0.119) 0.650(0.023) 0.109

True
4 12 1 1

model

GBridge: group bridge penalty; ALasso: adaptive Lasso penalty; GLasso: group lasso;
Group size: number of groups selected; Model size: number of variables selected; % Corr.
sel.: the portion of occasions on which the model produced contains exactly the same
groups as the underlying model; % Corr. mod: the portion of occasions on which the
model produced contains exactly the same variables as the underlying model; MRME:
median of relative model errors; estimated standard errors in parentheses.

as described in Table 7.

The risk factors are naturally clustered into nine categories, measuring such

aspects as liver reserve function and demographics. The definitions of the vari-

ables are given in Table 5.

We calculate the maximum partial likelihood estimate (MLE) and group
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Table 7. PBC data analysis. Dictionary of covariates.

Group Variable Type Definition

Age (G1) Z1 C Age(years)

Gender(G2) Z2 D Female gender(0 male and 1 female)

Phynotype(G3) Z3 D Ascites(0 absence)

Z4 D Hepatomegaly

(0 absence and 1 presence)

Z5 D Spiders(0 absence and 1 presence)

Z6 D Edemaoed(0 no edema, 0.5 untreated

or successfully treated

and 1 unsuccessfully treated)

Liver function damage (G4) Z7 C Alkaline phosphatase(units/litre)

Z8 C Sgot(liver enzyme in units/ml)

Excretory function of the liver (G5) Z9 C Serum bilirubin(mg/dl)

Z10 C Serum cholesterol(mg/dl)

Z11 C Triglyserides(mg/dl)

Liver reserve function(G6) Z12 C Albumin(g/dl)

Z13 C Prothrombin time(seconds)

Treatment (G7) Z14 D Penicillamine v.s. placebo

(1 control and 2 treatment)

Reflection (G8) Z15 D Stage(histological stage of disease,

graded 1,2,3 or 4)

Z16 C Urine copper(ug/day)

Haematology (G9) Z17 C Platelets(per cubic ml/1000)

Type: type of variable; Type C: continuous; Type D: Discrete.

bridge estimates under the AIC, BICa, and GCV methods. We also show the

results of Zhang and Lu (2007) obtained by using LASSO method under the

GCV selector. The results are summarized in Table 8, including the estimated

coefficients and the corresponding standard errors. The group bridge estimators

with AIC and GCV tuning selection criteria are similar and we only present the

results from GCV and BICa. The LASSO and group Bridge methods suggest that

group (G9, Haematology) should be excluded from the final model. Both group

bridge methods suggest deleting Group 4, which includes Alkaline phosphatase

and Sgot. In the phynotype group, both methods using AIC and GCV only

select spiders and edema. All the methods suggest that the treatment effect is

not significant at the 0.05 level and that patients with higher Serum bilirubin

level have higher risk in developing PBC.

4.2. Breast cancer data analysis

The breast cancer data set containing the metastasis-free survival times was

analyzed. van de Vijver et al. (2002) classified a series of 295 patients with

primary breast carcinomas as having a gene-expression signature associated with

either a poor or good prognosis. We restricted our study to 144 patients who
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Table 8. Estimation results of PBC data with standard errors in parentheses.

Group Covariate MLE LASSO Bridge-GCV Bridge-BICa

G1 age 0.029(0.012) 0.033(0.004) 0(−) 0(−)

G2 Gender −0.366(0.311) 0(−) −0.793(0.269) −0.945(0.244)

G3 asc 0.088(0.387) 0.107(0.052) 0(−) 0.136(0.394)
hep 0.026(0.251) 0(−) 0(−) 0.146(0.214)
spid 0.101(0.244) 0(−) 0.021(0.239) 0.102(0.236)
oed 1.011(0.394) 0.648(0.177) 0.489(0.402) 0.566(0.412)

G4 alk 0.000(0.000) 0(−) 0(−) 0(−)
sgot 0.004(0.002) 0.001(0.000) 0(−) 0(−)

G5 bil 0.080(0.025) 0.084(0.013) 0.080(0.024) 0.060(0.023)
chol 0.001(0.000) 0(−) 0(−) 0(−)
trig −0.001(0.001) 0(−) −0.001(0.001) 0(−)

G6 alb −0.742(0.308) −0.548(0.133) −1.227(0.269) −1.289(0.281)
prot 0.233(0.106) 0.125(0.040) 0.128(0.107) 0.124(0.104)

G7 trt −0.124(0.215) 0(−) −0.294(0.199) −0.237(0.197)

G8 stage 0.455(0.175) 0.265(0.064) 0.183(0.130) 0(−)
cop 0.003(0.001) 0.003(0.001) 0.002(0.001) 0(−)

G9 plat 0.001(0.001) 0(−) 0(−) 0(−)

MLE: maximum partial likelihood; LASSO: Lasso method; Bridge-GCV and Bridge-
BICa: bridge methods by AIC and BICa criteria.

had lymph node positive disease. The censoring rate was 66%. The data set

can be found in the R package ‘penalized’. Five clinical risk factors and 70 gene

expression measurements were diameter, d, of the tumor (1 for >= 2cm and 0

for < 2cm), number, N , of affected lymph nodes (1 for 1 − 3 and 0 for >= 4),

estrogen receptor, ER, status (1 for positive and 0 for negative), grade of the

tumor (1 for well differentiated and 0 otherwise), age of the patient at diagnosis,

and the gene expression measurements of 70 prognostic genes.

We first reduced the model dimension to 50 by screening the 25 most unim-

portant variables. Then we divided the selected 50 variables into eight groups by

using dynamic clustering. The proposed group bridge, the adaptive lasso and the

group lasso, are used to analyze the data set under AIC, BICa, and GCV tuning

parameters (the estimators of AIC and GCV are the same). The results with AIC

and BICa methods based on selected variables and groups are shown in Figure

1. Each block in Figure 1 represents a group. Figure 1 shows that the proposed

method selects four important groups and five important variables with AIC and

six important groups and eleven important variables, while adaptive Lasso and

group Lasso methods select more groups and variables.
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(a) AIC tuning parameter

(b) BICa tuning parameter

Figure 1. Plots of variable and group selection in the breast cancer data
by using the proposed group bridge, the adaptive lasso and the group lasso
with AIC and BICa.

5. Concluding Remarks

We have not addressed the situation where the number of covariates is larger

than the sample size. Further research in this direction is needed for the analysis

of high-dimensional survival data.

The classical Cox model assumes that covariates have a log-linear effect on

the hazard function, and this can be too rigid in practice. A useful semipara-

metric generalization of the Cox model is the partially linear Cox model. An

efficient estimator for β in this model with fixed number of parameters has been
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constructed by Huang (1999). This model is useful when other covariates in ad-

dition to high-dimensional genomic data are collected in the study. If X denotes

the high-dimensional expression data and W the continuous clinical covariates,

we assume that W has much lower dimension than X. The conditional hazard

of the failure time is modeled as

h(t|X,W ) = h0(t) exp(β
′X + ϕ1(W1) + · · ·ϕd(Wd)),

where h0 is the unknown baseline hazard function, β is a p-dimensional regression

parameter, and ϕ1, . . . , ϕd are unknown smooth functions. For example, in the

expression profiling study of follicular lymphoma reported in Dave et al. (2004),

X may include the expression data, and W = (W1, . . . ,Wd)
′ is a vector of clini-

cal covariates. In studies with both clinical variables and high dimensional gene

measurements available, the goal is to carry out variable selection with the gene

measurements X, while properly adjusting for the effects of W . The log-partial

likelihood defined on sieves can be approximated by a sum of independent terms,

as in Huang (1999). We expect that this will enable us to prove variable-selection

consistency and the group oracle property of the bridge-penalized partial likeli-

hood estimators.
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Appendix: Proofs

Proof of Theorem 1. Let B(C) = {β : β = β0 + Cαnu, ∥u∥2 = 1}. It is

sufficient to prove that, for every ε > 0, there exists B(C) such that Pr(infβ∈B(C)

Gn(β) > Gn(β0)) > 1− ε. Since

1

n
Gn(β)−

1

n
Gn(β0) =

1

n
[ln(β)− ln(β0)] +Dn(C),

where Dn(C) = (λn/n)
(∑J

j=1 cj∥βAj∥
γ
1 −

∑J
j=1 cj∥β0Aj∥

γ
1

)
for β ∈ B(C), by

Taylor’s expansion and results in Cai et al. (2005), we have

1

n
[ln(β)− ln(β0)] =

1

n
(β − β0)

′∇ln(β0) +
1

2n
(β − β0)

′∇2ln(β
∗)(β − β0)
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= B1 +B2,

where β∗ is between β and β0. By the arguments in Cai et al. (2005), ∥∇ln(β0)∥2
= Op(

√
ndn) and n−1∇2ln(β

∗) = I(β0) + op(1). It follows that B1 is of order

Cα2
n and B2 is of order C2α2

n by the assumption that I(β0) is positive definite.

By choosing sufficiently large C, I2 dominates I1 uniformly in ∥u∥2 = 1.

For the lower bound of Dn(C), it is sufficient to consider the case where

∥β0Aj∥1 ≥ ∥βAj∥1. Since bγ − aγ ≤ 2(b− a)bγ−1 for 0 ≤ a ≤ b, it follows that

J∑
j=1

cj∥β0Aj∥
γ
1 −

J∑
j=1

cj∥βAj∥
γ
1 ≤ 2

J1∑
j=1

cj∥β0Aj∥
γ−1
1 (|Aj |∥βAj − β0Aj∥22)1/2

≤ 2ηn(
J∑

j=1

∥βAj − β0Aj∥22)1/2 ≤ 2ηn
√

C∗
n∥β̂ − β0∥2,

where η2n =
∑J1

j=1 cj
2∥β0Aj∥

2γ−2
1 |Aj |. Therefore,

1

n
[Gn(β0+Cαnu)−Gn(β0)] ≥

1

2
C2α2

nu
′[I(β)+op(1)]u+Op(Cα2

n)−2
λn

n
ηn

√
C∗
nCαn.

(A.1)

Since −2(λn/n)ηn
√

C∗
nCαn is of order Cα2

n, the first term of the right side of

(A.1) dominates the third term uniformly in ∥u∥2 = 1, when C is large enough.

This completes the proof of Theorem 1.

Proof of Theorem 2 (i). Let B2 =
∪J

j=J1+1Aj and take β̃n = (β̃n1, . . . , β̃nd)
′,

with β̃nk = β̂nk if k /∈ B2, and 0 otherwise. The KKT condition for (2.4) implies

that

−
(
∇ln(β̂)

)
k
=

∑
j:Aj∋k

θ̂
1−1/γ
nj cj

1/γsgn(β̂nk), ∀β̂nk ̸= 0, (A.2)

where (a)k is the kth element of vector a.

By (2.3) and the relationship between λn and θn, we have θ̂
1−1/γ
nj cj

1/γ∥β̂nAj∥1
= γλn∥β̂nAj∥

γ
1 . Therefore (A.2) implies

−
(
∇ln(β̂)

)
k
= λnγ

∑
j:Aj∋k

cj∥β̂nAj∥
γ−1
1 sgn(β̂nk), ∀β̂nk ̸= 0.

Since (β̂nk − β̃nk)sgn(β̂nk) = |β̂nk|I(k ∈ B2), we have

−
(
∇ln(β̂)

)′
(β̂ − β̃n) =

∑
k∈B2

|β̂nk|γλn

∑
j:Aj∋k

cj∥β̂nAj∥
γ−1
1

= λnγ

J∑
j=1

cj∥β̂nAj∥
γ−1
1 (∥β̂nAj∥1 − ∥β̃nAj∥1) = λnγ

J∑
j=J1+1

cj∥β̂nAj∥
γ
1 . (A.3)
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By the definition of β̂, we have Gn(β̂) ≥ Gn(β̃n), or

ln(β̂) + λn

J∑
j=1

cj∥β̂nAj∥
γ
1 ≤ ln(β̃n) + λn

J∑
j=1

cj∥β̃nAj∥
γ
1 .

Since ∥β̂nAj∥1 = 0 for j > J1, by (A.3) we have

− 1

n

(
∇ln(β̂)

)′
(β̂ − β̃n) + (1− γ)

λn

n

J∑
j=J1+1

cj∥β̂nAj∥
γ
1

=
λn

n

J∑
j=1

cj∥β̂nAj∥
γ
1 −

λn

n

J∑
j=1

cj∥β̃nAj∥
γ
1

≤ 1

n

[
ln(β̃n)− ln(β̂)

]
= − 1

n

(
∇ln(β̂)

)′
(β̂ − β̃n) + (β̂ − β̃n)

′[I(β0) + op(1)](β̂ − β̃n) + op(∥β̂ − β̃n∥22).

It follows that

(1− γ)
λn

n

J∑
j=J1+1

cj∥β̂nAj∥
γ
1

≤ (β̂ − β̃n)
′[I(β0) + op(1)](β̂ − β̃n) + op(∥β̂ − β̃n∥22)

= (β̂ − β̃n)
′[I(β0)](β̂ − β̃n) + op(∥β̂ − β̃n∥22). (A.4)

Since the first term of (A.4) dominates the second term for n large enough, with

such n, we have

(1− γ)
λn

n

J∑
j=J1+1

cj∥β̂nAj∥
γ
1 ≤ 2ρ∗n∥β̂ − β̃n∥22 = 2ρ∗n∥β̂nB2∥22 ≤ 2ρ∗n∥β̂ − β0∥22.

It follows that

(1− γ)λn

J∑
j=J1+1

cj∥β̂nAj∥
γ
1 ≤ 2nρ∗n∥β̂ − β0∥22 ≤ Op(dnρ

∗
n).

For the lower bound of
∑J

j=J1+1 cj∥β̂nAj∥
γ
1 , since cj > 1 by (C6), we have

J∑
j=J1+1

cj∥β̂nAj∥
γ
1 ≥

( J∑
j=J1+1

∥β̂nAj∥1
)γ

≥ ∥β̂nB2∥
γ
1 ≥ ∥β̂nB2∥

γ
2 .

If ∥β̂nB2∥
γ
2 > 0, then

(1− γ)λn ≤ 2nρ∗n∥β̂nB2∥
2−γ
2 ≤ ρ∗nd

1−γ/2
n nγ/2Op(1).
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It follows that
λn

nγ/2ρ∗nd
1−γ/2
n

≤ Op(1). Since
λn

nγ/2ρ∗nd
1−γ/2
n

→ ∞ by (C6),

Pr
(
∥β̂nB2∥2 > 0

)
≤ Pr

( λn

nγ/2ρ∗nd
1−γ/2
n

≤ Op(1)
)
→ 0.

(ii). Since d1, β0B1 are fixed, minj≤J1 ∥β0Aj∥
1−γ
1 = O(1), so that (C7) implies

(C6) and

λn
2

n

J1∑
j=1

cj
2∥β0Aj∥

2γ−2
1 |Aj

∩
B1| = O(1).

Therefore the proof of Theorem 2 (i) still works with the reduced X1 and reduced

number d1 = |B1| of coefficients βk : k ∈ B1. Thus,

∥β̂nB1 − β0B1∥22 = Op(
1

n
), ∥β̂ − β0∥22 = Op(

1

n
).

Let hn = n−1/2, and take V1n(a) = [Gn(β0 + hn(a
′, 0′)′) − Gn(β0)], where 0

is a zero vector of dimension |B2| and a = (a1, . . . , ad1)
′ is a d1-dimensional

constant vector. By part (i) of Theorem 2, with large probability, β̂ − β0 =

hn(â
′
n, 0

′)′, ân = argmin{V1n(a) : a ∈ Rd1}.
On the other hand, V1n can be rewritten as :

V1n = hn(a
′, 0′)∇ln(β0) +

1

2
a′I11(β0)a+ a′op(1)a

+λn

J1∑
j=1

cj

{( ∑
k∈Aj

∩
B1

|β0k + hnak|
)γ

− ∥β0Aj∥
γ
1

}
= T1n(a) + T2n(a).

By Cai et al. (2005), we have T1n →d a′W + 1
2a

′I11(β0)a, where →d is

convergence in distribution. According to Huang et al. (2009), we have

T2n(a) → γλ0

J1∑
j=1

cj∥β0Aj∥
γ−1
1

∑
k∈Aj

∩
B1

{aksgn(β0k)I(β0k ̸=0)+|ak|I(β0k = 0)} .

Therefore, V1n(a) →d V1(a). Since ân = Op(1), by the argmin continuous map-

ping theorem of Kim and Pollard (1990),
√
n(β̂nB1−β0B1)= ân → argmin(V1(a)),

which completes the proof.
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