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Abstract This paper studies semiparametric regression analysis of panel count data,
which arise naturally when recurrent events are considered. Such data frequently occur
in medical follow-up studies and reliability experiments, for example. To explore the
nonlinear interactions between covariates, we propose a class of partially linearmodels
with possibly varying coefficients for the mean function of the counting processes
with panel count data. The functional coefficients are estimated by B-spline function
approximations. The estimation procedures are based onmaximum pseudo-likelihood
and likelihood approaches and they are easy to implement. The asymptotic properties
of the resulting estimators are established, and their finite-sample performance is
assessed by Monte Carlo simulation studies. We also demonstrate the value of the
proposedmethod by the analysis of a cancer data set,where the newmodeling approach
provides more comprehensive information than the usual proportional mean model.

Keywords Asymptotic normality · B-spline · Counting process · Maximum
likelihood · Maximum pseudo-likelihood · Panel count data · Varying-coefficient

1 Introduction

This paper considers regression analysis of panel count data when certain covariate
effects may be much more complex than linear effects. By panel count data, we mean
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the data that concern occurrence rates of certain recurrent events and give only the
numbers of the events that occur between the observation times, but not their occur-
rence times. Such data naturally occur in longitudinal follow-up studies on recurrent
events in which study subjects can be observed only at discrete time points rather
than continuously. Many authors have discussed the analysis of panel count data by
using nonparametric and semiparametric methods. For example, Sun and Kalbfleisch
(1995), Wellner and Zhang (2000), Zhang and Jamshidian (2003), Lu et al. (2007),
and Hu et al. (2009a) studied nonparametric estimation for the mean function of the
counting processwith panel count data; Thall andLachin (1988), Sun and Fang (2003),
Zhang (2006), and Balakrishnan and Zhao (2009) proposed some nonparametric tests
for the problem of nonparametric comparison of treatment groups based on panel
count data. Sun and Wei (2000), Cheng and Wei (2000), Hu et al. (2003), and Hua
and Zhang (2012) discussed regression analysis of panel count data by the estimat-
ing equation-based approaches, while Zhang (2002), Wellner and Zhang (2007), and
Lu et al. (2009) presented more efficient inference procedures for joint estimation
of parametric and nonparametric components in the proportional mean model by the
likelihood-based approaches. In addition, Huang et al. (2006) and Sun et al. (2007)
considered the analysis of panel count data with informative observation times.

All these semiparametric regression methods mentioned above have focused on
parametric modeling of covariate effects on the recurrent event process. In many
applications, a covariate effect may be nonlinear and vary with another covariate. To
investigate both linear effects and nonlinear interaction effects between covariates,
we propose a class of semiparametric partially linear varying-coefficient models for
panel count data. Suppose that N (t) is a counting process arising from a recurrent event
study. Let Z be a d-dimensional vector of covariates, and V and W be p-dimensional
vectors of covariates. We assume that given (Z , V,W ), N (t) is a non-homogeneous
Poisson process with the mean function �(t |Z , V,W ) = E{N (t)|Z , V,W } having
the following form

�(t |Z , V,W ) = �0(t) exp

{
Z ′β0 +

p∑
r=1

Vrφr0(Wr )

}
, (1.1)

where �0(·) is a completely unknown continuous baseline mean function, φr0(·)
(r = 1, . . . , p) are completely unspecified smooth functions, Vr and Wr are the r th
components of V and W , and β0 is a d-dimensional vector of unknown regression
parameters. When Vr = 0 (r = 1, . . . , p), the model reduces to linear regression
modelwith panel count data, which has beenwell studied byWellner andZhang (2007)
and Lu et al. (2009), among others. When Vr = 1 (r = 1, . . . , p), the model reduces
to partly linear regression model for panel count data, which has not been studied
in the literature. There are many investigations about nonlinear effects of covariates
on response variables for censored data and longitudinal data. For example, Zhang
et al. (2014) studied a proportional hazards model with varying coefficients for right-
censored and length-biased data; Lindqvist et al. (2015) examined the functional form
for covariates in parametric accelerated failure time models with right-censored data
by using residual plots; Cheng et al. (2014) provided a simultaneous variable selection
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and structure identification procedure for ultra-high dimensional longitudinal data. In
this article, for notational simplicity, we consider the case with p = 1, that is,

�(t |Z , V,W ) = �0(t) exp{Z ′β0 + Vφ0(W )}. (1.2)

For inference about model (1.2), we propose to use likelihood-based methods,
where the functional coefficient is estimated by the B-spline function approximation,
and the baseline mean function is still directly estimated with parametric components
because its B-spline function approximation has some nonlinear restriction that can
cause more complicated computing. For this reason, we develop a new algorithm
which can be easily implemented.

The remainder of this paper is organized as follows. In Sect. 2, we present two
semiparametric methods including maximum pseudo-likelihood and maximum like-
lihood approaches for joint estimation of parametric and nonparametric components
in the model, and also provide corresponding algorithms about computation of the
estimates. The asymptotic properties of the resulting estimators are established in
Sect. 3, while the proofs are given in Appendix. Section 4 reports some simulation
results obtained for assessing the finite sample properties of the proposed estimates
and an illustrative example is given in Sect. 5. Some remarks are made in Sect. 6.

2 Semiparametric likelihood approaches

Consider a recurrent event study that consists of n independent subjects and let Ni (t)
denote the number of occurrences of the recurrent event of interest before or at time
t for subject i . Suppose that for each subject, given covariates (Zi , Vi ,Wi ), Ni (t) is a
non-homogeneous Poisson process with the mean function given by (1.2), that is,

P{Ni (t) = k|Zi , Vi ,Wi } = exp{�i (t |Zi , Vi ,Wi )} {�i (t |Zi , Vi ,Wi )}k
k! ,

where �i (t |Zi , Vi ,Wi ) = �0(t) exp{Z ′
iβ0 + Viφ0(Wi )}. For subject i , suppose that

Ni (·) is observed only at finite time points TKi ,1 < · · · < TKi ,Ki ≤ τ , where Ki

denotes the potential number of observation times, i = 1, . . . , n, and τ is the length
of the study. That is, only the values of Ni (t) at these observation times are known
and we have panel count data on the Ni (t)’s.

In the following, we will assume that given (Zi , Vi ,Wi ), (Ki ; TKi ,1, ..., TKi ,Ki )

are independent of the counting processes Ni ’s. Let X = (K ,T,N, Z , V,W ),
where T = (TK ,1, ..., TK ,K ) and N = (

N (TK ,1), . . . , N (TK ,K )
)
. Then {Xi =

(Ki ,Ti ,Ni ), Zi , Vi ,Wi i = 1, ..., n} is a random sample of size n from the distribu-
tion of X, where Ti = (TKi ,1, ..., TKi ,Ki ) and Ni = (Ni (TKi ,1), . . . , Ni (TKi ,Ki )).

Without loss of generality, assume that W has support on [0, 1]. For estimation of
the smooth function φ0, we use B-spline function approximation. We first introduce
some notation (Huang 1999). Let T = {si , i = 1, . . . ,mn + 2l}, with

0 = s1 = · · · = sl < sl+1 < · · · < smn+l < smn+l+1 = · · · = smn+2l = 1,
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be a sequence of knots that partition [0, 1] intomn +1 subintervals Ii = [sl+i , sl+i+1],
for i = 0, 1, . . . ,mn . Define �n the class of polynomial splines of order l ≥ 1
with the knot sequence T . Then �n can be linearly spanned by the normalized B-
spline basis functions {bi , i = 1, . . . , bqn } with qn = mn + l (Schumaker 1981).
Let Bn = (b1, · · · , bqn )

′. Then we can approximate φ0 by φn = B ′
nα, where α is a

qn-dimensional vector of unknown coefficients.

2.1 Maximum pseudo-likelihood approach

The log pseudo-likelihood function for β0, �0, and φ0 is l
ps
n (β0,�0, φ0) where

l psn (β,�, φ) =
n∑

i=1

Ki∑
j=1

[
Ni (TKi , j ) log

{
�(TKi , j )

} + Ni (TKi , j ){Z ′
iβ + Viφ(Wi )}

−�(TKi , j ) exp{Z ′
iβ + Viφ(Wi )}]

after omitting the parts independent of β, �, and φ.
Let t1 < · · · < tm denote the ordered distinct observation time points in the set of

all observation time points {TKi , j , j = 1, . . . , Ki , i = 1, . . . , n}. Letw� and N̄� be the
number andmean value, respectively, of the observationsmade at time t�, � = 1, ...,m,
that is,

w� =
n∑

i=1

Ki∑
j=1

I (TKi , j = t�) and N̄� = 1

w�

n∑
i=1

Ki∑
j=1

Ni (TKi , j )I (TKi , j = t�).

Define

Ā�(β, φ) = 1

w�

n∑
i=1

Ki∑
j=1

exp{Z ′
iβ + Viφ(Wi )}I (TKi , j = t�)

and

B̄�(β, φ) = 1

w�

n∑
i=1

Ki∑
j=1

Ni (TKi , j ){Z ′
iβ + Viφ(Wi )}I (TKi , j = t�).

Then l psn (β,�, φ) can be expressed as

l psn (β,�, φ) =
m∑

�=1

w�{N̄� log�� − Ā�(β, φ)�� + B̄�(β, φ)},

where �� = �(t�), � = 1, . . . ,m.
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Let R ⊂ R
d be a bounded closed set, and let

F = {� : � is a nondecreasing function over [0, τ ],�(0) = 0} ,

and

	n = {φ : φ = B ′
nα ∈ �n, ||φ||∞ ≤ M0}

where τ is the maximum follow-up time of the study and M0 is a constant. Let 
n =
R × F × 	n = {θ = (β,�, φ) : β ∈ R,� ∈ F , φ ∈ 	n}. Define the estimator
θ̂
ps
n = (β̂

ps
n , �̂

ps
n , φ̂

ps
n ) of θ0 = (β0,�0, φ0) be the value that maximizes l psn (θ) with

respect to θ ∈ 
n . FollowingWellner andZhang (2000, 2007), we define the estimator
�̂

ps
n to have jumps only at the observation time points to meet with uniqueness since

l psn (β,�, φ) depends on � only at the observation time points.
We denote the estimator of φ0 by φ̂

ps
n = B ′

nα̂
ps
n . Following Zhang (2002), one can

find the solution of (β̂
ps
n , �̂

ps
n , α̂

ps
n ).

Step 1. Choose an initial (β(0), α(0)).

Step 2. For given (β(k), α(k)) (k = 0, 1, 2, ...), compute

�
(k)
� = max

i≤�
min
j≥�

∑
i≤r< j wr N̄r∑

i≤r< j wr Ār (β(k), α(k))
, � = 1, . . . ,m.

Step 3. Update (β, α) by finding

(β(k+1), α(k+1)) = argmax(β,α)∈Rd+qn l̂
ps
n (β, α,�(k))

through the Newton-Raphson algorithm, where

l̂ psn (β, α,�) =
m∑

�=1

w�{B̄�(β, α) − Ā�(β, α)��}.

Step 4. Repeat Steps 2 and 3 until the convergence is achieved.

2.2 Maximum likelihood approach

The log-likelihood function for β0, �0, and φ0 is ln(β0,�0, φ0) where

ln(β,�, φ) =
n∑

i=1

Ki∑
j=1

[{
Ni (TKi , j ) − Ni (TKi , j−1)

}
log

{
�(TKi , j ) − �(TKi , j−1)

}
+ {

Ni (TKi , j ) − Ni (TKi , j−1)
} {Z ′

iβ + Viφ(Wi )}
−{�(TKi , j ) − �(TKi , j−1)} exp{Z ′

iβ + Viφ(Wi )}
]

after omitting the parts independent of β, �, and φ, where TKi ,0 = 0.
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Let (β̂n, �̂n, φ̂n)be the value thatmaximizes ln(β,�, φ)with respect to (β,�, φ) ∈

n . Similarly, the estimator �̂n is defined to have jumps only at the observation time
points. This estimator can be computed by the algorithm proposed by Wellner and
Zhang (2007), but it is computationally expensive. Here, we propose a new algorithm
by using the self-consistent algorithm (Hu et al. 2009b).

Define λ� = �(t�) − �(t�−1), Ni (t�) = Ni (t�) − Ni (t�−1), and Yi (t) = I (t ≤
TKi ,Ki ). Let

Ri (t�) = min{TKi , j , j = 1, . . . , Ki ; TKi , j ≥ t�}

and

Li (t�) = max{TKi , j , j = 1, . . . , Ki ; TKi , j < t�}

denote the most recent observation times of individual i not before and before
t�, respectively. Here Ri (t�) = tm+1 = ∞ if t� > TKi ,Ki . Define ̃Ni (t�) =
Ni (Ri (t�)) − Ni (Li (t�)) and ̃�i (t�) = �(Ri (t�)) − �(Li (t�)), that is, ̃�i (t�) =∑

r : Li (t�)<tr≤Ri (t�) λr . For given β0 and φ0, we have the following estimating equation
for �0:

n∑
i=1

Yi (t�)

[
λ�

̃Ni (t�)

̃�i (t�)
− λ� exp{Z ′

iβ0 + Viφ0(Wi )}
]

= 0, � = 1, . . . ,m.

AsHu et al. (2009b) pointed out, the estimating functions are unbiased and also can be
viewed as the expectation of the likelihood estimating functions conditional on panel
counts.

We denote the estimators of φ0 by φ̂n = B ′
nα̂n . To find out the solution of

(β̂n, α̂n, �̂n), we propose to implement the following algorithm.
Step 1. Choose the initial (β(0), α(0)) = (β̂

ps
n , α̂

ps
n ).

Step 2. For given (β(k), α(k)), obtain λ
(k)
� (� = 1, . . . ,m) by computing

λ
(k,u)
� =

∑n
i=1 Yi (t�)λ

(k,u−1)
� ̃Ni (t�)/̃�

(k,u−1)
i (t�)∑n

i=1 Yi (t�) exp{Z ′
iβ

(k) + Vi Bn(Wi )′α(k)}

for u = 1, 2, . . . until the convergence is achieved. Here we choose �(0,0) = �̂
ps
n and

�(k,0) = �(k−1) for k ≥ 1.
Step 3. Update (β, α) by finding

(β(k+1), α(k+1)) = argmax(β,α)∈Rd+qn l̂n(β, α,�(k))
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through the Newton-Raphson algorithm, where

l̂n(β, α,�) =
n∑

i=1

Ki∑
j=1

[{
Ni (TKi , j ) − Ni (TKi , j−1)

} {β ′Zi + Vi Bn(Wi )
′α}

−{�(TKi , j ) − �(TKi , j−1)} exp{β ′Zi + Vi Bn(Wi )
′α}]

Step 4. Repeat Steps 2 and 3 until the convergence is achieved.

3 Asymptotic results

In this section, we study the asymptotic properties of the estimators θ̂
ps
n =

(β̂
ps
n , �̂

ps
n , φ̂

ps
n ) and θ̂n = (β̂n, �̂n, φ̂n) of θ0 = (β0,�0, φ0). Let Bd+2 and B

denote the collection of Borel sets in R
d+2 and R, respectively, and let B[0,τ ] =

{A∩[0, τ ] : A ∈ B}. Let Y = (Z ′, V,W )′ with distribution function F(y). Following
Wellner and Zhang (2007), define the measures μ1, μ2, ν1, ν2, and γ as follows: for
A, A1, A2 ∈ B[0,τ ], and A3 ∈ Bd+2,

ν1(A × A3) =
∫
A3

∞∑
k=1

P(K = k|Y = y)
k∑
j=1

P(Tk, j ∈ A|K = k,Y = y)dF(y),

μ1(A) = ν1(A × R
d+2),

ν2(A1 × A2 × A3)

=
∫
A3

∞∑
k=1

{P(K = k|Y = y)
k∑
j=1

P(Tk, j−1 ∈ A1, Tk, j ∈ A2|K = k,Y = y)}dF(y),

μ2(A1 × A2) = ν2(A1 × A2 × R
d+2),

γ (A) =
∫
Rd+2

∞∑
k=1

P(K = k|Y = y)
k∑
j=1

P(Tk,k ∈ A|K = k,Y = y)dF(y).

We also define the L2-metrics d1 and d2 as

d1(θ1, θ2) =
{
||β1 − β2||2 +

∫
|�1(t) − �2(t)|2dμ1(t) + E |φ1(W ) − φ2(W )|2

}1/2

,

and

d2(θ1, θ2) =
{
||β1 − β2||2 +

∫ ∫
|(�1(u) − �1(v)) − (�2(u) − �2(v))|2dμ2(u, v)

+E |φ1(W ) − φ2(W )|2
}1/2

.
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To establish the consistency of the estimators, we need the following regularity
conditions.

C1. The maximum spacing of the knots, maxl+1≤i≤mn+l+1 |si − si−1| = O(n−v)

with mn = O(nv) for 0 < v < 0.5.
C2. The true parameter θ0 = (β0,�0, φ0) ∈ R0 × F × Fr with �0(τ ) ≤ M for a

constant M > 0, and r = l + a > 0.5, where

Fr = {g(·) : |g(l)(w1) − g(l)(w2)| ≤ M0|w1 − w2|a for all 0 ≤ w1, w2 ≤ 1}

and g(l) is the lth derivative function of g.
C3. The measure μi × F is absolutely continuous with respect to νi , for i = 1, 2.
C4. The function Mps

0 defined by Mps
0 (X) = ∑K

j=1 N (TK , j ) log(N (TK , j )) satisfies

PM ps
0 (X) < ∞.

C5. The function M0 defined by M0(X) = ∑K
j=1 N (Tj ) log(N (TK , j )) satisfies

PM0(X) < ∞.
C6. C = supp(F), is a bound set in R

d+2. Thus there exist z0 and v0 such that
P(|Z | ≤ z0) = 1 and P(|V | ≤ v0) = 1. That is, the covariates Z and V are
uniformly bounded.

C7. If with probability 1, Z ′b + Vψ(W ) + ζ(TK ,K ) = 0 for some b, ψ and ζ , then
b = 0, ψ = 0 and ζ = 0.

C8. There exists a positive integer K0 such that P(K ≤ K0)=1.

Conditions C1 and C2 are common assumptions in semiparametric estimation prob-
lems.ConditionsC4-C6 andC8 similar to those required byWellner andZhang (2007).
Conditions C3 and C7 are needed for identifiability of the model.

Theorem 3.1 (Consistency). Suppose that conditions C1-C8 hold.

(i) If μ1([b, τ ]) > 0 for 0 < b < τ , then

lim
n→∞ d1((β̂

ps
n , �̂

ps
n 1[0,b], φ̂ ps

n ), (β0,�01[0,b], φ0)) = 0 in Probability.

If μ1({τ }) > 0,

lim
n→∞ d1(θ̂

ps
n , θ0) = 0 in Probability.

(ii) If γ ([b, τ ]) > 0 for 0 < b < τ , then

lim
n→∞ d2((β̂n, �̂n1[0,b], φ̂n), (β0,�01[0,b], φ0)) = 0 in Probability.

If γ ({τ }) > 0, then

lim
n→∞ d2(θ̂n, θ0) = 0 in Probability.

To establish the rate of convergence and the asymptotic normality, we need addi-
tional conditions.
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C9. For some positive constant c0, E[exp{c0N (τ )}] < ∞.
C10. P(∩K

j=1{TK , j ∈ [τ0, τ ]}) = 1 with τ0 > 0 and �0(τ0) > 0.
C11. There exists a positive constant s0 such that

P

(
min

1≤ j≤K
{TK , j − TK , j−1} ≥ s0

)
= 1.

C12. �0 is differentiable and the derivative has a positive and finite lower and upper
bounds in [τ0, τ ].

C13. There exists η1, η2 ∈ (0, 1) such that a′Var(Z |U, V,W )a ≥ η1a′E(Z ′Z |U, V,

W )a a.s. for all a ∈ R
d , and Var(V |U,W ) ≥ η2E(V 2|U,W ), where (U,Y )

has distribution ν1/ν1(R
+ × C).

C14. There exists η1, η2 ∈ (0, 1) such that

a′Var(Z |U1,U2,Y )a ≥ η1E(Z ′Z |U1,U2,Y )a, a.s.

for all a ∈ R
d , and Var(V |U1,U2,W ) ≥ η2E(V 2|U1,U2,W ), where

(U1,U2,Y ) has distribution ν2/ν2(R
+2 × C).

Conditions C9-C14 and their justifications are similar to those given inWellner and
Zhang (2007).

Theorem 3.2 (Rate of Convergence). Suppose that conditions C1-C10 hold.

(i) If condition C13 holds, then n
1−v
3 d1(θ̂

ps
n , θ0) = Op(1).

(ii) If conditions C11, C12 and C14 hold, then n
1−v
3 d2(θ̂n, θ0) = Op(1).

Theorem 3.3 (Asymptotic Normality). Suppose that 1
6r−2 < v < 1

4 with r > 1
and the conditions C1-C12 hold. Define H1 = {h1 : h1 ∈ R

d , ||h1|| ≤ 1} and
H2 = {h2 : h2 is a function with bounded total variation in [0, τ ], h2(0) = 0}.
(i) If condition C13 holds, then for (h1, h2, h3) ∈ H1 × H2 × Fr ,

h′
1
√
n(β̂

ps
n − β0) + √

n
∫

{�̂ps
n (t) − �0(t)}dh2(t)

+√
n

∫
{φ̂ ps

n (w) − φ0(w)}dh3(w)

→d N (0, σ 2
ps),

where σ 2
ps is given in (7.5).

(ii) If condition C14 holds, then for (h1, h2, h3) ∈ H1 × H2 × Fr ,

h′
1
√
n(β̂n − β0) + √

n
∫

{�̂n(t) − �0(t)}dh2(t)

+√
n

∫
{φ̂n(w) − φ0(w)}dh3(w)

→d N (0, σ 2),
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where σ 2 is given in (7.6).

Remark The proofs of these theorems are given in Appendix. In particular, Theorem
3.3.1 of van der Vaart andWellner (1996, page 310) cannot be directly applied to prove
Theorem 3.3 because the rate of convergence for the proposed estimators is no longer
n−1/2. We will show the theorem by modifying the conditions required by Theorem
3.3.1 of van der Vaart and Wellner (1996, page 310).

4 Simulation study

To assess the performance of the proposed estimation procedure, we conducted sim-
ulation studies under various situations with the focus on the estimation of β0. In the
study, we considered a bivariate covariate Z = (Z1, Z2)

′, where Z1 ∼ N (1, 1) and
Z2 ∼ Uniform(−1, 1). The covariates V andW followed a Bernoulli distribution with
success probability 0.5 and a standard uniform distribution over [0, 1]. The follow-up
time Ci were generated by min(C̃i , τ ), where C̃i ∼ Uniform(2, 9) and τ = 8.

For the observation process, we considered two scenarios. One is to assume that
the observation times are independent of covariates and the other is to suppose that the
observation process depends on the covariate Z . For the i-th subject, the number of real
observation times K ∗

i wasgenerated fromadiscrete uniformdistributionbetween1 and
5 for the former setup, and it followed a Poisson distribution with mean {Ci exp(Z1i +
Z2i )/τ } for the latter one. Furthermore, the observation times (TKi ,1, . . . , TKi ,K ∗

i
)

were the order statistics of a random sample of size K ∗
i from the uniform distribution

over (0,Ci ).
Given K ∗

i and (TKi ,1, . . . , TKi ,K ∗
i
), we generated the panel counts Ni (TKi , j ) from

Ni (TKi , j )=Ni (TKi ,1) + {Ni (TKi ,2) − Ni (TKi ,1)} + · · · + {Ni (TKi , j ) − Ni (Ti, j−1)},

for j = 1, . . . , K ∗
i and i = 1, . . . , n. In the above, Ni (t) follows a Poisson distribution

with mean t2 exp{Z1iβ10 + Z2iβ20 + Viφ0(Wi )}/2 , where φ0(w) = 2 sin(2w +
0.1) + exp(−0.5w). The results given below are based on n = 100 or 200, and 500
replications with a bootstrap sample size 100.

Table 1 presents the simulation results by using the proposed maximum pseudo-
likelihood andmaximum likelihood approaches for the situationwhere the observation
process is independent of covariates and (β10, β20) = (1, 1), (1, 0), (1,−1), (0, 1), or
(0, 0). The table includes the estimated bias (BIAS) given by the averages of the point
estimatesminus the true value of (β10, β20), the sample standard errors of the estimates
(SSE), the means of the bootstrap standard error estimates (BSE), and the empiri-
cal 95% coverage probabilities (CP) for (β10, β20). It can be seen that the estimates
(β̂

ps
10 , β̂

ps
20 ) and (β̂10, β̂20) seem to be unbiased and the two standard error estimates

are quite close to each other, indicating that the bootstrap variance estimation pro-
cedure provides reasonable estimates. In particular, the maximum likelihood method
yields smaller standard error estimates than themaximumpseudo-likelihood approach.
Moreover, the empirical coverage probabilities suggest that the normal approximation
seems to be appropriate.
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Table 1 Simulation results for covariate-independent observation processes

Method n (β10, β20) BIAS SSE BSE CP

Maximum
pseudo-
likelihood

100 (1,1) (0.0001,0.0005) (0.0094,0.0202) (0.0110,0.0233) (0.966,0.980)

(1,0) (0.0003,0.0000) (0.0099,0.0209) (0.0114,0.0230) (0.976,0.968)

(1,−1) (0.0007,−0.0007) (0.0091,0.0201) (0.0116,0.0232) (0.974,0.974)

(0,1) (0.0013,0.0000) (0.0185,0.0354) (0.0205,0.0375) (0.954,0.948)

(0,0) (0.0004,0.0013) (0.0195,0.0334) (0.0210,0.0376) (0.954,0.962)

200 (1,1) (0.0003,−0.0004) (0.0055,0.0118) (0.0061,0.0129) (0.970,0.964)

(1,0) (−0.0002, 0.0002) (0.0057,0.0123) (0.0063,0.0132) (0.960,0.960)

(1,−1) (0.0002,0.0000) (0.0057,0.0121) (0.0062,0.0132) (0.958,0.962)

(0,1) (−0.0002, 0.0009) (0.0112,0.0239) (0.0122,0.0230) (0.960,0.930)

(0,0) (0.0006,0.0002) (0.0122,0.0219) (0.0125,0.0225) (0.936,0.954)

Maximum
likelihood

100 (1,1) (0.0000,−0.0003) (0.0069,0.0146) (0.0079,0.0166) (0.976,0.970)

(1,0) (0.0002,−0.0001) (0.0071,0.0142) (0.0082,0.0165) (0.962,0.970)

(1,−1) (0.0000,0.0002) (0.0070,0.0142) (0.0078,0.0164) (0.962,0.972)

(0,1) (−0.0002, 0.0021) (0.0148,0.0285) (0.0163,0.0305) (0.964,0.954)

(0,0) (−0.0013, 0.0002) (0.0162,0.0283) (0.0170,0.0302) (0.960,0.954)

200 (1,1) (0.0000,0.0000) (0.0044,0.0093) (0.0047,0.0099) (0.964,0.952)

(1,0) (0.0000,−0.0002) (0.0047,0.0093) (0.0050,0.0101) (0.956,0.962)

(1,−1) (−0.0003,−0.0002) (0.0043,0.0093) (0.0046,0.0099) (0.956,0.964)

(0,1) (−0.0004, 0.0012) (0.0097,0.0179) (0.0100,0.0190) (0.950,0.972)

(0,0) (−0.0007, 0.0002) (0.0101,0.0172) (0.0106,0.0191) (0.954,0.962)

The results for the situation where the observation times depend on the covariates
Z are given in Table 2 in which other setups are the same as those in Table 1. As
shown in Table 2, the conclusions are similar to those from Table 1 and indicate that
the proposed estimation procedure seems to perform well for the scenarios considered
here.

Table 3 presents the simulation results of nonparametric estimates for (β10, β20) =
(1, 1) indicating that the estimated φ0(W ) seems to be unbiased. The conclusions are
similar when (β10, β20) = (1, 0), (1,−1), (0, 1), or (0, 0). Our proposed estimation
procedure for φ0 by the B-spline function approximation performs well for all the
scenarios in the simulation study.

In addition, we have investigated the computation time of our simulation programs
in MATLAB using a PC with Intel Xeon CPU E5520 2.27 GHz. For 500 replications
with n=200, it would take about 100 hours for the pseudo-likelihood approach and 15
hours for the likelihood approach.

5 An application

To illustrate the proposed methodology given in the previous sections, we apply it
to the bladder cancer study conducted by the Veterans Administration Cooperative
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Table 2 Simulation results for covariate-dependent observation processes

Method n (β10, β20) BIAS SSE BSE CP

Maximum
pseudo-
likelihood

100 (1,1) (0.0003,−0.0010) (0.0087,0.0177) (0.0087,0.0201) (0.940,0.966)

(1,0) (0.0004,−0.0002) (0.0093,0.0196) (0.0096,0.0217) (0.946,0.952)

(1,−1) (0.0001,0.0009) (0.0093,0.0208) (0.0099,0.0225) (0.956,0.952)

(0,1) (0.0003,−0.0041) (0.0224,0.0406) (0.0227,0.0417) (0.946,0.972)

(0,0) (−0.0012,−0.0011) (0.0252,0.0386) (0.0229,0.0421) (0.936,0.958)

200 (1,1) (0.0001,0.0004) (0.0054,0.0114) (0.0052,0.0121) (0.930,0.958)

(1,0) (0.0002,0.0005) (0.0062,0.0119) (0.0058,0.0128) (0.910,0.958)

(1,−1) (−0.0001,−0.0001) (0.0062,0.0140) (0.0059,0.0134) (0.922,0.932)

(0,1) (−0.0002, 0.0006) (0.0146,0.0267) (0.0137,0.0261) (0.938,0.936)

(0,0) (−0.0002,−0.0020) (0.0163,0.0269) (0.0145,0.0259) (0.934,0.936)

Maximum
likelihood

100 (1,1) (−0.0004, 0.0001) (0.0059,0.0138) (0.0071,0.0155) (0.972,0.988)

(1,0) (−0.0002, 0.0008) (0.0066,0.0134) (0.0075,0.0156) (0.972,0.964)

(1,−1) (−0.0001, 0.0006) (0.0063,0.0141) (0.0074,0.0160) (0.968,0.960)

(0,1) (0.0000,0.0010) (0.0146,0.0278) (0.0160,0.0311) (0.964,0.962)

(0,0) (−0.0009,−0.0018) (0.0156,0.0290) (0.0170,0.0310) (0.956,0.968)

200 (1,1) (0.0001,0.0001) (0.0036,0.0081) (0.0041,0.0093) (0.968,0.966)

(1,0) (0.0000,0.0005) (0.0042,0.0084) (0.0045,0.0093) (0.952,0.962)

(1,−1) (0.0003,0.0002) (0.0041,0.0084) (0.0043,0.0093) (0.946,0.970)

(0,1) (0.0000,−0.0002) (0.0088,0.0174) (0.0097,0.0192) (0.962,0.956)

(0,0) (0.0000,−0.0005) (0.0103,0.0181) (0.0105,0.0190) (0.942,0.954)

Urological Research Group (Byar 1980; Andrews and Herzberg 1985; Sun and Wei
2000). In the original study, patients with superficial bladder tumors were randomly
divided into three treatment groups (placebo, thiotepa and pyridoxine) and followed
for 53 months. At the beginning of the study, two important baseline characteristics,
the number of initial bladder tumors and the size of the largest initial tumor, were
observed for each patient. After removing all the initial tumors, many patients had
multiple recurrences of tumors during the study. At each clinical follow-up visit, the
visit time and the number of recurrent tumors between visits were recorded, and then
the recurrent tumors were removed. Following Sun and Wei (2000), we will focus on
patients in the thiotepa (38) and placebo (47) groups.

For the analysis, we defined Z to be 1 if the patient was given the thiotepa treat-
ment and 0 otherwise. Let V denote the number of initial bladder tumors, and W
be the natural logarithm of the size of the largest initial tumor plus 1. Assume that
the occurrence process of the bladder tumors can be described by model (1.2). Our
model specification regarding (Z; V ;W ) was based on the previous literature. Both
the number of initial tumors and the size of the largest initial tumor have been widely
used as important diagnostic factors in cancer studies. Among others, Sun and Wei
(2000) and Zhang (2002) concluded that the number of initial bladder tumors is sig-
nificantly positively related with the tumor recurrence rate but the size of the largest
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Table 4 Results of the estimated functional effect of the number of the initial tumors on the tumor recurrence
rate

Size Maximum pseudo-likelihood Maximum likelihood

φ̂
ps
0 (W ) 95% pointwise bootstrap CI φ̂0(W ) 95% pointwise bootstrap CI

1 0.2200∗ (0.0526, 0.4227) 0.2325∗ (0.0356, 0.4526)

2 0.0296 (−11.4648, 0.4819) 0.0673 (−11.9842, 0.4854)

3 0.2923∗ (0.0045, 0.8261) 0.2708∗ (0.0540, 0.8248)

4 −0.5134 (−6.5228, 0.9392) −0.1731 (−8.0308, 1.2608)

5 0.1993 (−5.4838, 1.4465) 0.3540 (−6.5023, 1.4312)

6 −0.2365 (−3.6525, 1.0312) −0.3196 (−4.0047, 0.6203)

7 −2.6712 (−10.3878, 10.4999) −2.8510 (−12.2190, 11.4039)

∗ P-value ≤ 0.05

initial tumor does not have a significant effect. Therefore, we examined the size of the
largest initial tumor (W ) as a potential moderator (effect modifier) of the association
between the tumor recurrence and the number of initial bladder tumors (V ). With a
bootstrap sample size 1000, the application of the maximum pseudo-likelihood pro-
cedure yielded β̂

ps
0 = −1.2957 with an estimated standard error of 0.3713, while

we obtained β̂0 = −0.8271 with an estimated standard error of 0.3828 by applying
the maximum likelihood approach. Both results suggest that the thiotepa treatment
significantly reduced the recurrence rate of the bladder tumors.

Table 4 presents the estimated φ0(W ) and its 95% pointwise bootstrap confidence
interval for the functional effect of the number of initial tumors on the tumor recurrence
rate based on both maximum pseudo-likelihood and maximum likelihood approaches.
The results indicate that the number of initial tumors seems to be positively associated
with the tumor recurrence rate only when the size of the largest initial tumor is 1
or 3, while the association is insignificant elsewhere. The difference is related to the
unbalanced sample sizes for the stratified subgroups defined by W . In particular, the
observed sample sizes are n = 48 (for W = 1), n = 10 (for W = 2), n = 16 (for
W = 3), n = 5 (for W = 4), n = 2 (for W = 5), n = 3 (for W = 6), and n = 1 (for
W = 7). Therefore, the statistical power to reject H0 : φ0(W ) = 0 would be relatively
low due to the small sample size at most values of W except for W = 1 or 3. A 95%
bootstrap confidence band could be an alternative approach, but it would be wide and
not as informative as the 95% pointwise bootstrap confidence interval due to the small
sample size in this application example.

The conclusion is comparable with those given by Sun and Wei (2000), Zhang
(2002), Wellner and Zhang (2007) and Lu et al. (2009) among others, but the pro-
posed model reveals more insight on how the effect of the number of initial tumors
is moderated by the size of the largest initial tumor. In practice, one may specify
(Z; V ;W ) under a conceptual model according to research questions in which W is
a possible moderator (effect modifier) of the association between the recurrent event
process and covariate V .
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6 Remarks

In this article, we have considered regression analysis of panel count data when certain
covariates have nonlinear effects on recurrent events. For estimation of the constant and
functional coefficients and the baselinemean function,wehavedeveloped spline-based
pseudo-likelihood/likelihood approaches that yield the consistency and asymptotical
normality of the estimates, and proposed a new algorithm for computing the spline-
based maximum likelihood estimators. The proposed inference procedures are robust
because the obtained asymptotic results do not rely on the Poisson assumption on the
panel counts at all.

It is important tomention that Theorem3.3 shows not only the asymptotic normality
of the parametric estimators but also the asymptotic normality of the functionals of the
nonparametric estimators, which can be useful for hypothesis testing problems, while
Weller and Zhang (2007) and Lu et al. (2009) focused on the asymptotic distributions
of the parametric estimators. Similar to Theorem 3.3, we can establish the asymptotic
normality for the functionals of the estimators of the baseline mean function in the
proportional mean model proposed by Weller and Zhang (2007) and Lu et al. (2009).
In addition, we can also derive the asymptotic normality of the functionals of the spline
likelihood-based estimators proposed byLu et al. (2007), and thus construct a newclass
of nonparametric tests, which could be more powerful than the existing nonparametric
tests for nonparametric comparison of several treat groups with panel count data.

Note that in the foregoing we have assumed that the recurrent event process is
independent of the observation times given covariates. To relax this assumption, we
can consider the observation history as a covariate in the model and thus, the proposed
method can be generalized to the dependent case. Also note that the censoring time
has not been considered. Clearly, the proposed estimation procedures work under the
independent censoring. However, if the censoring time is informative, a joint model-
ing approach needs to be developed for further research. In addition, developing an
appropriate model-checking procedure for our proposed method is an important direc-
tion for future research. Another research direction would involve high-dimensional
partially linear proportional mean model with panel count data.
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Appendix: Proofs of asymptotic results

In this section we present the proofs of Theorems 3.1, 3.2 and 3.3.

Proof of Theorem 3.1

Here, we only present the proof of part (i) since part (ii) can be verified similarly.
Let
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mps
θ (X) =

K∑
j=1

[
N (TK , j ) log{�(TK , j ) exp (β ′Z + Vφ(W ))}

−�(TK , j ) exp (β ′Z + Vφ(W ))
]
,

Mps
n (θ) = Pnm

ps
θ (X), and Mps(θ) = Pmps

θ (X),

where P and Pn denote the probability measure and the empirical measure, respec-
tively. Let h(x) = x log x − x + 1. Note that h(x) ≥ (x − 1)2/4 for 0 ≤ x ≤ 5. For
any θ in a sufficiently small neighborhood of θ0,

Mp(θ0) − Mp(θ)

=
∫

�(u) exp{Z ′β + vφ(w)}h
(

�0(u) exp(z′β0 + vφ0(w))

�(u) exp(z′β + vφ(w))

)
dν1(u, z, v, w)

≥ 1

4

∫
�(u) exp{Z ′β + vφ(w)}

{
�0(u) exp(z′β0 + vφ0(w))

�(u) exp(z′β + vφ(w))
− 1

}2

dν1(u, z, v, w).

(7.1)

Then, using (7.1) and the arguments similar to those in Wellner and Zhang (2007),
we can show that Mps(θ0) = Mps(θ) if and only if β = β0, �(t) = �0(t) a.e. with
respect to μ1, and φ = φ0 by C3 and C7.

By the similar arguments as those used in Wellner and Zhang (2007) again, we can
also show that �̂ps

n (t) is uniformly bounded in probability for t ∈ [0, b] ifμ1([b, τ ]) >

0 for some 0 < b < τ or t ∈ [0, τ ] if μ1({τ }) > 0.
By Helly-Selection Theorem and compactness of 
n , it follows that θ̂

ps
n =

(β̂
ps
n , �̂

ps
n , φ̂

ps
n ) has a subsequence θ̂

ps
nk = (β̂

ps
nk , �̂

ps
nk , φ̂

ps
nk ) converging to θ+ =

(β+,�+, φ+), where �+ is a nondecreasing bound function on [0, b] for 0 < b < τ

and it can be defined on [0, τ ] if μ1({τ }) > 0.
Note that 
n is compact, and the function mps

θ (x) is upper semicontinuous in θ for
almost all x . Furthermore, mps

θ (X) ≤ Mps
0 (X) < ∞ with PM ps

0 (X) < ∞ by C4.
Thus, by Theorem A.1 of Wellner and Zhang (2000), we have

lim sup
n→∞

sup
θ∈
n

(Pn − P)mps
θ (X) ≤ 0 a.s. (7.2)

By the Dominated Convergence Theorem and C4, Mps(θ) is continuous in θ .
Therefore, for any ε > 0, there exists φ∗

0 ∈ 	n such that

Mps(β0,�0, φ0) − ε ≤ Mps(β0,�0, φ
∗
0 ) with ||φ0 − φ∗

0 ||∞ = o(1).

Clearly,

Mps
n (β0,�0, φ

∗
0 ) − Mps(β0,�0, φ

∗
0 ) = op(1)
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and

Mps
n (β0,�0, φ

∗
0 ) ≤ Mps

n (β̂
ps
n , �̂

ps
n , φ̂

ps
n ).

Then, using (7.2) and the arguments similar to those used in Lu et al. (2009), we can
show thatMps(θ+) = Mps(θ0), which yieldsβ+ = β0,�+ = �0, a.e., andφ+ = φ0.
Therefore, we obtain the weak consistency of (β̂

ps
n , �̂

ps
n , φ̂

ps
n ) in the metric d1.

Proof of Theorem 3.2

To obtain the rate of convergence, we will apply Theorem 3.2.5 of Van der Vaart
and Wellner (1996). Let mps

θ (X), Mps
n (θ), and Mps(θ) be as defined in Appendix

A.1. Let μ(u, v, w) = �(u) exp{vφ(w)}, μ0(u, v, w) = �0(u) exp{vφ0(w)} and
g(t) = μt (U, Z , V,W ) exp(Z ′βt ), where (U, Z , V,W ) ∼ ν1, μt = tμ + (1− t)μ0,
βt = tβ + (1 − t)β0 for 0 ≤ t ≤ 1. Then,

�(U )eZ
′β+Vφ(W ) − �0(U )eZ

′β0+Vφ0(W ) = g(1) − g(0).

By the mean value theorem, there exits a 0 ≤ ξ ≤ 1 such that g(1) − g(0) = g′(ξ).
Since

g′(ξ) = exp(Z ′βξ )[(μ − μ0)(U, V,W ) + {μ0 + ξ(μ − μ0)}(U, V,W )Z ′(β − β0)]
= exp(Z ′βξ )[(μ − μ0)(U, V,W ){1 + ξ Z ′(β − β0)}

+μ0(U, V,W )Z ′(β − β0)],

then from (7.1) we have

Mps(θ0) − Mps(θ)

≥ c1

∫ {
�(u) exp(z′β + vφ(w)) − �0(u) exp(z′β0 + vφ0(w))

}2
dν1(u, z, v, w)

= c1

∫
[(μ − μ0)(u, v, w){1 + ξ z′(β − β0)}

+μ0(u, v, w)z′(β − β0)]2dν1(u, z, v, w)

= c1ν1(g1h1 + g2)
2

for a constant c1, where g1(U, Z , V,W ) = Z ′(β − β0)μ0(U, V,W ), g2(U,

V,W ) = (μ − μ0)(U, V,W ), and h1(U, Z , V,W ) = 1 + ξ
(μ−μ0)(U,V,W )

μ0(U,V,W )
in the

notation of Lemma 8.8 of van der Vaart (2002, page 432). To apply van der Vaart’s
Lemma, we need to show that

{ν1(g1g2}2 ≤ cν1(g
2
1)ν1(g

2
2) (7.3)
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for a constant c < 1. By the Cauchy-Schwarz inequality and condition (C13), we can
show that (7.3) holds for c = 1 − η1. Let

�t = t� + (1 − t)�0, φt = tφ + (1 − t)φ0, Q(t) = �t (U )eVφt (W ).

Then

g2(U, V,W ) = Q(1) − Q(0) = Q′(ζ ) for 0 ≤ ζ ≤ 1,

and

ν1(g
2
2) = ν1((h2g3 + g4)

2)

where g3(U, V,W ) = V (φ(W ) − φ0(W ))�0(U ), g4(U ) = (� − �0)(U ), and
h2(U, V,W ) = 1 + ζ

(�−�0)(U )
�0(U )

. Similarly, we can show that

{ν1(g3g4}2 ≤ (1 − η2)ν1(g
2
3)ν1(g

2
4).

So, by van der Vaart’s Lemma, we have

ν1(g1h + g2)
2 ≥ cd21 (θ, θ0).

To derive the rate of convergence, next we need to find a ϕn(δ) such that

E

{
sup

d1(θ,θ0)<δ

√
n|(Pn − P)(mps

θ (X) − mps
θ0

(X))|
}

≤ cϕn(δ).

Let

F ps
δ =

{
mps

θ (X) − mps
θ0

(X) : d1(θ, θ0) ≤ δ
}

.

From the result of Theorem 2.7.5 of Van der Vaart and Wellner (1996) and Lemma
A.2 of Huang (1999), for any ε ≤ δ, we have

log N[](ε,F ps
δ , || · ||P,B) ≤ c

(
1

ε
+ qn log

δ

ε

)
,

where || · ||P,B is the Bernstein Norm defined as || f ||P,B = {2P(e| f | − 1 − | f |)}1/2
by van der Vaart and Wellner (1996, page 324). Moreover, we can show that

||mps
θ (X) − mps

θ0
(X)||2P,B ≤ cδ2,

for any mps
θ (X) − mps

θ0
(X) ∈ F ps

δ . Therefore, by Lemma 3.4.3 of Van der Vaart and
Wellner (1996), we obtain

123



Semiparametric partially linear varying... 457

E ||n1/2(Pn − P)||F ps
δ

≤ cJ[](δ,F ps
δ , || · ||P,B)

{
1 + J[](δ,F ps

δ , || · ||P,B)

δ2n1/2

}

where

J[](δ,F ps
δ , || · ||P,B) =

∫ δ

0
{1 + log N[](ε,F ps

δ , || · ||P,B)}1/2dε

≤ cq
1
2
n

∫ δ

0

(
1 + 1

ε
+ log

δ

ε

)1/2

dε ≤ cq
1
2
n δ

1
2 .

Thus,

ϕn(δ) = cq
1
2
n δ

1
2

(
1 + cq1/2n δ1/2

δ2n1/2

)
= c(q

1
2
n δ

1
2 + qn

δn1/2
).

It is easy to see that ϕn(δ)/δ is decreasing in δ, and

r2nϕn

(
1

rn

)
= r2n

(
q

1
2
n r

− 1
2

n + qn

r−1
n n1/2

)
= r

3
2
n q

1
2
n + r3nqnn

− 1
2 ≤ cn

1
2

for rn = n
1−v
3 and 0 < v < 1/2. Hence, it follows from Theorem 3.2.5 of Van der

Vaart and Wellner (1996) that n
1−v
3 d1(θ̂

ps
n , θ0) = Op(1). Similarly, we can obtain the

rate of convergence for θ̂n .

Proof of Theorem 3.3

First, we prove part (i). Recall that

l psn (β,�, φ) =
n∑

i=1

Ki∑
j=1

[
Ni (TKi , j ) log

{
�(TKi , j )

} + Ni (TKi , j ){Z ′
iβ + Viφ(Wi )}

−�(TKi , j ) exp{Z ′
iβ + Viφ(Wi )}

]
.

We define a sequence of maps S ps
n mapping a neighborhood of (β0,�0, φ0), denoted

by U , in the parameter space for (β,�, φ) into l∞(H1 × H2 × Fr ) as :

S ps
n (θ)[h1, h2, h3]
= n−1 d

dε
l psn (β + εh1,� + εh2, φ + εh3)

∣∣∣
ε=0

= n−1
n∑

i=1

Ki∑
j=1

[{Ni (TKi , j ) − �(TKi , j ) exp(β
′Zi + Viφ(Wi ))}h′

1Zi
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+
{
Ni (TKi , j )

�(TKi , j )
− exp(β ′Zi + Viφ(Wi ))

}
h2(TKi , j )

+{Ni (TKi , j ) − �(TKi , j ) exp(β
′Zi + Viφ(Wi ))}Vih3(Wi )

]
≡ Aps

n1(θ)[h1] + Aps
n2(θ)[h2] + Aps

n3(θ)[h3]
≡ Pn(h′

1l̇
ps
β ) + Pn(l̇

ps
� [h2]) + Pn(l̇

ps
φ [h3])

≡ Pnψps(θ)[h1, h2, h3].

Correspondingly, we define the limit map S ps : U −→ l∞(H1 × H2 × Fr ) as

S ps(θ)[h1, h2, h3] = Aps
1 (θ)[h1] + Aps

2 (θ)[h2] + Aps
3 (θ)[h3],

where

Aps
1 (θ)[h1] = P

⎡
⎣ K∑

j=1

{N (TK , j ) − �(TK , j ) exp(β
′Z + Vφ(W ))}h′

1Z

⎤
⎦ ,

Aps
2 (θ)[h2] = P

⎡
⎣ K∑

j=1

{
N (TK , j )

�(TK , j )
− exp(β ′Z + Vφ(W ))

}
h2(TK , j )

⎤
⎦ ,

and

Aps
3 (θ)[h3] = P

⎡
⎣ K∑

j=1

{N (TK , j ) − �(TK , j ) exp(β
′Z + Vφ(W ))}Vh3(W )

⎤
⎦ .

To derive the asymptotic normality of the estimators (β̂
ps
n , �̂

ps
n , φ̂

ps
n ), motivated

by the proofs of Theorem 3.3.1 of Van der Vaart and Wellner (1996, page 310) and
Theorem 2 of Zeng et al. (2005) , we need to verify the following five conditions.

(a1)
√
n(S ps

n − S ps)(β̂
ps
n , �̂

ps
n , φ̂

ps
n ) − √

n(S ps
n − S ps)(β0,�0, φ0) = op(1).

(a2) S ps(β0,�0, φ0) = 0 and S ps
n (β̂

ps
n , �̂

ps
n , φ̂

ps
n ) = op(n−1/2).

(a3)
√
n(S ps

n − S ps)(β0,�0, φ0) converges in distribution to a tight Gaussian process
on l∞(H1 × H2 × Fr ).

(a4) S ps(β,�, φ) is Fréchet-differentiable at (β0,�0, φ0)with a continuously invert-
ible derivative Ṡ ps(β0,�0, φ0).

(a5) S ps(β̂
ps
n , �̂

ps
n , φ̂

ps
n ) − S ps(β0,�0, φ0) − Ṡ ps(β0,�0, φ0)(β̂

ps
n − β0, �̂

ps
n −

�0, φ̂
ps
n − φ0) = op(n−1/2).

Condition (a1) holds since

{
ψps(β,�, φ)[h1, h2, h3] − ψps(β0,�0, φ0)[h1, h2, h3] :

d1((β,�, φ), (β0,�0, φ0)) < δ, (h1, h2, h3) ∈ H1 × H2 × Fr

}
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is a Donsker class for some δ > 0, and that

sup
(h1,h2,h3)∈H

P
[
ψps(β,�, φ)[h1, h2, h3] − ψps(β0,�0, φ0)[h1, h2, h3]

]2 −→ 0,

as (β,�, φ) −→ (β0,�0, φ0) in d1.
Clearly, S ps(β0,�0, φ0) = 0. For h3 ∈ Fr , let h3n be the B-spline function

approximation of h3 with ||h3 − h3n||∞ = O(n−vr ) by Corollary 6.21 of Schu-
maker (1981, page 227). Then we have S ps

n (β̂
ps
n , �̂

ps
n , φ̂

ps
n )[h1, h2, h3n] = 0. Thus,

for (h1, h2, h3) ∈ H1 × H2 × Fr ,

√
n{S ps

n (β̂
ps
n , �̂

ps
n , φ̂

ps
n )[h1, h2, h3]}

= √
nPnψps(θ̂

ps
n )[h1, h2, h3] − √

nPnψps(θ̂
ps
n )[h1, h2, h3n]

= In1 − In2 + In3 + In4

where

In1 = √
n(Pn − P)

{
ψps(θ̂

ps
n )[h1, h2, h3] − ψps(θ0)[h1, h2, h3]

}
,

In2 = √
n(Pn − P)

{
ψps(θ̂

ps
n )[h1, h2, h3n] − ψps(θ0)[h1, h2, h3n]

}
,

In3 = √
nPn

{
ψps(θ0)[h1, h2, h3] − ψps(θ0)[h1, h2, h3n]

}
,

and

In4 = √
nP

{
ψps(θ̂

ps
n )[h1, h2, h3] − ψps(θ̂

ps
n )[h1, h2, h3n]

}
.

From (a1), we have In1 = op(1) and In2 = op(1). Next we need to show In3 = op(1)
and In4 = op(1) . Note that

E(I 2n3) = P
{
ψps(θ0)[h1, h2, h3] − ψps(θ0)[h1, h2, h3n]

}2 ≤ c||h3n − h3||2∞ → 0,

and

|In4| =
∣∣∣√nP

⎡
⎣ K∑

j=1

{
�0(TK , j ) exp(Z

′β0 + Vφ0(W ))

−�̂
ps
n (TK , j ) exp(Z

′β̂ ps
n + V φ̂

ps
n (W ))

}
V (h3(W ) − h3n(W )

] ∣∣∣
≤ c

√
nd1(θ̂

ps
n , θ0)||h3 − h3n||∞

= O(n− 1−v
3 −vr+ 1

2 )

by Theorem 3.2. Thus (a2) holds for 1
6r−2 < v < 1

2 .
Condition (a3) holds because H1 × H2 × Fr is a Donsker class and the functionals

Aps
n1, A

ps
n2, A

ps
n3 are bounded Lipschitz functions with respect to H1 × H2 × Fr .
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For (a4), by the smoothness of S ps(β,�, φ), the Fréchet differentiability holds and
the derivative of S ps(β,�, φ) at (β0,�0, φ0), denoted by Ṡ ps(β0,�0, φ0), is a map
from the space {(β−β0,�−�0, φ−φ0) : (β,�, φ) ∈ U} to l∞(H1 × H2 × Fr ) and

Ṡ ps(β0,�0, φ0)(β − β0,� − �0, φ − φ0)[h1, h2, h3]
= d

dε

{
Aps
1 (θ0 + ε(θ − θ0))[h1]

} ∣∣∣
ε=0

+ d

dε

{
Aps
2 (θ0 + ε(θ − θ0))[h2]

} ∣∣∣
ε=0

+ d

dε

{
Aps
3 (θ0 + ε(θ − θ0))[h3]

} ∣∣∣
ε=0

= −P
K∑
j=1

exp(β ′
0Z + Vφ0(W ))h′

1Z
[{

�(TK , j ) − �0(TK , j )
}

+�0(TK , j )
{
(β − β0)

′Z + V (φ(W ) − φ0(W ))
}]

−P
K∑
j=1

exp(β ′
0Z + Vφ0(W ))h2(TK , j )

[{
�(TK , j ) − �0(TK , j )

�0(TK , j )

+ {
(β − β0)

′Z + V (φ(W ) − φ0(W ))
}]

−P
K∑
j=1

exp(β ′
0Z + Vφ0(W ))Vh3(W )

[{
�(TK , j ) − �0(TK , j )

}
+�0(TK , j )

{
(β − β0)

′Z + V (φ(W ) − φ0(W ))
}]

.

Thus, we have

Ṡ ps(β0,�0, φ0)(β − β0,� − �0, φ − φ0)[h1, h2, h3]
= (β − β0)

′Qps
1 (h1, h2, h3) +

∫
(�(t) − �0(t))dQ

ps
2 (h1, h2, h3)(t)

+
∫

(φ(w) − φ0(w))dQps
3 (h1, h2, h3)(w) (7.4)

where

Qps
1 (h1, h2, h3) = −E

⎡
⎣Z exp{β ′

0Z + Vφ0(W )}
K∑
j=1

{
�0(TK , j )h′

1Z + h2(TK , j )

+�0(TK , j )Vh3(W )
} ⎤
⎦ ,

dQps
2 (h1, h2, h3)(t) = −E

⎡
⎣exp{β ′

0Z + Vφ0(W )}
K∑
j=1

1

�0(t)

{
�0(t)h′

1Z + h2(t)

+�0(t)Vh3(W )} dP(TK , j ≤ t |K ,Y )

⎤
⎦ ,
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and

dQps
3 (h1, h2, h3)(w)

= −E

⎡
⎣V exp{β ′

0Z + Vφ0(w)}
K∑
j=1

{
�0(TK , j )h′

1Z + h2(TK , j )

+�0(TK , j )Vh3(w)
} |W = w

⎤
⎦ dFW (w)

where FW denotes the cumulative distribution of W .
Next, we show that Qps = (Qps

1 , Qps
2 , Qps

3 ) is one-to-one, that is, for
(h1, h2, h3) ∈ H1 × H2 × Fr , if Qps(h1, h2, h3) = 0, then h1 = 0, h2 = 0, h3 = 0.

Suppose that Qps(h1, h2, h3) = 0. Then Ṡ ps(β0,�0, φ0)(β − β0,� − �0, φ −
φ0)[h1, h2, h3] = 0 for any (β,�, φ) in the neighborhood U . In particular, we take
β = β0 + εh1,� = �0 + εh2, φ = φ0 + εh3 for a small constant ε. Thus we have

0 = Ṡ ps(β0,�0, φ0)(β − β0,� − �0, φ − φ0)[h1, h2, h3]

= − εE

⎡
⎣exp{β ′

0Z + Vφ0(W )}
K∑
j=1

�0(TK , j )

{
h′
1Z + Vh3(W ) + h2(TK , j )

�0(TK , j )

}2
⎤
⎦ ,

which yields

h′
1Z + Vh3(W ) + h2(TK , j )

�0(TK , j )
= 0, j = 1, . . . , K , a.s.

and so h1 = 0, h2 = 0, h3 = 0 by C7.
Next we show that (a5) holds. Write

S ps(θ̂
ps
n )[h1, h2, h3] − S ps(θ0)[h1, h2, h3]

− Ṡ(β0,�0, φ0)(β̂
ps
n − β0, �̂

ps
n − �0, φ̂

ps
n − φ0)[h1, h2, h3]

= Bn1 + Bn2 + Bn3

where

Bn1 = Aps
1 (θ̂

ps
n )[h1] − d

dε

{
Aps
1 (θ0 + ε(θ̂

ps
n − θ0))[h1]

} ∣∣∣
ε=0

,

Bn2 = Aps
2 (θ̂

ps
n )[h2] − d

dε

{
Aps
2 (θ0 + ε(θ̂

ps
n − θ0))[h2]

} ∣∣∣
ε=0

,

and

Bn3 = Aps
3 (θ̂

ps
n )[h3] − d

dε

{
Aps
3 (θ0 + ε(θ̂

ps
n − θ0))[h3]

} ∣∣∣
ε=0
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It is easy to show that Bn1 = Op(d21 (θ̂
ps
n , θ0)), Bn2 = Op(d21 (θ̂

ps
n , θ0)), and Bn3 =

Op(d21 (θ̂
ps
n , θ0)). Thus, by Theorem 3.2, (a5) holds for 0 < v < 1/4.

It follows from (7.4), (a1), (a2) and (a5) that

√
n(β̂

ps
n − β0)

′Qps
1 (h1, h2, h3) + √

n
∫

{�̂ps
n (t) − �0(t)}dQps

2 (h1, h2, h3)(t)

+√
n

∫
{φ̂ ps

n (w) − φ0(w)}dQps
3 (h1, h2, h3)(w)

= −√
n(S ps

n − S ps)(β0,�0, φ0)[h1, h2, h3] + op(1),

uniformly in h1, h2 and h3.
For each (h1, h2, h3) ∈ H1 × H2 × Fr , since Qps is invertible, there exists

(hps
1 , h ps

2 , h ps
3 ) ∈ H1 × H2 × Fr such that

Qps
1 (hps

1 , h ps
2 , h ps

3 ) = h1, Q
ps
2 (hps

1 , h ps
2 , h ps

3 ) = h2, Q
ps
3 (hps

1 , h ps
2 , h ps

3 ) = h3.

Therefore, we have

h′
1
√
n(β̂

ps
n − β0) + √

n
∫

{�̂ps
n (t) − �0(t)}dh2(t)

+√
n

∫
{φ̂ ps

n (w) − φ0(w)}dh3(w)

= −√
n(S ps

n − S ps)(β0,�0, φ0)[hps
1 , h ps

2 , h ps
3 ] + op(1)

→d N (0, σ 2
ps),

where

σ 2
ps = E{ψ2

ps(β0,�0, φ0)[hps
1 , h ps

2 , h ps
3 ]}. (7.5)

To prove part (ii), we define a sequence of maps Sn mapping a neighborhood of
(β0,�0, φ0), U , in the parameter space for (β,�, φ) into l∞(H1 × H2 × Fr ) as:

Sn(θ)[h1, h2, h3] = n−1 d

dε
ln(β + εh1,� + εh2, φ + εh3)

∣∣∣
ε=0

.

WriteNi (TKi , j ) = Ni (TKi , j )−Ni (TKi , j−1),�(TKi , j ) = �(TKi , j )−�(TKi , j−1),
and h(TKi , j ) = h(TKi , j ) − h(TKi , j−1).

Then, we have

Sn(θ)[h1, h2, h3]

= n−1
n∑

i=1

Ki∑
j=1

[{Ni (TKi , j ) − �(TKi , j ) exp(β
′Zi + Viφ(Wi ))}h′

1Zi

+
{

Ni (TKi , j )

�(TKi , j )
− exp(β ′Zi + Viφ(Wi ))

}
h2(TKi , j )
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+{Ni (TKi , j ) − �(TKi , j ) exp(β
′Zi + Viφ(Wi ))}Vih3(Wi )

]
≡ An1(θ)[h1] + An2(θ)[h2] + An3(θ)[h3]
≡ Pn(h′

1l̇β) + Pn(l̇�[h2]) + Pn(l̇φ[h3])
≡ Pnψ(θ)[h1, h2, h3].

Correspondingly, we define the limit map S : U −→ l∞(H1 × H2 × Fr ) as

S(θ)[h1, h2, h3] = A1(θ)[h1] + A2(θ)[h2] + A3(θ)[h3],

where

A1(θ)[h1] = E

⎡
⎣ K∑

j=1

{N (TK , j ) − �(TK , j ) exp(β
′Z + Vφ(W ))}h′

1Z

⎤
⎦ ,

A2(θ)[h2] = E

⎡
⎣ K∑

j=1

{
N (TK , j )

�(TK , j )
− exp(β ′Z + Vφ(W ))

}
h2(TK , j )

⎤
⎦ ,

and

A3(θ)[h3] = E

⎡
⎣ K∑

j=1

{N (TK , j ) − �(TK , j ) exp(β
′Z + Vφ(W ))}Vh3(W )

⎤
⎦ .

Furthermore, the derivative of S(β,�, φ) at (β0,�0, φ0), denoted by Ṡ(β0,�0, φ0), is
amap from the space {(β−β0,�−�0, φ−φ0) : (β,�, φ) ∈ U} to l∞(H1 × H2 × Fr )

and

Ṡ(β0,�0, φ0)(β − β0,� − �0, φ − φ0)[h1, h2, h3]
= (β − β0)

′Q1(h1, h2, h3) +
∫

{�(t) − �0(t)}dQ2(h1, h2, h3)(t)

+
∫

{φ(w) − φ0(w)}dQ3(h1, h2, h3)(w)

where

Q1(h1, h2, h3)

= −E

⎡
⎣Z exp{β ′

0Z + Vφ0(W )}

×
K∑
j=1

{
�0(TK , j )h′

1Z + h2(TK , j ) + �0(TK , j )Vh3(W )
}⎤⎦ ,

dQ2(h1, h2, h3)(t)
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= −E

[
exp{β ′

0Z + Vφ0(W )}

×
K∑
j=1

{(
h′
1Z + h2(t) − h2(TK , j−1)

�0(t) − �0(TK , j−1)
+Vh3(W )

)
dP(TK , j ≤ t |K , TK , j−1,Y )

−
(
h′
1Z + h2(TK , j ) − h2(t)

�0(TK , j ) − �0(t)
+ Vh3(W )

)
dP(TK , j−1 ≤ t |K , TK , j ,Y )

}]
,

and

dQ3(h1, h2, h3)(w)

= −E
[
V exp{β ′

0Z + Vφ0(w)}

×
K∑
j=1

{
�0(TK , j )h′

1Z+h2(TK , j )+�0(TK , j )Vh3(w)
} |W = w

⎤
⎦dFW (w).

Next, we show that Q = (Q1, Q2, Q3) is one-to-one, that is, for (h1, h2, h3) ∈
H1 × H2 × Fr , if Q(h1, h2, h3) = 0, then h1 = 0, h2 = 0, h3 = 0

Suppose that Q(h1, h2, h3) = 0. Then Ṡ(β0,�0, φ0)(β − β0,� − �0, φ −
φ0)[h1, h2, h3] = 0 for any (β,�, φ) in the neighborhood U . In particular, we take
β = β0 + εh1,� = �0 + εh2, φ = φ0 + εh3 for a small constant ε. Thus we have

0 = Ṡ(β0,�0, φ0)(β − β0,� − �0, φ − φ0)[h1, h2, h3]

= − εE

⎡
⎣exp{β ′

0Z+Vφ0(W )}
K∑
j=1

�0(TK , j )

{
h′
1Z+Vh3(W ) + h2(TK , j )

�0(TK , j )

}2
⎤
⎦,

which yields

h′
1Z + Vh3(W ) + h2(TK , j )

�0(TK , j )
= 0, j = 1, . . . , K , a.s.

and so h1 = 0, h2 = 0, h3 = 0 by C7.
Similarly, we can show that S(β0,�0, φ0) = 0, Sn(β̂n, �̂n, φ̂n) = op(n−1/2), and

S(θ̂n)[h1, h2, h3] − S(θ0)[h1, h2, h3]
= Ṡ(β0,�0, φ0)(β̂n − β0, �̂n − �0, φ̂n − φ0)[h1, h2, h3] + Op(d

2
2 (θ̂n, θ0))

= Ṡ(β0,�0, φ0)(β̂n − β0, �̂n − �0, φ̂n − φ0)[h1, h2, h3] + op(n
−1/2).

for 0 < v < 1/4. Thus it follows that

√
n(β̂n − β0)

′Q1(h1, h2, h3) + √
n

∫
{�̂n(t) − �0(t)}dQ2(h1, h2, h3)(t)
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+√
n

∫
{φ̂n(w) − φ0(w)}dQ3(h1, h2, h3)(w)

= −√
n(Sn − S)(β0,�0, φ0)[h1, h2, h3] + op(1),

uniformly in h1, h2 and h3.
For each (h1, h2, h3) ∈ (h1, h2, h3), sinceQ is invertible, there exists (h∗

1,h
∗
2, h

∗
3) ∈

(h1, h2, h3) such that

Q∗
1(h

∗
1, h

∗
2, h

∗
3) = h1, Q∗

2(h
∗
1, h

∗
2, h

∗
3) = 0, Q∗

3(h
∗
1, h

∗
2, h

∗
3) = h3.

Thus, we have

h′
1
√
n(β̂n − β0) + √

n
∫

{�̂n(t) − �0(t)}dh2(t)

+√
n

∫
{φ̂n(w) − φ0(w)}dh3(w)

= −√
n(Sn − S)(β0,�0, φ0)[h∗

1, h
∗
2, h

∗
3] + op(1)

→d N (0, σ 2),

where

σ 2 = E{ψ2(β0,�0, φ0)[h∗
1, h

∗
2, h

∗
3]}. (7.6)
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