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Abstract: This paper introduces a penalized nonparametric maximum likelihood es-

timation of the log-hazard function in analyzing right censored data. The smoothing

splines are employed for a smooth estimation. Our main discovery is a functional

Bahadur representation, which serves as a key tool for nonparametric inference

of an unknown function. Asymptotic properties of the resulting smoothing spline

estimator of the unknown log-hazard function are established under regularity con-

ditions. Moreover, the local confidence interval of the unknown log-hazard function

are provided, as well as the local and global likelihood ratio tests. We also discuss

issues related to the asymptotic efficiency. The theoretical results are validated by

extensive simulation studies, and an application is illustrated with a real data set.
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splines.

1. Introduction

In survival analysis, the outcome variable of interest is the time till

the occurrence of an event, such as occurrence of a disease, death, divorce,

etc. The time to event or survival time is usually measured in days, weeks

or years, which is typically positive. Censored observations, of which the

survival time is incomplete, are collected frequently in medical studies, re-

liability and many other fields related to survival analysis. The most com-

mon case is right censoring. To accommodate censoring, state-of-the-art

statistical models and methodologies have been developed in past decades,

including parametric, semiparametric and nonparametric methods.

Parametric approaches assume that the underlying distributions of the

times to event are certain known probability distributions. For example,

the exponential, lognormal and Weibull distributions are among those com-

monly used ones. Parametric methods are appealing to practitioners owing

to their convenience and ease of interpretation (Johnson and Kotz, 1970;

Mann et al., 1974; Lawless, 1982; Kalbfleisch and Prentice, 2011). The most

extensively used semiparametric model for the analysis of survival data is

Cox’s proportional hazards model, assuming that the hazard function of the
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survival time is multiplicatively related to an unknown baseline function and

the covariates; see Cox (1972, 1975), Cox and Oake (1984), Lin and Wei

(1989), Lin and Ying (1994), Chen (2004) and Chen et al. (2010). In con-

trast to parametric models, Cox’s model makes no assumption on the shape

of the baseline hazard function, and provides easy-to-interpret information

for the relationship of the hazard function of the survival time and the co-

variates. The parameter regarding the covariate effect in the Cox’s model is

usually estimated by maximizing the partial likelihood, and its large-sample

properties are beautifully justified with the martingale theory; see Ander-

son and Gill (1982), Kosorok (2008), Fleming and Harrington (2011). In

the analysis of survival data, important alternative semiparametric models

to the Cox’s proportional hazards model are the accelerated failure time

model (AFT) and the transformation models, which assumes the logarithm

of the survival time or an unknown but monotonic transformation of the

survival time is linearly related to the covariates; see Kalbfleisch and Pren-

tice (2011), Cox and Oakes (1984), Wei (1992), Chen, Jin and Ying (2002),

Zeng and Lin (2007a, 2007b). Inference methods for the AFT model and

transformation models have been studied thoroughly in the literature; see

Buckley and James (1979), Prentice (1978), Ritov (1990), Tsiatis (1990),

Wei et al. (1990), Lai and Ying (1991a, b), Ying (1993), Lin and Chen
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(2013), Zeng et al.(2009). The additive hazards model has also been exam-

ined to be useful in modeling survival data; see Breslow and Day (1987),

Lin and Ying (1994), Jiang and Zhou (2007).

Parametric and semiparametric methods rely very much on the distri-

butional or model assumptions. However, the underlying distribution or

model is often unknown, and the inference based on the parametric and

semiparametric models may suffer from possible mis-specification. With-

out making assumption about the unknown distribution or an actual model

form, nonparametric inference concerned about the hazard rate, survival

function or density function have been proposed in the literature. And

the hazard function is closely tied to survival function or density function

through a direct relationship. The celebrated Kaplan-Meier estimator (Ka-

plan and Meier, 1958) is the nonparametric maximum likelihood estimator

of the unknown survival function, which enjoys the self-consistency and

asymptotic normality; see also Efron (1967), Breslow and Crowley (1967),

Lo and Singh (1986), Chen and Lo (1997), among many others. It is worth

mentioning that some Bahadur-type iid representation of the product limit

estimator with right censored data can be found in Lo and Singh (1986).

But the discontinuous nature of the Kaplan-Meier estimator makes the in-

ference complicated. Herein smoothed estimators of the hazard or density
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function are developed. With censored data, kernel smoothing and the

nearest neighbor smoothing on the time axis are popular approaches to

estimate the density function or the hazard function; see Beran (1981),

Tanner and Wong (1983), Dabrowska (1987), Lo, Mack and Wang (1989),

Gray (1992) and Müller and Wang (1994). Penalized likelihood methods

based on smoothing splines are proposed in the literature; see Anderson

and Senthilselvan (1980), O’Sullivan (1988) and Rosenberg (1995). It is

known that kernel estimates reflect mostly the local structure of the data,

while the estimator of the density function or the hazard function based on

smoothing splines with a global smoothing parameter enjoy certain global

properties (O’Sullivan et al. 1986).

However, to the best of our knowledge, except some consistency re-

sults of the smoothing splines hazard estimate were reported (Cox and

O’Sullivan, 1990), there are limited discussions on the asymptotic properties

of the smoothing spline estimator of the hazard function, and the existing

asymptotic representations of the product limit estimator (Lo and Singh,

1986) or the kernel smoothing estimator of the hazard function (Tanner

and Wong, 1986) are not directly applicable to the smoothing spline esti-

mator. Moreover, the nonparametric inference for the hazard function is

subject to a positive constraint, which makes the computation complicated.
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Recently, Shang and Cheng (2013) introduced a unified asymptotic frame-

work for the inference of smoothing spline estimation, which is indeed novel

and has broad applications for statistical inference. In this paper, similar

to Kooperberg et al. (1995), we target at the log-hazard rate in a non-

parametric framework and provide a penalized likelihood estimate based

on smoothing splines. Our major contribution is to establish the asymp-

totic properties of the proposed log-hazard estimator with right censored

data.

The rest of the paper is organized as follows. Some background and

preliminaries are given in Section 2. In Section 3, we establish a new func-

tional Bahadur representation (FBR) in the Sobolev space and study the

asymptotic properties of the resulting smoothing spline estimator of the

log-hazard function. We discuss the hypothesis test in Section 4 and some

simulation results are presented in Section 5. The proposed method is ap-

plied to a non-Hodgkin’s lymphoma dataset in Section 6. All technical

proofs are deferred to the supplementary.

2. Preliminaries

2.1 Notation and Methodology

We introduce some notation that will be used throughout this paper.

Let T be the survival time, let C be the censoring time and let τ be the
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end of the study. We define the observed time Y = min(T,C) and the

censoring indicator ∆ = I(T ≤ C), where I(·) is the indicator function.

Moreover, denote λ(t) as the hazard rate function of the survival time and

g0(t) = log(λ(t)). The hazard function λ(t) : [0, τ ] 7→ R is bounded away

from 0 and infinity. Without loss of generality, we consider I .= [0, τ ] = [0, 1].

Suppose that the observed data (Yi,∆i), i = 1, . . . , n, are independent and

identically distributed (i.i.d) copies of (Y,∆). Then, the log-likelihood of g

is

ln(g) = −
∫
I
exp{g(t)}Sn(t) dt+

1

n

n∑
i=1

∆ig(Yi),

where Sn(·) = n−1
∑n

i=1 I(Yi ≥ t) is the empirical survival function of Y ;

see O’Sullivan (1988). Let l(g) ≡ E{ln(g)}. A direct calculation yields that

l(g) = −
∫
I
exp{g(t)}S(t) dt+

∫
I
exp{g0(t)}g(t)S(t) dt,

where S(t) = Pr(Y ≥ t). Throughout this paper, we suppose the true

target function g0(t) belongs to the mth-order Sobolev space Hm(I) shorten

as Hm:

Hm(I) = {g : I 7→ R|g(j) is absolutely continuous for j = 0, 1, . . . ,m− 1,

g(m) ∈ L2(I)},

where the constant m > 1/2 and is assumed to be known, g(j) is the jth

derivative of g and L2(I) is the L2 space defined in I. Define J(g, g̃) =
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I g

(m)(t)g̃(m)(t) dt. The penalized likelihood of g(·) is defined as:

ln,λ(g) = ln(g)− λ

2
J(g, g),

where J(g, g) is the roughness penalty and λ is the smoothing parameter,

which converges to 0 as n→∞.

For the inference of g0(t), we propose to use B-splines to approximate

g in ln,λ(g). For the finite closed interval I, we define a partition of I:

0 = t1 = . . . = tm < tm+1 < . . . < tmn+m < tmn+m+1 = . . . = tmn+2m = 1,

with which the interval [0, 1] is partitioned into mn + 1 subintervals with

knots set I ≡ {ti}mn+2m, and mn = o(nv) for 0 < v < 1/2. Let {Bi,m, 1 ≤

i ≤ qn} denote the B-spline basis functions with qn = mn + m. Let Ψm,I

(with order m and knots I) be the linear space spanned by the B-spline

functions, that is

Ψm,I =

{
qn∑
i=1

θiBi,m : θi ∈ R, i = 1, . . . , qn

}
.

It follows from Schumaker (1981) that there exists a smoothing spline

gn(t) ∈ Ψm,I such that ‖gn(t)−g0(t)‖∞ = O(n−vm) and ‖g(t)‖∞ ≡ supt∈I |g(t)|.

Hence, we define

ĝn,λ ≡ arg max
g∈Ψm,I

ln,λ(g)

= arg max
g∈Ψm,I

{
ln(g)− λ

2
J(g, g)

}

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Nonparametric Inference for Right Censored Data 9

as the estimator of g0(t). The numerical implementation of solving the

above objective function is available in O’Sullivan (1988) with a fast com-

putation algorithm. Moreover, a data-driven method based on AIC criterion

was suggested to select the smoothing parameter λ.

2.2 Reproducing Kernel Hilbert Space

We now present some useful properties about the reproducing kernel

Hilbert space (RKHS); see Shang and Cheng (2013). Under conditions

(C1) and (C3) in the Appendix, Hm is a RKHS with the inner product

< g, g̃ >λ=

∫
I
g(t)g̃(t) exp{g0(t)}S(t) dt+ λJ(g, g̃)

and the norm ‖g‖2
λ =< g, g >λ when m > 1/2. Furthermore, there ex-

ists a positive definite self-adjoint operator Wλ : Hm 7→ Hm, which sat-

isfies: < Wλg, g̃ >λ= λJ(g, g̃) for any g, g̃ ∈ Hm. Denote V (g, g̃) =∫
I g(t)g̃(t) exp{g0(t)}S(t) dt. Then, it follows directly that

< g, g̃ >λ= V (g, g̃)+ < Wλg, g̃ >λ .

Let K(·, ·) be the reproducing kernel of Hm defined on I×I, which is known

to possess the following properties:

(P1) Kt(·) = K(t, ·) and < Kt, g >λ= g(t) for any g in Hm and any t in I.

(P2) There exists a constant cm depending only on m, such that ‖Kt‖λ ≤

cmh
−1/2 for any t ∈ I and h = λ1/(2m). Hence, we have ‖g(t)‖∞ ≤
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cmh
−1/2‖g‖λ for any g ∈ Hm.

We denote two positive sequences an and bn as an � bn if limn→∞(an/bn) =

c > 0. There exists a sequence of eigenfunctions hj ∈ Hm and eigenvalues

γj satisfying the following properties:

(P3) supj∈N ‖hj‖∞ <∞, γj � j2m, where N = {0, 1, . . .}.

(P4) V (hi, hj) = δij, J(hi, hj) = rjδij, where δij is a Kronecker delta, that

is δij = 1 when i = j; δij = 0, otherwise.

(P5) For any g ∈ Hm, we have g =
∑∞

j=0 V (g, hj)hj with convergence in the

‖ · ‖λ-norm.

(P6) For any g ∈ Hm and t ∈ I, we have ‖g‖2
λ =

∑∞
j=0 V (g, hj)

2(1 + λγj),

Kt(·) =
∑∞

j=0 hj(t)hj(·)/(1+λγj) and (Wλhj)(·) = (λγj)/(1+λγj)hj(·).

Following the arguments in Shang and Cheng (2013, page 2613), the eigen-

values and eigenfunctions can be solved through the ordinary differential

equations (ODE):

(−1)mh
(2m)
j (·) = γj exp(g0(·))S(·)hj(·),

h
(k)
j (0) = h

(k)
j (1) = 0, k = m,m+ 1, · · · , 2m− 1.

(2.1)

For ease of presentation, we introduce more notations related to the

Fréchet derivatives. Let Sn(g) and Sn,λ(g) be the Fréchet derivatives of
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ln(g) and ln,λ(g), respectively. Similarly, let S(g) and Sλ(g) be the Fréchet

derivatives of l(g) and lλ(g), respectively. Let D be the Fréchet derivative

operator and g1, g2, g3 ∈ Hm be any direction. Then, we have

Dln,λ(g)g1 = −
∫
I
exp{g(t)}g1(t)Sn(t) dt+

1

n

n∑
i=1

∆ig1(Yi)− < Wλg, g1 >λ

=< Sn(g), g1 >λ − < Wλg, g1 >λ

=< Sn,λ(g), g1 >λ,

where Sn(g) = −
∫
I exp{g(t)}KtSn(t) dt + n−1

∑n
i=1 ∆iKYi and Sn,λ(g) =

Sn(g)−Wλg. Moreover,

D2ln,λ(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)Sn(t) dt− < Wλg1, g2 >λ,

D3ln,λ(g)g1g2g3 = −
∫
I
exp{g(t)}g1(t)g2(t)g3(t)Sn(t) dt.

Further, by a direct calculation, we can express

S(g) = Dl(g) = −
∫
I
exp{g(t)}KtS(t) dt+

∫
I
exp{g0(t)}KtS(t) dt = E{Sn(g)},

as well as Sλ(g) = S(g)−Wλg. Besides,

D{S(g)g1}g2 = D2l(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)S(t) dt.
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Hence, we got the following result:

< DSλ(g0)f, g >λ = < D{S(g0)−Wλg0}f, g >λ

= < DS(g0)f, g >λ − < Wλf, g >λ

= < −
∫
I
exp{g0(t)}f(t)KtS(t) dt, g >λ − < Wλf, g >λ

= −
∫
I
g(t)f(t) exp{g0(t)}S(t) dt− λJ(g, f)

= − < f, g >λ .

Proposition 1. DSλ(g0) = −id, where id is the identity operator in Hm.

This proposition plays an important role in deriving a functional Ba-

hadur representation (FBR) of the proposed estimator.

3. Functional Bahadur Representation

In this section, we derive and present the key technical tool: functional

Bahadur representation (FBR), which laid down a theoretical foundation for

statistical inference procedures in later sections. With the help of the FBR,

we establish the asymptotic normality of the proposed smoothing spline

estimate. Likelihood ratio test procedure is also justified rigorously. To

begin with, we present a lemma regarding the consistency of the proposed

estimate for obtaining the FBR. All theoretical conditions and proofs are

deferred to Appendix.
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Lemma 1. (Consistency). Suppose conditions (C1)-(C3) given in Ap-

pendix hold. If λ(n(1−v)/2 + nvm)→ 0 as n→∞ for 0 < v < 1/2, then for

n large enough,

‖ĝn,λ − g0‖∞ = op(1),

J(ĝn,λ − g0, ĝn,λ − g0) < C̃,

where C̃ is a constant larger than 1.

In fact, the consistency of the estimator with the infinity norm can be

derived along the lines of Cox and O’Sullivan (1990). But the second result

in Lemma 1 is given by us.

To obtain the rate of convergence of the proposed estimator, we next

drive a concentration inequality of certain empirical process. Define G =

{g ∈ Hm : ‖g‖∞ ≤ 1, J(g, g) ≤ C̃}, with C̃ specified in Lemma 1. We next

define

Zn(g) ≡ 1√
n

n∑
i=1

[ϕn(Yi, g)− E{ϕn(Yi, g)}],

where ϕn(Yi, g) is a real-valued function in Hm.

Lemma 2. Suppose that ϕn(Y, g) satisfies the following condition:

‖ϕn(Y, f)− ϕn(Y, g)‖λ ≤ ‖f − g‖∞ for any f, g ∈ G. (3.1)
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Then,

lim
n→∞

P

[
sup
g∈G

‖Zn(g)‖λ
‖g‖1−1/(2m)

∞ + n−1/2
≤ {5 log log(n)}1/2

]
= 1.

By Lemmas 1 and 2, we obtain the convergence rate of our estimate,

which is presented in the following theorem:

Theorem 1. (Convergence Rate). Assume that conditions (C1)-(C3) given

in Appendix are satisfied. Then, when log{log(n)}/(nh2)→ 0 and λ{n(1−v)/2+

nvm} → 0 as n→∞,

‖ĝn,λ − g0‖λ = Op

(
(nh)−1/2 + hm

)
.

Remark 1. When h � n−1/(2m+1), Theorem 1 suggests that ĝn,λ achieves

the optimal rate of convergence when we estimate g0 ∈ Hm, that isOp(n
− m

2m+1 ).

This result is in accordance to that in Gu (1991).

Using Theorem 1, we are ready to present the key technical tool of

this paper, a new version of functional Bahadur representation compared

with that of Shang and Cheng (2013). Define Mi(t) ≡ Ni(t) −
∫ t

0
I(Yi ≥

s) exp{g0(s)} ds, which is a martingale.

Theorem 2. (Functional Bahadur Reprensentation). Assume that condi-

tions (C1)-(C3) hold. Then, if log{log(n)}/(nh2)→ 0, λ(n(1−v)/2 +nvm)→

0 as n→∞,

‖ĝn,λ − g0 − Sn,λ(g0)‖λ = Op(αn),
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where

Sn,λ(g0) =
1

n

n∑
i=1

∫
I
Kt dMi(t)−Wλg0

and

αn = n−1/2−vm + n−vm{(nh)−1/2 + hm}+ h−1/2{(nh)−1 + h2m}

+ h−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}.

In fact, Proposition 1 is crucial to derive the FBR in Theorem 2; see

the Appendix for the proofs of Theorem 2. Moreover, Theorem 2 reveals

that the “bias” of our estimate ĝn,λ can be approximated by Sn,λ(g0), a

sum of martingale integral. Applying this result, we immediately obtain

the asymptotic normality:

Theorem 3. Assume conditions (C1)-(C3) hold. For m > 3/4+
√

5/4 and

1/(4m) ≤ v ≤ 1/(2m), suppose nh4m−1 → 0 and nh3 → ∞ as n → ∞.

Then, for any t0 ∈ I,

√
nh{ĝn,λ(t0)− g(t0) + (Wλg0)(t0)} d−−→ N(0, σ2

t0
),

where σ2
t0
≡ limh→0 h

∑∞
j=0 h

2
j(t0)/(1 +λγj)

2 and
d−−→ means convergence in

distribution.

Corollary 1. Assume conditions (C1)-(C3) hold. For m > 3/2 and 1/(4m) ≤

v ≤ 1/(2m), suppose nh2m → 0 and nh3 → ∞ as n → ∞. Then, for any
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t0 ∈ I,

√
nh{ĝn,λ(t0)− g0(t0)} d−−→ N(0, σ2

t0
),

where σ2
t0

is defined the same as in Theorem 3.

Remark 2. Corollary 1 implies that, under certain under-smoothing

conditions, the asymptotic bias for the estimation of g0(t0) vanishes. Hence,

Corollary 1 together with the so-called Delta-method immediately gives the

pointwise confidence interval (CI) for some real-valued smooth function of

g0(t) at any fixed point t0 ∈ I, denoted by ρ
(
g0(t0)

)
. Let ρ̇(·) be the

first derivative of ρ(·). By Corollary 1, for any fixed point t0 ∈ I and

ρ̇
(
g0(t0)

)
6= 0, we have

P

(
ρ
(
g0(t0)

)
∈

[
ρ
(
ĝn,λ(t0)

)
± Φα

2

ρ̇
(
g0(t0)

)
σt0√

nh

])
→ 1− α

as n → ∞, where Φ(·) is the standard normal cumulative distribution

function and Φα is the lower α-th quantitle of Φ(·), that is Φ(Φα) = α.

4. Likelihood Ratio Test

With the help of the FBR, we consider further inference of g0(·) by

testing local and global hypothesis. In this section, we focus on likelihood

ratio tests for testing g0(·).

4.1 Local Likelihood Ratio Test

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Nonparametric Inference for Right Censored Data 17

We consider the following hypothesis for some pre-specified (t0, ω0):

H0 : g(t0) = ω0 versus H1 : g(t0) 6= ω0.

The penalized log-likelihood under H0, or the “constrained” penalized log-

likelihood by Shang and Cheng (2013), is defined as:

Ln,λ(g) = −
∫
I
exp{g(t) + ω0}Sn(t) dt+

1

n

n∑
i=1

∆i{g(Yi) + ω0} −
λ

2
J(g, g),

where g ∈ H0 = {g ∈ Hm : g(t0) = 0}. We consider the following likelihood

ratio test (LRT) statistic:

LRTn,λ = Ln,λ(ω0 + ĝ0
n,λ)− Ln,λ(ĝn,λ),

where ĝ0
n,λ ≡ arg maxg∈Ψ0

m,I
Ln,λ(g) is the MLE of g in

Ψ0
m,I = {

qn∑
i=1

θiBi,m,

qn∑
i=1

θiBi,m(t0) = 0}.

Clearly, H0 is a closed subset inHm, and hence it is a Hilbert space endowed

with the norm ‖ · ‖λ.

The following proposition states the reproducing kernel and penalty

operator of H0 inherited from Hm without proofs.

Proposition 2. The reproducing kernel and penalty operator of H0 inher-

ited from Hm satisfy the following properties:

(a) Recall that K(t1, t2) is the reproducing kernel for Hm under < ·, · >λ.
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Then, the bivariate function

K∗(t1, t2) = K(t1, t2)−K(t0, t1)K(t0, t2)/K(t0, t0)

is a reproducing kernel for (H0, < ·, · >λ). That is, for any t ∈ I and

g ∈ H0, we have K∗t ≡ K∗(t, ·) ∈ H0 and < K∗t , g >λ= g(t). Moreover,

we have ‖K∗‖λ ≤
√

2cmh
−1/2, where cm is the same as in P2.

(b) The operator W ∗
λ , defined by W ∗

λg ≡ Wλg −Wλg(t0)Kt0/K(t0, t0), is

bounded linear from H0 to H0 and satisfies < W ∗
λg, g̃ >= λJ(g, g̃), for

any g, g̃ ∈ H0.

Based on Proposition 2, we are in the position to derive the functional

Bahadur representation (FBR) for ĝ0
n,λ under null hypothesis, or the so-

called “restricted” FBR for ĝ0
n,λ, which will be used to obtain the limit-

ing distribution under the null. A direct calculation yields the Fréchet

derivatives of Ln,λ (along directions in H0). Consider g1, g2, g3 ∈ H0. The

first-order Fréchet derivative of Ln,λ, denoted by S0
n,λ, can be calculated as

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Nonparametric Inference for Right Censored Data 19

follows:

DLn,λ(g)g1

= −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t) dt+
1

n

n∑
i=1

∆ig1(Yi)− < W ∗
λg, g1 >λ

= −
∫ 1

0

exp{g(t) + ω0}Sn(t) < K∗t , g1 >λ dt+
1

n

n∑
i=1

∆i < K∗Yi , g1 >λ

− < W ∗
λg, g1 >λ

=< −
∫ 1

0

exp{g(t) + ω0}Sn(t)K∗t dt, g1 >λ +
1

n

n∑
i=1

∆i < K∗Yi , g1 >λ

− < W ∗
λg, g1 >λ

=< S0
n(g), g1 >λ − < W ∗

λg, g1 >λ

=< S0
n,λ(g), g1 >λ,

where S0
n(g) = −

∫ 1

0
exp{g(t)+ω0}Sn(t)K∗t dt+n

−1
∑n

i=1 ∆iK
∗
Yi

and S0
n,λ(g) =

S0
n(g)−W ∗

λg. Define S0(g) ≡ E{S0
n(g)} and S0

λ(g) ≡ S0(g)−W ∗
λg. Next, we

denote the second-order and the third-order Fréchet derivatives of Ln,λ(g) as

D2Ln,λ(g)g1g2 and D3Ln,λ(g)g1g2g3 respectively. Further calculation yields

that

D2Ln,λ(g)g1g2 = −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t)g2(t) dt− < W ∗
λg2, g1 >λ,

and

D3Ln,λ(g)g1g2g3 = −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t)g2(t)g3(t) dt.
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We consider the derivative of S0
λ(g) and obtain

DS0
λ(g)g1g2 = −

∫ 1

0

exp{g(t) + ω0}S(t)g1(t)g2(t) dt− < W ∗
λg2, g1 >λ .

Then, by defining g0
0(t) = g0(t)− ω0, we get the following important equa-

tion:

< DS0
λ(g0

0)f, g >λ =< D{S0(g0
0)}f, g >λ − < W ∗

λf, g >

= −
∫ 1

0

exp{g0
0(t) + ω0}S(t)f(t)g(t) dt− < W ∗

λf, g >λ

= − < f, g > .

We state this result as the next proposition.

Proposition 3. DS0
λ(g0

0) = −id, where id is the identity operator.

Similar to Theorem 1 in Section 3, we need to prove the rate of conver-

gence of the resulting estimator so as to obtain the FBR.

Proposition 4. (Convergence Rate). Assume conditions (C1)-(C3) hold.

Under H0, if log{log(n)}/(nh2)→ 0 and λ(n(1−v)/2 +nvm)→ 0 as n→∞,

we have

‖ĝ0
n,λ − g0

0‖λ = Op

(
(nh)−1/2 + hm

)
.

The proof of Proposition 4 is similar to that of Theorem 1 and it is

omitted. The next theorem follows directly from Propositions 2-4.
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Theorem 4. (Restricted Functional Bahadur Representation). Suppose

that conditions (C1)-(C3) are satisfied. Also, we assume that under H0,

log{log(n)}/(nh2)→ 0 and λ(n(1−v)/2 + nvm)→ 0 as n→∞. Then,

‖ĝ0
n,λ − g0

0 − S0
n,λ(g

0
0)‖λ = Op(αn),

where αn is defined in Theorem 2.

Our main result on the local likelihood ratio test follows immediately

from Theorem 4 and is presented below.

Theorem 5. (Local Likelihood Ratio Test). Assume conditions (C1)-(C3)

hold. For m > (5 +
√

21)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose that

nh2m → 0 and nh4 → ∞ as n → ∞. Furthermore, for any t0 ∈ I, if

σt0 6= 0, let ct0 = limh→0 V (Kt0 , Kt0)/‖Kt0‖2
λ ∈ (0, 1]. Then, under H0,

(i) ‖ĝn,λ − ĝ0
n,λ − ω0‖λ = Op(n

−1/2);

(ii) −2nLRTn,λ = n‖ĝn,λ − ĝ0
n,λ − ω0‖2

λ + op(1);

(iii) −2nLRTn,λ
d−−→ ct0χ

2
1.

Remark 3. The central Chi-square limiting distribution in part (iii)

of the theorem is established under those under-smoothing assumptions

in Theorem 5. One may also relax those conditions for h at the price

of obtaining a noncentral Chi-square limiting distribution. We also note
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that the convergence rate stated in theorem 5 is reasonable under local

restriction.

4.2 Global Likelihood Ratio Test

It is of paramount importance to study the global behavior of a smooth

function. In this section, we consider the following “global” hypothesis:

Hglobal
0 : g = g0 versus H1 : g 6= g0,

where g0 ∈ Hm can be either known or unknown. The penalized likelihood

ratio rest (PLRT) statistic is defined as

PLRTn,λ ≡ ln,λ(g0)− ln,λ(ĝn,λ).

We next derive the null limiting distribution of PLRTn,λ.

Theorem 6. Assume conditions (C1)-(C3) hold. For m > (3 +
√

5)/4

and 1/(4m) ≤ v ≤ 1/(2m), suppose that nh2m+1 = O(1) and nh3 → ∞

as n → ∞. Define σ2
λ ≡

∑∞
j=0 h/(1 + λγj), ρ2

λ ≡
∑∞

j=0 h/(1 + λγj)
2,

γλ ≡ σ2
λ/ρ

2
λ, νλ ≡ h−1σ4

λ/ρ
2
λ. Then, under Hglobal

0 ,

(2νλ)
−1/2(−2nγλPLRTn,λ − nγλ‖(Wλg0)(t)‖2

λ − νλ)
d−−→ N(0, 1).

It is worth noting that the null limiting distribution above remains

unchanged even when g0 in the null hypothesis is unknown. Moreover, it

can be easily verified that h � n−d with 1/(2m+1) ≤ d < 1/3 satisfies those
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conditions in Theorem 6. We can also show that n‖Wλg0‖2 = o(h−1) =

o(νλ). Thus, −2nγλPLRTn,λ is asymptotical N(νλ, 2νλ), which approaches

χ2
νλ

as n goes to infinity. In other words, we have

−2nγλPLRTn,λ
d−−→ χ2

νλ

suggesting the Wilks phenomenon holds for the PLRT.

Lastly, to conclude this section, we are going to show that the PLRT

achieves the optimal minimax rate of testing given by Ingster (1993) based

on the uniform version of the FBR. To this end, we consider the alternative

hypothesis H1n : g = gn0 , where gn0 = g0 + gn, g0 ∈ Hm and gn belongs to

the alternatives value set A = {g ∈ Hm, exp{gn(t)} ≤ ζ, J(g, g) ≤ ζ} for

some constant ζ > 0.

Theorem 7. Assume that conditions (C1)-(C3) are satisfied. For m > (3+

√
5)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose that h � n−d for 1/(2m + 1) ≤

d < 1/3 and uniformly over gn ∈ A, ‖ĝn,λ − gn0‖λ = Op

(
(nh)−1/2 + hm

)
holds under H1n : g = gn0 . Then, for any δ ∈ (0, 1), there always exist

positive constants b0 and N such that

inf
n≥N

inf
gn∈A,‖gn‖λ≥b0ηn

P (reject Hglobal
0 |H1n is true) ≥ 1− δ,

where ηn ≥
√
h2m + (nh1/2)−1. Moreover, the minimal lower bound of ηn

is n−2m/(4m+1), which can be achieved when h = h∗∗ = n−2/(4m+1).
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Importantly, when h = h∗∗ = n−2/(4m+1), Theorem 7 suggests that the

PLRT can detect any local alternatives with separation rate no faster than

n−2m/(4m+1), which is exactly the minimax rate of hypothesis testing in the

sense of Ingster (1993).

5. Simulation studies

To evaluate the theoretical results, we present the simulation results in

this section. In the simulation studies, we set v = 1/5 and the number of

knots is [3× n1/5] for spline approximation, where [x] is the integer part of

x. Fore ease of presentation, more notation is needed. We define

H ≡
∫ 1

0

exp{g(t)}B(s)B(s)>Sn(s) ds,

Ωlk ≡
∫ 1

0

B̈k,m(s)B̈l,m(s) ds, k, l = 1, 2, . . . , qn,

Ω ≡ (Ωlk) is a matrix with the (l, k) element being Ωlk, and B̈l,m(s) is

the second derivative of Bl,m(s). The following AIC criterion proposed by

O’Sullivan (1988) is used to select the smoothing parameter λ:

AIC(λ) = −ln(ĝn,λ) +
trace[(Ĥ + λΩ)−1Ĥ]

n
.

In linear algebra, the trace of an n-by-n square matrix A is defined to be

the sum of the elements on the main diagonal (the diagonal from the upper

left to the lower right) of A.

To examine the performance of the pointwise confidence interval given
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in Section 3, we compare our method with the average length of Bayesian

confidence interval proposed by Wahba (1983), denoted by LBCI. And its

corresponding coverage probability is denoted by BCP. We refer the average

length of our proposed pointwise (local) confidence interval and its coverage

probability as LLCI and LCP.

To generate data, we suppose the failure time follows the truncated

Weibull distribution on [1,∞] with density function

f(t) ∝ (t/τ)k−1 exp{−(t/τ)k}, t ∈ [1,∞],

with k = 1.5 and τ = 1.2. We generate the censoring time from the trun-

cated Weibull distribution on [1, 2] with τ = 3 and k is chosen to yield

30% and 40% censoring rate. For the estimate of g0, we compared our esti-

mator and the kernel-smoothed Nelson estimator (Müller and Wang, 1994)

denoted as Smoothed NE, which shows that the spline estimate is more

stable than the kernel method, especially at the boundary region. Here, we

set m = 2. Similar to Shang and Cheng (2013), we get the eigenvalues and

eigenfunctions through the ODE function in (2.1) and then plug in the for-

mula of the definition of σt0 . The simulation results are presented in Figures

1-2. We observe that the average length of our proposed local confidence

interval (LLCI) is shorter than that of Wahba (1983). The LCP is close to

95% for t ∈ [1.2, 1.7] and t ∈ [1.2, 1.6] with censoring rate being 30% and
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40%, respectively, while the BCP is almost 1 due to over-estimation in the

variance.

To assess the performance of the global likelihood ratio test given in

Section 4, we compute the sizes and the powers of the test based on sim-

ulated data for different situations. For this purpose, we consider the

null hypothesis Hglobal
0 : g = g0 against H1 : g 6= g0, where g0(t) =

log(k) + (k − 1) log(t) − k log(τ) with k = 1.5 and τ = 1.2. Take g1(t) =

log(k) + (k − 1) log(t) − k log(τ) + c{log(t) − log(τ)} + log(1 + c/k) with

c = 0, 0.5, 1, 1.5. To perform the test, we generate the failure time from

the truncated Weibull distribution on [1,∞] with log-hazard g1 and the

censoring time from Weibull distribution on [1, 2] with λ = 5 and k cho-

sen to yield 30% and 40% censoring rate, respectively. Again by solving

the ODE in (2.1), we can get the eigenvalues of g0 are γj ≈ (αj)2m, with

α = 1.8852 or 1.8920 for the case of 30% censoring rate with n = 250 or

500, respectively. For the case of 40% censoring rate, we get α = 1.9944

or 2.0126 with n = 250 or 500, respectively. Plugging in the value of α

and by Lemma 6.1 in Shang and Cheng (2013), we can get γλ = 1.333,

hνλ = 0.7856 or 0.7828 for the case of 30% censoring rate with n = 250 or

500, respectively, and hνλ = 0.7426 or 0.7359 for the case of 40% censoring

rate with n = 250 or 500, respectively. The results of the global likelihood
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ratio tests are reported in Table 1. The estimated size is around 5% for

c = 0, while the estimated power approaches to 1 with the increasing of the

sample size or c, which shows that the test has a good power.

6. Application

For illustration, we apply the proposed methods to analyze the study

of non-Hodgkin’s lymphoma (Dave et al., 2004). The goal of the exper-

iment is to detect the effect of follicular lymphoma on the patients’ sur-

vival time. The data were obtained from seven institutions from 1974 to

2001. The samples are from 191 patients with untreated follicular lym-

phoma, who are diagnosed at the ages from 23 to 81 years (median 51).

The follow-up times are ranging from 1.0 to 28.2 years (median 6.6). Af-

ter removing 4 samples with missing censoring indicator and observation

time, we have n = 187 samples and around 50% censoring rate. As sug-

gested by Iglewicz and Hoaglin (1973), we also calculate an outlier statistic:

Zi = 0.6745|Yi − median(Y )|/mad(Y ), where i refers to the ith subject,

median(Y ) and mad(Y ) are the median and median absolute deviation of

the 187 observation times, respectively. According to Iglewicz and Hoaglin

(1973), an observation is an outlier if Z > 3.5. In this analysis, we observe

that the 170th subject is the outlier. Then we clean it out and use the left

samples to do the data analysis. We standardize the survival times to range
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from 0 to 1. The results are summarized in Figure 3.

For comparison, we also compute the Kaplan-Meier estimate (KME),

the smoothed Kaplan-Meier estimate (Smoothed KME) and our proposed

estimate of the cumulative hazard function Λ(t). The results are presented

in the left panel of Figure 3. Our approach provides similar estimates to

that of other methods. The right panel in Figure 3 presents estimation

results of the log-hazard of our proposed method, the LCI as well as BCI.

It can be seen that the pointwise interval of our proposal is shorter than

that of Wahba (1983), which is accordance to the simulation results.

7. Conclusion

This paper focuses on the nonparametric inference of the log-hazard

function for right censored data. The major advantage of doing so is that

there is no constraint on the target function, and hence it simplifies the

computation. It is well known that the penalized nonparametric maximum

likelihood estimation is useful in balancing the smoothness and goodness-

of-fit of the resulting estimator. We adopt the approach to estimate the log-

hazard function in the presence of right censoring. On the other hand, the

idea of smoothing B-spline can also be found in the literature for a smooth

estimation, for example, Schumaker (1981). The main discovery of the arti-

cle is a functional Bahadur representation established in the Sobolev space
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Hm with a proper inner product, which serves as a key tool for nonparamet-

ric inference of the unknown parameter/function. Asymptotic properties of

the resulting estimate of the unknown log-hazard function are justified rig-

orously. The local confidence interval of the unknown log-hazard function

is provided, as well as the local and global likelihood ratio tests. We need to

emphasize that, the penalized global likelihood ratio test is able to detect

any local alternatives with minimax separation rate in the sense of Ingster

(1993), which is closely related to the asymptotic efficiency. As suggested

by one anonymous reviewer, we can extend our method to make inference of

the survival function of the form ST (t) = exp{−
∫ t

0
λ(s)ds}. The inference

procedures described in sections 3-4 can be modified accordingly.

We admit that the penalization on the coefficient of the B-spline func-

tion is not considered in the present paper, hence we cannot provide a

constant estimate even when the true function takes constant value. The

proposed inference approach can be also extended to handle other compli-

cated data, for example, interval censored data. Although this extension

seems to be conceptually straightforward, much more effort is needed to

establish the theoretical properties of the estimators. Especially, it is a

nontrivial task to develop an appropriate inner product for the Sobolev

space. This problem is under investigation and is beyond the scope of the
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current paper.

Supplementary Materials

Supplementary materials include all the technical proofs.
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Figure 1.Simulation results with around 30% censoring rate. CP: coverage probablity;

LCI: average length of confidence interval.
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Table 1.The estimated size and power of the PLRT.

Censoring rate n c = 0 c = 0.5 c = 1 c = 1.5

30% 250 0.056 0.984 1.000 1.000

500 0.048 1.000 1.000 1.000

40% 250 0.068 0.962 1.000 1.000

500 0.052 0.998 1.000 1.000

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Nonparametric Inference for Right Censored Data 38

Figure 2.Simulation results with around 40% censoring rate. CP: coverage probablity;

LCI: average length of confidence interval.

Figure 3.Analysis results of the real data. The left panel displays the cumulative

hazard estimation and the right panel presents the log-hazard estimation and its

confidence interval using different methods.
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