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a b s t r a c t

The accelerated failure time model or the multiplicative regression model is well-suited to
analyze data with positive responses. For the multiplicative regression model, the authors
investigate an adaptive variable selection method via a relative error-based criterion and
Lasso-type penalty with desired theoretical properties and computational convenience.
With fixed or diverging number of variables in regression model, the resultant estimator
achieves the oracle property. An alternating direction method of multipliers algorithm
is proposed for computing the regularization paths effectively. A data-driven procedure
based on the Bayesian information criterion is used to choose the tuning parameter. The
finite-sample performance of the proposed method is examined via simulation studies. An
application is illustratedwith an analysis of one period of stock returns in Hong Kong Stock
Exchange.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the multiplicative regression model

Yi = exp(X⊤

i β)εi, i = 1, 2, . . . , n, (1)

where Yi and Xi are pairs of response and p-vector of predictors, β = (β1, β2, . . . , βp)
⊤ is the p-vector of regression

coefficient and ε is the positive unobservable random error. Amultiplicative regressionmodel or multiplicative error model
is useful in analyzing data with positive response and heteroscedastic data, which are particularly common in economic,
finance, reliability control, biomedical studies, epidemiological and social studies, etc. The estimation of model (1) is usually
carried out by transforming the multiplicative models into linear models. However, a linear relationship in the transformed
model is not linear in the original model. The analysis results based on linear models need to be transformed back to the
original multiplicative measurement scale. A major aspect in regression analysis is variable selection or model selection. A
variety of remarkable advancements have been developed for model selection; see for example, Chen and Donoho (1994),
Tibshirani (1996), Fan and Li (2001), Shen and Ye (2002), Zou (2006), Wang and Leng (2007), Wang et al. (2007a,b), Wu et al.
(2007), Huang et al. (2008a,b), Fan et al. (2009), Pötscher and Schneider (2009), Zhang and Lu (2007), Xu and Ying (2010),
Huang et al. (2011), among many others.

The aforementioned estimation and model selection approaches are mostly based on criteria concerning the magnitude
of absolute errors, for example, the least squares (LS) and least absolute deviation (LAD). However, in many practical
applications, particularly in the analysis of heteroscedastic data, the LS and LAD methods are not adequate as they assign
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equal weights to the variables. For instance, in the analysis of a number of stocks, comparison of share prices of different
stocks is generally meaningless, especially when there is possible share split or reverse split. In lifetime data analysis, longer
life time requires more accuracy in terms of absolute error for prediction. In categorical data analysis, more accuracy for
prediction in terms of absolute error may be required for a category with larger percentage of observations. There are a
number of studies regarding relative errors in the literature; see Narula and Wellington (1977), Makridakis et al. (1984),
Khoshgoftaar et al. (1992), Makridakis (1993), Park and Stefanski (1998), Chen et al. (2010), Gneiting (2011), Kolassa and
Martin (2011), Zhang and Wang (2013), Tofallis (2014), Demongeot et al. (2015) and Chen et al. (2016), etc. In particular,
Chen et al. (2010) proposed the least absolute relative error estimation for model (1) by taking two types of relative errors:
one is the absolute error relative to the actual and the other is the absolute error relative to the predicted value of the
target, into account in the parameter estimation simultaneously, which enjoys certain dimensionless/unitless and robust
properties. Recently, in order to pursue a smooth and convex objective function incorporating relative errors, Chen et al.
(2016) introduced a superior criterion called the least product relative error estimation (LPRE) to estimate β.

As pointed out by Kolassa and Martin (2011) and Tofallis (2014), the most widely used measure for assessing prediction
in business and organizations, the mean absolute percentage error or mean magnitude of relative error: the absolute error
relative to the target, tends to selectmodels whose prediction error is low. Similar consideration can be found in Demongeot
et al. (2015) for a functional framework. A model selection approach, that would have advantages over existing methods in
terms of interpretability and prediction accuracy, is much desired. To tackle the problem, in the present paper, we consider
to borrow the ideas from Chen et al. (2016) and propose a statistical procedure based on product relative errors and Lasso-
type penalties for variable selection and parameter estimation formultiplicative errormodels. First, the proposed procedure
is based on two types of relative errors, which is symmetric in the actual and its predictor and therefore is a balanced and
superior criterion compared with the commonly-used mean absolute percentage error. Second, the resultant estimator is
dimensionless or scale-free,which retained the originalmeasurement scale. Third, the smooth and convex nature of the LPRE
allows numerical simplicity and ensures uniqueness of the solution. With certain proper choice of tuning parameters, the
resulting estimator is proved to achieve the oracle property in both settings of fixed and diverging number of variables. The
variance estimation can be carried out directly by a plug-in rule. An alternating direction method of multipliers (ADMM)
algorithm is proposed for computing the regularization paths effectively. Furthermore, we adopt a BIC-type criterion to
select the tuning parameter adaptively.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed procedure alongwith a large sample
theory including model selection consistency and the oracle property with fixed or diverging number of variables. Section 3
presents the ADMMalgorithm to compute the resulting estimator. Section 4 reports some supportive simulation results and
an application to a real dataset is given in Section 5. Some concluding remarks are given in Section 6 and all technical proofs
are deferred to Appendix.

2. Methodology and main results

Let (X⊤

1 , Y1), . . . , (X⊤
n , Yn) be n independent and identically distributed (i.i.d.) copies of (X⊤, Y ), where X = (x1, x2,

. . . , xp)⊤ is the p-vector explanatory variable. Let β0 be the true value of β. Some notations are needed for ease of
presentation. For two vectors a = (a1, . . . , ad)⊤ and b = (b1, . . . , bd)⊤, we define a·b = (a1b1, a2b2, . . . , adbd)⊤,
a·/b = (a1/b1, . . . , ad/bd)⊤. Throughout the paper, the norm ∥a∥1 =

d
j=1 |aj| and ∥ · ∥ is the Euclidean norm. For the

multiplicative regression model, the least product relative error estimation proposed by Chen et al. (2016) is defined as the
minimizer of

LPREn(β) =
1
n

n
i=1

Yi − exp(X⊤

i β)

Yi

 ×

Yi − exp(X⊤

i β)

exp(X⊤

i β)

 .
Similar to the LARE in Chen et al. (2010), the LPRE accounts for two types of relative errors simultaneously, hence it is
symmetric in the target and its predictor. The LPRE can also be regarded as the product of two weighted forms of absolute
deviations. In the present paper, we propose a variable selection approach with the product relative errors loss and Lasso-
type penalties. As pointed out by Fan and Li (2001) and Zou (2006), the Lasso does not achieve the oracle property in the
sense that it cannot simultaneously set all unnecessary regression coefficients to zero correctly with probability tending
to one as n increases while having the optimal rate of convergence. To obtain the oracle property, we consider to use the
adaptive Lasso penalty in this paper; see Zou (2006), Wang et al. (2007a,b), Zhang and Lu (2007), among many others. A
straightforward algebraic calculation of the LPRE criterion function yields

LPREn(β) =
1
n

n
i=1


Yi exp(−X⊤

i β)+ Y−1
i exp(X⊤

i β)− 2

.

To be specific, we define the penalized LPRE estimator β̂
∗

n as the minimizer of

Zn(β) =
1
n

n
i=1


Yi exp(−X⊤

i β)+ exp(X⊤

i β)Y−1
i


+ λn∥β·ω∥1, (2)
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where λn is the regularization parameter,ω = 1·/|βn|
γ

= (1/|βn1|
γ , 1/|βn2|

γ , . . . , 1/|βnp|
γ )⊤, γ is some specified positive

number, and βn is certain consistent estimator of β. In doing so, we gain several advantages. First, as evidenced in our
simulation studies in Section 4, the shrinkage and oracle property of the adaptive Lasso continue to hold in the relative error-
based regression. Second, under certain regularity conditions, the smoothness and convexity nature of the LPRE criterion
function ensures the uniqueness of the global minimizer of (2), and hence makes its penalized counterpart computationally
straightforward and easy to implement. Third, the resulting estimator enjoys the dimensionless or unit-free property.

To study large sample properties of the penalized estimator for fixed dimensionality, we now introduce more notations.
Let A = {j1, . . . , js∗} be an arbitrary candidate model index set, XA = {xj1 , . . . , xjs∗ } be the associated covariate set, and
βA = (βj1 , . . . , βjs∗ )

⊤ be the corresponding parameter. Moreover, let AT = {j : βj0 ≠ 0} be the set of all the true non-

zero parameter index and A∗
n = {j : β̂∗

nj ≠ 0} be the set of non-zero estimated coefficient index. Thereby, β̂
∗

nAT
is the

estimator corresponding to the true active set while β0AT
is the true active parameters. We note that LPREn(β0) = (1/n)n

i=1(εi + ε−1
i )− 2. Define V = E(1/ε− ε)2XX⊤ and D = E(ε+ 1/ε)XX⊤. Let VAT and DAT be the submatrices of D and V

associated with AT , respectively. The regularity conditions (C1)–(C6) are deferred to Appendix. Since a root-n consistentβn
is usually readily available when p is fixed, we would use it in the proposed procedure in practice. The following theorem
also presents the oracle property of the proposed estimator with a root-n consistentβn.

Theorem 1 (Oracle Property). Suppose Conditions (C1)–(C5) hold. If λn
√
n → 0 and λnn(γ+1)/2

→ ∞ as n → ∞, the proposed
estimator enjoys the following properties:

(a) Variable Selection Consistency: limn→∞ P(A∗
n = AT ) = 1.

(b) Asymptotic Normality:
√
n{β̂

∗

nAT
− β0AT

} → N(0,Σ) in distribution, whereΣ = D−1
AT

VAT D
−1
AT

.

Remark. The tuning parameter λn plays a key role of a balance between estimation of β and variable selection here. By
Theorem 1, one can see that the requirement on the order of λn is similar to that of Zou (2006). Theoretically, the order
of λn varies with the choice of βn. The asymptotic variance Σ is of sandwich formula and can be estimated directly via
the plug-in rule. To be specific, for β̂∗

nj = 0, the estimated variance is zero; for {β̂
∗

nA∗
n

− β0A∗
n
}, the estimated variance is

Σ̂ = (1/n)D̂−1
nA∗

n
V̂nA∗

n D̂
−1
nA∗

n
, where

D̂nA∗
n =

1
n

n
i=1

{Yi exp(−X⊤

iA∗
n
β̂

∗

nA∗
n
)+ Y−1

i exp(X⊤

iA∗
n
β̂

∗

nA∗
n
)}XiA∗

nX
⊤

iA∗
n
,

V̂nA∗
n =

1
n

n
i=1

{−Yi exp(−X⊤

iA∗
n
β̂

∗

nA∗
n
)+ Y−1

i exp(X⊤

iA∗
n
β̂

∗

nA∗
n
)}2XiA∗

nX
⊤

iA∗
n
.

With diverging number of explanatory variables, we rewrite model (1) as

Yi = exp(X⊤

ni βn)εi, i = 1, 2, . . . , n,

where Xni is the pn-vector of explanatory variables, βn is the corresponding pn-vector of regression parameters. Let βn0 be
the true value of βn, AT = {j : βnj0 ≠ 0} be the true active set. And sn = ♯{j, j ∈ AT } is the number of non-vanishing
parameters which may increase with n. For simplicity, we still write Xni as Xi for short. Similarly, we propose to obtain an
estimate of βn, denoted by β̂

⋆

n, by minimizing Zn(βn) in (2) over βn, whereβn is certain rn-consistent estimator of βn and
rn → ∞ as n → ∞. Define dn = infj∈AT |βn0j|. Under certain proper conditions, the following lemma characterizes the
concentration of β̂

⋆

n.

Lemma 1. Suppose that Conditions (C1)–(C3) and Conditions (C5)–(C6) hold. If λn = O(
√
pn/(snn)d

γ
n ) and p4n/n → 0 as

n → ∞, we have ∥β̂
⋆

n − βn0∥ = Op(
√
pn/n).

Lemma 1 tells that β̂
⋆

n is asymptotically unbiased at the same rate as that of Fan and Peng (2004), which implies that
the estimator of Chen et al. (2016) is a consistent estimator when pn is diverging with n. By Lemma 1, we can establish the
following main theorem.

Theorem 2 (Oracle Property). Assume Conditions (C1)–(C3) and Conditions (C5)–(C6) hold. If λnn1/2/dγ → 0, λnn1/2rγn /
p1/2n → ∞, p4n/n → 0 as n → ∞ and sn = O(n1/6), β̂

⋆

n must satisfy the following properties with probability tending to
one:

(a) Sparsity: β̂
⋆

nAT
c = 0, where AT

c
= {j : βnj0 = 0}.
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(b) Asymptotic Normality:
√
nAnΣ−1/2

n {β̂
⋆

nAT
− βn0AT

} → N(0,G) in distribution. Here, An is a q × sn deterministic matrix
such that AnAT

n → G as n → ∞, where G is a q × q positive definite matrix, Σn is the same as in Theorem 1 andΣ−1/2
n = V−1/2

nAT
DnAT .

By Theorem 2, with increasing number of covariates, we estimate the zero component of β̂
⋆

n to be exactly zero and
estimate the non-zero component as efficient aswhen the truemodelwas known. The asymptotic variance can be estimated
by the plug-in method.

3. Computation

3.1. The ADMM algorithm

We propose an alternating direction method of multipliers (ADMM) algorithm to solve the penalized LPRE efficiently.
The alternating direction method of multipliers (ADMM) was developed in the 1970s, with roots in the 1950s, is well suited
to large scale convex optimization; see Boyd et al. (2011), Annergren et al. (2012), Wahlberg et al. (2012) and Shi et al.
(2014), and etc. By blending the advantage of the dual ascent with the method of multipliers, the ADMM algorithm enjoys
the decomposability and superior convergence. Here, the ADMM decouples the LPRE with L1 to the smooth term and the
ordinary least squares with L1 term. For illustration, We define x∗∗

ij = xij/ωj, j = 1, 2, . . . , p. Then, X∗∗

i = Xi·/ω. The main
step is to minimize the following Lasso-type problem:

β̂
∗∗

n ≡ argmin
β

1
n

n
i=1


Yi exp(−X∗∗⊤

i β)+ Y−1
i exp(X∗∗⊤

i β)


+ λn∥β∥1.

Finally, we output β̂
∗

n = β̂
∗∗

n ·/ω. Our proposed algorithm is to solve the above Lasso-type problem. Write

Z∗

n (β) =
1
n

n
i=1


Yi exp(−X∗∗⊤

i β)+ exp(X∗∗⊤

i β)Y−1
i


+ λn∥β∥1.

Step 1: Find the minimizer of (1/n)
n

i=1


Yi exp(−X∗∗⊤

i β)+ exp(X∗∗⊤

i β)Y−1
i


, denoted by βI , which was shown to be

consistent by Chen et al. (2016).
Step 2: The following quadratic approximation is applied to reduce computational cost:

LPREn(β) ≈ LPREn(βI)+ n−1/2W ∗∗⊤

n {β − βI} + 1/2{β − βI}
⊤D∗∗

n {β − βI}

≡ LPREn(β),

where

W ∗∗

n =
1

√
n

n
i=1

{−Yi exp(−X∗∗⊤

i βI)+ Y−1
i exp(X∗∗⊤

i βI)}X
∗∗

i ,

D∗∗

n =
1
n

n
i=1

{Yi exp(−X∗∗⊤

i βI)+ Y−1
i exp(X∗∗⊤

i βI)}X
∗∗

i X∗∗⊤

i .

It follows from the definition of βI thatW
∗∗
n = 0. Thereby,

LPREn(β) = LPREn(βI)+ 1/2{β − βI}
⊤D∗∗

n {β − βI}.

Wecompute theminimizer of LPREn(β)+λn∥β∥1, which approximates theminimizer of Z∗
n (β) through the followingADMM

algorithm.
Step 3: Initiate k = 0, ρ = 1, α = 1, uk = 0, zk = 0;
Step 4: β∗

k+1 = (D∗∗
n + ρI)−1q, βk+1 = αβ∗

k+1 + (1 − α)zk, q = D∗∗
n βI + ρ(zk − uk), zk+1 = Sλn/ρ(βk+1 + uk),

uk+1 = uk + (βk+1 − zk+1). Besides, the soft thresholding operator Sκ(s) is defined as:

Sκ(s) =

s − κ, s > κ;
0, |s| < κ;

s + κ, s < −κ.

According to Boyd et al. (2011), onlywhen both ∥βk+1−zk+1∥ and ∥ρ(zk+1−zk)∥ are smaller than ϵprik+1 and ϵ
dual
k+1 respectively,

or k+1 is equal to a pre-set K , one can stop the iteration. Otherwise, we set k = k+1 and the algorithm goes back to step 4.
Here,

ϵ
pri
k+1 =

√
pϵabs + ϵrel max(∥βk+1∥, ∥zk+1∥);

ϵdualk+1 =
√
pϵabs + ϵrel∥ρuk+1∥,

where ϵabs > 0 is an absolute tolerance and ϵrel > 0 is a relative tolerance, and both of them are very small.
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Step 5: Letm represent the number of iterations. Then β̂
∗∗

n = zm.
Moreover, similar to that of Boyd et al. (2011), the superfluous parameter ρ in the ADMM algorithm can vary in different

steps to ease the computational cost. Besides, α is called the relaxation operator. For α ∈ [1.5, 1.8], it is called over-
relaxation. The performance of convergence is usually better for over-relaxation. In our algorithm, we set α = 1.8, ρ = 1,
ϵabs = 10−4 and ϵrel = 10−2.

3.2. Choice of tuning parameter

The choice of tuning parameter is of key importance for variable selection. There are many well-known methods for
choosing such regularization parameters; see Hastie et al. (2011). For practical application, we consider to minimize the
Bayesian information criterion (BIC), a consistent data-driven variable selection procedure to select λ adaptively; seeWang
et al. (2007a,b), Wang et al. (2009). For some specified γ , for example, γ = 1, the following BIC type principle is used to
select λ:

BIC1(λ) = log


1
n

n
i=1


Yi exp(−X⊤

i β̂λ,γ )+ exp(X⊤

i β̂λ,γ )Y
−1
i − 2


+ Cndfλ,γ

log(n)
n

, (3)

where dfλ,γ = ♯{j, β̂λ,γ ≠ 0}. We let Cn = 1 for fixed p. On the other hand, when pn is diverging with the sample size, Cn has
to satisfy Cnsn log(n)/n → 0 as n → ∞ theoretically. Alternatively, one may consider to minimize the following BIC-type
criterion to choose λ:

BIC2(λ) = log


1
n

n
i=1


log(Yi)− X⊤

i β̂λ,γ

2


+ Cndfλ,γ
log(n)

n
. (4)

4. Simulation studies

Simulation studies are conducted to examine the finite-sample performance of the proposedmethod comparedwith least
squares.We simulate the data from two settings of themultiplicative regressionmodel Y = exp(X⊤β0)ε. In the first setting,
we consider fixed dimensionality with p = 8 andβAT

= (1, 0.5, 0.25)⊤ orβAT
= (1.5, 2, 3)⊤. The covariate X is generated

from the multivariate normal distribution with covariance matrix V = (ρij), where ρij = σ |j−i| with σ = ±0.5,±0.8,
respectively. In the second setting, we consider a diverging number of explanatory variables with pn = [4n1/4

] − 4 where
[x] is the integer part of a real number x, and βAT

= (4, 3, 2, 1.5, 1, 2.5)⊤ or βAT
= (4, 3, 2, 1, 0.5, 0.25)⊤. The covariate

X is generated from the multivariate normal distribution with identity covariance matrix. We consider two distributions
for log(ε): N(0, 1) and Uniform[−2, 2]. Throughout the simulations, we randomly put the nonzero components in the p-
vector regression coefficient with the rest being zero. The simulations are based on 1000 replications and the sample size
n = 250, 500, 1000. To avoid a lengthy paper, we only present the results with moderate sample size n = 250 for the first
setting.

We refer our method with adaptive Lasso penalty as PR-aLasso. For comparison, we also compute the LS and LAD with
adaptive Lasso penalty, denoted by LS-aLasso and LAD-aLasso, respectively. Moreover, as it is suggested by one reviewer,
we also compare the proposed method with a straightforward application of the BIC principle when p is fixed, that is the
best subset selection for the LPRE estimate via criteria (3) and (4), denoted by BIC1 and BIC2, respectively. For the selection
of λ, we set γ = 1 for the two BIC criteria in (3) and (4), while we set Cn =

√
log(pn) in (3) and Cn = log log(pn) in

(4) for diverging pn. The results are summarized in Tables 1–6. Tables 1–4 present the selection performance of different
approaches in terms of: the rate of over-fitted models (OF) meaning the portion of A∗

n ⊃ AT , the rate of the correctly fitted
models (CF) meaning the portion of A∗

n = AT exactly, the false positive rate (FP) meaning the portion of occasions on which
the model selected contains some zero components, and the false negative rate (FN) meaning the portion of occasions on
which the model selected excludes some nonzero components. Tables 5–6 present the estimation performance in terms of
bias (BIAS), the empirical standard error (SE), the estimated standard error (SEE) and the empirical coverage probability (CP)
of the 95% confidence interval based on the normal approximation.

It can be seen from the tables that the proposed method performs the best in model selection and parameter estimation
compared with other penalized methods in all cases when log(ε) follows Uniform[−2, 2]. And the proposed method is
generally comparable to the penalized LS when log(ε) follows N(0, 1) and it is comparable to BIC1 and BIC2 in the first
setting. In particular, Tables 1–4 show that the PR-aLasso(BIC1) almost has the smallest FN in the first setting and the largest
CF in the second setting.

5. Application

The dataset to be analyzed is obtained by the Bloomberg. It consists of records for 437 companies in the Hong kong
Stock Exchange, including the monthly closed price in January and February 2012 and the values of 12 factors in January
2012 related the company: the open-price (OPX), asset turnover (ATO), profit margin (PM), degree of financial leverage
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Table 1
Variable selection results with p = 8, βAT = (βAT 1, βAT 2, βAT 3)

⊤
= (1, 0.5, 0.25)⊤ and n = 250.

σ Method log(ε) ∼ N(0, 1) log(ε) ∼ U(−2, 2)
OF CF FP FN OF CF FP FN

−0.5 BIC1 0.170 0.744 0.226 0.086 0.078 0.825 0.126 0.097
BIC2 0.064 0.839 0.104 0.097 0.066 0.720 0.130 0.214
PR-aLasso(BIC1) 0.262 0.669 0.287 0.069 0.184 0.713 0.222 0.103
PR-aLasso(BIC2) 0.166 0.744 0.191 0.090 0.140 0.702 0.175 0.158
LS-aLasso 0.170 0.740 0.189 0.090 0.163 0.658 0.209 0.179
LAD-aLasso 0.060 0.661 0.075 0.279 0.067 0.396 0.130 0.537

0.5 BIC1 0.178 0.674 0.228 0.148 0.090 0.828 0.123 0.082
BIC2 0.061 0.754 0.093 0.185 0.062 0.725 0.126 0.213
PR-aLasso(BIC1) 0.207 0.642 0.232 0.151 0.185 0.697 0.224 0.118
PR-aLasso(BIC2) 0.106 0.683 0.122 0.211 0.118 0.684 0.150 0.198
LS-aLasso 0.108 0.690 0.124 0.202 0.144 0.636 0.184 0.220
LAD-aLasso 0.023 0.468 0.033 0.509 0.037 0.353 0.081 0.610

−0.8 BIC1 0.107 0.529 0.342 0.364 0.049 0.610 0.227 0.341
BIC2 0.031 0.552 0.107 0.417 0.033 0.378 0.255 0.589
PR-aLasso(BIC1) 0.244 0.471 0.426 0.285 0.209 0.483 0.408 0.308
PR-aLasso(BIC2) 0.167 0.507 0.346 0.326 0.159 0.468 0.346 0.373
LS-aLasso 0.176 0.513 0.360 0.311 0.182 0.412 0.384 0.406
LAD-aLasso 0.060 0.446 0.237 0.494 0.051 0.146 0.208 0.803

0.8 BIC1 0.113 0.518 0.331 0.369 0.045 0.583 0.208 0.372
BIC2 0.045 0.534 0.231 0.421 0.030 0.361 0.221 0.609
PR-aLasso(BIC1) 0.192 0.500 0.352 0.308 0.126 0.477 0.315 0.397
PR-aLasso(BIC2) 0.106 0.528 0.257 0.366 0.079 0.419 0.244 0.502
LS-aLasso 0.106 0.547 0.252 0.347 0.082 0.378 0.256 0.540
LAD-aLasso 0.027 0.394 0.136 0.579 0.021 0.162 0.131 0.817

Table 2
Variable selection results with p = 8, βAT = (βAT 1, βAT 2, βAT 3)

⊤
= (1.5, 2, 3)⊤ and n = 250.

σ Method log(ε) ∼ N(0, 1) log(ε) ∼ U(−2, 2)
OF CF FP FN OF CF FP FN

−0.5 BIC1 0.198 0.802 0.198 0 0.099 0.901 0.099 0
BIC2 0.082 0.918 0.082 0 0.083 0.917 0.083 0
PR-aLasso(BIC1) 0.141 0.859 0.141 0 0.068 0.932 0.068 0
PR-aLasso(BIC2) 0.070 0.930 0.070 0 0.051 0.949 0.051 0
LS-aLasso 0.060 0.940 0.060 0 0.068 0.932 0.068 0
LAD-aLasso 0.031 0.969 0.031 0 0.065 0.935 0.065 0

0.5 BIC1 0.199 0.801 0.199 0 0.097 0.903 0.097 0
BIC2 0.064 0.936 0.064 0 0.087 0.913 0.087 0
PR-aLasso(BIC1) 0.132 0.868 0.132 0 0.069 0.931 0.069 0
PR-aLasso(BIC2) 0.043 0.957 0.043 0 0.051 0.949 0.051 0
LS-aLasso 0.045 0.955 0.045 0 0.064 0.936 0.064 0
LAD-aLasso 0.018 0.982 0.018 0 0.064 0.936 0.064 0

−0.8 BIC1 0.196 0.804 0.196 0 0.081 0.919 0.081 0
BIC2 0.078 0.922 0.078 0 0.083 0.917 0.083 0
PR-aLasso(BIC1) 0.156 0.844 0.156 0 0.069 0.931 0.069 0
PR-aLasso(BIC2) 0.082 0.918 0.082 0 0.054 0.946 0.054 0
LS-aLasso 0.081 0.919 0.081 0 0.072 0.928 0.072 0
LAD-aLasso 0.021 0.979 0.021 0 0.072 0.928 0.072 0

0.8 BIC1 0.185 0.815 0.185 0 0.079 0.921 0.079 0
BIC2 0.071 0.929 0.071 0 0.076 0.924 0.076 0
PR-aLasso(BIC1) 0.139 0.861 0.139 0 0.061 0.939 0.061 0
PR-aLasso(BIC2) 0.051 0.949 0.051 0 0.047 0.953 0.047 0
LS-aLasso 0.051 0.949 0.051 0 0.061 0.939 0.061 0
LAD-aLasso 0.015 0.985 0.015 0 0.064 0.936 0.064 0

(DFL), sales-growth rate (SGR), revenue-sequential-growth (RGR), accounts receivable turnover (ACCT), inventory-growth
to sales-growth (INVGR), price-to-book ratio (PB), the logarithm of total assets (ASSET), the logarithm of other assets (OASS),
and the price-to-earning ratio (PE). If other assets are 0, we set OASS to be 0. As pointed out by Wang et al. (2009), these
variables are among the most important explanatory factors in the prediction of future earnings. In particular, open-price
(OPX) is the security first traded on the first day in one month; asset turnover (ATO) is a financial ratio measuring the
efficiency of a company’s use of its assets; profit margin (PM) is a measure of the company’s profitability; degree of financial
leverage (DEL) summarizes the affect of a particular amount of financial leverage has on a company’s earnings; sales growth
rate (SGR), revenue-sequential-growth (RGR) and inventory-growth to sales-growth (INVGR) measure the actual previous
period growth; the account receivable turnover (ACCT) represents the average net sales in a period; price-to-book ratio is
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Table 3
Variable selection results with p = [4n1/4

] − 4 and βAT = (4, 3, 2, 1, 0.5, 0.25)⊤ .

n Method log(ε) ∼ N(0, 1) log(ε) ∼ U(−2, 2)
OF CF FP FN OF CF FP FN

250 PR-aLasso(BIC1) 0.098 0.796 0.101 0.106 0.059 0.791 0.063 0.150
PR-aLasso(BIC2) 0.174 0.769 0.181 0.057 0.145 0.734 0.150 0.121
LS-aLasso 0.182 0.762 0.187 0.056 0.171 0.684 0.179 0.145
LAD-aLasso 0.081 0.711 0.085 0.208 0.092 0.395 0.118 0.513

500 PR-aLasso(BIC1) 0.091 0.904 0.091 0.005 0.036 0.952 0.036 0.012
PR-aLasso(BIC2) 0.128 0.871 0.128 0.001 0.099 0.889 0.099 0.012
LS-aLasso 0.127 0.872 0.127 0.001 0.141 0.843 0.141 0.016
LAD-aLasso 0.059 0.912 0.059 0.029 0.088 0.625 0.092 0.287

1000 PR-aLasso(BIC1) 0.044 0.956 0.044 0 0.017 0.983 0.017 0
PR-aLasso(BIC2) 0.070 0.930 0.070 0 0.051 0.949 0.051 0
LS-aLasso 0.054 0.946 0.054 0 0.078 0.922 0.078 0
LAD-aLasso 0.018 0.982 0.018 0 0.062 0.850 0.062 0.088

Table 4
Variable selection results with p = [4n1/4

] − 4 and βAT = (4, 3, 2, 1.5, 1, 2.5)⊤ .

n Method log(ε) ∼ N(0, 1) log(ε) ∼ U(−2, 2)
OF CF FP FN OF CF FP FN

250 PR-aLasso(BIC1) 0.046 0.954 0.046 0 0.017 0.983 0.017 0
PR-aLasso(BIC2) 0.103 0.897 0.103 0 0.073 0.927 0.073 0
LS-aLasso 0.100 0.900 0.100 0 0.096 0.904 0.096 0
LAD-aLasso 0.046 0.954 0.046 0 0.102 0.898 0.102 0

500 PR-aLasso(BIC1) 0.040 0.960 0.040 0 0.010 0.990 0.010 0
PR-aLasso(BIC2) 0.076 0.924 0.076 0 0.050 0.950 0.050 0
LS-aLasso 0.065 0.935 0.065 0 0.063 0.937 0.063 0
LAD-aLasso 0.036 0.964 0.036 0 0.063 0.937 0.063 0

1000 PR-aLasso(BIC1) 0.030 0.970 0.030 0 0.010 0.990 0.010 0
PR-aLasso(BIC2) 0.046 0.954 0.046 0 0.036 0.964 0.036 0
LS-aLasso 0.033 0.967 0.033 0 0.043 0.957 0.043 0
LAD-aLasso 0.005 0.995 0.005 0 0.029 0.971 0.029 0

Table 5
Estimation results with p = 8, n = 250, log(ε) ∼ N(0, 1) and βAT = (βAT 1, βAT 2, βAT 3)

⊤
= (1.5, 2, 3)⊤ .

σ Method βAT 1 βAT 2 βAT 3

BIAS SE SEE CP (%) BIAS SE SEE CP (%) BIAS SE SEE CP (%)

−0.5 BIC1 0.001 0.084 0.075 92.1 −0.001 0.076 0.066 91.9 0.000 0.076 0.074 94.7
BIC2 0.000 0.082 0.075 92.6 −0.001 0.072 0.066 93.3 0.000 0.077 0.075 94.9
PR-aLasso(BIC1) −0.011 0.083 0.075 92.4 −0.006 0.072 0.066 92.5 −0.008 0.077 0.074 93.6
PR-aLasso(BIC2) −0.017 0.081 0.076 92.9 −0.009 0.070 0.066 92.6 −0.012 0.076 0.075 93.6
LS-aLasso −0.012 0.079 0.074 93.6 −0.006 0.067 0.064 93.8 −0.009 0.073 0.073 95.1
LAD-aLasso −0.013 0.097 0.096 93.6 −0.005 0.081 0.083 95.1 −0.008 0.096 0.095 94.3

0.5 BIC1 0.003 0.074 0.067 92.1 0.001 0.082 0.074 92.4 0.001 0.082 0.076 93.0
BIC2 0.002 0.070 0.067 93.2 0.001 0.081 0.075 92.8 0.0010 0.081 0.077 93.1
PR-aLasso(BIC1) −0.003 0.071 0.067 92.8 0.002 0.080 0.075 92.9 −0.004 0.082 0.076 92.8
PR-aLasso(BIC2) −0.009 0.068 0.067 93.2 0.001 0.080 0.075 92.6 −0.007 0.081 0.077 93.1
LS-aLasso −0.005 0.066 0.065 94.4 0.001 0.075 0.073 93.5 −0.005 0.076 0.075 94.7
LAD-aLasso −0.006 0.085 0.085 94.9 −0.001 0.093 0.095 94.8 −0.005 0.097 0.098 95.2

−0.8 BIC1 0.002 0.119 0.088 94.9 −0.004 0.132 0.120 93.2 −0.004 0.115 0.106 92.6
BIC2 0.002 0.102 0.086 90.2 −0.004 0.128 0.120 93.6 −0.003 0.115 0.107 92.6
PR-aLasso(BIC1) −0.006 0.107 0.088 90.8 −0.024 0.117 0.120 92.9 −0.025 0.131 0.107 91.8
PR-aLasso(BIC2) −0.008 0.099 0.086 91.7 −0.030 0.128 0.120 93.2 −0.033 0.114 0.107 91.8
LS-aLasso −0.005 0.090 0.084 93.6 −0.027 0.122 0.118 93.5 −0.028 0.111 0.105 92.6
LAD-aLasso 0.001 0.107 0.108 95.5 −0.027 0.155 0.154 95.1 −0.025 0.136 0.138 94.3

0.8 BIC1 0.002 0.106 0.087 91.8 0.000 0.123 0.108 91.4 0.001 0.132 0.121 93.1
BIC2 0.001 0.097 0.085 92.8 0.001 0.118 0.108 91.8 0.002 0.126 0.120 93.8
PR-aLasso(BIC1) −0.006 0.099 0.087 92.4 −0.005 0.120 0.108 92.8 0.008 0.130 0.121 93.1
PR-aLasso(BIC2) −0.013 0.093 0.085 92.3 −0.011 0.117 0.108 93.1 0.014 0.127 0.120 93.4
LS-aLasso −0.009 0.089 0.083 93.7 −0.009 0.110 0.106 93.5 0.010 0.122 0.118 94.3
LAD-aLasso −0.010 0.108 0.108 94.8 −0.008 0.136 0.138 94.8 0.020 0.152 0.154 95.2

used to compare a company’s current market price to its book value while price-to-earning ratio measures the price paid
for a share relative to the annual income or profit per share earned by the firm.

It is known that the stocks of different companies have different units that are not well defined. Comparison of the
absolute estimation errors of the share prices of different stocks is not of practical referential value to practitioners. A
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Table 6
Estimation results with p = 8, n = 250, log(ε) ∼ U(−2, 2), βAT = (βAT 1, βAT 2, βAT 3)

⊤
= (1.5, 2, 3)⊤ .

σ Method βAT 1 βAT 2 βAT 3

BIAS SE SEE CP (%) BIAS SE SEE CP (%) BIAS SE SEE CP (%)

−0.5 BIC1 0.001 0.066 0.062 94.0 −0.001 0.072 0.069 94.5 −0.001 0.074 0.071 95.4
BIC2 0.001 0.066 0.062 94.2 −0.001 0.071 0.071 94.5 −0.001 0.074 0.069 95.4
PR-aLasso(BIC1) −0.006 0.065 0.062 94.1 −0.012 0.071 0.069 94.4 −0.008 0.073 0.071 95.1
PR-aLasso(BIC2) −0.008 0.066 0.062 93.4 −0.015 0.073 0.069 93.3 −0.010 0.074 0.071 94.2
LS-aLasso −0.008 0.079 0.076 93.6 −0.014 0.086 0.085 94.4 −0.010 0.088 0.087 94.6
LAD-aLasso −0.013 0.136 0.127 92.9 −0.022 0.148 0.142 92.4 −0.015 0.152 0.145 93.0

0.5 BIC1 0.001 0.064 0.062 93.8 −0.004 0.075 0.071 93.4 −0.000 0.072 0.069 93.7
BIC2 0.001 0.063 0.062 93.9 −0.003 0.075 0.071 93.2 −0.000 0.072 0.069 93.7
PR-aLasso(BIC1) −0.006 0.063 0.063 94.0 −0.007 0.074 0.071 93.8 −0.001 0.072 0.069 93.7
PR-aLasso(BIC2) −0.009 0.065 0.062 93.2 −0.009 0.075 0.071 93.4 −0.002 0.073 0.069 93.3
LS-aLasso −0.008 0.076 0.076 94.8 −0.009 0.089 0.087 93.6 −0.002 0.088 0.084 93.6
LAD-aLasso −0.014 0.132 0.127 92.5 −0.009 0.156 0.145 92.3 −0.007 0.148 0.141 93.6

−0.8 BIC1 −0.002 0.094 0.079 91.0 −0.002 0.116 0.111 94.7 −0.001 0.104 0.099 93.9
BIC2 −0.003 0.094 0.079 90.9 −0.002 0.117 0.111 94.6 −0.001 0.104 0.099 93.9
PR-aLasso(BIC1) −0.010 0.090 0.079 91.8 −0.025 0.117 0.111 94.0 −0.027 0.105 0.099 92.3
PR-aLasso(BIC2) −0.011 0.090 0.078 91.9 −0.028 0.119 0.111 93.5 −0.031 0.109 0.099 91.0
LS-aLasso −0.012 0.108 0.097 93.0 −0.031 0.143 0.136 93.0 −0.034 0.128 0.122 92.6
LAD-aLasso −0.011 0.182 0.162 92.6 −0.050 0.246 0.229 92.1 −0.054 0.217 0.204 92.3

0.8 BIC1 0.002 0.086 0.079 93.9 −0.005 0.120 0.111 93.0 −0.001 0.105 0.099 93.8
BIC2 0.003 0.086 0.079 93.7 −0.004 0.120 0.111 93.1 −0.001 0.104 0.099 93.9
PR-aLasso(BIC1) −0.007 0.083 0.079 94.4 −0.009 0.120 0.111 93.1 0.002 0.106 0.099 93.5
PR-aLasso(BIC2) −0.010 0.084 0.078 93.6 −0.010 0.121 0.111 92.7 0.004 0.107 0.099 93.2
LS-aLasso −0.008 0.100 0.096 94.7 −0.010 0.145 0.137 93.4 0.002 0.128 0.122 93.9
LAD-aLasso −0.011 0.176 0.162 93.0 −0.006 0.249 0.229 93.1 −0.001 0.217 0.204 93.4

Table 7
Analysis of Hong Kong stock return data with different methods.

Variables Method
PR-aLasso(BIC1) PR-aLasso(BIC2) LS-aLasso LAD-aLasso BIC1 BIC2

INT −0.23144 −0.23144 −0.15647 −0.32834 −0.32834
OPX
ATO
PM
DFL
SGR −0.00004 −0.00004 −0.00011 −0.00011
RGR −0.00002 −0.00002
ACCT 0.00038 0.00038 0.00024 0.00056 0.00056
INVGR
PB
ASSET 0.03782 0.03782 0.02991 0.01296 0.04824 0.04824
OASS
PE

Note: − indicates the insignificant covariates.

relative error-based model selection and estimation approach that is unit-free makes more sense here. We note that the
relative error is approximately equal to the absolute error only when the size of the relative error is small. We consider
to fit model (1) with an intercept term (INI) that relates the ratio of the closed-price of February 2012 to that of January
2012 to the 12 predictors for regression analysis. Similar to the simulation studies, we select the variables and estimate
the coefficients with different approaches. The tuning parameter is selected by (3) with Cn =

√
log(log(pn)) and (4) with

Cn = log(log(pn)). For the penalized LAD, we set Cn = log(log(pn)). The results are reported in Table 7. It can be seen that
the proposed method is able to select small signals, which is in accordance with the simulation results. Moreover, except
LAD, all themethods select ACCT and ASSET, whose coefficients are positive. It reveals that the closed-price ratio is positively
associated with ACCT and ASSET via our analysis with this particular dataset, which partly suggests that the share price of
a company with high accounts receivable turnover (ACCT) tends to go up, while a firm with larger total assets (ASSET) has
a higher profitability. Besides, the negative coefficients of the SGR and RGR may due to the falling of Euro, which arises the
market slump from late 2011 to early 2012.

As it is suggested by the referees, we perform prediction for the monthly closed prices for the following three months,
respectively, to evaluate the prediction power of different methods. The prediction accuracy are measured by three criteria:
themean of absolute prediction error {|Yte − Ŷ |} (MPE); themean of squared prediction errors {|Yte − Ŷ |

2
} (MSPE); themean

of absolute relative errors {|Yte − Ŷ |
2/(Ŷ Yte)} (MPPE). The results were summarized in Table 8. It can be concluded that the

proposed method is most powerful in terms of prediction power in this real example.
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Table 8
Comparisons of prediction power with different methods for the real example.

Months Method
Errors PR-aLasso(BIC1) PR-aLasso(BIC2) LS-aLasso LAD-aLasso BIC1 BIC2

Feb. MPE 0.2783 0.2783 0.2807 0.2847 0.2808 0.2808
MSPE 0.1372 0.1372 0.1388 0.1443 0.1383 0.1383
MPPE 0.0985 0.0985 0.1008 0.1045 0.0982 0.0982

Mar. MPE 0.2693 0.2693 0.2701 0.2731 0.2743 0.2743
MSPE 0.11717 0.1171 0.1178 0.1199 0.1205 0.1205
MPPE 0.1206 0.1206 0.1230 0.1255 0.1208 0.1208

Apr. MPE 0.2702 0.2702 0.2709 0.2730 0.2742 0.2742
MSPE 0.1168 0.1168 0.1162 0.1172 0.1217 0.1217
MPPE 0.1104 0.1104 0.1110 0.1124 0.1124 0.1124

6. Concluding remarks

This paper complements to the literature with a relative error-based model selection and estimation approach, that
is possibly superior to the existing methods in terms of prediction power and interpretability, and therefore may have
wider applications in financial/economic data analysis and survival data analysis, as shown in the simulation studies and
the real data analysis of this paper. Such consideration by taking both types of relative errors into account for parameter
estimation and model selection may be extended to various parametric and semiparametric models. For other parametric
or semiparametric models, the complication for an relative error-based approach to work theoretically is that additional
constraints on the error distribution and the nonparametric component need to be imposed for model identifiability. It
remains unclear how to make such a constraint under minimum conditions. We shall work along this direction and find
reliable computation procedures for possible extensions to other semiparametric models.
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Appendix

The following regularity conditions are needed to study the asymptotic properties of the proposed estimator.

(C1) The error term satisfies E(ε − 1/ε|X) = 0.
(C2) There exists δ > 0 such that E{(ε + 1/ε) exp(δ∥X∥)} < ∞.
(C3) The matrix D = E{XX⊤(ε + 1/ε)} is positive definite.
(C4) There exists δ > 0, such that E{(ε + 1/ε)∥X∥

3 exp(δ∥X∥)} < ∞.
(C5) Define V ≡ E{XX⊤(−ε + 1/ε)2}. There exist constants c1, c2, such that 0 < c1 < λmin(V ) ≤ λmax(V ) < c2 < ∞.

Besides, E(xjxk)2(−ε + 1/ε)4 < c3 < ∞, E(xjxk)2(−ε + 1/ε)2 < c4 < ∞.
(C6) There exists δ > 0 such that E{(−ε + 1/ε)2(xjxkxl)2 exp(δ∥X∥)} < c5 < ∞.

Proof of Theorem 1. First, we wish to prove ∥β̂
∗

n − β0∥ = Op(n−1/2). Let B = {β : β = β0 + un−1/2, ∥u∥ ≤ C} for some
constant C . It suffices to show that for any ε > 0, there exists a sufficiently large constant C , such that

P{ sup
∥u∥=C

Zn(β0 + un−1/2) > Zn(β0)} > 1 − ε

for n large enough. Then, there is a local minimizer of Zn(β) in B. Under conditions (C2)–(C3), the local minimizer is the
global minimizer of Zn(β). Let β = β0 + u/

√
n. We define

ψn(u) = n

Zn


β0 +

u
√
n


− Zn(β0)


=

n
i=1


Yi exp


−X⊤

i


β0 +

u
√
n


+ Y−1

i exp

X⊤

i


β0 +

u
√
n


−

n
i=1


Yi exp(−X⊤

i β0)

+ Y−1
i exp(X⊤

i β0)


+ nλn
p

j=1

ωj


βj0 +

uj
√
n

 −
ωjβj0


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= W⊤

n u + u⊤Dnu/2 +
1

6n3/2

n
i=1

p
j,k,l


−Yi exp(−X⊤

i β∗)+ Y−1
i exp(X⊤

i β∗)

xijxikxil

× ulujuk + nλn
p

j=1

ωj


βj0 +

uj
√
n

 −
ωjβj0


≡ I1 + I2 + I3 + I4,

where β∗ lies between β0 and β0 + u/
√
n, and

Wn =
1

√
n

n
i=1


−Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)

Xi,

Dn =
1
n

n
i=1


Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)

XiX⊤

i .

It follows directly from conditions (C1) and (C5) that Wn → W in distribution, where W ∼ N(0, V ). Moreover, under
condition (C3), Dn → D in probability. Hence,

∥I1∥ = Op(1)∥u∥

and

∥I2∥ = u⊤Du/2 + op(1)∥u∥
2.

Next, under condition (C4), it can be shown that

∥I3∥ = op(1)∥u∥
2.

As λn
√
n → λ0 and

√
n{|(β0j + uj/

√
n)| − |β0j|} → {uj(β0j)I(β0j ≠ 0)+ |uj|I(β0j = 0)}, we have

I4 > λn
√
n

s
j=1

ujsgn(βj0)ωj = O(1)∥u∥.

Thereby, ψn(u) is positive for sufficiently large C . As a result, we have shown ∥β̂
∗

n − β0∥ = Op(n−1/2).
Given that λn

√
nωj → 0 in probability ∀j ∈ AT and λn

√
nωj = λn

√
nnγ (

√
nβnj)

−γ
→ ∞ for any j ∈ AT

c , we have

ψn(u)
d

−→ψ(u), where

ψ(u) =


W⊤

AT
uAT + u⊤

AT
DAT uAT /2 for uj = 0 ∀j ∈ AT ;

∞ otherwise

by the Slutsky’s theorem. Together with condition (C3) and Geyer (1994), it can be shown that
√
n{β̂

∗

n − β0} →

argmin(ψ(u)) in distribution. Denote u∗
≡ argmin(ψ(u)). Note that D−1

AT
WAT ∼ N(0,D−1

AT
VAT D

−1
AT
). Hence, u∗

AT
→

N(0,D−1
AT

VAT D
−1
AT
) in distribution and uAT

c → 0 in probability as n → ∞.
Now we are in a position to show the model selection consistency. For any j ∈ AT , it follows from the asymptotic

normality that β̂∗

nj → β0j in probability, which implies that P(j ∈ A∗
n) → 1, namely P(AT j A∗

n) → 1. We then only need
to prove P(AT

c j A∗c
n ) → 1. Namely, P(j′ ∈ A∗

n) → 0 for any j′ ∈ AT
c . For any j′ ∈ A∗

n , by the KKT condition, we have

Wnj′ + (Dnu)j′ + λn
√
nωj′sgn(uj′)

=
1

√
n

n
i=1


−Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)

xij′

+
1
n

n
i=1


Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)

xij′X⊤

i u + λn
√
nωj′sgn(uj′)

= 0.

By the Central Limit Theorem, the law of large numbers and the Slutsky’s theorem, we have

1
√
n

n
i=1

{−Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)}xij′ +
1
n

n
i=1

{Yi exp(−X⊤

i β0)+ Y−1
i exp(X⊤

i β0)}xij′X
⊤

i u → Z,

in distribution, where Z is a normal random variable. It follows from λn
√
nωj′sgn(uj′) → ±∞ in probability that P(j′ ∈

A∗
n) = P(Z = ±∞) → 0. The proof of Theorem 1 is complete.
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Proof of Lemma 1. Denote B ≡ {β : β = βn0 + uαn, ∥u∥ ≤ C} where αn = p1/2n n−1/2. To show ∥β̂
⋆

n − βn0∥ = Op(
√
pn/n),

it suffices to show that for any ε > 0, there exists a sufficiently large constant C such that

P


sup
∥u∥=C

Zn(βn0 + uαn) > AQn(βn0)


> 1 − ε

for n large enough. Similar to the arguments in the proof of Theorem 1, the local minimizer of Zn(βn) in B is the global
minimizer of Zn(βn). Denote β = βn0 + uαn. Write

τn(u) = n{Zn(βn0 + uαn)− Zn(βn0)}

=

n
i=1

{Yi exp(−X⊤

i (βn0 + uαn))+ Y−1
i exp(X⊤

i (βn0 + uαn))}

− {Yi exp(−X⊤

i βn0)+ Y−1
i exp(X⊤

i βn0)} + nλn
pn
j=1

ωj(βnj0 + ujαn)
 −

ωjβnj0


≥
√
nαnW⊤

n u + nα2
nu

⊤Dnu/2 +
α3
n

6

n
i=1

pn
j,k,l

{−Yi exp(−X⊤

i β∗)+ Y−1
i exp(X⊤

i β∗)}

× xijxikxilujuluk + nλn
sn
j=1

ωj(βnj0 + ujαn)
 −

ωjβnj0


≡ I1 + I2 + I3 + I4,

where β∗ lies between βn0 + uαn and βn0. On the other hand, by the Cauchy–Schwarz inequality, we have

|I1| =
√
nαn|W⊤

n u| ≤
√
nαn∥u∥ ∥Wn∥.

Under conditions (C1) and (C5), ∥Wn∥ = Op(
√
pn), which implies I1 = Op(

√
npn)αn∥u∥. Next,

|I2| =
n
2
α2
nu

⊤Dnu

=
n
2
α2
nu

⊤Du +
n
2
α2
nu

⊤(Dn − D)u

≡ I21 + I22.

Given p4n/n → 0 as n → ∞ and condition (C5), we have

P


∥Dn − D∥ >
ε

pn


≤

p2n
ε2

E∥Dn − D∥
2

≤
p2n

n2ε2
E

n
i=1

pn
j=1

pn
k=1


xijxik(εi + ε−1

i )− E{xijxik(εi + ε−1
i )}

2
=

p4n
nε2

= o(1).

Thereby, I22 = op(1/pn)nα2
n∥u∥. In view of I21 = nα2

nu
⊤Du/2, we obtain I2 = nα2

nu
⊤Du/2{1 + op(1)}. By the

Cauchy–Schwarz inequality, we have

|I3| =

α3
n

6

n
i=1

pn
j,k,l

{−Yi exp(−X⊤

i β∗)+ Y−1
i exp(X⊤

i β∗)}xijxikxilulujuk


≤
α3
n

6

 pn
j,k,l


n

i=1

xijxikxil

−Yi exp(−X⊤

i β∗

0)+ Y−1
i exp(X⊤

i β∗

0)
2

1/2

∥u∥
3.

Together with condition (C6), we have |I3| = Op(p
3/2
n αn)nα2

n∥u∥
2. Lastly, by the Cauchy–Schwarz inequality, we have

|I4| = nλn
sn
j=1

ωj(βnj0 + ujαn)
 −

ωj(βnj0)


= nλnαn

sn
j=1

ujsgn(βn0j)ωnj
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≤ nλnαn∥u∥ ∥ωnsn∥

= O(nλns1/2n αn∥u∥d−γ ).

Therefore, when C is sufficiently large, τn(u) > 0. The proof of Lemma 1 is complete.

Proof of Theorem 2. We first prove part (1) in Theorem 2. Without loss of generality, we assume the active set AT =

{1, 2, . . . , sn}. Then we can write βn = (β⊤

n1 ,β
⊤

n2)
⊤ βn0 = (β⊤

n10,β
⊤

n20)
⊤. In order to prove the sparsity, it suffices to show

Zn((β⊤

n1 , 0)
⊤) = min∥βn2∥≤εn Zn((β

⊤

n1 ,β
⊤

n2)
⊤), in which ∥βn1 − βn10∥ = Op(

√
pn/n), εn = C

√
pn/n and C is a positive

constant. To this end, we need to show for any j ∈ AT
c ,

∂Zn(βn)

∂βn2j
> 0 for − εn < βn2j < 0;

∂Zn(βn)

∂βn2j
< 0 for 0 < βn2j < εn. (5)

By a Taylor expansion,

n
∂Zn(βn)

∂βn2j
=

n
i=1

xij(−εi + ε−1
i )+

pn
l=1

n
i=1

xijxil(εi + ε−1
i )(βnl − βn0l)+

1
2

pn
l,k

n
i=1

xijxilxik

×

−Yi exp(−X⊤

i β∗

n)+ Y−1
i exp(X⊤

i β∗

n)

(βnl − βn0l)(βnk − βn0k)+ nλnωjsgn(βn2j).

It can be shown along similar lines of Lemma 1 that

n
∂Zn(βn)

∂βn2j
= Op(

√
npn)+ nλnωjsgn(βn2j)

= nλnωj{
√
npn/(nλnwj)+ sgn(βn2j)}.

Under the assumptions that λnn1/2rγn /p
1/2
n → ∞ as n → ∞, ωj = Op(r

γ
n ) and

√
npn/(nλnwj) = o(1), we have

∂Zn(βn)/∂βn2j = nλnωj{o(1)+ sgn(βn2j)}. Hence, part (1) is proved.
Next, we wish to show part (2). With a slight abuse of notation, we let Zn(βn1) = Zn((β⊤

n1 , 0
⊤)⊤). In view of the fact that

βn1 should satisfy ∇Zn(βn1) = 0, by a Taylor expansion of ∇Zn(βn1) at βn10, we have

n


∂Zn(βn1)

∂βn1

−
∂Zn(βn10)

∂βn10


=

n
i=1

XiAT X
⊤

iAT
(εi + ε−1

i )(βn1 − βn10)+
1
2

n
i=1

pn
k,l

XiAT xikxil

×

−Yi exp(−X⊤

iAT
β∗

n)+ Y−1
i exp(X⊤

iAT
β∗

n)

(βn1 l − βn10l)(βn1k − βn10k), (6)

where β∗

n lies between βn1 and βn10. A simple manipulation of the first term of (6) yields
n

i=1

XiAT X
⊤

iAT
(εi + ε−1

i )(βn1 − βn10)

= −

n
i=1

XiAT (−εi + ε−1
i )− nλnω⊤

nsn(sgn(βn1)− sgn(βn10))−
1
2

n
i=1

sn
k,l

XiAT xikxil

×

−Yi exp(−X⊤

iAT
β∗

n)+ Y−1
i exp(X⊤

iAT
β∗

n)

(βn1 l − βn10l)(βn1k − βn10k)

≡ L1 + L2 + L3.

First, it follows from λnn1/2/dγ → 0 that L2 = op(n1/2). Next, by the Cauchy–Schwarz inequality, we obtain

|L3| =

1
2

n
i=1

sn
k,l

XiAT xikxil

−Yi exp(−X⊤

iAT
β∗

n)+ Y−1
i exp(X⊤

iAT
β∗

n)

(βn1 l − βn10l)(βn1k − βn10k)


≤

 sn
j,k,l


n

i=1

xijxikxil

−Yi exp(−X⊤

iAT
β∗

n)+ Y−1
i exp(X⊤

iAT
β∗

n)
2

1/2 βn1 − βn10

2

= Op(s3/2n pn).

Under the assumptions that p4n/n = o(1) and sn = O(n1/6), it can be shown that L3 = op(n1/2). Also it can be shown along
the lines of the proofs of ∥Dn − D∥ = op(1/pn) that ∥VnAT − VAT ∥ = op(1/pn). Hence, we have

n1/2AnΣ−1/2
n (βn1 − βn10) = AnV

−1/2
AT

WnAT + op(1).
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To prove the asymptotic normality, we need to show that AnV
−1/2
AT

WnAT satisfies the Linderberg–Feller Central Limit
theorem. Let Yni = AnV

−1/2
AT

WniAT , i = 1, 2, . . . , n, and I(·) be the indicator function. Then, for any ε > 0,
n

i=1

E

Y 2
niI{∥Yni∥ > ε}


= nE∥Yn1∥

2I{∥Yn1∥ > ε}

≤ n

E∥Yn1∥

41/2
{P(I(∥Yn1∥ > ε))}1/2.

Together with condition (C2) and AnA⊤
n → G, we have

P(I(∥Yn1∥ > ε)) =
E∥AnV

−1/2
AT

WnAT 1∥
2

ε
= O(n−1).

Moreover,

E∥Yn1∥
4

= E∥AnV
−1/2
AT

WnAT 1∥
4

≤
1
n2
λmax(AnA⊤

n )
2λmin(V )−2E∥X⊤

AT
XAT (ε1 − ε−1

1 )2∥2

= Op(s4n/n
2).

Thus, it follows that
n

i=1

E

Y 2
niI(∥Yni∥ > ε)


= O(n(s2nn

−1)n−1/2) = o(1).

Note that
n

i=1 cov(Yni) → G as n → ∞. Therefore, it follows from the Linderberg–Feller central limit theorem that

n1/2AnΣ−1/2
n (βn1 − βn10) → N(0,G).

The proof of Theorem 2 is complete.
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