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ABSTRACT
In many longitudinal studies, repeated response and predictors are not directly observed, but can be
treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal
data involve an observation process which may be informative with a longitudinal response process in
practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted
joint models. The new models not only allow for the longitudinal response to be correlated with observa-
tion times through latent variables and completely unspecified link functions, but they also characterize
distorted longitudinal response and predictors by unknown multiplicative factors depending on time and
a confounding covariate. For estimation of regression parameters in the proposed models, we develop a
novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and
distributions of frailties. The asymptotic properties of resulting parameter estimators are established and
examined by simulation studies. A longitudinal data example containing calcium absorption and intake
measurements is provided for illustration. Supplementary materials for this article are available online.

1. Introduction

In many medical studies, both response and predictor vari-
ables may not be directly observable due to influence of a con-
founding variable. Instead, contaminated/distorted versions of
variables may be observed through a multiplicative/additive
distorting factor that is an unknown smooth function of
an observed confounding variable, such as body mass index
(weight/height2)(BMI) or othermeasures of body configuration.
Such an example is the fibrinogen data in Kaysen et al. (2003),
where both plasma fibrinogen concentration as response and
serum transferrin level as predictor for 69 hemodialysis patients
are distorted and the BMI can be taken as a confounding vari-
able. To deal with this situation, Sentürk andMüller (2005, 2006)
developed a covariate-adjusted regression (CAR) method. The
CAR method has been applied to different models. For exam-
ple, Cui et al. (2009) extended the covariate-adjusted regression
to nonlinear model with the response and predictors distorted
by multiplicative factors; Sentürk and Nguyen (2009) developed
a broader class of partial covariate-adjusted regression (PCAR)
models.

A typical example of distorted longitudinal response and pre-
dictors is a longitudinal dataset including the calcium absorp-
tion and intake measurements on 188 subjects (Davis 2002,
p. 336). For the analysis of such data, Sentürk (2006) proposed a
covariate-adjusted varying coefficient model through body sur-
face area (BSA) and developed a two-step estimation method.
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However, the asymptotic properties of the estimators have not
been established.

In the longitudinal dataset mentioned above, every individ-
ual was scheduled to be measured in five-year intervals for the
calcium absorption, calcium intake, age, BSA, and some other
variables. However, the actual measurement times were not the
same as the exact scheduled times, and the number of repeated
measurements randomly ranged from 1 to 4. It is intuitive to
regard these measurement times as from an underlying obser-
vation process whose jumping points are ages at measured.
Here, we can take the birth year as the starting time point. As
shown by Heaney et al. (1989), age had a significant influence
on calcium absorption efficiency, implying that the observation
process is informative with the response, calcium absorption.
This example motivates us to study distorted longitudinal data
with informative observation times. For the analysis of longi-
tudinal data with informative observation times, two methods
have been developed. One is the conditional modeling approach
(Sun et al. 2005; Zhao et al. 2014), which directly characterized
the dependence between the response process and the observa-
tion times. Another one is the frailty-based approach proposed
by Sun, Sun, and Liu (2007), Liang, Lu, and Ying (2009), Sun,
Song, and Zhou (2011), Zhao, Tong, and Sun (2012), and Zhou,
Zhao, and Sun (2013) among others.

The methods mentioned above are designed for either dis-
torted longitudinal data with noninformative observation times
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or undistorted longitudinal data with informative observation
times but not for distorted longitudinal data with informative
observation times. To the best of our knowledge, no statisti-
cal methods can be available for analyzing distorted longitudi-
nal data in the presence of informative measurement times in
the literature. Our goal is to develop a new approach for the
statistical analysis of such complex longitudinal data. For this
purpose, we propose a class of flexible semiparametric covariate-
adjusted joint models, where repeated responses and predic-
tors are contaminated with unknownmultiplicative functions of
time and a confounder variable, and longitudinal response and
observation processes are correlated through latent variables
and completely unspecified link functions. For inference, a novel
covariate-adjusted estimating equation approach is developed.

The remainder of this article is organized as follows. We
begin in Section 2 by introducing notation and describing
the covariate-adjusted joint models for distorted longitudinal
data with informative observation times. In Section 3, a novel
covariate-adjusted estimating equation approach is developed
to estimate regression parameters in the proposed models. The
asymptotic properties of the resulting estimators are given in
Section 4. The simulation results are presented in Section 5
to assess the finite-sample performance of the proposed infer-
ence procedure. A real example of distorted longitudinal data
is provided to illustrate applications of the proposed method in
Section 6. Some concluding remarks are made in Section 7. All
technical proofs are given in the supplemental materials.

2. Statistical Model

Consider a longitudinal study that consists of n independent
subjects. For subject i, let Yi(t ) and X i(t ) be the underly-
ing unobserved response variable and p-dimensional vector
of covariates valued at time t . We assume that Yi(t ) takes a
marginal model

E{Yi(t )|X i(t ),Zi} = μ0(t )+ β′
0X i(t )+ g(Zi), i = 1, . . . , n,

(2.1)
where μ0(·) is an unknown baseline mean function, and β0 is
a p-dimensional vector of regression coefficients, Zi is an unob-
served positive latent variable, which is independent of X i(·),
and g(·) is a completely unspecified function with E{g(Z)} = 0
for identifiability. Model (2.1) characterizes the marginal mean
of the process Y (·) while leaving its dependence structure and
distributional form completely unspecified.

The repeated response and covariates can be observed
after being contaminated by unknown functions of a common
observable variableU and time. That is,

Ỹi(t ) = ψ(Ui, t )Yi(t ) and X̃ri(t ) = φr(Ui, t )Xri(t ),
r = 1, . . . , p (2.2)

are the actual observable response and covariates valued at
time t , with ψ and φr being the unknown distorting functions.
The identifiability requires the condition that the distortion is
mean-preserving for each t , that is, the means of the observed
variables E{Ỹi(t )} and E{X̃ri(t )} are the same as those of the
underlying variables,E{Yi(t )} andE{Xri(t )}, respectively. Under

the assumption thatU is independent of Y and X (·), this iden-
tifiability condition is equivalent to the following constraints:

E{ψ(U, t )} = 1 and E{φr(U, t )} = 1, r = 1, . . . , p,
(2.3)

for time t . Models (2.1)–(2.3) will be referred to as the covariate-
adjusted marginal model for distorted longitudinal data.

Suppose that Ỹi(t ) is observed at distinct time points
0 < Ti,1 < Ti,2 < · · · < Ti,Ki , where Ki is the potential num-
ber of observations on subject i. In the following, we regard
these observation times arising from an underlying count-
ing process N∗

i (t ) characterized by Ni(t ) = ∑Ki
k=1 I(Tik ≤ t ) =

N∗(min(t,Ci)), where I(·) is the indicator function, and Ci is
the follow-up or censoring time with Ki = N∗

i (Ci) for subject
i, i = 1, . . . , n. Then, the process Ỹi(t ) is observed only at the
time points where Ni(t ) jumps. The covariate {X̃ i(t ), 0 ≤ t ≤
Ci, i = 1, . . . , n} is assumed to be observed.

Following Liang, Lu, and Ying (2009), we assume that the
potential observation process N∗

i (t ) is a mixed Poisson process
with the intensity function

λ(t|V i,Zi) = λ0(t )Zih(V i), i = 1, . . . , n, (2.4)

where λ0(t ) is a completely unknown baseline intensity func-
tion, h(·) is a completely unspecified positive function, andV i is
a vector of l-dimensional baseline covariates, which is indepen-
dent of the frailty Zi. Let�0(t ) = ∫ t

0 λ0(s)ds and take�0(τ ) =
1 for the identifiability with τ being the length of the study.

Remark 1. In model (2.1), g(·) takes a role of an unknown link
function that is used to characterize the relationship between
the longitudinal response and observation processes. To see this,
we suppose that Yi(t ) follows a semiparametric random effects
model

Yi(t ) = μ0(t )+ β′
0X i(t )+ ηi + εi(t ), i = 1, . . . , n,

where ηi is a random variable of subject-specific effect and εi(t )
is a zero mean measurement error process. Taking the con-
ditional expectation of Yi(t ) yields model (2.1) with g(Zi) =
E(ηi|Zi). For example, if one takes g(Z) = ρ{Z − E(Z)}, then
ρ characterizes the relationship between the observation process
and the longitudinal response process.When ρ > 0 (ρ < 0), the
two processes are positively (negatively) correlated; whenρ = 0,
the two processes have no correlation given the covariates.

For inference on models (2.1)–(2.4), we need some basic
assumptions: (A1) conditional on X (·),V , and Z, the processes
N∗(·) and Y (·) are independent; (A2) conditional on X (·) and
V , censoring time C is independent of N∗(·), Y (·), and Z (C is
noninformative); (A3)U is independent ofX (·),V,Y (·),N∗(·),
C, and Z.

The observed data consist of

{Oi = (Ki,TiKi,NiKi,Ui, Ỹ iKi,Ci, X̃ i(t ),V i),

0 ≤ t ≤ Ci, i = 1, . . . , n}

with TiKi = (Ti,1, . . . ,Ti,Ki )
′, NiKi = (Ni(Ti,1), . . . ,Ni(Ti,Ki ))

′,
Ỹ iKi = (Ỹi(Ti,1), . . . , Ỹi(Ti,Ki ))

′. The central goal of this article
is to estimate coefficient β0 in (2.1) based on the observed data.
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3. Estimation Procedure

3.1. Estimating Equation for β0 based on Uncontaminated
Data

In this subsection, we present an estimating equation for β0
whenYi(t ) andX i(t ) are observable. First, it follows fromLiang,
Lu, and Ying (2009) that

E{ξi(t )dN∗
i (t )|V i,Zi,Ci,Ki} = ξi(t )Ki�0(Ci)

−1d�0(t ), (3.1)

where ξi(t ) = I(Ci ≥ t ). Then, under assumptions (A1) and
(A2), by (3.1), we have

E
[
K−1
i {Yi(t )− β′

0X i(t )}dNi(t )|X i(t ),V i,Ci
]

= E
[
E

{
K−1
i (Yi(t )− β′

0X i(t ))dNi(t )|X i(t ),
× V i,Ci,Ki,Zi} |X i(t ),V i,Ci]

= E
[
K−1
i E

{
(Yi(t )− β′

0X i(t ))|X i(t ),Ci,Ki,Zi
}

× E{dNi(t )|V i,Ci,Ki,Zi}|X i(t ),V i,Ci]
= E

[
K−1
i {μ0(t )+ g(Zi)}ξi(t )Ki�0(Ci)

−1d�0(t )|X i(t ),V i,Ci
]

= ξi(t )
[
μ0(t )+ E{g(Zi)|X i(t ),V i,Ci}

]
�0(Ci)

−1d�0(t )
= ξi(t )μ0(t )�0(Ci)

−1d�0(t ) = ξi(t )�0(Ci)
−1dA0(t ), (3.2)

whereA0(t ) = ∫ t
0 μ0(s)d�0(s). Define

dMi(t;β0,�0,A0,Yi(·),X i(·))
= ξi(t )

[
K−1
i {Yi(t )− β′

0X i(t )}dN∗
i (t )−�0(Ci)

−1dA0(t )
]
.

Then it follows from (3.2) that

E{dMi(t;β0,�0,A0,Yi(·),X i(·))} = 0. (3.3)

Thus, for given β0, a reasonable estimator forA0 is the solution
to

n∑
i=1

Mi(t;β0,�0,A,Yi(·),X i(·)) = 0, 0 ≤ t ≤ τ.

Denote this estimator by Â0(t;β0,�0,Yi(·)′s,X i(·)′s), which
can be expressed as

Â0(t;β0,�0,Yi(·)′s,X i(·)′s)

= n−1
n∑

i=1

∫ t

0

K−1
i [Yi(u)− β′

0X i(u)]
S(0)(u)

dNi(u), (3.4)

where

S(0)(t ) = n−1
n∑

i=1

ξi(t )�0(Ci)
−1.

To estimate β0, we construct a proper estimating function for β.
On one hand,

n∑
i=1

∫ τ

0
X i(t )dMi(t;β,�0, Â0(t;β,�0,Yi(·)′s,

×Xi(·)′s),Yi(·),Xi(·))

=
n∑

i=1

∫ τ

0
K−1
i X i(t ){Yi(t )− β′X i(t )}dNi(t )

−
n∑

i=1

∫ τ

0
ξi(t )X i(t )�0(Ci)

−1

×
n−1 ∑n

j=1 K
−1
j [Yj(t )− β′X j(t )]
S(0)(t )

dNj(t )

=
n∑

i=1

∫ τ

0
K−1
i [X i(t )− X (t )][Yi(t )− β′X i(t )]dNi(t ),

(3.5)

where X (t ) = S(1)X (t )
/
S(0)(t ) with

S(1)X (t ) = n−1
n∑
i=1

ξi(t )X i(t )�0(Ci)
−1.

On the other hand,

n−1
n∑

i=1

∫ τ

0
K−1
i {X i(t )− X (t )}β′

0X (t )dNi(t )

= E
[∫ τ

0
K−1
1 {X1(t )− x(t )}β′

0x(t )dN1(t )
]

+ op(1)

= E
[ ∫ τ

0
β ′
0x(t )K

−1
1 {ξ1(t )X1(t )E(dN∗

1 (t )|X1(t ),V 1,C1,K1)

− x(t )ξ1(t )E(dN∗
1 (t )|X1(t ),V 1,C1,K1)}

]
+ op(1)

=
∫ τ

0
β ′
0x(t )[E{ξ1(t )X1(t )�0(C1)

−1}
− x(t )E{ξ1(t )�0(C1)

−1}]d�0(t )+ op(1)
= op(1), (3.6)

where x(t ) is the limit of X (t ). Similarly, we have

n−1
n∑
i=1

∫ τ

0
K−1
i {X i(t )− X (t )}Y (t )dNi(t ) = op(1), (3.7)

whereY (t ) = S(1)Y (t )/S(0)(t ) with

S(1)Y (t ) = n−1
n∑

i=1

ξi(t )Yi(t )�0(Ci)
−1.

Therefore, if �0 is known, by combing (3.3), (3.5), (3.6), and
(3.7), we can estimate β0 through the following estimating
equation:

W̃ (β;�0,Yi(·)′s,X i(·)′s)

=
n∑
i=1

∫ τ

0
K−1
i {X i(t )− X (t )}[{Yi(t )−Y (t )}

−β′{X i(t )− X (t )}]dNi(t ) = 0. (3.8)

Since Â0(t;β,�0,Yi(·)′s,X i(·)′s) given in (3.4) and the esti-
mating Equation (3.8) involve the unknown function �0, we
need to estimate it. Following Wang, Qin, and Chiang (2001),
we can use the nonparametric maximum likelihood estimator
(NPMLE) for�0 as follows.

Let {sl, l = 1, . . . ,m} denote the ordered and distinct values
of all observation times {Ti, j : j = 1, . . . ,Ki, i = 1, . . . , n} for
the longitudinal response variable. Let ql = ∑n

i=1 dN
∗
i (sl ) be the

number of observations at sl , and Nl = ∑n
i=1 I(sl ≤ Ci)N∗

i (sl )
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be the total number of observations with observation times and
censoring time satisfying Ti, j ≤ sl ≤ Ci. Then we can derive the
conditional likelihood function of the observed data on the Ti, j ’s
conditional on {Ki,Ci,Vi,Zi}, and the NPMLE �̂0(t ) of �0(t )
can be given by

�̂0(t ) =
∏
sl>t

(
1 − ql

Nl

)
,

where the product is taken to be 1 if there is no sl with sl > t .
Thus, we have the following estimating equation for β by

replacing�0 with its estimator,

W̃ (β; �̂0,Yi(·)′s,X i(·)′s)

=
n∑

i=1

∫ τ

0
K−1
i {X i(t )− X̃ (t )}[{Yi(t )− Ỹ (t )}

−β′{X i(t )− X̃ (t )}]dNi(t ) = 0, (3.9)

where X̃ (t ) = S̃(1)X (t )/Ŝ(0)(t ) and Ỹ (t ) = S̃(1)Y (t )/Ŝ(0)(t ) with

Ŝ(0)(t ) = n−1
n∑

i=1

ξi(t )�̂0(Ci)
−1
,

S̃(1)X (t ) = n−1
n∑

i=1

ξi(t )X i(t )�̂0(Ci)
−1
,

S̃(1)Y (t ) = n−1
n∑

i=1

ξi(t )Yi(t )�̂0(Ci)
−1
.

3.2. Estimating Equation for β0 based on Contaminated
Data

In this subsection, we aim to estimate β0 under models
(2.1)–(2.4).

For each fixed t , we have

ψ(U, t ) = E[Ỹ (t )|U ]
E[Y (t )]

, φr(U, t ) = E[X̃r(t )|U ]
E[Xr(t )]

, r = 1, . . . , p.

(3.10)

For convenience, we denote the density function of U by p(u)
and define

gY (U, t ) = E[Ỹ (t )|U ]p(U )
and gr(U, t ) = E[X̃r(t )|U ]p(U ), r = 1, . . . , p. (3.11)

Using the idea of Cui et al. (2009), based on (3.10) and (3.11),
we can use the kernel estimators for ψ(U, t ) and φr(U, t ),
r = 1, . . . , p as follows:

ψ̂ (u, t ) = 1/(nh)
∑n

i=1 K((u −Ui)/h)Ỹi(t )
1/(nh)

∑n
i=1 K((u −Ui)/h)

× 1

Ỹ (t )
� ĝY (u, t )

p̂(u)
× 1

Ỹ (t )
,

φ̂r(u, t ) = 1/(nh)
∑n

i=1 K((u −Ui)/h)X̃ri(t )
1/(nh)

∑n
i=1 K((u −Ui)/h)

× 1

X̃ r(t )
� ĝr(u, t )

p̂(u)
× 1

X̃ r(t )
, (3.12)

where Ỹ (t ) = n−1 ∑n
i=1 Ỹi(t ), X̃ r(t ) = n−1 ∑n

i=1 X̃ri(t ), h is a
bandwidth, and K(·) is a suitable kernel function. Let

Ŷi(t ) = Ỹi(t )/ψ̂ (Ui, t ), X̂ri(t ) = X̃ri(t )/φ̂r(Ui, t )

and X̂ i(t ) = (X̂1i(t ), . . . , X̂pi(t ))′. (3.13)

SubstitutingYi(t ) andX i(t ) by their estimates Ŷi(t ) and X̂ i(t ) in
W̃ (β; �̂0,Yi(·)′s,X i(·)′s) of (3.9), we obtain the final working
estimating equation for β as follows:

W (β) �W (β; �̂0, Ŷi(·)′s, X̂ i(·)′s)

=
n∑

i=1

∫ τ

0
K−1
i {X̂ i(t )− X̂ (t )}[Ŷi(t )− Ŷ (t )

−β′{X̂ i(t )− X̂ (t )}]dNi(t ) = 0, (3.14)

where X̂ (t ) = Ŝ(1)X (t )/Ŝ(0)(t ) and Ŷ (t ) = Ŝ(1)Y (t )/Ŝ(0)(t ), with

Ŝ(1)X (t ) = n−1
n∑

i=1

ξi(t )X̂ i(t )�̂0(Ci)
−1

and Ŝ(1)Y (t ) = n−1
n∑

i=1

ξi(t )Ŷi(t )�̂0(Ci)
−1
.

Solving the above Equation (3.14), the estimator for β0 has a
closed form

β̂ =
{ n∑

i=1

∫ τ

0
K−1
i {X̂ i(t )− X̂ (t )}⊗2dNi(t )

}−1

×
{ n∑

i=1

∫ τ

0
K−1
i {Ŷi(t )− Ŷ (t )}{X̂ i(t )− X̂ (t )}dNi(t )

}
,

where a⊗2 = aa′ for a column vector a. Then, A0 can be esti-
mated by

Â0(t ) = Â0(t; β̂, �̂0, Ŷi(·)′s, X̂ i(·)′s)

= n−1
n∑

i=1

∫ t

0

K−1
i [Ŷi(u)− β̂ ′X̂ i(u)]

Ŝ(0)(u)
dNi(u).

4. Asymptotic Properties

To establish the asymptotic properties of the estimators, we need
the following regularity conditions.
C1. P(C ≥ τ,Z > 0) > 0, E(Z2) < ∞, and P(C > τη) = 1,

where τη = inf{t : �0(t ) > η} for some η > 0.
C2. X i(t ),Yi(t ), i = 1, . . . , n have bounded total vari-

ations, that is, |Xri(0)| + ∫ τ
0 |dXri(t )| ≤ M0 and

|Yi(0)| + ∫ τ
0 |dYi(t )| ≤ M1 for all r = 1, . . . , p and

i = 1, . . . , n, where Xri is the rth component of X i
andM0,M1 are constants.

C3. E{N∗
i (τ )} < ∞ and Ki ≥ 1 (i = 1, . . . , n).

C4. For each t , gr(u; t ) = E[Xr(t )]φr(u, t )p(u), 1 ≤ r ≤ p,
gY (u, t ) = E[Y (t )]ψ(u, t )p(u) and p(u) are 3-times
differential with respect to u, and their third derivatives
satisfy the condition that there exists a neighborhood of
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the origin, say, � and a constant c > 0 such that, for any
δ ∈ �,

|g(3)r (u + δ, t )− g(3)r (u, t )| ≤ cδ, 1 ≤ r ≤ p,

|g(3)Y (u + δ, t )− g(3)Y (u, t )| ≤ cδ,
|p(3)(u + δ)− p(3)(u)| ≤ cδ.

Furthermore, |gr(u, t )|, 1 ≤ r ≤ p, |gY (u, t )| and p(u)
are greater than a positive constant and less than another
positive constant, φr(u, t ) and ψ(u, t ) are bounded.

C5. The continuous kernel functionK(·) satisfies the follow-
ing properties:
(a1) the support of K(·) is the interval [−1, 1];
(a2) K(·) is symmetric about zero;
(a3)

∫ 1
−1 K(u)du = 1,

∫ 1
−1 u

iK(u)du = 0, i = 1, 2, 3.
C6. The bandwidth h is in the range from O(n− 1

4 log n) to
O(n− 1

8 ).
C7. |EY (t )| and |EXr(t )| are bounded away from zero.
C8. 
 � E{∫ τ0 K−1{X (t )− x̄(t )}⊗2dN(t )} is positive

definite.
These are all mild conditions that could be satisfied in usual

situations. The boundedness conditions in C2 and C3 simplify
the derivation of the asymptotic results. C4 is the boundedness
and smoothness condition for functions gr(·; t ) and gY (·; t ) and
the density function p(·) ofU . C5 andC6 are commonly used for
the asymptotic properties of kernel-based estimation (see, e.g.,
Zhu and Fang 1996; Cui et al. 2009). C8 can be interpreted that
the sample covariance is asymptotically nonsingular.

To present the asymptotic normality for β̂, we define


̂ = 1
n

n∑
i=1

∫ τ

0
K−1
i {X̂ i(t )− X̂ (t )}⊗2dNi(t ),

and

ŵ1i =
∫ τ

0
{X̂ i(t )− X̂ (t )}dM̂i(t; β̂, �̂0, Â0, Ŷi(·), X̂ i(·)),

ŵ2i = 1
n

n∑
j=1

∫ τ

0
K−1

j Ŷj(t ){X̂ j(t )− X̂ (t )}

× Ỹi(t )− Ŷi(t )+ {Ŷi(t )− n−1 ∑n
l=1 Ỹl (t )}/2

n−1
∑n

l=1 Ỹl (t )
dNj(t ),

ŵ3i = −
⎡⎣ 1
n

n∑
j=1

∫ τ

0
Ĥ i(t )K−1

j X̂ j(t ){X̂ j(t )− X̂ (t )}′
dNj(t )

⎤⎦′

β̂,

ŵ4i = 1
n

n∑
j=1

∫ τ

0
Ĥ i(t )K−1

j X̂ j(t ){Ŷj(t )− Ŷ (t )

− β̂
′
(X̂ j(t )− X̂ (t ))}dNj(t ),

where

M̂i(t; β̂, �̂0, Â0, Ŷi(·), X̂ i(·))
=

∫ t

0
ξi(u)

[
K−1
i {Ŷi(u)− β̂

′
X̂ i(u)}dN∗

i (u)− �̂0(Ci)
−1
dÂ0(u)

]
,

and Ĥ i(t ) is the diagonal matrix with its rth diagonal element
being

Ĥrri(t ) = {X̃ri(t )− X̂ri(t )} + {X̂ri(t )− n−1 ∑n
l=1 X̃rl (t )}/2

n−1
∑n

l=1 X̃rl (t )
.

The asymptotic normality for β̂ is summarized as follows.

Theorem 1. Under conditions C1–C8,
√
n(β̂ − β0) converges

in distribution to a random normal variable with mean zero
and a covariance matrix � = E(a⊗2

1 ), which can be consis-
tently estimated by �̂ = 1

n
∑n

i=1 â
⊗2
i , where âi = 
̂−1ŵi with

ŵi = ∑4
j=1 ŵ ji.

By Theorem 1, an approximate (1 − α) asymptotic confi-
dence interval for βr is[

β̂r − zα/2

√
σ̂rr

n
, β̂r + zα/2

√
σ̂rr

n

]
,

where zα/2 is the (1 − α/2)th quantile of the standard normal
distribution, and σ̂rr is the rth diagonal element of �̂.

5. Simulation Studies

In this section, we conductedMonte Carlo simulation studies to
evaluate the finite sample properties of the proposed estimators.
We generated the latent variable Zi from a gamma distribution
with mean 1 and variance 0.25. For the longitudinal response
process, we generated them from the following model:

Yi(t ) = μ0(t )+ β0Xi(t )+ g(Zi)+ εi(t ),

where μ0(t ) = log(1 + t ), and g(Zi) = ρ(Zi − 1) with
ρ = −0.5, 0, and 0.5, and εi(t )’s are independent standard
normal variables. For the covariate Xi(t ), we considered the
following two situations:
(a1) The time-independent covariate Xi follows the uniform

distribution over interval (0, 1).
(a2) The time-dependent covariate Xi(t ) takes the form

wi log(t ), wherewi has a uniformdistribution over inter-
val (0.5, 1).

Suppose that Yi(t ) and Xi(t ) are distorted by (2.2). The
confounding covariate U was simulated from Uni f (0.5, 1.5);
the distorting functions were chosen as ψ(U ; t ) = 12(U+t )2

13+24t+12t2

and φ(U ) = U+1
2 for case (a1), and ψ(U, t ) = 12(U+t )2

13+24t+12t2 and
φ(U, t ) = U+t

1+t for case (a2).
For generation of censoring timeCi, we considered two cases

as follows:
(c1) (Covariate-independent case)Ci follows a uniform distri-

bution over interval (τ/2, τ ).
(c2) (Covariate-dependent case) Ci = min{C∗

i , τ }, where C∗
i

satisfies log(C∗
i ) = 4(1 + 2Vi)+ ei with Vi being the

same as Xi in (a1) and ei ∼ N(0, 1).
In both cases, τ = 18.
For the generation of the observation processN∗

i (t ), we con-
sidered amixed homogenous Poisson process with λ0(t ) = 1/τ ,
that is, given Vi, Ci, and Zi, Ki was generated from the Poisson
distribution with mean 2ZiCi exp{Vi}/τ . Given Ki, the observa-
tion times (Ti,1, . . . ,Ti,Ki ) were taken to be the order statistics
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Table . Simulation results for β under the covariate-independent censoring and
time-independent covariate situation.

n = 100 n = 200

ρ β BIAS SSE ESE CP BIAS SSE ESE CP

−0.5 −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

. −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

NOTE: The first row is for the proposed estimates, and the second row is for the com-
peting estimates disregarding the distortion fact in the underlying response and
predictors.

of the random sample of size Ki from the uniform distribution
over (0,Ci).

We took the true value for β0 as −1, 0 and 1, represent-
ing different effects of the covariates X (t ) on the longitudi-
nal response variable. The higher-order kernel function K(t ) =
15
32 (3 − 7t2)(1 − t2)I(|t| ≤ 1) which satisfies

∫ 1
−1 K(u)du = 1

and
∫ 1
−1 u

iK(u)du = 0, i = 1, 2, 3 was used for estimation. For
the bandwidth selection, we chose interval (0.05, 1.5) as the
range of h to satisfy condition C6, and partitioned this interval
into a grid of values:

hmin = h0 = 0.05 < h1 = h0 + δ < h2
= h0 + 2δ < · · · < h20 = hmax = 1.5

with δ = (1.5 − 0.05)/20. Then the optimal value h∗ was
selected by minimizing the criterion given in (5.1) below over
a grid of values {h j, j = 0, 1, . . . , 20}:

1
n

n∑
i=1

∫ τ

0
K−1
i [Ŷ(−i)(t )− Ŷ (−i)(t )

− β̂(−i){X̂(−i)(t )− X̂ (−i)(t )}]2dNi(t ), (5.1)

where the criterion is based on the leave-one-out cross-
validation (Stone 1974), Ŷ(−i)(t ), Ŷ (−i)(t ), X̂(−i)(t ), X̂ (−i)(t ),
and β̂(−i) are the corresponding estimates from the data deleting
the information of the ith subject.

Tables 1 and 2 report the simulation results on estimation of
β0 for the time-dependent and time-independent covariate situ-
ations with the covariate-independent censoring time; Tables 3
and 4 display the simulation results for the time-dependent
and time-independent covariate situations with the covariate-
dependent censoring time. In the tables, we compared the pro-
posed estimation method with a competing estimation method
developed by disregarding the distortion fact in the underlying
response and covariates and mistaking the observed response
and covariates as the underlying unobservable response and

Table . Simulation results for β under the covariate-independent censoring and
time-dependent covariate situation.

n = 100 n = 200

ρ β BIAS SSE ESE CP BIAS SSE ESE CP

−0.5 −1 . . . . −. . . .
. . −. .

 . . . . −. . . .
. . . .

 . . . . −. . . .
. . . .

 −1 . . . . −. . . .
. . −. .

 . . . . −. . . .
. . . .

 . . . . . . . .
. . . .

. −1 . . . . −. . . .
. . −. .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

NOTE: The first row is for the proposed estimates, and the second row is for the com-
peting estimates disregarding the distortion fact in the underlying response and
predictors.

covariates in the estimating equation. The estimates for the pro-
posed method and the competing method are given in the first
row and the second row of the tables, respectively. The tables
include the estimated bias (BIAS) given by the average of the
estimates minus the true value, the estimated standard errors of
the estimates (ESE), the sample standard deviation of the esti-
mates (SSE), and the estimated 95% coverage probabilities (CP)
obtained from 1000 independent runs.

Based on our simulation results, we have the following
findings: (i) The proposed estimates are nearly unbiased in
all situations considered. However, the competing estimates
are obviously biased and have large biases in most situations.
These facts indicate that the estimation method ignoring
the distortion fact may yield an estimate with a large bias.

Table . Simulation results for β under the covariate-dependent censoring and
time-independent covariate situation.

n = 100 n = 200

ρ β BIAS SSE ESE CP BIAS SSE ESE CP

−0.5 −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

. −1 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

 . . . . . . . .
. . . .

NOTE: The first row is for the proposed estimates, and the second row is for the com-
peting estimates disregarding the distortion fact in the underlying response and
predictors.
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Table . Simulation results for β under the covariate-dependent censoring and
time-dependent covariate situation.

n = 100 n = 200

ρ β BIAS SSE ESE CP BIAS SSE ESE CP

−0.5 −1 . . . . −. . . .
. . −. .

 . . . . −. . . .
. . . .

 . . . . . . . .
. . . .

 −1 . . . . −. . . .
. . −. .

 . . . . −. . . .
. . . .

 . . . . . . . .
. . . .

. −1 . . . . −. . . .
. . −. .

 . . . . −. . . .
. . . .

 . . . . . . . .
. . . .

NOTE: The first row is for the proposed estimates, and the second row is for the com-
peting estimates disregarding the distortion fact in the underlying response and
predictors.

Clearly, large biases in estimation will appear if the confounding
covariate is ignored and the response and predictors are not
adjusted. (ii) The sample standard errors and the estimated
standard errors of the proposed estimate are close to each
other. Also, the estimated 95% coverage rates are close to the
nominal level, that is, the proposed procedure provides rea-
sonable estimates and the normal approximation seems to be
appropriate.

6. Application

We are interested in discovering the relationship between the
calcium absorption and the calcium intake to address the prob-
lem of calcium deficiency. Heaney et al. (1989) showed that the
calcium absorption was approximately inversely proportional
to the square root of the calcium intake, and age had a signif-
icant influence on calcium absorption efficiency. Heaney (2003)
found that the relationship between the calcium absorption and
calcium intake was affected by the body configuration measures
such as body mass index or body surface area (BSA), which was
used as a common confounder by Sentürk (2006).

We applied the proposed method to the data analysis from
a longitudinal study on 188 subjects. The aim of the study is to
find out the related covariates to the calcium absorption (Davis
2002, p. 336). All the individuals were in the age ranging from
35 to 45 year at the beginning of the study (1967). Repeated
measurements per individual were obtained in 5-year intervals,
with the number of the repeated measurements randomly rang-
ing from 1 to 4. The information including calcium absorp-
tion, calcium intake, age, BSA, and some others was recorded at
each measurement time. However, the calcium absorption and
calcium intake were contaminated. To uncover the relationship
between the underlying calcium absorption and underlying cal-
cium intake, we assumed that calcium absorption and calcium
intake can be adjusted by the common confounder BSA. For the
analysis, we proposed the underlying marginal mean model for

Figure . Estimated and observed calcium absorption.

calcium absorption as follows:

E{Yi(ti j)|Xi(ti j),Zi}
= μ0(ti j)+ β0Xi(ti j)+ g(Zi), j = 1, . . . ,Ki, i = 1, . . . , n,

(6.1)

where Yi(ti j) and Xi(ti j) are the underlying unobservable cal-
cium absorption (g/day) and 1/

√
intake (g/day) for individual

i at time point ti j with ti j being the age (year) for individual i
at the jth measurement time and Ki being the number of mea-
surements for individual i, μ0(t ) is the baseline mean function,
andZi is an unobservable frailty. Let Ỹi(ti j) and X̃i(ti j)denote the
observable distorted calcium absorption and 1/

√
intake, respec-

tively, and Ui(ti j) as the observed confounding covariate, BSA,
at time point ti j. In addition, we use Ui = K−1

i
∑Ki

l=1Ui(til ) for
calculation. Let Ni(·) represent the accumulated measurement

Figure . Estimated and observed calcium intake.
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Figure . The top two panels are scatterplots with the loess fitted curves (blue dotted line) for ψ̂U (·) (top left) and φ̂U (·) (top right) along with distinct observation times
(ages); thebottom twopanels are scatterplotswith the loess fitted curves (bluedotted line) for ψ̂T (·) (bottom left) and φ̂T (·) (bottom right) alongwithdistinct confounding
covariate (BSA) values. The plots are given after deleting the minimum and maximum points.

numbers of individual i over the study period, which is assumed
to follow model (2.4) with Vi being another age-independent
covariate, and we took the age for individual i at the last mea-
surement time as Ci in the analysis. The main goal here is to
estimate regression coefficient β0 based on the observed data by
using the proposed method in Section 3.2.

According to Sentürk (2006), three outliers were deleted
before analysis. To use our proposed estimation procedure, the
kernel and bandwidth selection are the same as those in Section
5, with the selected bandwidth being h∗ = 0.63.We obtained the
BSA-adjusted estimate for calcium absorption and 1/

√
intake,

denoted as Ŷi(ti j) and X̂i(ti j) ( j = 1, . . . ,Ki, i = 1, . . . , n).
Then the estimate of β0 is obtained as 0.1908 with the standard
deviation being 0.0322. Accordingly, we gave the estimate
of β0 without considering the confounding covariate BSA as
0.1890, smaller than the estimate adjusted by BSA. Figures 1
and 2 display the observed and adjusted (estimated) cal-
cium absorption and intake. From these figures, it can be
found out that the calcium intake and especially the calcium
absorption are adjusted at most points. Let s1 < · · · < sm be
ordered distinct observation times of ti j ’s and define the aver-
age of estimated distorting functions at each sk as ψ̂U (sk) =∑n

i=1
∑Ki

j=1 ψ̂ (Ui, ti j)I(ti j = sk)
/∑n

i=1
∑Ki

j=1 I(ti j = sk) and
φ̂U (sk) = ∑n

i=1
∑Ki

j=1 φ̂(Ui, ti j)I(ti j = sk)
/∑n

i=1
∑Ki

j=1 I(ti j =
sk). Similarly, define the average of estimated distorting
functions at each Ui as ψ̂T (Ui) = Ki

−1 ∑Ki
j=1 ψ̂ (Ui, ti j) and

φ̂T (Ui) = Ki
−1 ∑Ki

j=1 φ̂(Ui, ti j). Figure 3 shows the scatterplots
with the loess (Cleveland 1979) fitted curves (blue dotted line)
for the estimated distorting functions ψ̂U , φ̂U , ψ̂T , and φ̂T ,
whose minimum and maximum values are deleted. From these

figures, it can be seen that the estimated values at each sk or
Ui are all generally around 1, which just matches with the
identifiability condition (2.3). Specifically, the trends for the
estimated distorting functions ψ̂U and φ̂U are both decreasing
before age 45 and then increasing after age 45. This finding is
consistent with the conclusion given in Sentürk (2006) where
two groups of data observed at ages before and after 45 were
analyzed separately and independently. As shown in Figure 3,
the estimated distorting functions ψ̂T and φ̂T are increasing
and decreasing with the values of BSA, respectively.

7. Concluding Remarks

Taking into account that both the distorted response and pre-
dictors and informative observation times may exist at the same
time for longitudinal data, a class of flexible semiparametric
covariate-adjusted marginal joint models has been proposed.
Here, the longitudinal response process and the observation
times are correlated through latent variables and completely
unspecified link functions, and the repeated response and
predictors are distorted by unknown multiplicative functions
of a common confounding covariate and time. It seems that we
are the first to use bivariate distorting functions of confounding
covariate and time for analyzing distorted longitudinal data.
The model flexibility and complexity result in more challenges
for estimation, computation, and theoretical proofs. A novel
covariate-adjusted estimating equation method has been devel-
oped by using the estimators of the unobservable response and
predictors obtained through nonparametric kernel estimators
of the distorting functions. The estimation procedure does not
rely on the forms of link functions and distributions of frailties,
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and thus it is robust. The asymptotic properties of the resulting
estimators for the regression parameters have been established.
As demonstrated in our simulation and real data studies, the
proposed approaches are reasonable and applicable.

If g in model (2.1) is simpler, for example, linear, that is,
model (2.1) becomes

E{Yi(t )|X i(t ),Zi} = μ0(t )+ β′
0X i(t )+ α0Zi, i = 1, . . . , n

(e.g., Sun, Sun, and Liu 2007; Sun, Song, and Zhou 2011). To
estimateα0, we need to estimateZi. For this case, we take h(V) =
exp(γ ′

0V) in model (2.4), where γ0 is unknown. Furthermore,
Yi(t ) and X i(t ) are assumed to be distorted as (2.2) and (2.3).
Let γ̂ and �̂0 be the consistent estimators of γ0 and �0 using
the method proposed by Huang, Qin, and Wang (2010), and let
Ŷi(t ) and X̂ i(t ) be the same as in (3.13). Then, to estimate β0
and α0, motivated by Sun, Song, and Zhou (2011), we propose
using the following estimating equations:

U1(β, α) =
n∑

i=1

∫ τ

0
ξi(t ){X̂ i(t )− X̂ (t )}{Ŷi(t )

−β′X̂ i(t )− αẐi}dN∗
i (t )

and

U2(β, α) =
n∑

i=1

∫ τ

0
ξi(t )[{Ẑi − ˆ̄Z(t )}{Ŷi(t )

−β′X̂ i(t )} − α{�̂i − Ẑi
ˆ̄Z(t )}]dN∗

i (t ),

where Ẑi = (Ki − 1)/{exp(γ̂ ′Vi)�̂0(Ci)}, �̂i = (Ki − 1)
(Ki − 2)/{exp(γ̂ ′Vi)�̂0(Ci)}2,

X̂ (t ) = Ŝ(1)X (t )/Ŝ(0)(t ), and ˆ̄Z(t ) = Ŝ(1)Z (t )/Ŝ(0)(t ),

with

Ŝ(0)(t ) = n−1
n∑

i=1

ξi(t )Ki�̂0(Ci)
−1,

Ŝ(1)X (t ) = n−1
n∑

i=1

ξi(t )Ki�̂0(Ci)
−1X̂ i(t ),

and

Ŝ(1)Z (t ) = n−1
n∑

i=1

ξi(t )Ki�̂0(Ci)
−1Ẑi.

Let β̂ and α̂ denote the solutions to U1(β, α) = 0 and
U2(β, α) = 0. The asymptotic properties of β̂ and α̂ can be
established using similar arguments as used in the proof of
Theorem 1. One can see that the resulting estimating equations
involving the estimation of the latent variable and the obser-
vation process model for this case are more complicated than
those for the general case considered. Since the format of the
relationship between the longitudinal response and observation
processes is generally unknown in practice and could be very
complicated, thus a flexible model may be preferred.

Motivated by Sun et al. (2012), we can extend model (2.1) as
follows:

E{Yi(t )|X i(t ),Zi} = μ0(t;Zi)+ β′
0X i(t ), i = 1, . . . , n,

where μ0(t,Z) is a completely unspecified function of t and Z
including the additive and multiplicative forms of the baseline
functionμ0(t ) and frailty Z as special cases. Then, similar to the
deduction of Equation (3.2), under assumptions (A1) and (A2),
we have

E
{
K−1
i [Yi(t )− β′

0X i(t )]dNi(t )|X i(t ),V i,Ci
}

= ξi(t )�0(Ci)
−1dA0(t ),

where A0(t ) = ∫ t
0 E{μ0(s,Z)}d�0(s). Thus, the same estimat-

ing equation method in Section 3 can be used.
Note that a mixed Poisson process model was assumed for

the potential observation process. Such Poisson model assump-
tion can be relaxed. Instead, the observation process can take the
following rate model:

E{dN∗
i (t )|Vi,Zi} = Zi exp(γ ′

0Vi)d�0(t ).

Under this rate model and model (2.1) with assumptions (A1)
and (A2), we have

E
{
[Yi(t )− β′

0X i(t )]dNi(t )|X i(t ),V i,Ci
}

= ξi(t ) exp(γ ′
0Vi)dA0(t ),

whereA0(t ) = ∫ t
0 [μ0(s)E(Z)+ E{Zg(Z)}]d�0(s). Let γ̂ be the

consistent estimator of γ0 using the method proposed by Lin
et al. (2000), and let Ŷi(t ) and X̂ i(t ) be the same as defined in
(3.13). Then, to estimateβ0, we propose using the following esti-
mating equation:

n∑
i=1

∫ τ

0
{X̂ i(t )− X̂ (t )}[Ŷi(t )− Ŷ (t )

−β′{X̂ i(t )− X̂ (t )}]dNi(t ) = 0,

where X̂ (t ) = Ŝ(1)X (t )
/
Ŝ(0)(t ) and Ŷ (t ) = Ŝ(1)Y (t )

/
Ŝ(0)(t ) with

Ŝ(0)(t ) = n−1
n∑

i=1

ξi(t ) exp(γ̂
′Vi),

Ŝ(1)X (t ) = n−1
n∑

i=1

ξi(t )X̂ i(t ) exp(γ̂
′Vi),

and

Ŝ(1)Y (t ) = n−1
n∑

i=1

ξi(t )Ŷi(t ) exp(γ̂
′Vi).

Similarly, we can establish the corresponding asymptotic prop-
erties of the estimators.

Further research is to extend the proposed methods to
other useful models such as covariate-adjusted varying coeffi-
cient regression models and covariate-adjusted partly nonlin-
ear regression models for distorted longitudinal data. Another
direction is to study covariate-adjusted regression for distorted
longitudinal data with a terminal event (Sun et al. 2012; Kong
et al. 2018). Furthermore, the proposedmethod can be extended
to the case where the confounding covariate U can be time-
dependent for future research.
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SupplementaryMaterials

The supplementary materials include the proofs of Lemmas and
Theorem 1.
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