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a b s t r a c t

Multivariate longitudinal data arises when subjects under study may experience several
possible related response outcomes. This article proposed a new class of flexible semi-
parametric models for multivariate longitudinal data with informative observation times
through latent variables and completely unspecified link functions, which allows for any
functional forms of covariate effects on the intensity functions for the observation pro-
cesses. A novel estimating equation approach that does not rely on forms of link functions
and distributions of frailties is developed. The asymptotic properties for the resulting es-
timators and the model checking technique for the overall fit of the proposed models are
established. The simulation results show that the proposed approachworks well. The anal-
ysis of skin cancer chemoprevention trial data is provided for illustration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many longitudinal studies, multivariate longitudinal data arise when subjects under study may experience several
related events repeatedly at distinct time points during a relatively long follow-up period. An example of multivariate
longitudinal data that motivated this work is a skin cancer chemoprevention trial conducted by the University of Wisconsin
Comprehensive Cancer Center inMadison,Wisconsin (Lee, 2008; Li, 2011). It was a 5-year randomized, double-blinded, and
placebo-controlled Phase III clinical trial. The primary objective of this trialwas to evaluate the effectiveness of 0.5 g/m2/day
PO difluoromethylornithine (DFMO) in preventing new skin cancers in a population of individuals with a history of
non-melanoma skin cancers: basal cell carcinoma or squamous cell carcinoma. The subjects missed scheduled visits or
visited clinic on unscheduled dates. At each visit, the number of occurrences of both basal cell carcinoma and squamous
cell carcinoma since the previous visit were recorded.

In the irregularly observed longitudinal data analysis, there are two important processes involved: the response process
and the observation process. A basic assumption behind the usual methods is that the observation times are independent
of response variable, completely or given covariates, i.e., the observation process is noninformative (e.g., Lin and Ying,
2001; Welsh et al., 2002). However, this assumption may be violated in many applications. Such as the skin cancer study,
Li et al. (2011) and Zhang et al. (2013) have verified that the clinical visit times contain some relevant information about
the recurrence processes of two cancers. We call these response-dependent visit times as informative observation times.
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Thus it is very necessary to incorporate the relationship between the response process and the observation process into
longitudinal data models.

For the univariate longitudinal data analysis with informative observation times, two methods have been developed.
One is the conditional modeling approach (Sun et al., 2005), which obviously characterized the dependence of the response
process and the observation times. Another one is the frailty-based approachproposedby Sun et al. (2007), Liang et al. (2009),
Zhao et al. (2012), and Zhou et al. (2013) among others. For example, Sun et al. (2007) used a shared latent variable or frailty
to characterize the correlation between the response process and the observation times with informative censoring times.
Liang et al. (2009) modeled the longitudinal data with informative observation times via two latent variables that satisfied
a linear relationship where the distributional assumption for a latent variable is required. Zhao et al. (2012) considered
more general joint models using a completely unspecified link function and a latent variable to characterize the correlations
between the response process and the observation process, and developed estimating equation approaches. Zhou et al.
(2013) considered a semiparametric mixed random effect model for the response process in the presence of informative
observation and censoring times.

For themultivariate longitudinal datawith informative observation times, one additional issue involved is the correlation
among different types of the response processes. For the analysis of such complex data, the existing researchmainly focuses
on its special case where each longitudinal response process is a counting process. For example, Li et al. (2011), Zhang et al.
(2013), Zhao et al. (2013) and Li et al. (2015) proposed different semiparametric regression models that allow the recurrent
event process and the observation process to be correlated, by leaving the dependence structures for related types of panel
count processes completely unspecified.

In this paper, motivated by Zhao et al. (2012), we propose a semiparametric marginal modeling approach for the multi-
variate longitudinal data with informative observation times through latent variables and different completely unspecified
link functions to characterize different correlations between each type of response process and the corresponding observa-
tion process. An important advantage for the modeling is the nonrestrictive condition on the correlation between different
types of response process and different correlations between each type of response process and the corresponding obser-
vation process.

The remainder of this paper is organized as follows.We begin in Section 2 by introducing notation and describingmodels
for multivariate longitudinal data with informative observation times. In Section 3 an estimating equation approach is
developed to estimate the regression parameters involved in the proposed models, and the asymptotic properties for the
resulting estimators are given in this section. In Section 4, we discuss themodel checking technique for goodness of fit of our
models. The simulation results are presented in Section 5 to assess the finite-sample performance of the proposed inference
procedure, and the analysis of skin cancer chemoprevention trial data is provided to illustrate the proposed method in
Section 6. Some concluding remarks are made in Section 7.

2. Statistical model

Consider a longitudinal study that consists of n independent subjects and suppose that each subject may experience K
different types of longitudinal outcomes. For subject i, let Yik(t) denote the longitudinal response process with type k and
suppose that Yik(t) is observed at distinct timepoints 0 < Tik,1 < Tik,2 < · · · < Tik,mik , wheremik is the potential or scheduled
number of observations on subject iwith respect to the kth longitudinal response variable. LetXi be a p-dimensional vector of
covariates and Ci the follow-up or censoring time for subject i, i = 1, . . . , n. Note that here for the simplicity of presentation,
we assume that Xi and Ci are the same for different types of longitudinal response. The inference approach proposed below
can be easily extended to the situation where there exists different covariates and follow-up or censoring times for different
responses. Define Nik(t) =

mik
j=1 I


Tik,j ≤ t


, where I(·) is the indicator function. Then Ñik(t) = Nik(t ∧ Ci) is a counting

process characterizing the number of observation times on subject i with respect to the kth longitudinal response variable
up to time t . Then the process Yik(t) is observed only at the time points where Ñik(t) jumps.

For the analysis, suppose that Zi = (Zi1, . . . , ZiK )′ is an unobserved random vector independent of Xi with Zik being
positive, and assume that given Xi and Zi, Yik(t) follows the marginal model

E{Yik(t)|Xi, Zi} = µ0k(t) + β ′Xi + hk(Zik), (1)

where µ0k(t) is an unknown baseline mean function, β is a p-dimensional vector of unknown regression parameters, and
hk(·) is a completely unspecified function with E{hk(Zik)} = 0 for identifiability. The condition E{hk(Zik)} = 0 yields that
E{Yik(t)|Xi} = µ0k(t) + β ′Xi such that the uniqueness of µ0k(t) and β can be ensured. Model (1) assumes that the baseline
mean functions can be different for different types of longitudinal responses, however, the effects of covariates on different
types of longitudinal responses are the same for the simplicity of presentation. The correlations among the K longitudinal
response processes are characterized by a K -dimensional vector of unobserved frailties, where distributions of frailties are
free. So, the correlation structure of longitudinal response processes is unspecified. The goal here is to estimate regression
parameter β .

Give Xi and Zi, we assume that Nik(t) satisfies the following rate model

E{dNik(t) | Xi, Zi} = Zikgk(Xi)dΛ0k(t), (2)



122 S. Deng et al. / Computational Statistics and Data Analysis 107 (2017) 120–130

where gk(·) is a completely unspecified positive function andΛ0k(t) is a completely unknown continuous baseline function.
In model (2), it is assumed that the observation process is affected by the covariate Xi in a flexible way, while Zhao et al.
(2012) assumed that the observation process is a mixed Poisson model with intensity function satisfying their model (2.2)
where the form of covariate effect is specified. Under models (1) and (2), it is obvious that for each type k, given covariates,
the longitudinal response process may be related to the observation process through the unobserved frailty Zik and the
unspecified link function hk.

In the following, we assume that conditional on Xi and Zi, the two processes Nik and Yik are independent. Also assume
that Ci is independent of {Yik(t),Nik(t),Xi, Zi, 0 ≤ t ≤ τ } where τ denotes the length of the study.

3. Estimation procedure and asymptotic results

For estimation of β , define

Ȳik =

 τ

0
Yik(t)dÑik(t).

Since

E{Ȳik|Xi, Ci, Zi} =

 τ

0
ξi(t){µ0k(t) + β ′Xi + hk(Zik)}Zikgk(Xi)dΛ0k(t),

where ξi(t) = I(Ci ≥ t), then

E{Ȳik|Xi, Zi} =

 τ

0
P(Ci ≥ t){µ0k(t) + β ′Xi + hk(Zik)}Zikgk(Xi)dΛ0k(t).

Thus

E{Ȳik|Xi} =

 τ

0
P(Ci ≥ t)E(Zik|Xi){µ0k(t) + β ′Xi}gk(Xi)dΛ0k(t)

+

 τ

0
P(Ci ≥ t)E{hk(Zik)Zik|Xi}gk(Xi)dΛ0k(t)

= E(Zik)
 τ

0
P(Ci ≥ t)dΛ0k(t)gk(Xi)β

′Xi

+

 τ

0
P(Ci ≥ t)[µ0k(t)E(Zik) + E{hk(Zik)Zik}]gk(Xi)dΛ0k(t).

From model (2), we have

E{mik|Xi} = E(Zik)E[Λ0k(Ci)]gk(Xi).

Define

αk ,

 τ

0

P(C1 ≥ t)
E[Λ0k(C1)]


µ0k(t) +

E{hk(Z1k)Z1k}
E(Z1k)


dΛ0k(t), k = 1, . . . , K .

Then, we have

E{Ȳik|Xi} = E{mik|Xi}β
′Xi + αkE{mik|Xi},

that is

E

Ȳik − mik(β

′Xi + αk)

Xi


= 0. (3)

Let α = (α1, . . . , αK )′ and θ = (β ′, α′)′. Also let ek denote the K -dimensional vector of zeros except its kth entry equal to 1
and X̄ik = (X′

i, e
′

k)
′. To estimate θ , motivated by Eq. (3), we propose to use the following estimating equation

U(θ) = n−1
n

i=1

K
k=1

WiX̄ik{Ȳik − mikθ
′X̄ik} = 0, (4)

whereWi’s are weights that could depend on the Xi’s and Ci’s. Let θ̂ denote the solution to U(θ) = 0. Then

θ̂ =


n

i=1

K
k=1

WimikX̄⊗2
ik

−1 
n

i=1

K
k=1

WiX̄ikȲik


, (5)

where a⊗2
= aa′ for a vector a.
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Let θ0 be the true values of θ . Then it can be shown that θ̂ is consistent under the regularity conditions given in the
Appendix. Define

A = E


K

k=1

W1X̄⊗2
1k m1k


.

Then as we show in the Appendix, under some regularity conditions, n1/2(θ̂ − θ0) converges in distribution to a random
normal variable with mean zero and a covariance matrix A−1ΣA−1, where Σ = E(φ1φ

′

1) with

φ1 =

K
k=1

W1X̄1k{Ȳ1k − m1kθ
′X̄1k}.

In addition, the covariance matrix given above can be consistently estimated by Â−1Σ̂ Â−1, where

Â = n−1
n

i=1

K
k=1

WiX̄⊗2
ik mik,

and

Σ̂ = n−1
n

i=1

φ̂iφ̂
′

i ,

with φ̂i =
K

k=1 WiX̄ik{Ȳik − mikθ̂
′X̄ik}.

4. Model diagnostics

In practice, in addition to the estimation of β , one may also be interested in checking the adequacy of models (1) and (2)
given the observed data. To develop a procedure for this, we note that

E
 t

0
Yik(u)dÑik(u)|Xi


= E{mik|Xi}A0k(t) + β ′

0XiE{Ñik(t)|Xi},

where

A0k(t) =

 t

0

P(C1 ≥ u)
E[Λ0k(C1)]


µ0k(u) +

E{hk(Z1k)Z1k}
E(Z1k)


dΛ0k(u),

that can be estimated by

Â0k(t) = n−1
n

i=1

 t

0

Yik(u) − β̂ ′Xi

n−1
n

i=1
mik

dÑik(u), k = 1, . . . , K .

For each i and k, following Lin et al. (2000), define the residual

R̂ik(t) =

 t

0
[Yik(u) − β̂ ′Xi]dÑik(u) − mikÂ0k(t).

It can be seen that R̂ik(t) represents the difference between the observed and model-predicted values of the kth type of
longitudinal response experienced by subject i up to time t . To test the goodness-of-fit of models (1) and (2), we propose to
apply the statistic

Φ(t, x) = n−1/2
n

i=1

K
k=1

I(Xi ≤ x)R̂ik(t),

where the event I(Xi ≤ x) means that each of the components of Xi is not larger than the corresponding component of x. It
is easy to see that Φ(t, x) is the cumulative sum of R̂ik(t) over the values of Xi’s. Define

Sk0 =n−1
n

i=1

mik,

Sk(x) =n−1
n

i=1

I(Xi ≤ x)mik,

B(t, x) =n−1
n

i=1

K
k=1

 τ

0


I(Xi ≤ x) −

Sk(x)
Sk0


XidÑik(u).
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In the Appendix, we will show that the null distribution of Φ(t, x) can be approximated by the zero mean Gaussian process

Φ̃(t, x) =n−1/2
n

i=1

K
k=1

 t

0


I(Xi ≤ x) −

Sk(x)
Sk0


dR̂ik(u) − B(t, x)′n−1/2

n
i=1

âi, (6)

where âi is the vector Â−1φ̂i without the last K entries. To make inference for the goodness-of-fit test on models (1) and
(2) based on the observed residual, we need to evaluate the distribution of the supremum of the goodness-of-fit process
Φ(t, x)whenmodels (1) and (2) hold. However, it is impossible to evaluate this distribution analytically because the limiting
process ofΦ(t, x) does not have an independent increments structure. For this, we propose to use the simulation procedure
discussed in Cheng et al. (1997) and Lin et al. (2000). Let (G1, . . . ,Gn) be independent standard normal variables independent
of the observed data. Then it can be shown that the distribution of the process Φ(t, x) can be approximated by that of the
zero mean Gaussian process

Φ̂(t, x) =n−1/2
n

i=1

K
k=1

 t

0


I(Xi ≤ x) −

Sk(x)
Sk0


dR̂ik(u)Gi − B(t, x)′n−1/2

n
i=1

âiGi. (7)

To perform the goodness-of-fit test onmodels (1) and (2), based on (6) and (7), one can first repeatedly generate the standard
normal random sample (G1, . . . ,Gn) given the observed data, and then obtain a large number of realizations from Φ̂(t, x).
More formally, we can apply the supremum test statistic supt,x |Φ(t, x)|, where the p-value can be obtained by comparing
the observed value of supt,x |Φ(t, x)| to a large number, say 1000, of realizations of supt,x |Φ̂(t, x)|.

5. Simulation study

In this section, we conducted Monte Carlo simulation studies to evaluate the finite sample properties of the proposed
estimators. In this study, we assumed that there exist two related types of longitudinal response variables, that is, K = 2.
To generate the simulated data, we first generate the covariates Xi = (X1i, X2i)

′s with X1i from a Bernoulli distribution with
success probability 0.5 and X2i from a uniform distribution over (0, 1]. The latent variable Zi1 was generated from the gamma
distribution with mean 20 and variance 40, and we let Zi2 = ρzZi1 + Si where Si was generated from the gamma distribution
with mean 60 and variance 120. The follow-up time Ci was generated from the uniform distribution over interval (τ/2, τ ).

For the longitudinal response processes, we generated them from the following models:

Yik(t) = µ0k(t) + β1X1i + β2X2i + hk(Zik) + εi(t), k = 1, 2,

where

µ01(t) = log(1 + t), µ02(t) = sin t,

h1(Zi1) = ρ(Zi1 − 20)/
√
40, h2(Zi2) = Zρ

i2 − E(Zρ

i2),

withρ = −0.5, 0, and 0.5, and εi(t)’s are independent standard normal variables. It can be seen that the correlation between
the longitudinal response processes Y1i(t) and Y2i(t) is characterized by ρz . When ρz > 0 or ρz < 0, the two processes are
positively or negatively correlated; when ρz = 0, the two processes have no correlation given the covariates. Here, three
situations with ρz = 0.5, 0, and 0.5 were considered.

For the generation of the observation process Nik(t), k = 1 or 2, we considered a homogeneous Poisson process (HPP)
with λ0k(t) = 1/τ or a nonhomogeneous Poisson process (NHPP) with λ0k(t) = (t + 1)/{τ(τ/2 + 1)}.

For the homogeneous Poisson process, given Xi, Ci, and Zi, mik was generated from the Poisson distribution with mean

Zikgk(Xi)Λ0k(Ci) =
Zik exp(X′

iγ )Ci

τ
,

where gk(x) = exp(x′γ ) and γ = (1, 1)′. Given mik, the observation times (Tik,1, . . . , Tik,mik) were taken to be the order
statistics of the random sample of sizemik from the uniform distribution over (0, Ci).

For the nonhomogeneous Poisson process, given Xi, Ci, Zi,mik was generated from the Poisson distribution with mean

Zikgk(Xi)Λ0k(Ci) =
Zik(X′

iγ )2(C2
i /2 + Ci)

τ 2/2 + τ
,

with gk(x) = (x′γ )2. Givenmik, the observation times (Tik,1, . . . , Tik,mik) were the order statistics of a random sample of size
mik from the density function

t + 1
C2
i /2 + Ci

I{0 ≤ t ≤ Ci}.

We took β0 = (β10, β20)
′ as (−1, 1), representing the effects of the covariates X on the response variable. For each case,

we considered n = 100 and 200. All the results reported here were based on 1000 replications.
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Table 1
Simulation results for β under (HPP, HPP) observation process with τ = 18.

n ρ ρz β̂1 β̂2

BIAS SSE ESE CP BIAS SSE ESE CP

100 −0.5 −0.5 −0.0017 0.1351 0.1222 0.9180 −0.0053 0.0875 0.0818 0.9300
0 0.0031 0.1164 0.1111 0.9250 0.0001 0.0809 0.0766 0.9350
0.5 0.0001 0.1130 0.1042 0.9190 0.0009 0.0752 0.0718 0.9370

0 −0.5 −0.0026 0.0402 0.0398 0.9410 0.0000 0.0276 0.0270 0.9430
0 −0.0010 0.0369 0.0376 0.9450 −0.0012 0.0271 0.0257 0.9310
0.5 −0.0000 0.0372 0.0353 0.9190 0.0006 0.0249 0.0243 0.9390

0.5 −0.5 −0.0025 0.2146 0.2022 0.9360 0.0065 0.1039 0.1014 0.9400
0 −0.0055 0.2214 0.2105 0.9280 0.0047 0.1095 0.1077 0.9410
0.5 −0.0025 0.2511 0.2313 0.9320 −0.0026 0.1218 0.1190 0.9440

200 −0.5 −0.5 0.0024 0.0908 0.0886 0.9410 0.0002 0.0603 0.0590 0.9390
0 −0.0025 0.0861 0.0830 0.9420 −0.0021 0.0580 0.0560 0.9400
0.5 0.0055 0.0782 0.0759 0.9450 0.0030 0.0529 0.0525 0.9430

0 −0.5 0.0002 0.0293 0.0286 0.9420 −0.0003 0.0189 0.0192 0.9500
0 −0.0014 0.0262 0.0268 0.9470 −0.0003 0.0182 0.0183 0.9520
0.5 −0.0004 0.0263 0.0254 0.9430 0.0002 0.0173 0.0174 0.9540

0.5 −0.5 0.0086 0.1493 0.1482 0.9480 0.0003 0.0769 0.0733 0.9410
0 −0.0042 0.1548 0.1553 0.9530 0.0024 0.0777 0.0782 0.9580
0.5 0.0070 0.1779 0.1694 0.9350 0.0007 0.0857 0.0854 0.9530

Table 2
Simulation results for β under (HPP, NHPP) observation process with τ = 18.

n ρ ρz β̂1 β̂2

BIAS SSE ESE CP BIAS SSE ESE CP

100 −0.5 −0.5 −0.0048 0.1468 0.1349 0.9260 −0.0017 0.0892 0.0886 0.9410
0 0.0035 0.1332 0.1247 0.9340 0.0066 0.0875 0.0837 0.9370
0.5 −0.0054 0.1234 0.1183 0.9420 −0.0029 0.0829 0.0796 0.9390

0 −0.5 −0.0008 0.0438 0.0446 0.9450 0.0010 0.0304 0.0294 0.9410
0 −0.0007 0.0422 0.0414 0.9350 −0.0008 0.0286 0.0277 0.9340
0.5 −0.0001 0.0402 0.0397 0.9500 0.0004 0.0269 0.0269 0.9490

0.5 −0.5 −0.0038 0.2159 0.1948 0.9080 −0.0018 0.1087 0.1023 0.9350
0 0.0027 0.2242 0.2059 0.9130 0.0017 0.1138 0.1075 0.9320
0.5 −0.0026 0.2475 0.2287 0.9190 −0.0120 0.1217 0.1185 0.9420

200 −0.5 −0.5 −0.0033 0.1028 0.0972 0.9350 0.0050 0.0628 0.0638 0.9530
0 −0.0026 0.0954 0.0919 0.9390 0.0015 0.0618 0.0607 0.9370
0.5 −0.0008 0.0881 0.0851 0.9490 −0.0033 0.0583 0.0570 0.9430

0 −0.5 −0.0000 0.0319 0.0317 0.9380 0.0001 0.0211 0.0208 0.9450
0 −0.0006 0.0304 0.0298 0.9430 −0.0003 0.0206 0.0198 0.9370
0.5 0.0000 0.0292 0.0283 0.9300 −0.0001 0.0188 0.0190 0.9530

0.5 −0.5 −0.0064 0.1511 0.1403 0.9180 −0.0028 0.0742 0.0729 0.9420
0 0.0013 0.1549 0.1516 0.9450 −0.0015 0.0843 0.0783 0.9280
0.5 −0.0054 0.1730 0.1665 0.9360 −0.0039 0.0883 0.0853 0.9390

For comparison, we consider three combinations of the observation process (Ni1(t),Ni2(t)): (i) (HPP, HPP), (ii) (HPP,
NHPP), and (iii) (NHPP, NHPP). Tables 1–3 present the obtained simulation results on estimation of β1 and β2 for the three
situations with sample size n = 100, or 200, the true values of β0 = (−1, 1), ρz = 0.5, 0, or −0.5, ρ = 0.5, 0, or −0.5,
and τ = 18. Table 4 shows the obtained simulation results for the (HPP, HPP) case with τ = 10, and similar results can be
obtained for the other two cases. The tables include the estimated bias (BIAS) given by the average of proposed estimates
of β minus the true value, the sample standard error (SSE) of the proposed estimates, the mean of the estimated standard
error (ESE), and the empirical 95% coverage probabilities (CP). These results indicate that the proposed estimate seems to be
unbiased and the proposed variance estimation procedure provides reasonable estimates. Also the results on the empirical
coverage probabilities indicate that the normal approximation seems to be appropriate when the sample size increases, as
expected.

6. Application

To illustrate the proposed methodology, we consider a skin cancer chemoprevention trial as mentioned in Section 1.
It is a double-blinded and placebo-controlled randomized phase III clinical trial. The object of the study is a population of
the individuals with a history of two related types of non-melanoma skin cancers, basal cell carcinoma and squamous cell
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Table 3
Simulation results for β under (NHPP, NHPP) observation process with τ = 18.

n ρ ρz β̂1 β̂2

BIAS SSE ESE CP BIAS SSE ESE CP

100 −0.5 −0.5 −0.0041 0.1386 0.1309 0.9200 −0.0003 0.0933 0.0882 0.9400
0 0.0010 0.1266 0.1217 0.9440 0.0043 0.0840 0.0825 0.9450
0.5 0.0055 0.1238 0.1118 0.9220 0.0003 0.0816 0.0778 0.9320

0 −0.5 0.0036 0.0646 0.0603 0.9190 0.0001 0.0411 0.0397 0.9410
0 0.0021 0.0558 0.0558 0.9430 −0.0001 0.0387 0.0377 0.9360
0.5 −0.0020 0.0537 0.0523 0.9320 −0.0004 0.0356 0.0357 0.9520

0.5 −0.5 −0.0055 0.2297 0.2130 0.9160 −0.0002 0.1132 0.1100 0.9410
0 −0.0042 0.2424 0.2235 0.9230 −0.0030 0.1185 0.1160 0.9450
0.5 −0.0223 0.2599 0.2419 0.9240 −0.0010 0.1276 0.1254 0.9410

200 −0.5 −0.5 −0.0046 0.0959 0.0954 0.9480 0.0015 0.0627 0.0632 0.9500
0 −0.0008 0.0921 0.0880 0.9380 0.0010 0.0604 0.0595 0.9490
0.5 −0.0021 0.0832 0.0815 0.9440 0.0004 0.0561 0.0559 0.9460

0 −0.5 −0.0031 0.0437 0.0430 0.9320 0.0014 0.0307 0.0283 0.9270
0 −0.0014 0.0418 0.0399 0.9430 −0.0006 0.0267 0.0267 0.9480
0.5 −0.0020 0.0375 0.0373 0.9440 −0.0017 0.0255 0.0254 0.9470

0.5 −0.5 −0.0073 0.1624 0.1547 0.9350 −0.0030 0.0801 0.0793 0.9520
0 −0.0070 0.1731 0.1627 0.9410 0.0027 0.0848 0.0840 0.9460
0.5 −0.0065 0.1834 0.1778 0.9310 −0.0011 0.0923 0.0904 0.9480

Table 4
Simulation results for β under (HPP, HPP) observation process with τ = 10.

n ρ ρz β̂1 β̂2

BIAS SSE ESE CP BIAS SSE ESE CP

100 −0.5 −0.5 0.0006 0.1341 0.1262 0.9350 −0.0022 0.0882 0.0830 0.9320
0 −0.0014 0.1250 0.1173 0.9280 0.0001 0.0798 0.0784 0.9360
0.5 0.0041 0.1177 0.1101 0.9310 0.0012 0.0756 0.0741 0.9440

0 −0.5 −0.0027 0.0525 0.0492 0.9230 −0.0005 0.0308 0.0292 0.9290
0 −0.0048 0.0491 0.0488 0.9380 0.0004 0.0293 0.0287 0.9350
0.5 −0.0007 0.0509 0.0475 0.9180 −0.0007 0.0300 0.0282 0.9350

0.5 −0.5 −0.0141 0.2180 0.2015 0.9200 −0.0033 0.1057 0.1016 0.9350
0 −0.0090 0.2278 0.2148 0.9320 0.0020 0.1107 0.1085 0.9430
0.5 −0.0003 0.2490 0.2342 0.9360 0.0008 0.1229 0.1192 0.9440

200 −0.5 −0.5 −0.0012 0.0935 0.0919 0.9490 −0.0016 0.0621 0.0602 0.9460
0 −0.0053 0.0844 0.0850 0.9570 −0.0012 0.0576 0.0564 0.9360
0.5 −0.0016 0.0808 0.0794 0.9450 0.0031 0.0525 0.0536 0.9620

0 −0.5 −0.0002 0.0367 0.0354 0.9310 0.0003 0.0208 0.0209 0.9510
0 −0.0010 0.0306 0.0347 0.9330 0.0004 0.0202 0.0205 0.9460
0.5 −0.0021 0.0353 0.0342 0.9340 −0.0003 0.0203 0.0201 0.9440

0.5 −0.5 −0.0014 0.1494 0.1466 0.9390 0.0001 0.0760 0.0734 0.9450
0 −0.0030 0.1581 0.1553 0.9400 −0.0056 0.0837 0.0787 0.9310
0.5 −0.0057 0.1745 0.1697 0.9330 −0.0055 0.0860 0.0859 0.9460

carcinoma denoted by Type 1 and Type 2 cancers, respectively. The purpose of the trial is to assess the effectiveness of
0.5 g/m2/day PO difluoromethylornithine (DFMO) in reducing the recurrence rates of both types of new skin cancers. The
data set can be founded from data set III of Chapter 9 in Sun and Zhao (2013).

The data set of the study actually involves 290 patientswith effective information. Theywere randomly assigned to either
the placebo group (147) or the DFMO group (143). The patients were scheduled to be assessed or observed every 6 months
for the recurrence of one of the two non-melanoma skin cancers. However, the real observation times differ from individual
to individual and so as the follow-up times.

For the analysis, for patient i, we took Yik(t) as the natural logarithm of the number of observed Type k cancers at time t
on the patient plus 1 to avoid 0, i = 1, . . . , 290, k = 1, 2. The same covariateXi was considered for these two different types
of skin cancers. We set the first and second component of Xi to be the number of prior skin cancers from the first diagnosis
to randomization, and the age, respectively; the third component to be 1 if the ith patient is a male and 0 otherwise; and
the fourth component to be 1 if the ith patient was given the DFMO and 0 for placebo. We got a set of bivariate longitudinal
data.

First, we analyzed this data set by the proposed models with the same covariate effect on different types of longitudinal
responses. The estimation results for the covariate effect β̂ obtained by the proposed estimation procedure are given in
Table 5. These results suggested that the DFMO treatment was not effective on reducing the occurrence rate of the two skin
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Table 5
Application results for the skin cancer chemoprevention trial.

Model I β̂1 β̂2 β̂3 β̂4

Estimate 0.0097 −0.0001 0.0159 −0.0036
ESE 0.0015 0.0005 0.0090 0.0091
p-value 0.0000 0.7983 0.0775 0.6937

Model II Basal cell carcinoma Squamous cell carcinoma
β̂11 β̂21 β̂31 β̂41 β̂12 β̂22 β̂32 β̂42

Estimate 0.0118 −0.0017 0.0139 −0.0131 0.0077 0.0014 0.0180 0.0061
ESE 0.0017 0.0009 0.0152 0.0143 0.0023 0.0005 0.0113 0.0116
p-value 0.0000 0.9763 0.1787 0.8207 0.0004 0.0015 0.0561 0.3004

Model I: the proposed models with the same covariate effect; Model II: the proposed models with different covariate effects.

cancers. Moreover, the age did not have a significant relationship with the occurrence rate. The occurrence rate, however,
was positively and significantly affected by the number of the prior skin cancers as suggested by the p-value. These results
are consistent with those in Li et al. (2011) and Zhang et al. (2013). In addition, by our approach, we can concluded that the
recurrence rate of skin cancer for male patients was slightly higher than that for female patients at significance level of 0.08.
To check the overall fit of our proposed model, we found out that the p-value for supt,x |Φ(t, x)| was 0.139 based on 1000
realizations. This suggests that these models seem to be appropriate for the skin cancer chemoprevention data considered
here.

Second, we analyzed this data set by the proposed models with different covariate effects on different types of
longitudinal responses, that is,

E{Yik(t)|Xi, Zi} = µ0k(t) + β ′

kXi + hk(Zik), k = 1, 2,

whereβk denotes the vector of regression parameters for Type k. Then the proposed procedure yielded the estimation results
in the second part of Table 5. From the table, we can see that theDFMO treatment did not have a significant effect on reducing
the recurrence rates of both types of new skin cancers, while the numbers of the prior skin cancers had a significant positive
effect on the recurrence rates of both types of new skin cancers. The age of patients did not have a significant effect on the
occurrence rate of basal cell carcinoma cancer, but it had a significant positive effect on the recurrence rate of squamous
cell carcinoma cancer; the gender of patients did not have a significant effect on the recurrence rate of basal cell carcinoma
cancer, but the recurrence rate of squamous cell carcinoma cancer for male patients was slightly higher than that for female
patients at significance level of 0.06. Furthermore, the p-value for supt,x |Φ(t, x)| for the proposed models was 0.314 based
on 1000 realizations. These analysis results indicate that the proposed models with different covariate effects seem more
plausible for these data.

7. Concluding remarks

In this paper,wehaveproposed flexible jointmodels for the analysis of themultivariate longitudinal outcomeswith irreg-
ular and informative observation processes,where no restrictive condition ismade on both the correlation between different
types of response process and the different correlations between each type of response process and the corresponding obser-
vation process. For estimation of the covariate effect on the outcomes, we have proposed a novel estimating equation-based
inference procedure, which depends on neither the formof the link of the frailty nor the distribution of the frailty. The result-
ing estimators have explicit expressions and so the proposed inference procedures are easy to implement. The asymptotic
properties of the proposed estimators are established. The finite-sample properties of the proposed estimates are evaluated
through simulation studies and a set of multivariate longitudinal data from a skin cancer chemoprevention trial is analyzed.

In particular, we have developed a robust and easy to implement method since our estimation approach does not in-
volve estimation of unknown parameters in the observation process model, but estimating unknown parameters for the
observation process model are required by Zhao et al. (2012)’s estimation procedure.

Note that for the simplicity of presentation, our proposed estimation approach assume that the covariate effects on dif-
ferent types of response processes are the same. Actually, this may not be true in practice. Thus, instead of model (1), one
may consider

E{Yik(t)|Xik, Zi} = µ0k(t) + β ′

kXik + hk(Zik),

whereβk denotes the vector of regression parameters, k = 1, . . . , K . It is straightforward to generalize the proposed estima-
tion approach to this situation as we have considered in the application section. Furthermore, the covariates and covariate
effects may be time-dependent in some applications. For this problem, one may consider the following model for the re-
sponse process Yik(t),

E{Yik(t)|Xi, Zi} = µ0k(t) + β(t)′Xi(t) + hk(Zik)

where β(t) and Xi(t) are defined as before except being time-dependent.
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In addition, it is also interesting to consider the generalized linear mixed model (GLMM) for longitudinal response
processes as follows,

g(E{Yik|Xi, Zi}) = µ0k(t) + β ′X + hk(Zik),

where g(·) is a GLM link function. However, it is not straightforward to extend our proposed estimating equation approach
to this model. A new estimation method needs to be developed for the further work.

Acknowledgments

The authors would like to thank the Editor, Professor Jae Chang Lee, the Associate Editor and the two reviewers for their
constructive and insightful comments and suggestions that greatly improved the paper. Deng’s research is partly supported
by theNatural Science Foundation of China (No. 11401443) and the Fundamental Research Funds for the Central Universities
(No. 2042014kf0075), and Zhao’s research is partly supported by the Research Grant Council of Hong Kong (503513), the
Natural Science Foundation of China (No. 11371299), and The Hong Kong Polytechnic University.

Appendix. Proofs

To study the asymptotic properties of the proposed estimators, we need the following regularity conditions.

C1 P(C ≥ τ) > 0 and E(Z2
1k) < ∞, k = 1, 2.

C2 X is bounded, Yik(τ ),Nik(τ ) are bounded almost surely, k = 1, . . . , K , i = 1, . . . , n.

C3 A , E
K

k=1 W1X̄⊗2
1k m1k


is nonsingular.

Proof of the consistency of θ̂

Note that

U(θ0) = n−1
n

i=1

K
k=1

WiX̄ik{N̄ik − mikθ
′

0X̄ik}

= E


K

k=1

W1X̄1k(N̄1k − m1kθ
′

0X̄1k)


+ op(1)

= E


K

k=1

W1X̄1k

E{N̄1k|X1} − E{m1k|X1}θ

′

0X̄1k


+ op(1)

= E


K

k=1

W1X̄1kE{m1k|X1}

β ′

0X1 + α0k − θ ′

0X̄1k


+ op(1)

= op(1),

and

Â(θ) = −
∂U(θ)

∂θ
= n−1

n
i=1

K
k=1

WiX̄⊗2
ik mik

converges uniformly to a positive definitematrix A over θ . Thus the solution θ̂ of the estimating equationU(θ) = 0 is unique
and consistent for θ0.

Proof of the asymptotic normality of θ̂

In this part, we will derive the asymptotic normality of
√
n(θ̂ − θ0). Note that by Taylor expansion, we have

√
n(θ̂ − θ0) =


−

∂U(θ)

∂θ


θ=θ0

−1
√
nU(θ0) + op(1)

= A−1n−1/2
n

i=1

φi + op(1).

It follows from the central limit theorem and Slutsky theorem that the asymptotic normality of β̂ holds as stated in Section 3.
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Proof of the asymptotic properties of Φ(t, x).
We will prove the weak convergence of Φ(t, x) under models (1) and (2). Note that

Â0k(t) − A0k(t) = n−1
n

i=1

 t

0

Yik(u) − β̂ ′Xi

n−1
n

i=1
mik

dÑik(u) − A0k(t)

= −

n−1
n

i=1

 t

0

Xi

n−1
n

i=1
mik

dÑik(u)


′

(β̂ − β0)

+ n−1
n

i=1

 t

0

Yik(u) − β ′

0Xi

n−1
n

i=1
mik

dÑik(u) − A0k(t)

= −

n−1
n

i=1

 t

0

Xi

n−1
n

i=1
mik

dÑik(u)


′

(β̂ − β0) + n−1
n

i=1

 t

0

dRik(t)

n−1
n

i=1
mik

,

where

Rik(t) =

 t

0
[Yik(t) − β ′

0Xi]dÑik(u) − mikA0k(t).

Thus,

Φ(t, x) = n−1/2
n

i=1

K
k=1

I(Xi ≤ x)Rik(t) −


n−1

n
i=1

K
k=1

 t

0
I(Xi ≤ x)XidÑik(u)

′

√
n(β̂ − β0)

− n−1/2
n

i=1

K
k=1

 t

0
I(Xi ≤ x)mikd{Â0k(u) − A0k(u)}

= n−1/2
n

i=1

K
k=1

 t

0


I(Xi ≤ x) −

Sk(x)
Sk0


dRik(u) − B(t, x)′

√
n(β̂ − β0)

= n−1/2
n

i=1

K
k=1

 t

0


I(Xi ≤ x) −

sk(x)
sk0


dRik(u) − b(t, x)′

√
n(β̂ − β0) + op(1), (8)

where sk0, sk(x) and b(t, x) are the limits for Sk0, Sk(x) and B(t, x) respectively. The tightness of the first term on the right
hand side of (8) follows directly from the arguments in Appendix A.5 of Lin et al. (2000). The second term is also tight because
that

√
n(β̂ − β0) converges in distribution and b(t, x) is some deterministic function. Thus Φ(t, x) is tight.

Based on (8), we can rewrite Φ(t, x) as

Φ(t, x) = n−1/2
n

i=1

Ψi(t, x) + op(1),

with

Ψi(t, x) =

K
k=1

 t

0


I(Xi ≤ x) −

sk(x)
sk0


dRik(u) − b(t, x)′ai + op(1),

where ai is the vector Â−1φi without the last K entries. The multivariate central limit theorem, together with the tightness
of Φ implies that Φ(t, x) convergences weakly to a zero-mean Gaussian process which can be approximated by the zero
mean Gaussian process Φ̃(t, x) defined in (6).
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