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This article discusses the statistical analysis of panel count data when the underlying recurrent event
process and observation process may be correlated. For the recurrent event process, we propose a new
class of semiparametric mean models that allows for the interaction between the observation history and
covariates. For inference on the model parameters, a monotone spline-based least squares estimation
approach is developed, and the resulting estimators are consistent and asymptotically normal. In
particular, our new approach does not rely on the model specification of the observation process. The
proposed inference procedure performs well through simulation studies, and it is illustrated by the
analysis of bladder tumor data.
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1 Introduction

In many longitudinal follow-up studies, each subject may be observed at several distinct times and only
the numbers of events between two adjacent times are available. It may be impossible to record the
exact event times because of too expensive examination cost or too frequent occurrence of the events.
Moreover, the observation times may vary from subject to subject. Such complex data are called
panel count data, which often occur in many fields such as demographic studies, industrial reliability,
and clinical trials; see Kalbfleisch and Lawless (1985), Gaver and O’Muicheartaigh (1987), Thall and
Lachin (1988), and Sun and Kalbfleisch (1995). For such data, important information includes the
observation times, counts of recurrent events, censoring or follow-up times, and covariates related to
the study for each study subject. A typical example is bladder tumor data that will be discussed below.

For the analysis of panel count data, Sun and Zhao (2013) provide a relatively complete review
for the analysis of panel count data wherein more references can be found. The existing research
mainly focuses on the assumption that the underlying observation process and recurrent event process
are independent completely or conditional on covariates (e.g., Kalbfleisch and Lawless, 1985; Thall
and Lachin, 1988; Sun and Kalbfleisch, 1995; Staniswalis et al., 1997; Sun and Wei, 2000; Wellner
and Zhang, 2000, 2007; Zhang, 2002; Hu et al., 2003, 2009; Lu et al., 2007, 2009; He et al., 2008).
However, this assumption may be violated in practice. Such an example is a set of panel count data
arising from a bladder cancer follow-up study conducted by the Veterans Administration Cooperative
Urological Research Group (Byar, 1980). Many patients had multiple recurrences of new tumors during
the study. The patients in the thiotepa group had significantly more clinical visits than those in the
placebo group since thiotepa needed be instilled in the bladder (Lu et al., 2009; Li et al., 2010; Zhao and
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Tong, 2011). The patients in the thiotepa group received more medical treatment so that these patients
had the lower tumor recurrence rate. This indicates that the number of clinical visits may contain some
information about the tumor recurrence rate—that is, the observation process is informative.

In contrast, there is limited research on the analysis of panel count data with informative observation
times. Li et al. (2010) incorporated the observation history to the mean models of the underlying
recurrent event process that follows a class of semiparametric transformation models. Zhao and Tong
(2011) proposed a joint modeling approach through an unobserved frailty variable and a completely
unspecified link function to characterize the correlation between the underlying recurrent event process
and the observation times. A commonly used assumption in their analysis mentioned above is that
the observation process follows a Poisson-type with a proportional intensity function. However, the
fit of the Poisson model may be inadequate when the observation process displays underdispersion
or overdispersion. For example, Zhao et al. (2013) tested the Poisson process assumption about
the observation process for the bladder tumor data and concluded that the Poisson process model
cannot be acceptable for the observation process in the data. In addition, the relation between the
observation and recurrent event processes may vary with some covariates. For example, in the bladder
cancer study, patients who received the thiotepa treatment may make clinical visits more often than
those in the placebo group and thus may have less superficial bladder tumors, which means that the
correlation between the observation times and the tumor recurrent process as mentioned above may
be different for different treatment groups. Motivated by the characteristics of the bladder cancer data,
we propose a new class of semiparametric regression models by incorporating the interaction between
the observation history and some covariates to the mean model of the recurrent event process, where
the observation process model is completely unspecified.

The remainder of this article is organized as follows. We begin in Section 2 by introducing notation
and describing models for panel count data. In Section 3, a spline-based least squares method is
proposed for estimation of regression parameters and the baseline mean function, and the asymptotic
properties of the proposed estimators are presented in Appendix. In Section 4, we present some
simulation results to assess the finite-sample performance of the proposed inference procedure. In
Section 5, the proposed approach is illustrated through the analysis of a dataset from a bladder tumor
study. Some concluding remarks are made in Section 6.

2 Panel count mean models

Consider a study involving n independent subjects who may experience some recurrent events and
let Ni(t) denote the total number of occurrences of the event of interest up to time t for subject
i (i = 1, · · · , n) for 0 ≤ t ≤ τ , where τ is a known constant time point. Also suppose that for subject
i, Ni(t) is observed only at discrete potential time points 0 < TKi,1

< TKi,2
< · · · < TKi,Ki

, where the
total number of observations Ki is an integer-valued random variable. In general, not every subject
can be followed until τ and there exists a follow-up time Ci for subject i. That is, Ni(TKi, j ) is observed

only if TKi, j ≤ Ci ≤ τ. Define Hi(t) = ∑Ki
j=1 I(TKi, j ≤ t) to be the counting process that records the

number of observations for subject i up to time t, where I(·) is the indicator function. Then define
H̃i(t) = Hi(t ∧ Ci) as the actual observation process for subject i, where a ∧ b = min(a, b). Let Xi =
(Xi1, · · · , Xip)

′ denote a p-dimensional vector of covariates that may not depend on t, i = 1, · · · , n.

Define Fit = {Hi(s) : 0 ≤ s < t} as the observation history just before t.
By relaxing the model assumption on the observation process, we assume that given Xi, Fit , and the

covariate Wi, which is allowed to be a component of the vector Xi, the mean function of Ni(t) has the
form

μi(t) = μ0(t) exp{β′Xi + α′φ(Fit,Wi)}, (1)
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where μ0(t) is an unspecified smooth and nondecreasing nonnegative function of t; β and α are
p-dimensional and q-dimensional vectors of unknown regression coefficients, respectively; and φ(·)
is a q-dimensional vector of known functions of the counting process Hi(t) up to time t− and the
covariates Wi, representing the interaction between the observation history and some covariates. In
particular, for panel count data arising from the longitudinal follow-up clinical studies with different
treatments, Wis can be considered as the treatment indicators, and thus α represents the effect of
interaction between the frequency of observation times and the treatment group on the underlying
recurrent event process. If α = 0, then model (1) reduces to the model considered by Sun and Wei
(2000), Zhang (2002), and Wellner and Zhang (2007) for regression analysis of panel count data. In
fact, our modeling approach is different from the existing approaches. Here, the possible effect of the
observation process is directly incorporated into the conditional model about the underlying recurrent
event process, and no additional model assumption is needed for the observation process.

For making valid inference, we assume that

E{Ni(t)|Xi, Hi(s), 0 ≤ s ≤ t,Ci} = E{Ni(t)|Xi,Fit,Ci},

which means that the mean of the recurrent event process valued at time point t only de-
pends on the observation history before t, conditional on the covariates and the censoring
time. Let O = (K, T̄ K , N̄K , H̄ K , X,C ), with T̄ K = (TK,1, · · · , TK,K ), N̄K = (N(TK,1), · · · , N(TK,K )),
H̄K = (H (TK,1), · · · , H (TK,K )). Throughout this article, we will assume that we observe n i.i.d. copies,
O1, · · · , On of O. The goal is to estimate the unknown nondecreasing function μ0(t) and the regression
parameters β and α.

3 Estimation procedure

For inference about model (1), we denote μ̃(t) = log(μ(t)) and, using the generalized least square
estimation approach given in Hu et al. (2009), define the following objective function:

Ln(β,α, μ̃) =

=
n∑

i=1

Ki∑
j=1

[
Ni(TKi, j ) − exp{μ̃(TKi, j ) + β′Xi + α′φ(FiTKi , j

,Wi)}
]2

ξi(TKi, j ) = (2)

=
n∑

i=1

∫ τ

0

[
Ni(t) − exp{μ̃(t) + β′Xi + α′φ(Fit,Wi)}

]2 dH̃i(t),

where ξi(t) = I(Ci ≥ t).
To make inference about μ0(t), we propose to use B-splines to approximate its logarithm μ̃0(t) =

log(μ0(t)). For a finite closed interval [0, τ ], let I = {ti}
mn+2l
1 , with

0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ,

be a sequence of knots that partition [0, τ ] into mn + 1 subintervals and mn = O(nν ), for 0 < ν < 1/2.
Let �l,I be the class linearly spanned by the B-splines basis functions {Bil , 1 ≤ i ≤ qn(qn = mn + l )}
with order l and knots I, that is

�l,I =
{ qn∑

i=1

γiBil : γi ∈ R, i = 1, · · · , qn

}
.
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We now define a subclass of �l,I , as 
l,I = {∑qn
i=1 γiBil : γ1 ≤ · · · ≤ γqn

}. According to the variation-
diminishing properties of B-splines (Schumaker, 1981), 
l,I is a class of nondecreasing splines on
[0, τ ]. Then, we can approximate the smooth monotone function μ̃0(t) by

∑qn
i=1 γiBil (t) and estimate

the coefficients γ1 ≤ · · · ≤ γqn
and regression parameters β and α jointly through minimizing the

approximated expression Ln(β,α, μ̃) subject to nondecreasing constraints.
Using the spline-based sieve approximation μ̃n(t) = ∑qn

i=1 γiBil (t) of μ̃0(t), Ln(β, α, μ̃) in Eq. (2)
can be approximated by

Ln(β,α, γ ) =
n∑

i=1

∫ τ

0

[
Ni(t) − exp{γ ′Bl (t) + β′Xi + α′φ(Fit,Wi)}

]2 dH̃i(t), (3)

where γ = (γ1, · · · , γqn
)′ and Bl (t) = (B1l (t), · · · , Bqnl (t))

′.

Let β̂n, α̂n, γ̂n be the values that minimize Ln(β,α, γ ) in Eq. (3) with the constraint γ1 ≤ · · · ≤ γqn
.

Then the monotone spline estimator for μ̃0(t) is ˆ̃μn(t) = γ̂nBl (t). Thus μ0(t) can be estimated by
μ̂n(t) = exp{ ˆ̃μn(t)}. The spline estimation problem can be formulated as the linear inequality con-
strained minimization problem minη∈Rp+q×�

γ
Ln(η), where η = (β′,α′, γ ′)′ with γ ∈ �γ = {γ : γ1 ≤

· · · ≤ γqn
}. Jamshidian (2004) proposed a generalized gradient projection (GP) algorithm for opti-

mizing a nonlinear objective function with linear inequality constraints, based on the generalized
Euclidean metric ‖x‖ = xTV x with V being a positive definite matrix and possibly varying from itera-
tion to iteration. Zhang and Jamshidian (2004) applied the GP algorithm to large-scale nonparametric
maximum-likelihood estimation problems by choosing V = DU , the matrix containing only the diag-
onal elements of the negative Hessian matrix U , in order to avoid the storage problem in updating
U . However, this will increase the number of iterations and thereby the computing time. Lu et al.
(2007, 2009) used the generalized GP algorithm in Zhang and Jamshidian (2004) with V = U directly
because the dimension of unknown parameter space is usually small in their applications due to the
use of polynomial splines, which would also substantially reduce the number of iterations. Here we
consider using the generalized GP algorithm for the monotone polynomial spline estimation with V
unequal to the negative Hessian matrix U .

Let ∇Ln(η) be the negative gradient of Ln(η) with respect to η and

V =
n∑

i=1

∫ τ

0
exp{η′Zli(t)}2Z⊗2

l i (t)dH̃i(t),

which is a positive definite matrix with Zli(t) = (X′
i, φ(Fit,Wi)

′, B′
l (t))

′. Furthermore, n−1(2V ) has
the same limit as the negative Hessian matrix of −Ln(η).

LetA = {i1, i2, · · · , im} denote the index set of active constraints, that is γi j
= γi j+1, for j = 1, · · · , m,

during the numerical computation.A is allowed to be empty when m = 0. We define an m by p + q + qn
working matrix corresponding to A as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · −1 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 · · · −1 1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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that is, the j-th row ( j = 1, · · · , m) consists of (p + q + qn) components with its (p + q + i j )-th and
(p + q + i j + 1)-th elements equal to −1 and 1, respectively, and the remaining components zero. The
generalized GP algorithm is summarized as follows.

Start with a feasible initial value η ∈ R
p+q × �γ , and cycle through the following steps until conver-

gence.

S0. (Computing the feasible search direction) Calculate

d = (
I − V −1AT (AV −1AT )−1A

)
V −1∇Ln(η).

When there is no active constraint, take d = V −1∇Ln(η).

S1. (Forcing the updated η to fulfill the constraints) If the resulted direction d is not nondecreasing
in its components, compute

ϕ = min
i/∈A,di>di+1

(
−γi+1 − γi

di+1 − di

)
.

Doing so guarantees that γi+1 + ϕdi+1 ≥ γi + ϕdi, for i = 1, · · · , qn.

S2. (Step-halving line search) Find the smallest integer k starting from 0 such that

‖∇Ln(η + (1/2)kd )‖ < ‖∇Ln(η)‖.

S3. (Updating the solution) If ϕ > (1/2)k, replace η by η̃ = η + (1/2)kd and check the stopping
criterion (S5).

S4. (Updating the active constraint set) If ϕ ≤ (1/2)k, in addition to replace η by η̃ = η + ϕd ,
modify A by adding indexes of all the newly active constraints to A and accordingly modify
the working matrix A.

S5. (Checking the stopping criterion) If ‖d‖ ≥ ε for a small ε > 0, go to S0, otherwise, compute
the Lagrange multipliers λ = (AV −1AT )

−1AV −1∇Ln(η).

(i) If λi ≤ 0 for all i ∈ A, set η̂ = η and stop.
(ii) If at least one λi > 0, for i ∈ A, remove the index corresponding to the largest λi from A,

and update A and go to S0.

Let θ̂n = (β̂n, α̂n, μ̂n) and θ0 be the true value of θ. Under some regularity conditions stated in

Appendix, θ̂n is a consistent estimator of θ0 and
√

n
(

β̂n−β0
α̂n−α0

)
converges in distribution to N(0, �),

where � is given in Theorem 3 of Appendix.

4 Simulation study

In this section, we conducted a simulation study to assess the finite-sample properties of the proposed
estimators. We considered the situation where there were two covariates and for each subject i, X1is
and X2is were generated from Bernoulli distribution with success probability 0.5 and the uniform
distribution over interval (−1, 1), respectively. The follow-up time Ci was generated from the uniform
distribution over interval (τ/2, τ ) with τ = 6. Given the covariate Xi = (X1i, X2i)

′ and Ci, two setups
for the observation process Hi(t) were considered as follows:

(i) The number of observation times mi was assumed to follow the Poisson distribution with mean
(2Ci/τ ) exp(−0.5X1i + 0.5X2i) and the observation times (Tmi1

, . . . , Tmimi
) were taken to be

the order statistics of a random sample of size mi from the uniform distribution over (0,Ci).
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(ii) The number of observation times mi was assumed to follow the uniform distribution over
{1, 2, 3, 4, 5, 6} and the observation times (Tmi1

, . . . , Tmimi
) were generated in the same way as

in setup (i).

Then, given Xi, mi, and the observation times (Tmi,1
, · · · , Tmi,mi

), we generated recurrent event

counts Ñmi
= (Ni(Tmi,1

), · · · , Ni(Tmi,mi
)) from a Poisson process by taking

Ni(Tmi, j ) = Ni(Tmi,1
) + {Ni(Tmi,2

) − Ni(Tmi,1
)} + · · · + {Ni(Tmi, j ) − Ni(Tmi, j−1)},

with Ni(Tmi,1
) ∼ Poisson(exp{μ̃0(Tmi,1

) + β′
0Xi + α0Hi(Tmi,1

−)Wi}), and

Ni(Tmi, j ) − Ni(Tmi, j−1) ∼ Poisson(exp{μ̃0(Tmi, j ) + β′
0Xi + α0Hi(Tmi, j−)Wi}

− exp{μ̃0(Tmi, j−1) + β′
0Xi + α0Hi(Tmi, j−1−)Wi}),

for j ≥ 2.
We took β0 = (−0.5, 0.5); α0 = 0, 0.3, or 0.5; and μ̃0(t) = √

t or log(t + 1), and used the cubic
B-splines to compute the spline estimators. To choose the number of interior knots, we partitioned the
range of ν, (0, 0.5) to 20 equally subintervals and chose v to be the partition points. For each value of
ν, we took mn = nν as the number of interior knots. To determine locations of knots, we considered
two commonly used data-driven methods. One is the equally spaced knots given by Tmin + k(Tmax −
Tmin)/(mn + 1), k = 0, 1, · · · , mn + 1, where Tmin and Tmax denote the minimum and maximum values
of distinct observation times, respectively. Another is the partitions corresponding to quantiles of the
observation times, that is, the k/(mn + 1) quantiles (k = 0, 1, · · · , mn + 1) of the distinct observation
times as the knots. The value of ν that minimizes the Bayesian information criteria (BIC) was selected.
Here BIC = 2 log(L) + log(n)(qn + 3), where L = Ln(β̂n, α̂n,

ˆ̃μn) as defined in Eq. (2) and qn is the
number of the B-spline basis functions. We carried out simulations for the different situations of the
number and placement of knots with W = X1, α = 0.3, μ̃0(t) = log(t + 1), and n = 100, and found
that the estimation results are very similar and the method is insensitive to the selection of number
and placement of knots, where the value of ν was selected by the BIC as 1/8. Thus in the following,
we took the number of interior knots as n1/8 and used the equally spaced knots.

To initialize the algorithm, we choose γ = (1, 2, · · · , qn)
′, while β and α were all generated from

the uniform distribution over interval (−0.5, 0.5). Tables 1 and 2 present the simulation results on
estimation of β0 and α0 under Poisson and non-Poisson observation processes with sample size n = 100
or 200 for μ̃0(t) = √

t and log (t + 1), respectively. The tables include the estimated bias (BIAS) given
by the average of the estimates minus the true value, the sample standard deviation error of estimates
(SSE), the mean of the bootstrap standard errors of the estimates (BSE), and the bootstrap 95%
coverage probability (CP) obtained from 1000 independent runs. Here we used 100 replications in
bootstrap to estimate the standard errors. It can be seen from the tables that the proposed estimators
are unbiased for different situations considered, which means that our estimation approach does not
rely on the Poisson distributional assumption about the observation process.

Also, the SSE and BSE are quite close to each other and become smaller as the sample size increases,
which indicates that proposed bootstrap variance estimation procedure provides reasonable estimates.
In addition, the 95% bootstrap CP is consistent with the nominal level, which suggests that the normal
approximation seems to be appropriate.

To estimate the smooth function μ̃0(t), we considered cubic B-splines and took mn = nν with
ν = 1/8. For a given number of interior knots mn, the equally spaced knots are chosen. Figure 1
shows the estimation results of μ̃0(t) = log (t + 1) for simulated panel count data with Possion and
non-Poisson observation processes, φ(Ft,W ) = H (t−)X1 and α = 0.3. In the figure, the solid line
represents the real curve of μ̃0(t), and the point line and the dotted line represent the B-spline
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Figure 1 Estimates of μ̃0(t) = log (t + 1) for simulated panel count data with (A) Poisson and (B)
non-Poisson observation processes, φ(Ft,W ) = H (t−)X1, and α = 0.3.

estimates of μ̃0(t) for the sample size n = 100 and n = 200, respectively. From the figure, one can see
that the B-spline estimate is close to its real curve with the moderate sample size and especially closer
as the sample size increases for all the situations considered here, indicating that the B-spline estimator
for μ̃0(t) performs well.

To compare our estimators with the maximum spline pseudo-likelihood estimators (MSPLE) and
maximum spline likelihood estimators (MSLE) in Lu et al. (2009), we considered the same setup as
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Table 3 Comparison of estimates for β0, based on generated data from mixed Poisson recurrent event
process with φ(Ft,W ) = H (t−)X1 and μ̃0(t) = log (t + 1).

n α Method Poisson observation Non-Poisson observation

β̂1 β̂2 β̂1 β̂2

BIAS SSE BIAS SSE BIAS SSE BIAS SSE

100 0 Proposed –0.0031 0.2213 0.0147 0.2037 –0.0054 0.1829 0.0104 0.1461
MSPLE –0.0023 0.1968 0.0001 0.1707 0.0031 0.1486 0.0003 0.1290
MSLE 0.0028 0.1723 –0.0019 0.1511 0.0020 0.1307 0.0021 0.1108

0.3 Proposed –0.0078 0.2271 0.0317 0.1989 –0.0105 0.1967 0.0070 0.1376
MSPLE 0.2372 0.2008 0.0457 0.1665 0.7080 0.1380 –0.0015 0.1218
MSLE 0.2702 0.1816 0.0499 0.1516 0.9150 0.1377 –0.0001 0.1271

0.5 Proposed –0.0174 0.2426 0.0303 0.2083 –0.0023 0.2291 0.0103 0.1608
MSPLE 0.4343 0.2501 0.0769 0.1980 1.3087 0.1528 –0.0010 0.1478
MSLE 0.5008 0.2376 0.0861 0.1869 1.6514 0.1736 0.0031 0.1862

200 0 Proposed 0.0002 0.1584 0.0153 0.1488 –0.0026 0.1251 0.0073 0.0978
MSPLE 0.0038 0.1348 0.0039 0.1207 –0.0012 0.1062 0.0023 0.0895
MSLE 0.0031 0.1194 0.0060 0.1021 –0.0015 0.0920 –0.0000 0.0794

0.3 Proposed –0.0076 0.1704 0.0124 0.1507 0.0034 0.1398 0.0109 0.0972
MSPLE 0.2563 0.1447 0.0404 0.1268 0.7192 0.0975 0.0050 0.0873
MSLE 0.2902 0.1287 0.0461 0.1122 0.9248 0.0974 0.0047 0.0911

0.5 Proposed –0.0098 0.1848 0.0196 0.1499 0.0034 0.1647 0.0039 0.1162
MSPLE 0.4699 0.1783 0.0886 0.1572 1.3208 0.1080 0.0044 0.1043
MSLE 0.5343 0.1696 0.0978 0.1489 1.6620 0.1252 0.0054 0.1323

above except that for given Xi, mi, and (Tmi,1
, · · · , Tmi,mi

), the recurrent event counts were generated
from a mixed Poisson process by taking

Ni(Tmi, j ) = Ni(Tmi,1
) + {Ni(Tmi,2

) − Ni(Tmi,1
)} + · · · + {Ni(Tmi, j ) − Ni(Tmi, j−1)},

with Ni(Tmi,1
)|Qi ∼ Poisson(Qi exp{μ̃0(Tmi,1

) + β′
0Xi + α0Hi(Tmi,1

−)Wi}), and

[Ni(Tmi, j ) − Ni(Tmi, j−1)]|Qi ∼ Poisson(Qi

[
exp{μ̃0(Tmi, j ) + β′

0Xi + α0Hi(Tmi, j−)Wi} +
− exp{μ̃0(Tmi, j−1) + β′

0Xi + α0Hi(Tmi, j−1−)Wi}]),

for j ≥ 2 with Qi generating from the gamma distribution with mean 1 and variance 0.1. The simulation
results are shown in Table 3. From the table, we have the following findings: (i) With both Poisson and
non-Poisson observation processes, the proposed estimator, MSPLE , and MSLE in Lu et al. (2009)
are approximately unbiased when α = 0. (ii) When α �= 0, the proposed estimator is approximately
unbiased while the MSPLE and MSLE in Lu et al. (2009) yield biased estimates and the biases could
be larger as α diverges from 0. This means that our proposed estimation procedure seems to be more
robust.

We also conducted some sensitivity analysis to evaluate the performance of the proposed es-
timators for β when the interaction term of the recurrent event process and observation pro-
cess was misspecified. Specifically, we generated the recurrent event counts from a mixed Poisson
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process as above with μ0(t) = log(t + 1) and the interaction term φ(Fit,Wi) = (Hi(t−) + 1)X1i,
where X1i, X2i,Ci, and the observation times were generated from the same setup as given above.
Here we take β0 = (−1, 1). We considered the interaction term φ as misspecified by three possible
forms: (i) φ(1)(Fit,Wi) = (Hi(t−) + 0.75)X1i, (ii) φ(2)(Fit,Wi) = log[exp{Hi(t−) + 0.5} + 1]X1i, and
(iii) φ(3)(Fit,Wi) = √{Hi(t−)}2 + 1.2X1i. We applied the proposed estimation procedure to the true
and misspecified models by using the generated data from the true model. The simulation results are
summarized in Table 4. It can be seen from the table that the estimates for β are still approximately
unbiased for the misspecified situations considered here.

5 Application

In this section, we applied our proposed method to analyze the bladder cancer data. There were 116
subjects with superficial bladder tumors, and they were randomized into one of three treatment groups:
placebo, thiotepa, and pyridoxine. Following Sun and Wei (2000), we restricted our attention to the
placebo and thiotepa groups with respective sizes of 47 and 38. For each patient, all the clinical visits and
the numbers of new tumors between clinical visits were recorded. In addition, two baseline covariates
were considered and they were the number of initial tumors and the size of the largest initial tumor.

For the analysis, we define the response process Ni(t) and observation process Hi(t) as the cumulated
tumor numbers and the accumulated observation numbers of patient i up to time t, respectively.
Further, for patient i, define X1i to be equal to 1 if the i-th patient was given the thiotepa treatment and
0 otherwise, X2i the number of initial tumors and X3i the size of the largest initial tumor, i = 1, . . . , 85.

Take H∗(t) = (H (t−) − 8)/8 and assume that {Ni(t)} can be described by model (1) with φ(Fit,Wi) =
H∗

i (t−)X1i + H∗
i (t−)X2i, meaning that the relation between the recurrence rate of bladder tumors and

the observation times may vary with different treatments and different number of initial tumors, that is,

E{Ni(t)|X1i, X2i, X3i,Fit} = exp{μ̃0(t) + β ′
1X1i + β ′

2X2i + β ′
3X3i +

+α′
1H∗

i (t−)X1i + α′
2H∗

i (t−)X2i}.

Here, we took the last visit time of patient i as Ci in the analysis. For estimation of μ̃0(t), we use the
cubic B-spline approximation by taking the number of interior knots mn as nν with ν = 1/8 and the
equally spaced knots.

The application of the estimation procedure proposed in the previous sections gave β̂1 =
−1.7143, β̂2 = 0.1061, β̂3 = −0.0473, α̂1 = −0.6100, and α̂2 = 0.3070 with the bootstrap standard er-
rors (100 replications) being 0.3205, 0.0465, 0.0335, 0.1060, and 0.1079, which correspond to p-values
of <0.0000, 0.0225, 0.1584, <0.0000, and 0.0044, respectively, based on the asymptotic results of the
estimators. Here β̂1, β̂2, and β̂3 represent the estimated regression coefficients corresponding to the
treatment indicator, the number of initial tumors, and the size of the largest initial tumor, respectively,
while α̂1 and α̂2 represent the estimated effects of the interaction between the observation process and
the treatment indicator and the interaction between the observation process and the number of initial
tumors, respectively, on the tumor recurrence rate. These results indicate that the tumor recurrence
process and the interaction between the observation process and the thiotepa treatment indicator are
significantly negatively correlated. The reason for this may be that the patients in the thiotepa group
needed more clinical visits, had tumors removed, and received treatment, which reduced the tumor
occurrence rate. In addition, the interaction between the observation process and the number of initial
tumors significantly positively influences the tumor recurrence process, which can be explained by the
reason that patients with more initial tumors tend to have more clinical visits and more new tumors
will arise due to the more serious illness. Furthermore, the thiotepa treatment significantly reduces the
occurrence rate of the bladder tumors, and the number of initial tumors has a significantly positive
effect on the tumor recurrence rate. However, the recurrence rate of the bladder tumors does not seem
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to be significantly related to the size of the largest initial tumor. These conclusions are consistent with
those made in Lu et al. (2009), Li et al. (2010), and Zhao and Tong (2011), among others. For example,
Lu et al. (2009) analyzed the bladder tumor data, and obtained that the number of initial tumors
has a positive effect on the tumor recurrence rate with p-values of 0.012 and 0.01 and the thiotepa
treatment significantly reduces the recurrence of tumors with p-values of 0.015 and 0.019 by MSPLE
and MSLE, respectively. Compared to the models in Lu et al. (2009), Li et al. (2010), and Zhao and
Tong (2011), our fitted model may provide more information about the correlation between the tumor
recurrence rate and observation times over treatment groups and also could be useful to estimate the
future recurrence rate based on the observation history.

6 Concluding remarks

This article studied a conditional model for the underlying recurrent event process of the panel count
data that allows for the interaction between the informative observation times and covariates, leaving
the distributional form of the observation process to be arbitrary. We proposed to use the easy imple-
mented monotone spline-based least squares estimation method to estimate the regression parameters
and the unknown smooth monotone function in the model simultaneously, and also established the
asymptotical results including consistency, rate of convergence, and asymptotic normality for the es-
timators. As demonstrated by simulation studies, our proposed model and inference procedure are
more flexible and applicable since they can overcome the underdispersion or overdispersion problem
resulting from the model specification for the observation process.

In the proposed estimation approach, weights have not been considered. Following the discussions
made in Hu et al. (2009), our proposed objection function in Eq. (2) may be related to the MSPLE and
MSLE (Lu et al., 2009) by taking some specific weight functions. Further studies are needed to develop
monotone spline-based weighted least squares methods and provide weight selection procedure for
finding optimal weight function in practical applications.

Motivated by Li et al. (2010), our proposed models can also be extended to a class of transformation
models

E{Ni(t)|Xi,Wi,Fit} = G{μ0(t) + β′Xi + α′φ(Fit,Wi)},

with a given monotone smooth function G. Then for making inference on these models, the same
procedure as presented in this article can be used to obtain the estimators for the regression parameters
β and α and the nonparametric monotone function μ0(t), and the asymptotic properties of the spline-
based estimators could be established by using the similar arguments.
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Appendix: Asymptotic results

To establish the asymptotic properties of the estimators, we need the following regularity conditions.
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C1. The maximum spacing of the knots satisfies � = maxl+1<i<mn+l+1 | ti − ti−1 |= O(n−ν ).

C2. The parameter spaces of (β′,α′)′, R is bounded and convex on R
p+q, and the true parameter

θ0 = (β0,α0, μ0) ∈ R◦ × Fr, where R◦ is the interior of R, and

Fr ≡
{
μ : [0,∞) −→ R

∣∣∣μ is monotone and |μ(k)(s) − μ(k)(t)| ≤ M|s − t|ς
}

,

where k is a nonnegative integer, ς ∈ (0, 1] such that r = k + ς > 0.5, M is a positive constant
and f (k) is the k-th derivative of function f .

C3. Ni(τ )(i = 1, · · · , n) are bounded by a constant, h(·) has a bounded total variation, and
there exist a positive integer M1, such that P(‖X‖ ≤ M1) = 1, that is, the covariate vector is
uniformly bounded.

C4. There exists a positive integer M2 such that P(K ≤ M2) = 1, that is, the number of the
observation is finite.

C5. If with probability 1, h′
1X + h′

2φ(Ft,W ) + h3(t) = 0 for h1 ∈ R
p, h2 ∈ R

q and some determin-
istic function h3, then h1 = 0, h2 = 0, h3(t) = 0.
Next, we introduce more notation. Let

F =
{

f : [0,∞] −→ R

∣∣∣‖ f ‖2 =
[

E
{∫ τ

0
| f (t)|2ξ (t)dH (t)

}]1/2

< ∞
}

.

Let Z = {Z(t,W ) ≡ φ(Ft,W ), 0 ≤ t ≤ τ } represent a q-dimensional bounded random pro-
cess indexed by t. Here, without loss of generality, we assume that W is one-dimensional.
Define

G ≡ {
z(t, w) : [0, τ ] × [−M1, M1] −→ M}

,

where M is a bounded set on R
q, and for function f (x, z, t) : [−M1, M1]p × G × [0, τ ] −→ R,

define

‖ f ‖2 ≡
⎡
⎣E

⎧⎨
⎩

K∑
j=1

| f (X, Z(TK, j,W ), TK, j )|2ξ (TK, j )

⎫⎬
⎭
⎤
⎦

1/2

.

Set Mn(g) = n−1Ln(θ ) = Pnmg(O), where θ = (β,α, μ), g(x, z, t) = exp{β′x + α′z(t, w) +
μ̃(t)} and

mg(O) =
K∑

j=1

[N(TK, j ) − g(X, Z(TK, j,W ), TK, j )]
2ξ (TK, j ),

and M(g) = Pmg(O), where P f and Pn f represent
∫

f dP and n−1∑n
i=1 f (Oi), respectively.

Since F is a Hilbert space, and Fr ⊂ F , by the Hilbert Projection Theorem (Stakgold, 1998,
p. 288), for xj ∈ F , there is a unique a∗

j ∈ Fr, s.t. (xj − a∗
j ) ⊥ Fr, for j = 1, · · · , p. Let zl (t, w)

be the l-th component of h(Ft,W ), l = 1, · · · , q. Then for zl (t, w) ∈ F , there is a unique
b∗

l (t) ∈ Fr, s.t. (zl − b∗
l ) ⊥ Fr, for l = 1, · · · , q. Let a∗ = (a∗

1, · · · , a∗
p)

′ and b∗ = (b∗
1, · · · , b∗

q)
′.

Then we need the following condition.

C6. E [
∫ τ

0

(
X−a∗

φ(Ft ,W )−b∗(t)

)⊗2
dH̃ (t)] is nonsingular, where a⊗2 = a′a for a vector a.
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Here, Condition C1 is similar to those required by Stone (1986) and Zhou et al. (1998); Condition
C2 is a common assumption in nonparametric smoothing estimation problems; Conditions C3 and C4
are mild and easily justified in many applications; Condition C5 is needed to establish the identifiability
of the model; Condition C6 is a technical condition used in the proof for consistency of estimators.

Let θ̂n = (β̂n, α̂n, μ̂n) be the estimator of θ0. For θ1 = (β1,α1, μ1), θ2 = (β2,α2, μ2), define

ρ
(
θ1, θ2

) = {‖β1 − β2‖2 + ‖α1 − α2‖2 + ‖μ1 − μ2‖2
2

}1/2
.

Then the asymptotic properties of the estimators θ̂n are summarized as follows.

Theorem 1 (Consistency). Under conditions C1–C4 and C6, ρ
(
θ̂n, θ0

) → 0, almost surely.

Theorem 2 (Rate of Convergence). Under conditions C1–C6,

ρ
(
θ̂n, θ0

) = Op(n
−min{νr, 1−ν

2 }).

Remark 1. When ν = 1/(1 + 2r), n− min{νr, 1−ν
2 } = n− r

1+2r , we conclude from Stone (1980, 1982) that the
rate of convergence of the estimator μ̂n is the optimal rate in nonparametric regression.

To state the asymptotic normality, we define

A = E

⎧⎨
⎩

K∑
j=1

ξ (TK, j )g
2
0(X, Z(TK, j,W ), TK, j )×

× a−2(K, TK, j )c(X, Z(TK, j,W ), K, TK, j )
⊗

2

⎫⎬
⎭

and

B = E

⎧⎨
⎩

K∑
j=1

K∑
j′=1

ξ (TK, j )ξ (TK, j′ )b(X, Z(TK, j,W ), TK, j )b(X, Z(TK, j′ ,W ), TK, j′ )×

× g0(X, Z(TK, j,W ), TK, j )g0(X, Z(TK, j′ ,W ), TK, j′ )a
−1(K, TK, j )a

−1(K, TK, j′ ) ×

× c(X, Z(TK, j,W ), K, TK, j )c(X, Z(TK, j′ ,W ), K, TK, j′ )
′

⎫⎬
⎭ ,

where g0(X, Z(TK, j,W ), TK, j ) = exp {β′
0X + α′

0φ(FTK, j
,W ) + μ̃0(TK, j )},

a(K, TK, j ) ≡ E
{
ξ (TK, j )g

2
0(X, Z(TK, j,W ), TK, j )

∣∣∣K, TK, j

}
,

b(X, Z(TK, j,W ), TK, j ) ≡ N(TK, j ) − g0(X, Z(TK, j,W ), TK, j ),

c(X, Z(TK, j,W ), K, TK, j ) ≡
(

X
φ(FTK, j

,W )

)
a(K, TK, j ) − E

{(
X

φ(FTK, j
,W )

)
×

× ξ (TK, j )g
2
0(X, Z(TK, j,W ), TK, j )

∣∣∣K, TK, j

}
.
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Theorem 3 (Asymptotic normality). Under conditions C1–C6,
√

n
(

β̂n − β0
α̂n − α0

)
converges in distribution

to N(0, �) with � = A−1B(A−1)′.

Proof of Theorem 1. According to Lemma 5 in Stone (1985), for μ̃0 ∈ Fr, there exist a
μ̃n ∈ 
l,I with order l ≥ k + 1 and knots I such that ‖μ̃n − μ̃0‖∞ = O(n−νr). Let gn(x, z, t) =
exp{β′

0x + α′
0z(t, w) + μ̃n(t)}, ĝn(x, z, t) = exp{β̂′

nx + α̂
′
nz(t, w) + ˆ̃μn(t)}, and g0(x, z, t) = exp{β′

0x +
α′

0z(t, w) + μ̃0(t)}. Then by using the arguments similar to those used in the proof of Theorem 1
of Lu et al. (2007), we can show that ‖ĝn − g0‖2

2 = O(n−νr + n− 1−ν
2 ) and hence ‖ log ĝn − log g0‖2

2 =
O(n−νr + n− 1−ν

2 ). Also note that

‖ log ĝn − log g0‖2 = ‖(β̂n − β0)
′x + (α̂n − α0)

′z + ( ˆ̃μn − μ̃0)‖2 =
= ‖(β̂n − β0)

′(x − a∗) + (α̂n − α0)
′(z − b∗) +

+ (β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + ( ˆ̃μn − μ̃0)‖2 =
= ‖(β̂n − β0)

′(x − a∗) + (α̂n − α0)
′(z − b∗)‖2 +

+‖(β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + ( ˆ̃μn − μ̃0)‖2.

By C6, we can get ‖β̂n − β0‖ −→ 0, and ‖α̂n − α0‖ −→ 0 from the first term of the right-hand side of
the above equality, and thus it follows that ‖ ˆ̃μn − μ̃0‖2 −→ 0. Therefore, ‖μ̂n − μ0‖2 = ‖ exp{ ˆ̃μn} −
exp{μ̃0}‖2 −→ 0 by Taylor expansion. This completes the proof of Theorem 1. �
Proof of Theorem 2. Let Fnr = 
l,I and �r

n = R0 × Fnr. It is easy to see that �r
n ⊆ �r

n+1 ⊆ · · · ⊆ �r =
R0 × Fr for n ≥ 1. Note that the sieve estimator θ̂n = (β̂n, α̂n, μ̂n) is the minimizer of Ln(θ) over the
sieve space �r

n.
For each n, gn(x, z, t) = exp{β′

0x + α′
0z(t, w) + μ̃n(t)} with θn = (β0,α0, μ̃n) ∈ �r

n. Then for any
η > 0, let

Fn,η ≡ {g = exp{β′x + α′z + μ̃} : θ = (β,α, μ̃) ∈ �r
n and

η

2
< ‖g − gn‖2 ≤ η}.

Similar to Lemma A.2 in Huang (1999, p. 1557), for any ε ≤ η,

log N[](ε,Fn,η, ‖ · ‖2) ≤ c4qn log(η/ε),

for a constant c4. Thus, for ε > 0, there exists a set of brackets {[gl
i, gr

i], i = 1, · · · , (
η

ε
)c4qn} such that,

for each g ∈ Fη, there is a [gl
s, gr

s] with gl
s(x, z, t) ≤ g(x, z, t) ≤ gr

s(x, z, t), for all x, t ∈ [0, τ ] and z ∈ G,
and ‖gr

s − gl
s‖2

2 ≤ ε2.

Next, consider the class Mn,η ≡ {mg(O) − mgn
(O) : g ∈ Fn,η}, where

mg(O) =
K∑

j=1

[N(TK, j ) − g(X, Z(TK, j,W ), TK, j )]
2ξ (TK, j ).

For i = 1, · · · , (
η

ε
)c4qn , define

ml
i (O) =

K∑
j=1

[ {∣∣gl
i

∣∣ ∨ ∣∣gr
i

∣∣}2
(X, Z(TK, j,W ), TK, j ) − 2N(TK, j )g

r
i(X, Z(TK, j,W ), TK, j ) +

+ 2N(TK, j )gn(X, Z(TK, j,W ), TK, j ) − g2
n(X, Z(TK, j,W ), TK, j )

]
ξ (TK, j ),
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mr
i (O) =

K∑
j=1

[{∣∣gl
i

∣∣ ∧ ∣∣gr
i

∣∣}2
(X, Z(TK, j,W ), TK, j ) − 2N(TK, j )g

l
i(X, Z(TK, j,W ), TK, j )+

+ 2N(TK, j )gn(X, Z(TK, j,W ), TK, j ) − g2
n(X, Z(TK, j,W ), TK, j )

]
ξ (TK, j ),

where a ∨ b = min{a, b} and a ∧ b = max{a, b}. Then, it is easy to show that ‖mr
i (O) − ml

i (O)‖2
P,B ≤

c5ε
2 with a positive constant c5, where ‖ · ‖P,B is the “Bernstein norm” defined by ‖ f ‖P,B = {2P(e| f | −

1 − | f |)}1/2 (see van der Vaart and Wellner, 1996, p. 324). Thus {[ml
i (O), mr

i (O)], i = 1, · · · , (
η

ε
)c4qn} is

the set of brackets for Mn,η, which implies that

log N[](ε,Mn,η, ‖ · ‖P,B) ≤ c4qn log(η/ε).

Moreover, by some calculations, we can verify that ‖mg(O) − mgn
(O)‖2

P,B ≤ c6η
2 for any g ∈ Fn,η by

C3 and C4. Therefore, by Lemma 3.4.3 of van der Vaart and Wellner (1996), we obtain

E‖n1/2(P − P)‖Mn,η
≤ c7J̃[](η,Mn,η, ‖ · ‖P,B)

{
1 + J̃[](η,Mn,η, ‖ · ‖P,B)

η2n1/2
M3

}
, (A1)

where M3 is a constant, ‖n1/2(P − P)‖F = sup f ∈F |n1/2(P − P) f |, and

J̃[](η,Mn,η, ‖ · ‖P,B) =
∫ η

0
{1 + log N[](ε,Mn,η, ‖ · ‖P,B)}1/2dε ≤ c8q1/2

n η.

The right-hand side of Eq. (A1) yields ϕn(η) = c9(q
1/2
n η + qn/n1/2). It is easy to see that ϕn(η)/η is

decreasing in η, and

r2
nϕ

(
1
rn

)
= rnq1/2

n + r2
nqn/n1/2 ≤ 2n1/2,

for rn = n
1−ν

2 and 0 < ν < 1/2.

Note that

P[mg(O) − mgn
(O)] =

= P
[∫ τ

0

{
[N(t) − g(X, Z(t,W ), t)]2 − [N(t) − gn(X, Z(t,W ), t)]2

}
ξ (t)dH (t)

]
=

= E
[∫ τ

0
(gn − g)(X, Z(t,W ), t)[2N(t) − (g + gn)(X, Z(t,W ), t)]ξ (t)dH (t)

]
≥

≥ E
[∫ τ

0
(g − gn)

2(X, Z(t,W ), t)ξ (t)dH (t)
]

≥

≥ ‖g − gn‖2
2.
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Furthermore, in the proof of Theorem 4.1, we have that ‖ĝn − gn‖2 converges to zero in probability.
Thus, by Theorem 3.4.1 of van der Vaart and Wellner (1996),

n
1−ν

2 ‖ĝn − gn‖2 = Op(1).

Since ‖μ̃n − μ̃0‖∞ = O(n−νr), then ‖gn − g0‖2 = Op(n
−νr), and so

‖ĝn − g0‖2 = Op(n
−νr) + Op(n

− 1−ν
2 ) = Op(n

− min{νr, 1−ν
2 }).

Therefore by the similar arguments as those used in the proof of consistency of β̂n, α̂n, and μ̂n, we can
get the rate of convergence of μ̂n, β̂n, and α̂n as stated in Theorem 4.2. The choice of ν = 1/(1 + 2r)
yields the rate of convergence of r/(1 + 2r), which completes the proof. �
Proof of Theorem 3. Let H ≡ {(h1, h2, h3) : (h′

1, h′
2)

′ ∈ R, h3 ∈ Fr, ‖h1‖ ≤ 1, ‖h2‖ ≤ 1, ‖h3‖∞ ≤ 1}.
We define a sequence of maps Sn mapping a neighborhood of θ̃0 = (β0,α0, μ̃0), denoted by U , in the
parameter space for θ̃ = (β,α, μ̃) into l∞(H) as

Sn(θ̃ )[h1, h2, h3] ≡ n−1 d
dε

Ln(β + εh1,α + εh2, μ̃ + εh3)

∣∣∣
ε=0

=

= −2
n

n∑
i=1

∫ τ

0
[Ni(t) − exp {β ′Xi + α′φ(Fit,Wi) + μ̃(t)}] ×

× exp {β ′Xi + α′φ(Fit,Wi) + μ̃(t)} ×
× [h′

1Xi + h′
2φ(Fit,Wi) + h3(t)]dH̃i(t) ≡

≡ Pnψ(θ̃; O)[h1, h2, h3],

where

ψ(θ̃; O)[h1, h2, h3] = −2
∫ τ

0
[N(t) − exp {β ′X + α′φ(Ft,W ) + μ̃(t)} ×

× exp {β ′X + α′φ(Ft,W ) + μ̃(t)} ×
× [h′

1X + h′
2φ(Ft,W ) + h3(t)]dH̃ (t).

Correspondingly, we define the limit map S : U −→ l∞(H) as

S(θ̃ )[h1, h2, h3] = Pψ(θ̃; O)[h1, h2, h3],

where l∞(H) is the space of bounded functionals on H under the supermum norm ‖ f ‖∞ =
suph∈H | f (h)|.

To derive the asymptotic normality of the estimator ˆ̃
θn = (β̂n, α̂n,

ˆ̃μn), motivated by the proof
of Theorem 3.3.1 of van der Vaart and Wellner (1996), we first need to verify the following four
conditions.

(i)
√

n(Sn − S)(
ˆ̃
θn) − √

n(Sn − S)(θ̃0) = op(1).

(ii)
√

n(Sn − S)(θ̃0) converges in distribution to a tight Gaussian process on l∞(H).

(iii) S(θ̃0) = 0 and Sn(
ˆ̃
θn) = op(n

−1/2).
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(iv) θ̃ �−→ S(θ̃) is Fréchet-differentiable at θ̃0 with a continuous derivative Ṡ(θ̃0) and

√
n
(

S(
ˆ̃
θn) − S(θ̃0)

)
− √

nṠ(θ̃0)
( ˆ̃
θn − θ̃0

)
= op(1).

Note that
√

n(Sn − S)(
ˆ̃
θn)[h1, h2, h3] − √

n(Sn − S)(θ̃0)[h1, h2, h3] =
= √

n(Pn − P)
(
ψ(

ˆ̃
θn; O)[h1, h2, h3] − ψ(θ̃0; O)[h1, h2, h3]

)
.

For some δ > 0, define

Fδ =
{
ψ(θ̃; O)[h1, h2, h3] − ψ(θ̃0; O)[h1, h2, h3] : ρ

(
θ̃, θ̃0

)
< δ, (h1, h2, h3) ∈ H

}
.

It is easy to see that H is a Donsker class base on the argument in pages 154–157 of van der Vaart and
Wellner (1996). Since∣∣ψ(θ̃; O)[h1, h2, h3]

∣∣ =

= ∣∣− 2
∫ τ

0
[N(t) − exp {β′X + α′φ(Ft,W ) + μ̃(t)}] exp {β′X + α′φ(Ft,W ) + μ̃(t)} ×

× [h′
1X + h′

2φ(Ft,W ) + h3(t)]dH̃ (t)
∣∣ ≤

≤ M1‖h1‖ + M2‖h2‖ + M3‖h3‖∞,

for constants M1, M2, M3, which means that ψ(θ̃; O) is a bounded Lipschitz functional with respect
to H; thus Fδ is a Donsker class for δ > 0. For any θ̃1 = (β1,α1, μ̃1) and θ̃2 = (β2,α2, μ̃2), it is easy
to verify that

P
∣∣∣ψ(θ̃1; O)[h1, h2, h3] − ψ(θ̃2; O)[h1, h2, h3]

∣∣∣2 ≤ c10ρ
2(θ̃1, θ̃2

)
,

for a constant c10. Thus condition (i) holds by Lemma 13.3 of Kosorok (2008).
Condition (ii) is also satisfied since {ψ(θ̃0; O)[h1, h2, h3] : (h1, h2, h3) ∈ H} is a Donsker class.
Clearly, S(θ̃0) = 0. For h3 ∈ Fr, let h3n be the B-spline function approximation of h3 with

‖h3n − h3‖∞ = O(n−νr), then we have Sn(
ˆ̃
θn)[h1, h2, h3n] = 0.

Thus, for (h1, h2, h3) ∈ H,

n
1
2 Sn(

ˆ̃
θn)[h1, h2, h3] =

= n
1
2
{
Sn(

ˆ̃
θn)[h1, h2, h3] − Sn(

ˆ̃
θn)[h1, h2, h3n]

} =

= n
1
2 (Pn − P)ψ(

ˆ̃
θn; O)[h1, h2, h3] − n

1
2 (Pn − P)ψ(θ̃0; O)[h1, h2, h3] +

−
{

n
1
2 (Pn − P)ψ(

ˆ̃
θn; O)[h1, h2, h3n] − n

1
2 (Pn − P)ψ(θ̃0; O)[h1, h2, h3n]

}
+

+ n
1
2 Pn

{
ψ(θ̃0; O)[h1, h2, h3] − ψ(θ̃0; O)[h1, h2, h3n]

}
+

+ n
1
2 P
{
ψ(

ˆ̃
θn; O)[h1, h2, h3] − ψ(

ˆ̃
θn; O)[h1, h2, h3n]

}
≡

≡ Q1n − Q2n + Q3n + Q4n.
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It follows from condition (i) that both Q1n and Q2n are op(1). Note that

|Q4n| =
∣∣∣2n

1
2 P
∫ τ

0
[exp {β̂′

nX + α̂
′
nφ(Ft,W ) + ˆ̃μn(t)} − N(t)] ×

× exp {β̂′
nX + α̂

′
nφ(Ft,W ) + ˆ̃μn(t)}(h3 − h3n)(t)dH̃ (t)

∣∣∣ ≤

≤ c11

∣∣∣n 1
2 P
∫ τ

0
[exp {β̂′

nX + α̂
′
nφ(Ft,W ) + ˆ̃μn(t)} −

− exp {β′
0X + α′

0φ(Ft,W ) + μ̃0(t)}](h3 − h3n)(t)dH̃ (t)
∣∣∣ =

= c11

∣∣∣n 1
2 P
∫ τ

0
exp{ f ∗

n }{ f̂n − f0}(h3 − h3n)(t)dH̃ (t)
∣∣∣ ≤

≤ c12n
1
2 ρ
( ˆ̃
θn, θ̃0

)‖h3n − h3‖∞ ≤
≤ n

1
2 O(n− 1−ν

2 )O(n−νr) = op(1)

for constants c11 and c12, where f0 = β′
0X + α′

0φ(Ft,W ) + μ̃0, f̂n = β̂
′
nX + α̂

′
nφ(Ft,W ) + ˆ̃μn, and

f ∗
n = (1 − ξ ) f0 + ξ f̂n with 0 ≤ ξ ≤ 1. Furthermore, Q3n is also op(1) since

P
[
ψ(θ̃0; O)[h1, h2, h3] − ψ(θ̃0; O)[h1, h2, h3n]

]2
=

= P
[

2
∫ τ

0
[N(t) − exp {β′

0X + α′
0φ(Ft,W ) + μ̃0(t)}]×

× exp {β′
0X + α′

0φ(Ft,W ) + μ̃0(t)}(h3n − h3)(t)dH̃ (t)
]2

≤
≤ c13‖h3n − h3‖2

∞ −→ 0, n −→ ∞,

for a constant c13. Thus Sn(
ˆ̃
θn) = op(n

−1/2).

For the proof of condition (iv), by the smoothness of S(θ̃), the Fréchet differentiability holds and the
derivative of S(θ̃) at (θ̃0), denoted by Ṡ(θ̃0), is a map from the space {(θ̃ − θ̃0) : θ̃ ∈ U} to l∞(H) and

Ṡ(θ̃0)(θ̃ − θ̃0)[h1, h2, h3] =

= dS(β0 + ε(β − β0),α0 + ε(α − α0), μ̃ + ε(μ̃ − μ̃0))[h1, h2, h3]
dε

∣∣∣
ε=0

=

= 2P
∫ τ

0
[2 exp {β′

0X + α′
0φ(Ft,W ) + μ̃0(t)} − N(t)] exp {β′

0X + α′
0φ(Ft,W ) + μ̃0(t)} ×

× [(β − β0)
′X + (α − α0)

′φ(Ft,W ) + (μ̃ − μ̃0)(t)] ×
× [h′

1X + h′
2h(Ft,W ) + h3(t)]dH̃ (t) =

= 2P
∫ τ

0
exp {2(β′

0X + α′
0φ(Ft,W ) + μ̃0(t))} ×

× [(β − β0)
′X + (α − α0)

′φ(Ft,W ) + (μ̃ − μ̃0)(t)] ×
× [h′

1X + h′
2φ(Ft,W ) + h3(t)]dH̃ (t) ≡

≡ σ1(h1, h2, h3)
′(β − β0) + σ2(h1, h2, h3)

′(α − α0) +
∫ τ

0
(μ̃ − μ̃0)(t)dσ3(h1, h2, h3),
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where

σ1(h1, h2, h3) = 2P
{∫ τ

0
g2

0(X , Z(t,W ), t)[h′
1X + h′

2φ(Ft,W ) + h3(t)]XdH̃ (t)
}

,

σ2(h1, h2, h3) = 2P
{∫ τ

0
g2

0(X , Z(t,W ), t)[h′
1X + h′

2φ(Ft,W ) + h3(t)]φ(Ft,W )dH̃ (t)
}

,

and

σ3(h1, h2, h3)(t) = 2P
{∫ t

0
g2

0(X , Z(s,W ), s)[h′
1X + h′

2φ(Fs,W ) + h3(s)]dH̃ (s)
}

,

with g0(X, Z(t,W ), t) = exp {β′
0X + α′

0φ(Ft,W ) + μ̃0(t)}.
Thus, condition (iv) follows from

∣∣∣√n
[
S(

ˆ̃
θn) − S(θ̃0) − Ṡ(θ̃0)(

ˆ̃
θn − θ̃0)

]
[h1, h2, h3]

∣∣∣ =

=
∣∣∣2√

nP
∫ τ

0

{
(exp{ f̂n} − exp{ f0}) exp{ f̂n} − exp{2 f0}( f̂n − f0)

}
×

× [h′
1X + h′

2φ(Ft,W ) + h3(t)]dH̃ (t)
∣∣∣ =

=
∣∣∣2√

nP
∫ τ

0

{[
exp{ f0}( f̂n − f0) + exp{ f0}

2
( f̂n − f0)

2 + op

(‖ f̂n − f0‖2
2

)]
exp{ f̂n} −

− exp{2 f0}( f̂n − f0)
}

[h′
1X + h′

2φ(Ft,W ) + h3(t)]dH̃ (t)
∣∣∣ =

=
∣∣∣2√

nP
∫ τ

0

{
exp{ f0 + f ∗

n }( f̂n − f0)
2+

+
[

exp{ f0}
2

( f̂n − f0)
2 + op

(‖ f̂n − f0‖2
2

)]
exp{ f̂n}

}
×

× [h′
1X + h′

2φ(Ft,W ) + h3(t)]dH̃ (t)
∣∣∣ ≤

≤ c14

√
n
[
ρ2( ˆ̃θn, θ̃0

)+ op

(
ρ2( ˆ̃θn, θ̃0

))] =

= Op(n
1
2 −(1−ν)) + op(n

1
2 −(1−ν)) = op(1),

for a constant c14. Therefore, by conditions (i) to (iv), we have

√
nṠ(θ̃0)(

ˆ̃
θn − θ̃0)[h1, h2, h3] =

= σ1(h1, h2, h3)
′√n(β̂n − β0) + σ2(h1, h2, h3)

′√n(α̂n − α0) +

+
∫ τ

0

√
n(μ̂n − μ0)(t)dσ3(h1, h2, h3)(t) =

= −√
n(Sn − S)(θ̃0)[h1, h2, h3] + op(1). (A2)
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Next, we will derive the asymptotic normality of estimators from Eq. (A2).
Rewrite

σ3(h1, h2, h3)(t) =

= 2E
{ K∑

j=1

ξ (TK, j )I(TK, j ≤ t)g2
0(X , Z(TK, j,W ), TK, j )[h

′
1X + h′

2φ(FTK, j
,W ) + h3(TK, j )]

}
=

= 2E
{ K∑

j=1

I(TK, j ≤ t)
[

E
{
ξ (TK, j )g

2
0(X , Z(TK, j,W ), TK, j )

∣∣∣K, TK, j

}
h3(TK, j ) +

+ E
{
ξ (TK, j )g

2
0(X , Z(TK, j,W ), TK, j )(h

′
1X + h′

2φ(FTK, j
,W ))

∣∣∣K, TK, j

}]}
.

Thus, we can take

h3(TK, j ) = −a−1(K, TK, j )E
{
ξ (TK, j )g

2
0(X , Z(TK, j,W ), TK, j )(h

′
1X + h′

2φ(FTK, j
,W ))

∣∣∣K, TK, j

}
=

= −
(

h1

h2

)′
a−1(K, TK, j )E

{
g2

0(X , Z(TK, j,W ), TK, j )ξ (TK, j )

(
X

φ(FTK, j
,W )

) ∣∣∣K, TK, j

}

such that σ3(h1, h2, h3)(t) ≡ 0. Furthermore, for this h3, we have

(
σ1(h1, h2, h3)σ2(h1, h2, h3)

) = 2A
(

h1

h2

)
.

Thus, it follows from Eq. (A1) that

(
σ1(h1, h2, h3)

σ2(h1, h2, h3)

)′ √
n

(
β̂n − β0

α̂n − α0

)
= −√

n(Pn − P)ψ(θ̃0; O)[h1, h2, h3] + op(1).

Thus, 2
(

h1
h2

)′
A

√
n
(

β̂n−β0
α̂n−α0

)
−→ N(0, σ 2) with

σ 2 = {ψ(θ̃0; O)[h1, h2, h3]}2 = 4
(

h1

h2

)′
B
(

h1

h2

)
.

Therefore,

√
n
(

β̂n − β0
α̂n − α0

)
−→ N(0, A−1B(A−1)′).

This completes the proof of Theorem 3. �
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