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ABSTRACT
The generalized Pareto distribution (GPD) is widely used for extreme values over a threshold. Most existing
methods for parameter estimation either perform unsatisfactorily when the shape parameter k is larger
than 0.5, or they suffer from heavy computation as the sample size increases. In view of the fact that k > 0.5
is occasionally seen in numerous applications, including two illustrative examples used in this study, we
remedy the deficiencies of existing methods by proposing two new estimators for the GPD parameters.
The new estimators are inspired by the minimum distance estimation and the M-estimation in the linear
regression. Through comprehensive simulation, the estimators are shown to perform well for all values of
k under small and moderate sample sizes. They are comparable to the existing methods for k < 0.5 while
performmuch better for k > 0.5.

1. Introduction

1.1 Background andMotivation

Extreme values are of interest in many statistical applications.
For example, high-tide water levels are often collected to help
design dikes, and extreme values of return series are useful for
managing financial risks. Other examples where the extremes
are of primary interest can be found in Finkenstadt and Rootzén
(2003) and Castillo et al. (2005). A classical approach for analyz-
ing the extreme values is based on the generalized extreme value
distributions (Castillo and Hadi 1997). This family of distribu-
tions is found appropriate for the maximum of a sequence of
independent and identically distributed (iid) random variables.
Because only themaximum values are used in this approach, the
information contained in other large sample values may be lost
(Castillo and Hadi 1997). To make full use of all large observa-
tions, this classical approach is often extended to the peak over
threshold (POT) method (Davis and Smith 1990). In the POT
method, several of the largest order statistics are used instead
of the maxima only. Usually, a threshold is set and peak val-
ues exceeding the threshold such as high-tide water levels are
recorded. The differences between these peak values and the
threshold are called exceedances over the threshold. Among all
possible distributions for the exceedances, it is well recognized
that the generalized Pareto distribution (GPD) is one of themost
commonly used distributions (Davis and Smith 1990).

The cumulative distribution function (cdf) of a GPD with
parameters θ = (k, σ ) is

Fθ(x) =
{
1 − (1 − kx/σ )1/k, k �= 0,
1 − exp(−x/σ ), k = 0, (1)
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where k is the shape parameter and σ > 0 is the scale param-
eter. The range of x is x > 0 for k ≤ 0 and 0 < x < σ/k for
k > 0. The GPD was first explicitly introduced by Pickands III
(1975) as a distribution for the exceedances. Later, it is found
that many distributions used for long-tailed data can be well
approximated by a GPD (Choulakian and Stephens 2001). An
interesting property of the GPD is that if X ∼ GPD(k, σ ), then
(X − t ) ∼ GPD(k, σ − kt ) given X > t (Zhang and Stephens
2009). This property makes GPD a natural model for
exceedances. In fact, the GPD is extensively used in vari-
ous applications involving extreme values. Areas of applications
include engineering (Zagorski and Wnek 2007), finance (Kre-
hbiel and Adkins 2008), medical science (Davis and Feldstein
1979), environments (Moisello 2007), and behavioral science
(Rootzén and Zholud 2016), to name a few.

One premise of successful applications of the GPD is an
efficient inference procedure. Estimating the GPD parameters
has a long history dating back to the early work of Gum-
bel (1958). Since then, numerous efforts have been found
on this problem. However, there is still a lack of uniformly
good methods for estimating the GPD parameters for the time
being. Most existing methods either perform well only for cer-
tain values of k, or they become computationally burdensome
as the sample size increases. A brief review of some popu-
lar inference methods for the GPD is provided in the next
subsection.

1.2 Review of ExistingMethods

Let x1, . . . , xn be n iid realizations of X , where X ∼ GPD(k, σ ).
The ML estimation for a GPD is first explicitly studied by Smith
(1984). In the ML estimation, it is more convenient to deal with
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the parameters (k, θ ), where θ = k/σ . The ML estimator of θ is
the solution of

1 − n∑
i(1 − θxi)−1 +

∑
i log(1 − θxi)

n
= 0,

θ < 1/x(n), (2)

where x(n) is the maximum among all the xi’s. After θ̂ML is
obtained, the ML estimates for k and σ can be obtained as

k̂ML = −1/n
∑
i

log(1 − θ̂MLxi), σ̂ML = k̂ML/θ̂ML. (3)

When k > 1, the log-likelihood function can be made as large
as possible by taking θ arbitrary close to 1/x(n), and thus the
ML estimators do not exist. In addition, when 0.5 < k < 1, the
ML estimators do not perform well (Grimshaw 1993; Castel-
lanos and Cabras 2007). As a consequence, the MLmethodmay
be only applicable when k < 0.5, under which the asymptotic
properties are well established in Smith (1984).

Since the ML estimation is not adequate in many situations,
Hosking and Wallis (1987) proposed the method of moments
(MOM) and the method of probability-weighted moments
(PWM) for GPD parameters. The MOM uses the first two
moments of a GPD. The MOM estimators of θ = (k, σ ) based
on an observed sample can be expressed as

k̂MOM = (x̄2/s2 − 1)/2, σ̂MOM = x̄(x̄2/s2 + 1)/2,

where x̄ and s2 are the sample mean and sample variance,
respectively. Alternatively, the PWM only make use of the first
moment. The PWM estimators can be expressed as

k̂PWM = x̄/(x̄ − 2u)− 2, σ̂PWM = 2x̄u/(x̄ − 2u),

where one choice of u is u = ∑
i
n−i
n−1x(i), and x(i) is the ith-order

statistic in a sample of size n (Zhang and Stephens 2009).
The first two moments of a GPD exist only when k > −1

and k > −0.5, respectively. Therefore, the application of MOM
and PWM is restricted to these values of k. Although one can
always obtain estimators for GPD parameters by the above for-
mulas, it is not uncommon that the obtained estimates based
on the MOM and PWM are inconsistent with the observed
sample. For example, it is possible that σ̂ /k̂ < x(n) when k̂ > 0,
which is inconsistent with the range of xwhen k > 0 (Zhang and
Stephens 2009).

Since the performance of the conventional methods above is
often not satisfactory, Zhang (2010) proposed to estimate the
parameter θ = k/σ from a Bayesian perspective. The resulting
estimators for θ is defined as θ̂ZJ = ∑m

j=1 w jθ j, where

θ j = n − 1
n + 1

x−1
(n) −

σ ∗

k∗

[
1 −

(
j − 0.5
m

)k∗]
.

Here,m = 20 + �√n� with �√n� being the integer part of √n,
and (k∗, σ ∗) are prefixed by the sample. In addition, w j =
1/

∑m
k=1 exp[l(θk)− l(θ j)] is treated as weights, where l(θ ) is

the log-likelihood function based on θ . After having the value of
θ̂ZJ, one can obtain k̂ZJ and σ̂ZJ by substituting θ̂ZJ into (3). This
method (ZJ method hereafter) works well when k < 0.5, which

is the most commonly used region for k. However, its perfor-
mance deteriorates sharply when k is outside this range. How-
ever, it is not uncommon to find that k > 0.5 in many practical
examples (e.g., Castillo et al. 2005). In Section 4, two real appli-
cations are provided to further support this argument. On the
other hand, when k = 1, the GPD degenerates to a uniform dis-
tribution on the support [0, σ ], which plays an important role
in many statistical applications. In addition, Castillo and Hadi
(1997) argued that at least from a theoretical viewpoint, esti-
mating GPD for all possible values of its parameters is of inter-
est. Another disadvantage of the ZJ method is that asymptotic
properties of the estimators are unclear. According to our simu-
lation in Section 3, these estimators might not be consistent for
k > 0.5.

Castillo and Hadi (1997) proposed an inference procedure,
called the elemental percentile method (EPM), for the GPD
parameters. The EPM suffices for all ranges of k values. In the
first step of EPM, two distinct order statistics x(i) and x( j) are
extracted from the observed sample. By solving the equations

Fθ(x(i)) = i/(n + 1) and Fθ(x( j)) = j/(n + 1), (4)

one can obtain an estimator of (k, σ ), denoted as
(k̂(i, j), σ̂ (i, j)). Since at most n(n − 1)/2 pairs of such order
statistics can be extracted from a sample of size n, the ensemble
estimators are defined as the median of all the n(n − 1)/2
estimators as

k̂EPM = median{k̂(1, 2), . . . , k̂(n − 1, n)},
σ̂EPM = median{σ̂ (1, 2), . . . , σ̂ (n − 1, n)}.

Because the EPM needs to estimate the parameters n(n −
1)/2 times, the computational cost is O(n2). This may be too
high when a large sample is concerned. Though some random
sampling schemes may help reduce the number of calculations,
it is better to make full use of the data. In addition, asymptotic
results for the ensemble estimator are quite difficult to obtain.
The simulation results in Castillo and Hadi (1997) as well as our
results in Section 3 indicate that there is still room for improve-
ment in terms of estimating the shape parameter k.

1.3 Aims andOutline

In view of the importance of estimating theGPDparameters and
the deficiencies in the existing methods, we propose two new
estimators for the GPD parameters in this study. The key idea is
to use the minimum distance estimation together with the M-
estimation in a linear regression. The remainder of this article is
organized as follows. In Section 2,we develop the new estimators
of the GPD parameters. Asymptotic properties for the proposed
estimators are also established. In addition, the bootstrap-t is
used for interval estimation of the parameters. Simulation stud-
ies are conducted to compare different estimation methods in
Section 3. Section 4 provides two illustrative examples. Section
5 concludes the article.

2. ProposedMethods

In this section, two new estimators for the GPD parameters are
proposed based on theM-estimation.We first briefly review the
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M-estimation method in a linear regression context. Next, we
show that a simple regression model can be established for esti-
mating the GPD and then the M-estimation procedure can be
applied. Consistency of the proposed estimators is also estab-
lished. The bootstrap-t method is then used for interval estima-
tion of the GPD parameters are constructed. At last, we provide
a simple optimization routine to obtain the proposed estimators.

2.1 M-Estimation in Linear Regression

Consider a linear regression model

yi = xTi β + ei, 1 ≤ i ≤ n,

where yi ∈ R is the response variable, xi = (xi1, . . . , xip)T ∈ R
p

are the explanatory variables, β = (β1, . . . , βp)
T ∈ R

p are the
unknown parameters and ei is the zero-mean error term. Let
ri(β) = yi − xTi β be the residuals. Then the least-square (LS)
estimator of β is defined as

β̂n = argmin
β

1
n

n∑
i=1

[ri(β)]2.

If the error terms ei’s are iid normal and ei is independent of
xi, then the LS estimator is efficient. However, the LS estimator
is sensitive to outliers in the sample. If the distribution of the
error terms is not exactly normal, the estimator may be far from
optimal. Therefore, many robust estimators have been proposed
to achieve a balance between efficiency and stability in the pres-
ence of outliers. See, for example, the L-estimator (Jaeckel 1972),
theR-estimator (Rousseeuw 1984), and theM-estimator (Huber
1973). For a book-length account on the robust estimators, read-
ers are referred to Huber (2011).

Due to its generality and nice properties, for example,
high efficiency, the M-estimator appears to be a popular
robust method (Huber 2011, chap. 3). The basic idea of the
M-estimation is to replace the squared residuals [ri(β)]2 by a
less rapidly increasing function ρ of the residuals, leading to the
M-estimator as

β̃n = argmin
β

1
n

n∑
i=1

ρ[ri(β)].

In the literature, many ρ functions have been proposed (Rey
2012). One popular choice of the function ρ is the Tukey
biweight function (Yohai and Zamar 1988) defined as

ρc(u) =

⎧⎪⎪⎨⎪⎪⎩
u2

2

(
1 − u2

c2
+ u4

3c4

)
|u| ≤ c,

c2

6
, |u| > c,

(5)

where c is called the tuning parameter. By setting c = 4.6851, the
M-estimator with the Tukey biweight function has an efficiency
of 95%under independentGaussian errors. The consistency and
asymptotic normality of anM-estimator for the linear regression
with iid errors are well established in Huber (2011, chap. 11).

When ei’s are heteroscedastic and suppose the variance of ei
is proportional to w2

i , it is natural to extend theM-estimator to

the weightedM-estimator defined as

β̃
∗
n = argmin

β

1
n

n∑
i=1

ρ[r∗i (β)],

where r∗i (β) = ri(β)/wi.

2.2 New Estimators for the GPD

Consider an iid sample x1, . . . , xn from GPD(k0, σ0) and let
θ0 = (k0, σ0). Let x(1), . . . , x(n) be the corresponding order
statistics of x1, . . . , xn. Let Fn(x) be the corresponding empirical
distribution function. At the discontinuity points x(1), . . . , x(n),
we define Fn(x(i)) = (i − 0.5)/n, i = 1, . . . , n, as a “continu-
ity correction” to the empirical distribution (Zhang 2002).
Although Fn(x) is modified at the discontinuity points, in the
Appendix we show that the Glivenko–Cantelli theorem still
ensures Fn(x) → Fθ0 (x) almost surely, and the convergence is
uniform in x. Intuitively, if we define residuals similar to those
in a linear regression, that is,

ri(θ) = Fn(xi)− Fθ(xi), i = 1, . . . , n, (6)

wemay be able to obtain an estimator of θ byminimizing a func-
tion ρ(·) (also called a distance measure) of ri(θ).

This idea is known as the minimum distance estimation
in the literature, which was explicitly developed by Wolfowitz
(1957). Recent applications of the minimum distance estima-
tion can be found in Ferger (2010), Hart andCañette (2011), and
Politis (2013).Obviously, an important task in theminimumdis-
tance estimation is to find an appropriate function thatmeasures
the distance between the empirical distribution function and
the true one. Conventional distance measures are closely related
to the goodness-of-fit statistics, for example, the Kolmogorov
statistic and the Cramer–von Mises statistic. The estimators
obtained from these distance measures are often satisfactory if
the theoretical distribution function only involves the scale and
location parameters, that is, the location-scale models (Parr and
Schucany 1980). However, as stated by Huber (1972) and Parr
and Schucany (1980), problems occur when the theoretical dis-
tribution involves a shape parameter. For the GPD, it is found
that the estimators obtained by minimizing 1

n
∑n

i=1[ri(θ)]
2 are

sensitive to the shape parameter k (Song and Song 2012). This
is because at some values of k, some observations in the sample
may have decisive impact in minimizing 1

n
∑n

i=1[ri(θ)]
2, espe-

cially when the sample size is small. Borrowing the idea from
M-estimation, we may reduce the influence of these values in
ri(θ) by using an appropriate distance function ρ(·).

Following theM-estimation procedure in the last subsection,
theM-estimator for θ is defined as

θ̃n = argmin
θ

1
n

n∑
i=1

ρ[ri(θ)]. (7)

Observe that ri(θ0)’s are asymptotically normal and have differ-
ent asymptotic variances (Van der Vaart 1998, chap. 19), that is,
√
nri(θ0) = √

n[Fn(xi)− Fθ0 (xi)]
d−→ N[0, Fθ0 (xi)(1−Fθ0 (xi))],

where N[a, b] denotes a normal distribution with mean a and
variance b. Therefore, we can construct a weightedM-estimator
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as

θ̃
∗
n = argmin

θ

1
n

n∑
i=1

ρ[r∗i (θ)], (8)

where r∗i (θ) = ri(θ)/wi and wi’s are weights. In view of the
asymptotic variance of ri(θ), an appropriate weight can be
wi(θ) = √

Fθ(xi)(1 − Fθ(xi)). However, optimizing (8) with
this weight is sometimes difficult, as ρ(·) becomes a very com-
plicated function of the parameters θ. Alternatively, we may
use the weight wi(θ̃n) =

√
F
θ̃n
(xi)(1 − F

θ̃n
(xi)), where θ̃n is the

unweighted M-estimator obtained from (7). To use this weight
requires estimating θ̃n first, and thus θ̃

∗
n can be regarded as a two-

stage estimator.

2.3 Asymptotic Properties

This subsection shows that the two proposed estimators are con-
sistent under some mild regularity conditions. The following
assumption is made on the distance function ρ(·).
Assumption 1. Let ρ be a real function satisfying the following
properties:
(a) ρ(0) = 0 and ρ(x) = ρ(−x);
(b) if 0 < x1 < x2, then ρ(x1) ≤ ρ(x2);
(c) ρ is continuously differentiable.
Clearly, the Tukey biweight function defined in (5) satis-

fies Assumption 1. In addition, other popular ρ functions such
as the Huber’s function and the Cauchy’s function also satisfy
Assumption 1. For definitions of these ρ functions, we refer
readers to Rey (2012). The following theorem establishes the
consistency of θ̃n and the proof is given in the Appendix.

Theorem 2.1. Assume Assumptions 1 holds. Consider an iid
sample x1, . . . , xn from Fθ0 with θ0 being the true parameters.
Let Fn(x) be the empirical distribution function and ri(θ) the
residual defined in (6). Consider the M-estimator θ̃n given in
(7). Then θ̃n → θ0 in probability.

By assuming that the weight sequence {wi} satisfies
Assumption 2 in the Appendix, the consistency of the weighted
M-estimator θ̃

∗
n is shown in the following theorem.

Theorem 2.2. Assume Assumptions 1–2 hold. Consider an iid
sample x1, . . . , xn from Fθ0 with θ0 being the true parame-
ters. Let Fn(x) be the empirical distribution function and ri(θ)
the residual defined in (6). Consider the weighted M-estimator
given in (8). Then θ̃

∗
n → θ0 in probability.

2.4 Confidence Interval

To capture uncertainties of the point estimation, another impor-
tant task is to construct confidence intervals (e.g., Chen and Ye
2017). Unfortunately, interval estimation of the GPD parame-
ters has not been well received in the literature. Because the ML
estimators do not exist when k > 1 and the ML estimation per-
forms poorly when k > 0.5, the application of the large-sample
approximation to the ML estimators is restricted to k < 0.5.
Alternatively, resampling-based methods such as the bootstrap
were often used for interval estimation (Castillo andHadi 1997).

In this section, the bootstrap-t method (Efron and Tibshirani
1994, chap. 12) is used with respect to different point estimation
methods. The detailed procedures are summarized below.

1. For a given dataset of size n, estimate the parameter of k
and σ by (7) (or (8)), denoted as k̂ and σ̂ ; let ŝek̂ be the
estimated standard error of k̂.

2. Generate B bootstrap samples each with size n from
GPD(k̂, σ̂ ).

3. For each bootstrap sample, estimate k by (7) (or (8)),
denoted as k̂b and compute tb = (k̂b − k̂)/ŝek̂b , where

ŝek̂b is the estimated standard error of k̂b.
4. The equal-tailed 100(1 − α)% confidence interval for

k is (k̂ − t1−α/2ŝek̂, k̂ − tα/2ŝek̂), where tα is the α per-
centile point of tb’s.

Remark: Because the standard errors of k̂ and k̂b do not have
closed forms, the bootstrap could again be invoked (Efron and
Tibshirani 1994, chap. 6). For example, to estimate the standard
error ŝek̂ of k̂, we first generate 200 bootstrap samples each with
size n from GPD(k̂, σ̂ ) and for each bootstrap sample, we esti-
mate k by (7) (or (8)). Afterward, we will have 200 estimates of k,
and then ŝek̂ is approximated by the sample standard deviation
of these 200 estimates.

2.5 OptimizationMethod

Due to the complicated form of the distance function ρ(·),
sometimes it may not be easy to obtain θ̃n and θ̃

∗
n by directly

solving (7) and (8), respectively. In such cases, the method of
iterative reweighed least squares (IRLS) (e.g., Green 1984) can
be used to obtain these two estimators. Without loss of gener-
ality, we consider the IRLS algorithm for θ̃n here, and θ̃

∗
n can be

obtained in a similar vein.
Letψ(u) = ∂ρ(u)/∂u, which is called the influence function

in the context of robust statistics. If ρ(u) satisfies Assumption 1
in the last subsection, then solving (7) is equivalent to solving
the following two equations

n∑
i=1

ψ[ri(θ)]
∂ri(θ)
∂θ j

= 0, j = 1, 2, (9)

where θ1 = k and θ2 = σ . If we define φ(u) = ψ(u)/u, then
Equation (9) becomes

n∑
i=1

φ[ri(θ)]ri(θ)
∂ri(θ)
∂θ j

= 0, j = 1, 2, (10)

which is a typical problem that can be solved by the IRLS algo-
rithm (e.g., Chaudhury 2013). In each iteration of the IRLS algo-
rithm, we solve

θ̃
(p)
n = argmin

θ

1
n

n∑
i=1

φ[ri(θ̃
(p−1)
n )][ri(θ)]2, (11)

where p is the iteration number.
As can be seen from Equation (11), φ[ri(θ̃

(p−1)
n )] is treated as

known in each iteration. Therefore, the famous Gauss–Newton
algorithm can be used to solve (11), which is much simpler
than solving (7) directly. Our simulation experiences suggest
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532 P. CHEN, Z.-S. YE, AND X. ZHAO

that the IRLS algorithm is more stable than direct maximiza-
tion of (7). Estimators by the EPM and the ZJ method can be
used as θ(0)n , as they exist for all values of k. From a practical
point of view, we would suggest the ZJ method, which is much
less time-consuming. According to our simulation, if ρ(u) is the
Tukey biweight function defined in (5), then the sequence of θ̃

(p)
n

always converges within 10 iterations in our simulation trials.

3. Simulation

3.1 Point Estimation

In this subsection, a simulation study is conducted to compare
different estimation methods for the GPD parameters. Specif-
ically, the proposed methods in the last section are compared
with the ML method, the EPM and the ZJ method. The imple-
mentation of these methods can be found in Section 1.2. In

the proposed methods, we use the Tukey biweight function
defined in (5) with the tuning parameter c = 4.6851. Accord-
ing to our preliminary simulation results (not reported), other
popular ρ functions such as the Huber’s function have a similar
performance with the Tukey biweight function. The method of
moments and the method of probability-weighted moments are
not considered here because they are not better than the EPM
in almost all the cases considered in Castillo and Hadi (1997).
Because the simulation results are invariant of the scale param-
eter σ , we set σ = 1 throughout this section. A wide range of k
values are considered, that is, k = −4, −3.9, −3.8 . . . , 3.9, 4.
Because theML estimators exit for k ≤ 1, such k values are used
for the ML method. When the estimated k value is greater than
one, the ML estimates are set as (1, x(n)), as suggested by Zhang
and Stephens (2009). Sample sizes n = 20, 50, 100 are consid-
ered. For each combination of k, σ , and n, biases and mean
squared errors (MSEs) of the estimators are obtained based

Figure . Absolute value of bias and n × MSE for the shape parameter k based on the ML method, the elemental percentile method (EPM), the method in Zhang ()
(ZJ), and the two proposed estimators (θ̃n and θ̃

∗
n).
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Figure . Absolute value of bias and n × MSE for the scale parameter σ based on the ML method, the elemental percentile method (EPM), the method in Zhang ()
(ZJ), and the two proposed estimators (θ̃n and θ̃

∗
n).

on 10,000 Monte Carlo replications. The results for the shape
parameter k and the scale parameter σ are shown in Figures 1
and 2, respectively.

As can be seen from these two figures, the two proposed esti-
mators seem to work well overall, as small biases and MSEs
are achieved in all the scenarios. Between these two estima-
tors, the weighted M-estimator performs slightly better. As far
as the shape parameter k is concerned, the proposed methods
are comparable with the ZJmethod in the commonly used range
k < 0.5, while they performmuch better when k > 0.5. In addi-
tion, the proposedmethods have amuch better performance for
estimating the scale parameter σ than the ZJ method. The EPM
works well in terms of the biases but the MSEs seem a bit large
for both parameters. Moreover, the application of EPM gener-
ally requires more computing time than the other methods (not

reported). As for the ML method, it does not work well when
0.5 < k < 1, which is consistent with the findings in Castellanos
and Cabras (2007).

3.2 Interval Estimation

This subsection compares the performance of the bootstrap-t
method based on different point estimation procedures, that is,
theMLmethod, the EPM, the ZJ method, and the two proposed
estimators. The comparison is based on the coverage probabil-
ities. Because the implementation of the bootstrap requires the
existence of the point estimator and theML estimator only exists
for k ≤ 1, we consider k = −1, −0.5, 0, 0.5, 1 here. In fact,
the range−1 < k < 0.5 ismost commonly observed in practical
applications (Zhang and Stephens 2009). The scale parameter σ
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Figure . Coverage probabilities of shape parameter k (left) and σ (right) based on MLmethod, elemental percentile method (EPM), method in Zhang () (ZJ), and the
proposed two methods (θ̃n and θ̃

∗
n).

is set as 1. In addition, sample sizes n =20, 50, 100 are used. We
consider the 95% confidence intervals for k and σ . The numbers
of both bootstrap samples and Monte Carlo replications are set
as 10,000. The coverage probabilities by different methods are
shown in Figure 3. As can be seen, the bootstrap-t based on the
two proposed estimators and EPM seem towork uniformlywell,
and their performance improves with the sample size n. As far as
the ML method and the ZJ method are concerned, both meth-
ods do not work well when k > 0 or n < 100.

3.3 Censored Data

The GPD is a popular model for extreme values over a thresh-
old. Since extreme values are often seen in environmental sci-
ences, financial time series, insurance industry, and hydraulics

engineering, the GPD is extensively applied in these areas,
where most of the recorded data are complete. For example, see
the various datasets of extreme values in the books by Coles
et al. (2001); Finkenstadt and Rootzén (2003); Castillo et al.
(2005); De Haan and Ferreira (2007). As a result, most GPD-
related studies, including estimation and applications, are based
on complete samples. The simulations in the last subsections
showed that the GPD parameters based on a complete sample
can be accurately estimated by our proposed methods. On the
other hand, sometimes, the GPD is also found useful in the reli-
ability area, where censoring is commonly seen. Because the
empirical distribution function in (6) can be computed based
on a censored sample, our proposed methods can also be used
in the presence of censoring. For demonstration, consider Type
II censoring where only the first m failures out of the n units
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Figure . Absolute value of bias and MSE for the shape parameter k based on the elemental percentile method (EPM) and the two proposed estimators (θ̃n and θ̃
∗
n) when

the censoring rate is %.

are observed. Let x1 < x2 < · · · < xm be the ordered failure
times. The empirical distribution at time xi can be computed as
Fn(xi) = (i − 0.5)/n, i = 1, . . . ,m. Then the M-estimator can
be obtained as

θ̃n = argmin
θ

1
m

m∑
i=1

ρ[ri(θ)],

and the weightedM-estimator can be obtained as

θ̃
∗
n = argmin

θ

1
m

m∑
i=1

ρ[r∗i (θ)],

where r∗i (θ) = ri(θ)/
√
F
θ̃n
(xi)(1 − F

θ̃n
(xi)), i = 1, . . . ,m. By

similar procedure, the proposed methods can also be used to

deal with other types of censoring such as left censoring and
interval censoring (Meeker and Escobar 1998).

In this subsection, a simulation is conducted to compare the
proposed methods with the EPM based on the Type II cen-
sored data. The EPM is applicable because Equation (4) can
be solved based on the censored sample, while other meth-
ods such as the MOM and the ZJ method cannot be easily
extended to deal with censoring. Similar to the previous settings,
we consider n = 20, 50, 100, k = −4, −3.9, −3.8 . . . , 3.9, 4,
and σ = 1. Under each sample size n, four censoring rates γ =
10%, 20%, 30%, and 40% are considered by carefully choos-
ing m. Based on 10,000 Monte Carlo replications, the absolute
values of biases and MSEs for the shape parameter k and the
scale parameter σ when γ = 20% are shown in Figures 4 and
5, respectively. Other simulation results when γ = 10%, 30%,
and 40% are given in the supplementary material. As we can
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536 P. CHEN, Z.-S. YE, AND X. ZHAO

Figure . Absolute value of bias and MSE for the scale parameter σ based on the elemental percentile method (EPM) and the two proposed estimators (θ̃n and θ̃
∗
n) when

the censoring rate is %.

see, our proposed methods generally compete well with the
EPM when k < 0.5 and they have a better performance than
the EPM when k > 0.5. As with the complete sample cases,
the EPM is more time-consuming compared with the proposed
methods.

4. Example

In this section, two real examples in Castillo and Hadi (1997)
are revisited. In each example, the generalized Pareto distri-
bution is found to provide a good fit to the data. For both
examples, all the estimated values of k are larger than 0.5 and
sometimes even larger than 1. This finding affirms our pre-
vious arguments that k > 0.5 is not uncommon in practical
applications.

4.1 BilbaoWaves Data

Thefirst example consists of the zero-crossing hourlymeanperi-
ods (in seconds) of the sea waves measured in Bilbao buoy,
Spain. The data are used for studying the influence of peri-
ods on beach morphodynamics and other properties related to
the right tail (Castillo and Hadi 1997). Only data above 7 sec
are listed in Table 1. Fitting GPD to this dataset has been well
studied in the literature (e.g., Castillo and Hadi 1997; Luceño
2006; Zhang and Stephens 2009; Del Castillo and Serra 2015).
It is found that when the threshold t ≥ 7.5, the GPD fits the
exceedances verywell (Zhang and Stephens 2009). Table 2 shows
the estimates of the two GPD parameters based on the ML esti-
mation, the EPM, the ZJ method, and the proposed methods,
when the threshold time t is set as 7.5, 8.0, 8.5, 9.0, and 9.5,
respectively. Note that the ML estimators do not exist when
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Table . The Bilbaowaves data: the zero-crossing hourlymean periods (in seconds),
above  sec, of the sea waves measured in Bilbao buoy.

. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . .

Table . Estimates of (k, σ ) for the Bilbao waves data based on the ML method
(ML), the elemental percentile method (EPM), the method in Zhang () (ZJ), and
the proposed two estimators (θ̃n and θ̃

∗
n): t is the threshold time andm is the num-

ber of exceedances; NA means nonexistence.

t m ML EPM ZJ θ̃n θ̃
∗
n

.  (., .) (., .) (., .) (., .) (., .)
.  (., .) (., .) (., .) (., .) (., .)
.  NA (., .) (., .) (., .) (., .)
.  NA (., .) (., .) (., .) (., .)
.  NA (., .) (., .) (., .) (., .)

Table . % confidence intervals of k and σ for the Bilbao waves data. t is the
threshold time andm is the number of exceedances.

t m k̃ σ̃ k̃∗ σ̃ ∗

.  (., .) (., .) (., .) (., .)
.  (., .) (., .) (., .) (., .)
.  (., .) (., .) (., .) (., .)
.  (., .) (., .) (., .) (., .)
.  (., .) (., .) (., .) (., .)

Table . Average scaled absolute errors (ASAEs) for the Bilbao waves data based on
theMLmethod (ML), the elemental percentile method (EPM), themethod in Zhang
() (ZJ), and the proposed two estimators (θ̃n and θ̃

∗
n): t is the threshold time and

m is the number of exceedances; NA means nonexistence.

t m ML EPM ZJ θ̃n θ̃
∗
n

.  . . . . .
.  . . . . .
.  NA . . . .
.  NA . . . .
.  NA . . . .

t = 8.5, 9.0, and 9.5. As can be seen, the estimates of k by all
the methods under every threshold is larger than 0.5. In some
cases, the estimated k is even larger than 1. Table 3 shows the
95% confidence intervals of k and σ based on the bootstrap-t
method.

To measure the overall goodness of fit of these methods, we
use the average scaled absolute error (ASAE) defined in Castillo
and Hadi (1997) as

ASAE = 1
n

n∑
i=1

|x(i) − x̂(i)|
x(n) − x(1)

, (12)

where x̂(i) = σ̂ [1 − (1 − i/(n + 1))k̂]/k̂ with k̂ and σ̂ the esti-
mates by different estimationmethods. The ASAE values for the
ML method, the EPM, the ZJ method, and the two proposed
methods under different threshold are shown in Table 4. As can
be seen, the ASAE values by the two proposed estimators are the
smallest under every threshold. The results indicate better per-
formance of the proposed estimators.

4.2 Fatigue Data

The second example concerns the fatigue data for the
Kevlar/epoxy strand lifetime, which are reported by Andrews
and Herzberg (1985) and reproduced in Table 5. The pur-
pose of this dataset is to estimate the small quantiles of the
lifetime and hence the interest is in the left tail. To apply the
GPD, we shall transform the lower tail to the upper tail by
considering negative values of these data, as suggested by
Castillo and Hadi (1997). Based on this transformation, we are
able to analyze exceedances over a prefixed threshold by the
GPD.

We first need to determine the threshold over which the
GPD provides a good fit to the exceedances. Two statistics
proposed by Choulakian and Stephens (2001) for a GPD, that
is, the Cramer–von Mises statistic W 2 and the Anderson–
Darling statistic A2, are used here. Following Choulakian
and Stephens (2001), these two statistics can be calculated
as

W 2 =
n∑

i=1

[zi − (2i − 1)/(2n)]2 + 1/(12n)

and

A2 = −n − (1/n)
n∑

i=1

(2i − 1)[log(zi)+ log(1 − zn+1−i)],

where zi = F
θ̂
(x(i)) and θ̂ is the estimate of θ based on

different estimation methods. We consider thresholds t =
−1.8, −1.6, −1.4, −1.2, −1.0, and −0.8 as in Castillo and
Hadi (1997). Because theML estimator does not exist in all these
values of thresholds, we only consider the EPM, the ZJ method,
and the proposed methods here. For each estimation method,
the parametric bootstrap is used to obtain the p-values of the
statisticsW 2 and A2. As an example, consider the Cramer–von
Mises statisticW 2 and the EPM with threshold t . Also denote
m as the number of exceedances over t . We first use the EPM

Table . Fatigue data: Kevlar/epoxy strand-life data in 104 hr tested at % stress level.

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . .
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Table . p-values (pw, pa) of the Cramer–von Mises statistic (pw ) and the
Anderson–Darling statistic (pa) for the elemental percentile method (EPM), the

method in Zhang () (ZJ), and the two proposed methods (θ̃n and θ̃
∗
n) based on

the fatigue data: t is the threshold time andm is the number of exceedances.

t m EPM ZJ θ̃n θ̃
∗
n

− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)

Table . Estimates of (k, σ ) based on the elemental percentile method (EPM), the
method in Zhang () (ZJ), and the two proposed estimators (θ̃n and θ̃

∗
n) for the

fatigue data: t is the threshold time andm is the number of exceedances.

t m EPM ZJ θ̃n θ̃
∗
n

− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)

to obtain the estimate θ̂. Then, 1000 samples of size m are gen-
erated from the GPD with parameter θ̂. From each sample, we
can obtain the corresponding value ofW 2. The p-value is then
defined as the percentage of theseW 2’s no less than theW 2 based
on the original sample. The p-values are listed in Table 6. As we
can see, when t ≥ −1.4, the GPD seems to fit the exceedances
very well. For these values of threshold t , the estimates of θ

Table . % confidence intervals of k and σ for the fatigue data. t is the threshold
time andm is the number of exceedances.

t m k̃ σ̃ k̃∗ σ̃ ∗

− .  (., .) (., .) (., .) (., .)
− .  (−., .) (., .) (−., .) (., .)
− .  (., .) (., .) (., .) (., .)
− .  (., .) (., .) (., .) (., .)

Table . Average scaled absolute errors (ASAEs) for the fatigue data based on the
elemental percentile method (EPM), the method in Zhang () (ZJ), and the two
proposed estimators (θ̃n and θ̃

∗
n): t is the threshold time and m is the number of

exceedances.

t m EPM ZJ θ̃n θ̃
∗
n

− .  . . . .
− .  . . . .
− .  . . . .
− .  . . . .

based on the EPM, the ZJ method, and two proposed estimators
are shown in Table 7. We again find that k̂ > 0.5 occurs quite
often. The 95% confidence intervals of k and σ by the bootstrap-
t method are shown in Table 8.

Similar to the foregoing Bilbao waves example, we use the
average scaled absolute errors defined in (12) to measure the
performance of these methods. The values of ASAE are shown
in Table 9. As expected, overall our proposed methods have the
smallest ASAE. On the other hand, we can display the empirical
distribution function and the estimated distribution function on

Figure . Plots of the empirical distribution function versus the estimated distribution functions based on the elemental percentile method (EPM), the method in Zhang
() (ZJ), and the two proposed estimators (θ̃n and θ̃

∗
n).
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the same plot to graphically check the fit (Zhang and Stephens
2009), as shown in Figure 6. We can see from this figure that the
proposed methods fit the fatigue data better in the upper tail,
which is a desirable property in real applications (Zhang and
Stephens 2009).

5. Conclusion

The GPD is one of the most important distributions in appli-
cations involving extreme values. Because the ML estimation is
applicable only when the shape parameter k > 1 and it performs
poorly for small sample sizes, many other methods have been
proposed for estimating the GPD parameters. However, most
of these methods only work well for k < 0.5. In this article, we
proposed two new estimators for the GPD parameters using the
minimum distance estimation, where the Turkey biweight func-
tion is used as the distance measure. The first estimator mini-
mizes the distance between the empirical distribution and the
family of GPDs, while the second one is a weighted version of
the first one, where the weight is computed based on the first
estimator. The two estimators were shown to be consistent. Con-
fidence intervals of the GPD parameters were successfully con-
structed based on the bootstrap-t method. Our simulations and
illustrative examples show that the proposed methods not only
compete well with the existingmethods for k < 0.5 but also per-
form much better when k > 0.5.

Because the inference procedure is quite general, the pro-
posedmethods should alsoworkwell for other parametricmod-
els such as the Gompertz distribution where the ML estimators
may not exist. Following our proofs in the Appendix, the asymp-
totic properties hold as long as if the cdfs of these parametric
models satisfy some mild regularity conditions. On the other
hand, because the distance measure ρ(·) in this study is bor-
rowed from robust estimation, the proposedmethods are robust
to outlier contamination and the breakdown point is as high
as 50%. Nevertheless, the robustness to outliers was not high-
lighted in this study, as our purpose is to develop a good esti-
mation procedure for the GPD that is valid for all range of k.
For applications involving extreme values, it is often seen that
values of exceedances are small (De Zea Bermudez and Kotz
2010). In such cases, a single abnormal large value may damage
the estimation procedure. With the M-estimation in our study,
however, the effect of outliers can be greatly reduced. In this
sense, our proposed estimation methods are more robust than
the existing methods.

Appendix: Proofs

Here, we only present the proof of Theorem 2.1 since Theorem 2.2
can be proved similarly. Define rn(x, θ) = Fn(x)− F(x; θ) and r(x, θ) =
F(x; θ0)− F(x; θ). We first show that r(x, θ) is Donsker.

Lemma A.1. The class of functions r(x, θ) indexed by θ is Donsker.

Proof. First note that the total variation of functions F(x; θ) is bounded
by 1, and hence F(x; θ) is Donsker (Van der Vaart and Wellner 1996, pp.
191). We can then treat r(x, θ) as the class of functions x �→ r(F(x; θ))

with θ ranging over the parameter space �. It is easy to see that |r(x, θ1)−
r(x, θ2)|2 = (F(x; θ1)− F(x; θ2))

2 for every θ1, θ2 ∈ �, and x. According
to Theorem 2.10.6 in Van der Vaart and Wellner (1996), it suffices to show

that there exists θ ∈ � such that
∫
r2(x, θ)dx < ∞. In fact, if we let θ = θ0,

then
∫
r2(x, θ)dx = 0 < ∞. This completes the proof. �

Proof of Theorem 2.1. Let

M∗
n(θ) = − 1

n

n∑
i=1

ρ(rn(xi, θ)) and

Mn(θ) = − 1
n

n∑
i=1

ρ(r(xi, θ)).

A first-order Taylor expansion shows that

sup
θ

|M∗
n(θ)− Mn(θ)|

≤ 1
n

n∑
i=1

sup
θ

|ρ(rn(xi, θ))− ρ(r(xi, θ))|

= 1
n

n∑
i=1

sup
θ

|[rn(xi, θ)− r(xi, θ)]ρ ′(ξi(θ))|,

where ξi(θ) is between r(xi, θ) and rn(xi, θ). The first term inside the super-
mum is exactly Fn(x)− F(x; θ0). Although Fn(x) is modified at the discon-
tinuity points x1, . . . , xn, if we denote F̃n(x) as the conventional empirical
distribution function, it is clear that supx |Fn(x)− F̃n(x)| = 0.5/n, which
converges to 0 when n → ∞. Therefore, the Gilvenko–Cantelli theorem
still holds to the modified Fn(x), that is, supx |Fn(x)− F(x; θ0)| → 0 as
n → ∞. This means the first term is uniformly op(1). The second term
is bounded by max{ρ ′(ξ ) : −1 ≤ ξ ≤ 1}. Therefore,

sup
θ

|M∗
n(θ)− Mn(θ)| = op(1). (A.1)

Let M(θ) = −E{ρ(r(xi, θ)}. Next, we will use Corollary 3.2.3 of Van der
Vaart andWellner (1996) to establish the theorem. To use this corollary, we
need to verify the following two conditions:

(i) supθ

∣∣M∗
n(θ)− M(θ)

∣∣ = op(1);
(ii) M(θ0) > supθ �∈G M(θ) for every open set G that contains θ0.
Assume X1, . . . ,Xn are iid with measure P and values in X , and Pn is

the empirical measure of Xi’s. Given a measurable function f : X �→ R, let
Pn f = 1

n
∑n

i=1 f (Xi) and P f = ∫
f dP. Theorem 2.10.6 in Van der Vaart

andWellner (1996) ensures that ρ(r(x, θ)) is Donsker as r(x, θ) is Donsker
(Lemma A.1) and ρ(·) is a Lipschitz function (since ρ(·) is assumed con-
tinuously differentiable in Assumption 1). Since M(θ)− Mn(θ) = (Pn −
P)ρ(r(x, θ)), the Clivenko–Cantelli theorem ensures

sup
θ

|Mn(θ)− M(θ)| = op(1). (A.2)

Condition (i) then follows from (A.1) and (A.2) as

sup
θ

|M∗
n(θ)− M(θ)| ≤ sup

θ

|M∗
n(θ)− Mn(θ)|

+ sup
θ

|Mn(θ)− M(θ)|.

Condition (ii) holds sinceM(θ0) = 0 and supθ �∈G M(θ) < 0. Thus, we con-
clude θ̃n → θ0 in probability. �

Note that the consistency of the weighted M-estimator θ̃
∗
n can be simi-

larly established as long as the weight sequence {wi} satisfies the following
Assumption.

Assumption 2. There exists a constant α > 0 such that

lim sup
n→∞

sup
1≤i≤n

wi < α a.s.

and for ri(θ) defined in (6)

lim
n→∞ sup

1≤i≤n
|ri(θ0)/wi| = 0 a.s.
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540 P. CHEN, Z.-S. YE, AND X. ZHAO

Given the consistency of the M-estimator θ̃n, Einmahl (1989) showed that

our constructed weight sequence wi(θ̃n) =
√
F(xi; θ̃n)(1 − F(xi; θ̃n)) sat-

isfies Assumption 2. Therefore, the constructed weightedM-estimator θ̃
∗
n is

consistent.

SupplementaryMaterials

Technical details: The PDF file provides additional simulation results
based on the Type II censored data: the proposed methods are com-
pared with the EPM when the censoring rate is set as 10%, 30%, and 40%
(PDF file).
Source code: The R file contains the R code to implement the proposed
M-estimation and weightedM-estimation (R file).
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