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Summary. This article considers sieve estimation in the Cox model with an unknown regression structure based on right-
censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric
covariate effects based on B-spline expansions through a penalized group selection method with concave penalties. We show
that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the
asymptotic normality of the estimator of the linear effects. To compute the proposed estimators, we develop a modified block-
wise majorization descent algorithm that is efficient and easy to implement. Simulation studies demonstrate that the proposed
method performs well in finite sample situations. We also use the primary biliary cirrhosis data to illustrate its application.
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1. Introduction
The proportional hazards model (Cox, 1972) is widely used
in the analysis of censored survival data. This model speci-
fies that covariates have log-linear effects on the hazard func-
tion of survival time. However, the true covariate effects may
be more complex than a log-linear effect in practice. Such
examples include the well-known primary biliary cirrhosis
(PBC) data that motivated this research. This data set can be
found in the Appendix D of Fleming and Harrington (1991).
Fleming and Harrington (1991) and Grambsch, Therneau,
and Fleming (1995) among others explored functional form
of covariates in the Cox model using residual plots. Huang
(1999) proposed a more parsimonious and interpretable par-
tially linear Cox model which specifies the covariate effects
through a partially linear structure, i.e., a combination of lin-
ear and nonparametric additive parts in the Cox model. Cai,
Fan, Jiang, and Zhou (2007) extended the model to a multi-
variate case. Du, Ma, and Liang (2010) studied the variable
selection with the nonparametric component being estimated
using smoothing splines.

The aforementioned work assumed that it is known in ad-
vance which covariates have a linear effect and which have
a nonlinear effect on the logarithm of the hazards function.
However, this is rarely known in advance. If a nonlinear effect
is misspecified to be linear, it will cause a bias in the estima-
tion. On the other hand, if a linear effect is misspecified as
nonlinear, it increases model complexity and leads to loss of
efficiency. Therefore, it is desirable to correctly determine the
linear and nonlinear components in the model.

In the context of partially linear regression models with
complete data, several authors have considered the problem
of identifying linear and nonlinear components. For example,
Zhang, Cheng, and Liu (2011) proposed a two-step approach
using smoothing splines for determining the zero, linear, and
nonlinear components. They obtained the rate of convergence
of their proposed estimator and showed that their method
is selection consistent in the special case of tensor product
design. Huang, Wei, and Ma (2012) proposed a concave
group selection approach for determining linear and nonlin-
ear components. They provided sufficient conditions under
which their proposed approach can correctly determine which
covariates have a linear effect and which do not with high
probability.

To the best of our knowledge, this has not been studied in
the context of the Cox model. Because of the wide applica-
tions of the Cox model and its central role in survival anal-
ysis, it is important to also have a systematic approach that
can correctly determine the form of covariate effects in this
model. In our proposed approach, we first take unknown non-
linear covariate effects as a nonparametric additive form, and
then use B-splines to approximate unknown smooth functions
in the model. With this approximation, we can transform the
problem of model specification into a group selection problem.
Using a penalized approach with concave penalties, we can
detect the linear or nonlinear components of covariate effects
and estimate both parametric and nonparametric components
simultaneously. Furthermore, we show that, with probability
tending to one, the proposed method can correctly specify the
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linear and nonlinear covariate effects on the log relative risk
hazard function. In addition, it enjoys an asymptotic oracle
property in the sense that it performs as well as the oracle es-
timator obtained by assuming the underlying model structure
is known in advance.

An additional contribution of this article is that we develop
a fast convergent algorithm for implementing the proposed ap-
proach. For a group variable selection problem, the calculation
is challenging because the solution paths in selecting groups
are not piecewise linear. To overcome this difficulty, Yuan and
Lin (2006) proposed a blockwise descent (BD) algorithm for
the group-LASSO (least absolute shrinkage and selection op-
erator) penalized least squares by following the idea of Fu
(1998). Meier, van de Geer, and Bühlmann (2008) developed
a block coordinate gradient descent (BCGD) algorithm for
solving the group-LASSO penalized logistic regression. Both
the BD and BCGD algorithms need the groupwise orthog-
onality condition, which is usually violated in practice. The
detailed discussions can be found in Yang and Zou (2015),
who proposed a blockwise majorization decent (BMD) algo-
rithm for solving the general group-LASSO learning problems
under the condition that the loss function satisfies a quadratic
majorization (QM) condition. However, the BMD depends on
the maximum eigenvalue of a quadratic majorization matrix.
If the maximum eigenvalue is large, the algorithm requires a
large number of iterations to achieve convergence. In order
to increase the computation speed, we introduce the back-
tracking line search approach to properly shrink the maxi-
mum eigenvalue to a reasonable value so that a more accurate
quadratic majorization is used in the BMD. We refer to our
method as modified BMD (MBMD). The MBMD is easy to
implement since it uses a closed-form expression at each iter-
ation. Our numerical studies also demonstrate that MBMD
has good numerical performance.

The reminder of this article is organized as follows. In Sec-
tion 2, we formulate the model structure estimation prob-
lem into a group selection problem and propose the penal-
ized spline-based partial-likelihood method and describe the
MBMD algorithm. The theoretical properties of the proposed
approach are also presented in this section. In Section 3, we
conduct simulation studies to evaluate the finite-sample per-
formance of the penalized estimator. In Section 4, we analyze
the PBC data primary biliary to illustrate the utility of the
method. Some concluding remarks are made in Section 5. The
technical proofs are given in the Supplementary Materials.

2. Estimation Procedures and Asymptotic
Results

2.1. Group-Penalized Spline-Based Partial-Likelihood
Method

Let T u and T c denote the potential survival time and cen-
soring time, respectively. The observed random variable
is (T, �, X) ∈ R+ × {0, 1} × Rd , where T = min{T u, T c}, � =
I(T u ≤ T c). Here, I(·) is the indicator function and X =
(X1, . . . , Xd) is a d-dimensional vector of covariates. We as-
sume that T u and T c are conditionally independent given X.
Suppose we observe {(Ti, �i, Xi) : i = 1, . . . , n} that are inde-
pendent and identically distributed as (T, �, X). We embed
the partially linear additive Cox model into the nonparamet-

ric additive Cox model (Hastie and Tibshirani, 1986)

λ(t|X) = λ0(t) exp(g(X)), (1)

with g(x) = ∑d

j=1
gj(xj), where x1, . . . , xd are the elements of

x. The main goal is to determine which gj’s take a linear form
and which do not. For this purpose, we decompose gj into a
sum of linear and nonlinear terms

gj(x) = βjx + φj(x). (2)

Thereby, g(x) can be rewritten as

g(x) = xTβ + φ(x),

with β = (β1, . . . , βd)
T and φ(x) = ∑d

j=1
φj(xj). If some gj’s

are linear, the corresponding nonparametric parts φj’s should
be zero. For the identifiability in models (1) and (2), we as-
sume that E[�φj(Xj)] = 0, 1 ≤ j ≤ d and E[�Xj] = 0, 1 ≤ j ≤
d because the regression functions can only be identified up to
a constant and centering can remove this ambiguity (Huang,
1999). For the nonlinear term, the smoothness assumption
is also often used in nonparametric curve estimation. These
assumptions are given in Supplemental Materials, and a de-
tailed explanation about them can be also found in Huang
(1999).

We use the B-splines to approximate the nonparamet-
ric components φj, j = 1 . . . , d. Assume that the covariate
X takes values in [a, b]d where a and b are two finite real
numbers. Let a = ξ0 ≤ ξ1 . . . ≤ ξKn

≤ ξKn+1 = b be a parti-
tion of [a, b] into Kn subintervals, where Kn = O(nν) with
0 < ν < 0.5 is a positive integer such that max

1≤j≤Kn+1
|ξj −

ξj−1| = O(n−ν). Denote by IKnt = [ξt, ξt+1), t = 0, . . . , Kn − 1
and IKnKn

= [ξKn
, ξKn+1]. Let Sn be the space of polynomial

splines of order m ≥ 1 which consists of functions h satisfying
the following two conditions: (i) the restriction of h to IKnt is
a polynomial of order m for t = 1, . . . , Kn; (ii) for m ≥ 2 and
0 ≤ m′ ≤ m − 2, h is m′ times continuously differentiable on
[a, b].

Let �n be the collection of functions φ on [a, b]d with the

additive form φ(x) = ∑d

j=1
φj(xj), where each component φj

belongs to Sn. By Schumaker (1981), there exists a local basis
{ψk, k = 1, . . . , qn} for Sn, where qn = Kn + m is the number of
the basis. Thus for φj ∈ Sn, we can write

φj(xj) =
qn∑

k=1

θjkψk(xj), j = 1, . . . , d.

Under some suitable smoothness assumptions, the true non-
parametric parts φ0j’s can be well approximated by the func-
tions in Sn (see, for example, Lemma A5 of Huang (1999)).

Let ‖ · ‖ and ‖ · ‖2 denote the Euclidean norm and the L2-
norm with respect to a probability measure, respectively. Fur-
thermore, ‖ · ‖∞ denotes the supremum norm. If θjk = 0 for all
1 ≤ k ≤ qn, then the function gj takes a linear form. Therefore,
the problem now becomes determining which groups of θj =
(θj1, . . . , θjqn

)T (j = 1, . . . , d) are zeros. Let θ = (θT
1 , . . . , θT

d )T
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and Yi(t) = I(Ti ≥ t). To identify the linear and nonlinear
structure in model (1), we estimate β and θ via the group-
penalized partial-likelihood function defined as

Q̃n(β, θ) = �̃n(β, θ) +
d∑

j=1

P(‖θj‖; λ), (3)

where

�̃n(β, θ) = −n−1

n∑
i=1

�i

d∑
j=1

(
Xijβj +

qn∑
k=1

θjkψk(Xij)

)

+ n−1

n∑
i=1

�i log

{
n∑

k=1

Yk(Ti) exp

[
d∑

j=1

(Xkjβj

+
qn∑

t=1

θjtψt(Xkj)

)]}

is the negative logarithm of partial-likelihood function for the
observed right-censored data and P(‖θj‖; λ) is the penalty
function for vector θj with a tuning parameter λ ≥ 0. We
employ the concave penalties to increase flexibility of our
method. These concave penalties are applied to the Euclidean
norm ||θj|| such that the coefficients in θj are selected as
a group. Fan and Lv (2011) defined the concave penalties
through the following Condition 1.

Condition 1. Let ρ(ν; λ) = λ−1P(ν; λ). The ρ(ν; λ) is in-
creasing and concave in ν ∈ [0, ∞) and has a continuous
derivative ρ′(ν; λ) with ρ′(0+; λ) > 0. In addition, ρ′(ν; λ) is
increasing in λ ∈ (0, ∞), and ρ′(0+; λ) is independent of λ.

Note that most commonly used penalties such as the LASSO
(Tibshirani, 1996, 1997), SCAD penalty (Fan and Li, 2001),
and MCP (Zhang, 2010) satisfy Condition 1.

For a given λ, the group-penalized partial-likelihood solu-
tion is defined by

(β̂n, θ̂n) = arg min
(β,θ)

Q̃n(β, θ).

Then, the penalized estimator of φ0j is given by φ̂nj(xj) =∑d

j=1
b(xj)

T θ̂nj for j = 1, . . . , d, where b(·) = (ψ1(·), . . . ,
ψqn

(·))T is the spline basis vector.

2.2. Modified BMD Algorithm

We propose a modified blockwise majorization descent algo-
rithm (MBMD). To describe our method, we first recall the
QM condition required for the BMD algorithm. For simplic-
ity of notation, the loss function is written as L(θ|D) in this
subsection with D representing the data, then the objective
function is

G(θ) = L(θ|D) +
d∑

j=1

P(‖θj‖; λ),

where P(‖θj‖; λ) is the penalty function as defined before, and

the penalized estimator θ̂n is the minimizer of G(θ).

Definition 1. The loss function is said to satisfy the QM
condition, if and only if the following two assumptions hold:

(i) L(θ|D) is differentiable as a function of θ, i.e., ∇L(θ|D)
exists everywhere;

(ii) There exists a dim(θ) × dim(θ) matrix H , which does

not depend on θ, such that for all θ and θ̃

L(θ|D) ≤ L(̃θ|D) + (θ − θ̃)T∇L(̃θ|D)

+1

2
(θ − θ̃)TH(θ − θ̃), (4)

where dim(θ) denotes the dimension of vector θ.

We next give a rough outline about the BMD al-
gorithm. Suppose the current value of θ is θ̃ = (̃θ1, . . . ,

θ̃j−1, θ̃j, θ̃j+1, . . . , θ̃d). Write θ∗ as θ∗ = (̃θ1, . . . , θ̃j−1, θj, θ̃j+1,

. . . , θ̃d). Let H(j) be the corresponding sub-matrix of H cor-
responding to the jth group and hj be the largest eigenvalue

of H(j). Define uj = ∂L(̃θ|D)/∂θj. By (4), we have

L(θ∗|D) ≤ L(̃θ|D) + (θj − θ̃j)
Tuj + 1

2
(θj − θ̃j)

T
H(j)(θj − θ̃j)

≤ L(̃θ|D) + (θj − θ̃j)
T
uj + hj

2
‖θj − θ̃j‖2. (5)

Generally, there is no closed form for the solution of objective
function G(θ). Yang and Zou (2015) proposed a BMD algo-
rithm, that is, instead of minimizing the objective function
G(θ), the optimal θj is defined as

θ̂nj(hj) = arg min
θj

{
L(̃θ|D) + (θj − θ̃j)

Tuj + hj

2
‖θj − θ̃j‖2

+P(‖θj‖; λ)

}
.

By a simple calculation, we obtain that θ̂nj(hj) is the mini-
mizer of mj(θj; hj), where

mj(θj; hj) = 1

2
‖θj − θ̃j‖2 + 1

hj

uT
j (θj − θ̃j)

+ 1

hj

P(‖θj‖; λ) + ‖uj‖2

2h2
j

= 1

2
‖θj − (̃θj − uj/hj)‖2 + 1

hj

P(‖θj‖; λ).

Thereby, the updated value of θ can be written as

θ(hj) = (̃θ1, . . . , θ̃j−1, θ̂nj(hj), θ̃j+1, . . . , θ̃d).

Generally, θ̂nj(hj) has a closed form for the commonly used
penalties such as LASSO, SCAD, and MCP.
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For the group-LASSO penalty with PLASSO(‖θj‖; λ) =
λ‖θj‖, θ̂nj(hj) = S(cj; λ/hj), where S(cj; λ) = (1 − λ/‖cj‖)+ cj

with cj = θ̃j − uj/hj. For the group-SCAD penalty with

PSCAD(‖θj‖; λ) =

⎧⎪⎪⎨⎪⎪⎩
λ‖θj‖, ‖θj‖ ≤ λ,

2γλ‖θj‖ − ‖θj‖2 − λ2

2(γ − 1)
, λ < ‖θj‖ ≤ γλ,

(γ2 − 1)λ2/(2(γ − 1)), ‖θj‖ > γλ,

θ̂nj(hj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(cj; λ/hj), ‖cj‖ ≤ λ + λ/hj,[
hj(γ − 1) − γλ

‖cj‖

]
cj

(hjγ − hj − 1)
, λ + λ/hj < ‖cj‖ ≤ γλ,

cj, ‖cj‖ > γλ.

For the group-MCP penalty with

PMCP(‖θj‖; λ) =

⎧⎪⎨⎪⎩
λ‖θj‖ − ‖θj‖2

2γ
, ‖θj‖ ≤ λγ,

λ2γ

2
, ‖θj‖ > λγ,

θ̂nj(hj) =

⎧⎪⎨⎪⎩S

(
hjcj

hj − 1/γ
;

λ

hj − 1/γ

)
, ‖cj‖ ≤ λγ,

cj, ‖cj‖ > λγ.

Obviously, different values of hj can make the updated val-

ues θ̂nj(hj) different. A large value of hj will increase the num-
ber of iterations to convergence. Note that the only role of hj

is to guarantee that the inequality (5) holds for θ(hj) and θ̃. If

we can find a smaller h̃j such that the inequality also holds for

θ(h̃j) and θ̃, then the number of iterations should be reduced.
Inspired by this idea, we propose to use the backtracking line
search approach to find smaller h̃j. Since the largest eigen-
value hj of H(j) guarantees inequality (5), the initial value of

h̃j can be taken as hj. Our modified BMD (MBMD) algorithm
is summarized as follows.

MBMD Algorithm:

Step 1. For a known matrix H , compute hj for j = 1, . . . , d.

Step 2. Initialize θ̃ and choose η with 0 < η < 1.
Step 3. Repeat the following cyclic blockwise updates until

convergence:
(i) Set h̃j = hj, calculate uj = ∂L(̃θ|D)/∂θ̃j for h̃j,

and find the minimizer θ̂nj(h̃j) of mj(θj; h̃j).

(ii) Update hj = h̃j ∗ η, and find the minimizer

θ̂nj(hj) of mj(θj; hj).

(iii) If inequality (5) holds for θ̃, hj and θ = θ(hj),

set h̃j = hj and return to (ii); otherwise, go to
(iv).

(iv) Set

θ̃ = (̃θ
T

1 , . . . , θ̃
T

j−1, θ̂
T

nj(h̃j), θ̃
T

j+1, . . . , θ̃
T

d )T .

Obviously, this algorithm depends on the choice of η. We sug-
gest η = 0.6 via simulation study, and this value of η works
well in the following numerical studies. The descent prop-
erty of MBMD algorithm is proved in Supplemental Materi-
als. Clearly, this algorithm can be applied to general group
selection problems.

2.3. Implementation

In the objective function, there are two parts of pa-
rameters (β, θ) where only parameter θ is penalized,
and the nonpenalized parameter can be treated as a
pseudo-penalized one based on the same penalty with
the tuning parameter λ0 = 0 and the group size of one.
Denote the ith observation of covariates as x̃i = (xi1, . . . , xid,

ψ1(xi1), . . . , ψqn
(xi1), . . . , ψ1(xid), . . . , ψqn

(xid))
T. By the work

of Böhning and Lindsay (1988), we conclude that �̃n(β, θ)
defined in Section 2.1 satisfies the QM condition with the
square matrix H taking the following form

H = 1

2n

n∑
i=1

n∑
l=1

�iYl(Ti)x̃ix̃
T
l .

Write this square matrix H as

H =
(

H(11) H(12)

H(21) H(22)

)
,

where H(11) is a d × d matrix with respect to β, and
H(22) is the (dqn) × (dqn) matrix with respect to θ. Let

β̃ = (β̃1, . . . , β̃d)
T

and θ̃ be the current values of β and θ,
respectively. Let sj be the jth diagonal element of matrix
H(11). Then, β̃j can be updated by

β̃j(sj) = β̃j − 1

sj

∂�̃n(β̃, θ̃)

∂β̃j

. (6)

The implementation of the proposed MBMD algorithm for
computing (β̂n, θ̂n) is summarized as follows.

Step 1. Compute H , and obtain sj and hj for j = 1, . . . , d.

Step 2. Initialize (β̃, θ̃).
Step 3. Repeat the following cyclic blockwise updates until

convergence
(3.1) For the current value of θ̃, update β̃j by for-

mula (6) for j = 1, . . . , d.

(3.2) For the current value of β̃, update θ̃ by Step 3
of the MBMD algorithm described in Section
2.2.

Remark 1. Certainly, one can use a similar technique to
find smaller sj’s to accelerate the calculation. Since the main
purpose is to select significant groups, we fix the value of sj

for computational simplicity.

2.4. Tuning Parameter Selection

To select tuning parameter λ, we can use the generalized cross-
validation (GCV) (Craven and Wahba, 1979) criterion. Since
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the main purpose here is to identify the linear or nonlinear
form of covariate effects, the GCV criterion is approximated
by

GCV(λ) = �̃n(β, θ)

{1 − d(λ)/n}2 (7)

with d(λ) ≈ ∑d

j=1
‖θ̂nj‖0 being the number of estimated active

groups. The optimal value of λ̂ is the minimizer of GCV(λ)
over a grid of values for λ.

For the folded concave penalties with two tuning param-
eters, the value of another tuning parameter γ can be cho-
sen as commonly used. For example, we choose γ = 3.7 for
the SCAD penalty (Fan and Li, 2001, 2002), and determine
γ = 2

1−max
i�=j

xT
i

xj/n
for the MCP penalty following Zhang (2010).

2.5. Theoretical Properties

We present the results on the rate of convergence, the model-
pursuit consistency, and asymptotic normality of the proposed
estimator for the parametric component, and relegate the
proofs to the Supplementary Materials.

Denote by β0 and φ0 the true value of β and φ. For m =
0, 1, 2, define

S(m)(t;β, φ) = E
[
Y(t)X

⊗
m

exp(XTβ + φ(X))
]

,

with X

⊗
0 = 1, X

⊗
1 = X and X

⊗
2 = XXT, and

� =
∫ τ

0

[
S(2)(t;β0, φ0)

S(0)(t;β0, φ0)
−

{
S(1)(t;β0, φ0)

S(0)(t;β0, φ0)

}⊗
2
]

× S(0)(t;β0, φ0)d�0(t).

In this section, we use λn rather than λ to emphasize its
dependence on n.

Theorem 1. Suppose assumptions (A1)–(A6) stated in
the Supplementary Materials hold. If the tuning parame-
ter λn = o(n−ν) for 0 < ν < 0.5, then ‖β̂n − β0‖ = Op(n

−νp +
n−(1−ν)/2), and ‖φ̂nj − φ0j‖2 = Op(n

−νp + n−(1−ν)/2), 1 ≤ j ≤ d.

Specifically, if ν = 1/(2p + 1), the rate convergence of φ̂nj is
n−p/(2p+1) which achieves the optimal rate in nonparametric
regression. The following theorem states that the convergence
rate of β̂n achieves n−1/2 under some regularity conditions.

Theorem 2. Under assumptions (A1)–(A8) stated in the
Supplementary Materials, if

0.25/p < ν < 0.5 and ν(p + q) > 0.5

where p is the measure of smoothness of φ0j defined in (A1)
and q is defined in (A7), then

(i) (Group Sparsity) lim
n→∞

P (̂θnj = 0 : j = s + 1, . . . , d) = 1;

(ii) (Asymptotic Normality)
√

n(β̂n − β0) →d N(0, �−1).

The group sparsity property shows that our proposed
method can identify the linear or nonlinear component with
a high probability. Although the convergence rate of φ̂nj is

slower than n−1/2, β̂n achieves n1/2−consistency and is asymp-

totically normal. For the estimator φ̂nj, the optimal value of
ν is 1

2p+1
. Clearly, Theorem 2 holds for ν = 1

2p+1
. Therefore,

for this choice of ν, both the estimators of parametric and
nonparametric components achieve the optimal rates of con-
vergence.

3. Simulation Studies

Simulation studies were conducted to evaluate the finite-
sample properties of the proposed penalized estimators via
the group-LASSO, the group-SCAD, and the group-MCP
penalties. In the study, the survival time was generated from
model (1) with λ0(t) = 1 or λ0(t) = 2t. Following Huang, Wei,
and Ma (2012), the d dimensional covariates were taken as
xi = (wi + u)/2 for i = 1, . . . , d, where w1, . . . , wd and u were
generated from the uniformly distribution U[0, 1]. The cen-
soring time was generated from the uniformly distribution on
[0, c], where c was chosen to yield approximately 20 and 40%
censoring, respectively. Following Fan and Li (2001, 2002),
the tuning parameter γ for the group-SCAD penalty was set
as γ = 3.7. Using the idea of Zhang (2010), the tuning pa-
rameter γ for the group-MCP penalty was determined by
γ = 2

1−max
i�=j

xT
i

xj/n
. The GCV criterion was applied to select the

tuning parameter λ, wherein the degrees of freedom d(λ) in (7)
was approximated by the number of effective groups selected
by our proposed method. Note that the proposed MBMD
algorithm in Section 2 depends on selection of η. From the
extensive simulation studies, we found that the MBMD algo-
rithm with η = 0.6 always works well for different situations.
To speed up the convergence, we used the KKT condition to
discard unrelated predictors by utilizing the idea of Tibshirani
et al. (2012)and Yang and Zou (2012). In the following, we
present two simulations. The purpose of the first study is
to assess the performance of proposed model structure es-
timation methods and compare the MBMD and the BMD
algorithms, while the goal of the second study is to compare
the estimation results for the parametric component by our
method and the standard method. All the simulation results
are based on 1000 replications with sample sizes n = 100 and
n = 200, and the final estimates were reached at convergence.

3.1. Evaluation of Model Structure Estimation

In this subsection, we focus on checking whether the proposed
method can correctly identify linear and nonlinear effects on
the log-risk of the Cox model and comparing the MBMD and
the BMD algorithms. Assume that g in model (1) took the
form

g(x) = f1(x1) + 1.5f1(x2) − 0.8f1(x3) + 2f2(x4) + 3f3(x5)

+ 3f4(x6),

where the four functions were defined on [0, 1] with

f1(x) = x, f2(x) = sin(2πx), f3(x) = 9x2 − 6x,

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin (2πx)2

+ 0.4 cos (2πx)3 + 0.5 sin (2πx)3.
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In this model, the first three variables have linear effect and
the remaining variables have nonlinear effect on the logarithm
of hazard function. To fit the simulated data, we considered
model (1) with g(x) = ∑6

j=1
βjxj + ∑6

j=1
φj(xj) as defined in

(2), and used cubic-splines with seven B-spline basis functions
to approximate each φj. Then for each data set, the penalized

estimates β̂j’s and φ̂j’s can be obtained by using the procedure
described in Section 2.

The model error is one of the appropriate measures for the
goodness-of-fit of the model. For a general regression model
with E(Y |x) = μ(x), the model error of a predictor μ̂(x) is
defined as ME(μ̂) = E{μ̂(x) − μ(x)}2. For the Cox model (1),

μ(x) = E(T u|x) =
∫

0

∞
tλ0(t) exp{g(x)} exp

×
{

−
∫

0

t

λ0(u) exp{g(x)}du

}
dt.

By some straightforward calculations, we have μ(x) =
exp{−g(x)} for λ0(t) = 1 and μ(x) =

√
π

2
exp{−g(x)/2} for

λ0(t) = 2t. Thus, the model error for the two cases in the sim-
ulation can be defined as

ME(μ̂) = E[μ̂(x) − μ(x)]
2
,

where μ̂(x) is the corresponding estimate of μ with g(x) being
replaced by the proposed estimate ĝ(x). On the other hand,
we used the Cox proportional hazards model with g(x) = βT x

to fit the simulated data and obtained g̃(x) = exp(β̃
T

x) with

β̃ being the maximum partial-likelihood estimate of β. The
model error from this fit is denoted by ME(μ̃). The relative
model error (RME) of the fitted model with ĝ to the fitted
one with g̃ is defined as

RME(μ̂, μ̃) = ME(μ̂)

ME(μ̃)
.

Following Fan and Li (2002), we employ the median of the
relative model error (MRME) over 1000 simulations rather
than the mean of it as a compared measurement due to the
consideration of stability.

Let A = {j : φ0j(xj) �= 0, j = 1, . . . , d} be the true index set
of covariates with nonlinear effect to the log-risk function,
and Â = {j : φ̂j(xj) �= 0, j = 1, . . . , d} be the corresponding es-
timated index set. Let |A| denote the cardinality of set A.
Define R+ = |Â − A|/d representing the ratio of the number
of covariates with linear effects erroneously selected as having
nonlinear effects to d, and R− = |A − Â|/d representing the
ratio of the number of the covariates with nonlinear effects
being wrongly detected as having linear effects to d.

The results with the group-LASSO (GLASSO), the group-
SCAD (GSCAD), and the group-MCP (GMCP) by the
MBMD and the BMD algorithms with n = 200 are summa-
rized in Table 1, while those with n = 100 are omitted for
the sake of space. In addition to the median of RME and
the average values of R+, R−, and |Â| over 1000 runs, the ta-
ble includes the percentage of occasions on which the exactly

nonlinear components are selected (Correct%), and the aver-
age number of iterations needed for the convergence and the
average running time for computing the penalized estimator
at a given λ over 1000 replications.

It can be seen from Table 1 that the proposed detection
procedures with three different penalties are comparable to
each other. All the three penalized detection methods per-
form well. They can correctly identify the log-linear and log-
nonlinear effects on the hazard rate function with high prob-
ability. The MRME’s are less than 1; this result suggests that
the proposed methods perform better than the classical Cox’s
proportional hazards regression method which omits the non-
linear effect. For all the three methods, with the sample size
increasing from 100 to 200, the percentages of selecting the
exactly correct model (Correct%) increase, as expected. The
number of times of each component being identified as a non-
linear function is reported in Table 2, which shows the good
performance of the proposed method in detecting the nonlin-
ear components.

Clearly, the simulation results in the two tables demon-
strated that the proposed MBDM algorithm outperforms the
BMD algorithm for the group LASSO, SCAD, and MCP pe-
nalized procedures. In addition, both group SCAD and MCP
penalized methods have similar performance and perform bet-
ter than the group LASSO penalized method. In the following
simulations and applications, we only present the obtained re-
sults by the MBDM algorithm.

Note that the number of basis functions, qn, needs to be pre-
specified in B-spline approximation. In our simulation studies,
we took different values for qn and obtained similar results as
shown in Tables 1 and 2.

3.2. Comparison between the Group-Penalized Estimator
and the Standard Partial-Likelihood Estimator

In this subsection, we present some simulations to evaluate
how well the proposed methods estimate the parametric com-
ponent compared to the classical partial-likelihood method.
The functional form of g(x) in model (1) is set to be lin-
ear or partially linear with two covariates x1 and x2 for sim-
plicity. We considered two scenarios for the true model: (i)
g(x) = β1x1 − 2x2 and (ii) g(x) = β1x1 + f3(x2). To examine
the performance of the proposed procedures in estimating
parametric component g1(x1) = β1x1, we used the estimated
mean square error (MSE) over 1000 repetitions, i.e.,

MSE(ĝ1) ≈ 1

Mn

M∑
k=1

n∑
i=1

(
ĝ
(k)
1 (xi1) − β1xi1

)2
,

where ĝ
(k)
1 is the penalized spline-based partial-likelihood es-

timate of g1 with ĝ
(k)
1 (xi1) = β̂

(k)
1 x1 + φ̂

(k)
1 (xi1) based on the

kth simulated data set, n is the sample size, and M = 1000 is
the number of repetition. For comparison, we also computed

g̃
(k)
1 (xi1) = β̃

(k)
1 xi1 with β̃

(k)
1 being the partial-likelihood esti-

mate for β1 under the classical Cox model, and the estimated
MSE(g̃1).

The estimated MSE results with β1 = 0.5 are summarized
in Table 3. It shows that the proposed group-penalized es-
timates are comparable with the standard partial-likelihood
estimate when g(x) is a linear function and outperforms the
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Table 1
Simulation results for model structure estimation with sample size n = 200

λ0(t) CR Algorithm Method Time Iter Corr% AR+ AR− ANN MRME

1 20% MBMD GLASSO 0.3212 95.6430 0.972 0.018 0.010 3.008 0.7767
GSCAD 0.2009 100.0000 0.983 0.017 0.017 3.017 0.3913
GMCP 0.1724 100.0000 0.980 0.020 0.020 3.020 0.4701

BMD GLASSO 0.2429 99.9976 0.921 0.066 0.014 3.052 0.9512
GSCAD 0.2392 100.0000 0.963 0.037 0.037 3.037 0.7593
GMCP 0.2260 100.0000 0.963 0.037 0.037 3.035 0.7427

40% MBMD GLASSO 0.2480 95.2522 0.688 0.005 0.309 2.696 0.9065
GSCAD 0.1872 100.0000 0.973 0.027 0.027 2.979 0.5984
GMCP 0.1675 100.0000 0.961 0.041 0.041 2.977 0.5854

BMD GLASSO 0.2061 99.9807 0.748 0.022 0.235 2.787 0.9752
GSCAD 0.2053 99.9960 0.942 0.060 0.060 2.962 0.8389
GMCP 0.1955 100.0000 0.949 0.052 0.052 2.964 0.8144

2t 20% MBMD GLASSO 0.3076 95.1210 0.958 0.021 0.021 3.000 0.0030
GSCAD 0.1986 100.0000 0.981 0.019 0.019 3.019 0.0014
GMCP 0.1696 100.0000 0.984 0.017 0.017 3.017 0.0016

BMD GLASSO 0.2365 99.9948 0.906 0.073 0.023 3.050 0.0047
GSCAD 0.2335 100.0000 0.969 0.031 0.031 3.031 0.0028
GMCP 0.2200 100.0000 0.969 0.031 0.031 3.031 0.0026

40% MBMD GLASSO 0.2361 94.9567 0.623 0.005 0.373 2.632 0.0041
GSCAD 0.1825 100.0000 0.956 0.044 0.044 2.962 0.0019
GMCP 0.1634 100.0000 0.952 0.048 0.048 2.966 0.0020

BMD GLASSO 0.2004 99.9193 0.722 0.016 0.278 2.738 0.0051
GSCAD 0.1989 100.0000 0.922 0.078 0.078 2.940 0.0032
GMCP 0.1884 100.0000 0.929 0.071 0.071 2.947 0.0031

CR: the censoring rate;
GLASSO, GSCAD, GMCP: the penalized methods with the group LASSO, group SCAD, and group MCP penalties, respectively;
Time: the average running time (seconds) for computing the penalized estimator for a given λ;
Iter: the average number of iterations for the method achieve convergence;
Corr%: the average value of the ratio of exactly selecting the true structure of the model;
AR+: the average value of R+;
AR−: the average value of R−;

ANN: the average value of |Â|;
MRME: the median of the relative model error (RME).

standard partial-likelihood estimate when g(x) is a partially
linear function.

In addition, we computed the pointwise estimates of g1 for
x1 ∈ (0, 1) through the four methods (partial likelihood [PL],
group-LASSO [GLASSO], group-SCAD [GSCAD], group-
MCP [GMCP]) for each simulated data set. The mean of 1000
estimates, the 0.025 and the 0.975 quantiles of the 1000 es-
timates, and the 95% pointwise confidence intervals by the
four approaches are displayed in Figures 1 and 2, which yield
the same conclusion as those obtained from the comparison
of their MSE estimates.

4. Application

We applied the proposed methods to analyze the PBC data
from a study conducted by Mayo Clinic between 1974 and
1984, as mentioned in Section 1. In the study, there were 424
patients with PBC, a fatal chronic liver disease, and the 312
randomized participants were eligible for the analysis. The
purpose of the study was to identify the risk factors related
to the survival time of patients with PBC. During the study

period, 125 patients of the 312 had died. Those patients who
received transplantation were treated as censoring at the date
of transplantation. The censoring rate is about 60%. Here, we
study the dependence of the survival time on the following
five covariates: presence of edema (x1, coded as 1 for yes and
0 for no), age (x2), prothrombin time (x3), albumin (x4) in
gm/dl, and serum bilirubin (x5) in mg/dl.

The PBC data have been analyzed by many authors in
history (e.g., Fleming and Harrington, 1991; Grambsch, Th-
erneau, and Fleming, 1995), and it is commonly known that
the bilirubin predictor has a nonlinear effect on the log-risk
function when albumin and prothrombin are taken as a loga-
rithm scale in the Cox model. We used the proposed method
to explore possible nonlinear effects among the five risk factors
considered here. Let X2 = (x2, x3, x4, x5)

T and X = (x1, X
T
2 )

T
.

Since x1 is categorical, the survival time was assumed to fol-
low model (1) with g(X) = XTβ + φ(X2). Furthermore, we ex-
plored the same model with covariates x1, x2, log(x3), log(x4),
and log(x5).

To evaluate the goodness-of-fit of each method for the Cox
model, we used a mean-square-type distance between the ob-
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Table 2
Number of times of each component being selected as nonlinear effect over 1000 repetitions with sample size n = 200

λ0(t) CR Algorithm Method g1 g2 g3 g4 g5 g6

1 20% MBMD GLASSO 10 5 3 990 1000 1000
GSCAD 5 7 5 1000 1000 1000
GMCP 8 6 6 1000 1000 1000

BMD GLASSO 21 26 19 986 1000 1000
GSCAD 14 15 8 1000 1000 1000
GMCP 14 15 7 999 1000 1000

40% MBMD GLASSO 1 1 3 692 1000 999
GSCAD 2 0 1 976 1000 1000
GMCP 4 2 3 968 1000 1000

BMD GLASSO 7 11 4 768 998 999
GSCAD 3 4 4 951 1000 1000
GMCP 3 3 2 956 1000 1000

2t 20% MBMD GLASSO 9 10 2 979 1000 1000
GSCAD 6 7 6 1000 1000 1000
GMCP 8 4 5 1000 1000 1000

BMD GLASSO 24 29 20 977 1000 1000
GSCAD 11 13 7 1000 1000 1000
GMCP 11 14 6 1000 1000 1000

40% MBMD GLASSO 2 1 2 628 999 1000
GSCAD 2 0 1 959 1000 1000
GMCP 2 4 1 959 1000 1000

BMD GLASSO 5 7 4 733 994 995
GSCAD 2 4 3 931 1000 1000
GMCP 2 5 2 938 1000 1000

CR: the censoring rate;
GLASSO, GSCAD, GMCP: the penalized methods with the group LASSO, group SCAD, and group MCP penalties, respectively.

Table 3
Estimation results of MSE for estimators of g1(x1)

CR n λ0(t) g(x) PL GLASSO GSCAD GMCP

20% 100 1 0.5x1 − 2x2 0.1515 0.1342 0.1349 0.1338
0.5x1 + f3(x2) 0.1495 0.1178 0.1297 0.1314

2t 0.5x1 − 2x2 0.1575 0.1411 0.1415 0.1410
0.5x1 + f3(x2) 0.1481 0.1214 0.1294 0.1314

200 1 0.5x1 − 2x2 0.0870 0.0929 0.0927 0.0892
0.5x1 + f3(x2) 0.0862 0.0562 0.0549 0.0541

2t 0.5x1 − 2x2 0.0885 0.0928 0.0926 0.0902
0.5x1 + f3(x2) 0.0847 0.0565 0.0543 0.0545

40% 100 1 0.5x1 − 2x2 0.1945 0.1685 0.1696 0.1703
0.5x1 + f3(x2) 0.1907 0.1554 0.1644 0.1681

2t 0.5x1 − 2x2 0.2026 0.1813 0.1820 0.1826
0.5x1 + f3(x2) 0.1989 0.1706 0.1800 0.1825

200 1 0.5x1 − 2x2 0.1105 0.1028 0.1028 0.1024
0.5x1 + f3(x2) 0.1083 0.0721 0.0681 0.0660

2t 0.5x1 − 2x2 0.1110 0.1002 0.1001 0.1001
0.5x1 + f3(x2) 0.1103 0.0766 0.0724 0.0702

CR: the censoring rate;
PL: the partial-likelihood method;
GLASSO, GSCAD, GMCP : the penalized methods with the group LASSO, group SCAD, and group MCP penalties, respectively.
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Figure 1. Estimates of g1(x1) = 0.5x1 with λ0(t) = 2t, g(x) = 0.5x1 − 2x2, the sample size n = 200, and the censoring rate
of 20%. The solid line is the true function of g1(x1), the dot and dash line is the pointwise mean estimate, the dotted lines
are the 0.025 and 0.975 quantiles of the pointwise estimates, and the dashed lines are the 95% pointwise confidence intervals.

served and expected numbers of events as follows:

D∗ =
n∑

l=1

n∑
i=1

�l[M̂i(Tl)]
2/

n∑
l=1

n∑
i=1

�lYi(Tl),

where �̂0(s) is the Breslow’s estimator for the base-

line cumulative hazard function and M̂i(t) = Ni(t) −∫ t

0
Yi(s) exp{ĝ(Xi)}d�̂0(s) is the estimated martingale

residual which measures the distance between the observed
and expected numbers of events for the i-th subject.

Using the PL method, we also fitted the data to the
following two classical Cox models: Cox’s regression model
with the five covariates edema, age, prothrombin, albu-
min, and bilirubin; Cox’s regression model with the five
covariates edema, age, log(prothrombin), log(albumin), and
log(bilirubin) (Fleming and Harrington, 1991).

Table 4 displays the covariates identified as having linear or
nonlinear effects by the GLASSO, GSCAD, and GMCP meth-
ods, indicated by 0/1 (1, nonlinear; 0, linear). The first part in
the table is based on the original five risk factors in the model,
while the second part is based on the covariates x3, x4, and x5

being log-transformed. From the first part, both group SCAD
and group MCP methods detect that albumin (x3), prothrom-
bin time (x4) in gm/dl, and serum bilirubin (x5) have nonlin-
ear effects. This result agrees with the analysis by Fleming
and Harrington (1991) and Grambsch, Therneau, and Flem-
ing (1995). However, the group LASSO method identifies age
(x2) and bilirubin (x5) having nonlinear effects. From the sec-
ond part, three penalized methods detect only log(x5) having
a nonlinear effect. Therefore, we can conclude that the three
variables albumin, prothrombin, and bilirubin have nonlinear
functional effects on the logarithm of hazard function, nonlin-
ear effects of albumin, and prothrombin can be characterized
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Figure 2. Estimates of g1(x1) = 0.5x1 with λ0(t) = 2t, g(x) = 0.5x1 + f3(x2), the sample size n = 200, and the censoring rate
of 20%. The solid line is the true function of g1(x1), the dot and dash line is the pointwise mean estimate, the dotted lines
are the 0.025 and 0.975 quantiles of the pointwise estimates, and the dashed lines are the 95% pointwise confidence intervals.

by a log transformation, but the nonlinear effect of bilirubin
cannot be captured through a log transformation. Table 4 also
shows the values of D∗ for the eight fitted models. It can be
seen from the table that the group-penalized methods yield
smaller values of D∗ than those from the fitted classical Cox
models, and the fitted models by the group SCAD and the
group MCP methods are the best in terms of D∗.

5. Concluding Remarks

In this article, we have studied the problem of which covari-
ates have a linear effect and which have a nonlinear effect
on the log-hazard rate function for the partially linear Cox
model. This problem has been translated into a group selec-
tion problem through a semiparametric additive Cox model
and B-spline approximation to each nonparametric compo-
nent, and the penalized partial-likelihood approach has been

applied to handle this group selection issue. The resulting
estimators are consistent, the nonlinear effect can be success-
fully identified with high probability, and the estimated linear
regression parameters are asymptotically normal.

To efficiently compute the penalized estimators, we
have developed the modified blockwise majorization descent
(MBMD) algorithm through the backtracking line search ap-
proach. The numerical studies have demonstrated that the
proposed group-penalized approaches and MBMD algorithm
work well.

For simplicity, we have assumed the covariates are time-
independent in the Cox model. The proposed method can be
easily extended to the case of time-dependent covariates.

Note that we have only considered identifying which covari-
ates have linear or nonlinear effects. For a further study, one
can combine the variable selection problem with the identifi-
cation of linear or nonlinear covariate effects together. On the
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Table 4
Analysis results for PBC data

Method Edema Age Albumin Prothrombin Bilirubin D∗

GLASSO 0 1 0 0 1 0.4553
GSCAD 0 0 1 1 1 0.4261
GMCP 0 0 1 1 1 0.4261

COX 0.4605

Edema Age log(Albumin) log(Prothrombin) log(Bilirubin) D∗

GLASSO 0 0 0 0 1 0.3753
GSCAD 0 0 0 0 1 0.3808
GMCP 0 0 0 0 1 0.3808

COX 0.4597

GLASSO, GSCAD, GMCP: the penalized methods with the group LASSO, group SCAD, and group MCP penalties, respectively;
COX: the Cox’s regression method;
0/1: the covariate effect on the logarithm of hazard function is identified to be linear/nonlinear by the group-penalized methods.

other hand, it is expected to extend our proposed approach
to high-dimensional settings. Also, we can consider the same
problem for other useful models such as accelerate failure time
models and additive hazards models.

6. Supplementary Materials

The Web Appendices referenced in Section 2 are available
with this article at the Biometrics website on Wiley Online
Library.
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