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a b s t r a c t

This paper considers the problem of nonparametric comparison of counting processes
with panel count data, which arise naturally when recurrent events are considered.
For the problem considered, we construct a new nonparametric test statistic based on
the nonparametric maximum likelihood estimator of the mean function of the counting
processes over observation times. The asymptotic distribution of the proposed statistic is
derived and its finite-sample property is examined through Monte Carlo simulations. The
simulation results show that the proposed method is good for practical use and also more
powerful than the existing nonparametric tests based on the nonparametric maximum
pseudo-likelihood estimator. A set of panel count data from a floating gallstone study is
analyzed and presented as an illustrative example.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider a study that concerns some recurrent event and suppose that each subject in the study gives rise to a counting
process N(t), denoting the total number of occurrences of the event of interest up to time t . Also suppose that for each
subject, observations include only the values ofN(t) at discrete observation times or the numbers of occurrences of the event
between the observation times. Such data are usually referred to as panel count data (Sun and Kalbfleisch, 1995;Wellner and
Zhang, 2000), which frequently occur in medical follow-up studies and reliability experiments, for example. Our focus here
will be on the situationwhen such a study involves k (≥2) groups. LetΛl(t) denote themean function ofN(t) corresponding
to the lth group for l = 1, . . . , k. The problem of interest is then to test the hypothesis H0 : Λ1(t) = · · · = Λk(t), t ∈ (0, τ ],
where τ is the maximum observation time.
For the analysis of panel count data, Sun and Kalbfleisch (1995) and Wellner and Zhang (2000) studied estimation of

the mean function of N(t). Sun and Wei (2000), Zhang (2002), Hu et al. (2003) and Sun et al. (2007) discussed regression
analysis for such data. The model-based methods depend on the expression of the model used and model checking is
needed but difficult in practice. To test the hypothesis H0, Thall and Lachin (1988) suggested to transform the problem to a
multivariate comparison problem and then apply a multivariate Wilcoxon-type rank test. Sun and Fang (2003) proposed a
nonparametric procedure for this problem under the assumption that treatment indicators can be regarded as independent
and identically distributed random variables. Park et al. (2007) proposed a class of nonparametric tests for the two-
sample comparison based on the isotonic regression estimator of the mean function of counting process. Zhang (2006)
also presented nonparametric tests for the problem based on the nonparametric maximum pseudo-likelihood estimator
that is equivalent to the isotonic regression estimator (Wellner and Zhang, 2000). Also, Wellner and Zhang (2000) showed
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through Monte Carlo simulations that the nonparametric maximum likelihood estimator (NPMLE) of the mean function
is more efficient than the nonparametric maximum pseudo-likelihood estimator (NPMPLE). However, no nonparametric
tests have been discussed in the literature for panel count data based on the NPMLE since the NPMLE is more complicated
both theoretically and computationally. It is, therefore, particularly important to develop nonparametric tests based on
the NPMLE for panel count data. However, unlike the isotonic regression estimate, the maximum likelihood estimate has no
closed-formexpression and its computation requires an iterative convexminorant algorithm. In this paper, for simplicity,we
focus on the situation considered by Sun and Fang (2003) and propose a nonparametric test using the maximum likelihood
estimator and then compare its powerwith those of existing tests for the problemof two-sample nonparametric comparison
of counting processes with simulated panel count data.
The rest of this paper is organized as follows. Section 2 discusses estimation of the mean function and the existing

nonparametric tests for the hypothesisH0when only panel count data are available. Section 3 presents a newnonparametric
test statistic motivated by the property of the NPMLE and the idea used by Sun and Fang (2003). Also, the asymptotic
normality of the test statistic is established. In Section 4, finite-sample property of the proposed test statistic is examined
through Monte Carlo simulations. In Section 5, we apply the proposed method to a data from a floating gallstone study.
Finally, some concluding remarks are made in Section 6.

2. Nonparametric maximum likelihood estimation of mean function

Wellner and Zhang (2000) studied two estimators of the mean of a counting process with panel count data: the
nonparametric maximum pseudo-likelihood estimator and the nonparametric maximum likelihood estimator. To describe
the test statistics, we first introduce the NPMLE. Suppose that N = {N(t) : t ≥ 0} is a nonhomogeneous Poisson process
with the mean function E(N(t)) = Λ0(t). Also suppose that for each subject, observations include only the values of N(t)
at discrete observation times 0 < TK ,1 < TK ,2 < · · · < TK ,K , where the total number of observations K is an integer-valued
randomvariable. The observeddata from the counting process consist ofX = (K , T ,N), where T = (TK ,1, TK ,2, . . . , TK ,K ) and
N = (N(TK ,1),N(TK ,2), . . . ,N(TK ,K )). We assume that (K , T ) are independent ofN . Let X = (K , T ,N). Then, Xi = (Ki, Ti,Ni),
i = 1, 2, . . . , n, with

Ti = (TKi,1, TKi,2, . . . , TKi,Ki) and Ni = (Ni(TKi,1),Ni(TKi,2), . . . ,Ni(TKi,Ki)),

is a random sample of size n from the distribution of X . Let X = (X1, . . . , Xn). Then the log likelihood function for the mean
functionΛ is

ln(Λ|X) =
n∑
i=1

Ki∑
j=1

(
Ni(TKi,j)− Ni(TKi,j−1)

)
log

(
Λ(TKi,j)−Λ(TKi,j−1)

)
−

n∑
i=1

Λ(TKi,Ki)

after omitting the parts independent ofΛ.
Let t1 < · · · < tm denote the ordered distinct observation time points in the set of all observation time points

{TKi,j, j = 1, . . . , Ki, i = 1, . . . , n}. For ` = 1, . . . ,m, defineΛ` = Λ(t`) and writeΛ = (Λ1, . . . ,Λm). For 1 ≤ r < ` ≤ m,
set

Ar,` =
n∑
i=1

Ki∑
j=1

(
Ni(TKi,j)− Ni(TKi,j−1)

)
1{TKi,j=t`,TKi,j−1=tr },

and for ` = 1, . . . ,m,

B` =
n∑
i=1

1{TKi,Ki=t`}.

Then ln(Λ|X) can be rewritten, with a slight abuse of notation, as

ln(Λ|X) = ln(Λ|X) =
m∑
r=1

m∑
`=r+1

A`,r log(Λ` −Λr)−
m∑
`=1

B`Λ`

and the NPMLE ofΛ0, Λ̂n, is defined to be the nondecreasing, nonnegative step function with possible jumps only occurring
at t`, ` = 1, . . . ,m, that maximizes ln(Λ|X). Here, only Λ1, . . . ,Λm are identifiable. Wellner and Zhang (2000) gave the
characteristic and the algorithm for computing this estimator, and studied its asymptotic properties.
The existing nonparametric tests (Park et al., 2007; Zhang, 2006) are based on the asymptotic normality of a smooth

functional of the nonparametric maximum pseudo-likelihood estimator Λ̃n (the isotonic regression estimator). However,
it is unknown if the asymptotic normality of the functional of the nonparametric maximum likelihood estimator still holds
because of the complexity of the NPMLE. We observe that the test presented by Sun and Fang (2003) is related to the
characteristic of the Λ̃n given by

n∑
i=1

Ki∑
j=1

(Λ̃n(TKi,j)− Ni(TKi,j)) = 0. (1)
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However, from Eq. (2.13) of Wellner and Zhang (2000), the corresponding characteristic of the NPMLE can be written as

n∑
i=1

[
Ki−1∑
j=1

Λ̂n(TKi,j)

{
∆Ni(TKi,j+1)

∆Λ̂n(TKi,j+1)
−
∆Ni(TKi,j)

∆Λ̂n(TKi,j)

}
+ Λ̂n(TKi,Ki)

{
1−

∆Ni(TKi,Ki)

∆Λ̂n(TKi,Ki)

}]
= 0, (2)

where ∆Λ(TK ,j) = Λ(TK ,j) − Λ(TK ,j−1) and ∆N(TK ,j) = N(TK ,j) − N(TK ,j−1). Clearly, the structure of (2) is different from
that of (1) and considerably more complicated. Therefore, we need to develop a new form of test statistic when the NPMLE
is used to estimate the mean function of counting process with panel count data.

3. A nonparametric test with panel count data

Consider a longitudinal study that is concerned with some recurrent event and involves n independent subjects from k
different groups. Let Zi denote the group indicator of subject i (i = 1, . . . , n) and assume that group indicator is a scalar
variable. For the two-sample comparison problem, k = 2 and Zi = 0 or 1. For the dose-effects problem, k is the number
of doses tested in the experiment and Zi denotes the dose given to subject i (i = 1, . . . , n). Let Ni(t) denote the counting
process arising from subject i and Λl(t)(l = 1, . . . , k) be defined as before, for i = 1, . . . , n. Suppose that each subject is
observed only at discrete time points 0 < TKi,1 < · · · < TKi,Ki and that no information is available about Ni(t) between
observation times; that is, only panel count data are available. Also assume that Ni and (Ki, TKi,1, . . . , TKi,Ki) are independent
of Zi. For simplicity, assume that H0 is true, and letΛ0(t) denote the common mean function of the Ni(t)’s.
Let Λ̂n be the nonparametric maximum likelihood estimate ofΛ0 based on the combined data. To test the hypothesisH0,

motivated by the characteristic of the NPMLE and an idea used in Sun and Fang (2003), we propose the statistic

Un =
1
√
n

n∑
i=1

Zi

[
Ki−1∑
j=1

Λ̂n(TKi,j)

{
∆Ni(TKi,j+1)

∆Λ̂n(TKi,j+1)
−
∆Ni(TKi,j)

∆Λ̂n(TKi,j)

}
+ Λ̂n(TKi,Ki)

{
1−

∆Ni(TKi,Ki)

∆Λ̂n(TKi,Ki)

}]
.

LetB denote the collection of Borel sets inR, and letB[0,τ ] = {B ∩ [0, τ ], B ∈ B}. On ([0, τ ],B[0,τ ]), set

µ(B) =
∞∑
k=1

Pr(K = k)
k∑
j=1

Pr(Tk,j ∈ B|K = k).

For establishing asymptotic result on Un, we need the following regularity conditions:

C.1. There exists a constant K0 such that Pr{K ≤ K0} = 1 and that the random variables Tk,j’s take values in a bounded set
[τ0, τ ], where τ0, τ ∈ (0,∞).

C.2. The mean functionΛ0 is continuous such thatΛ0(τ0) > 0 andΛ0(τ ) ≤ M for some constantM ∈ (0,∞).
C.3. There exists a constant L0 such that

Pr
{
min
1≤j≤K

(Λ0(TK ,j+1)−Λ0(TK ,j)) ≥ L0

}
= 1.

C.4. E{N(t)}2 ≤ M1 for all t ≤ τ whereM1 is a constant.
C.5. µ({τ0}) > 0 and for all τ0 < τ1 < τ2 < τ ,Λ0(τ1) < Λ0(τ2) < Λ0(τ ) implies µ((τ1, τ2)) > 0.

Condition C.3 holds ifΛ0 is differentiable,Λ′0 has a positive lower bound in [τ0, τ ], and Pr{min1≤j≤K (TK ,j − TK ,j−1) ≥ s0} for
some fixed time s0, where s0 can be considered as the smallest length of consecutive observation times. Condition C.5 holds
ifΛ0 is strictly increasing, Pr{TK ,1 = τ0} > 0 andµ′(t) > 0 for t ∈ (τ0, τ ). The asymptotic distribution of Un is as presented
in the following theorem.

Theorem 1. Suppose that Conditions C.1–C.5 hold. Also suppose that Zi’s are independent and identically distributed random
variables. Then as n→∞,

Un −→ U

in distribution, where U has a normal distribution with mean zero and variance σ 2 with

σ 2 = E

[
(Z − E(Z))

{
K−1∑
j=1

Λ0(TK ,j)
(
∆N(TK ,j+1)
∆Λ0(TK ,j+1)

−
∆N(TK ,j)
∆Λ0(TK ,j)

)
+Λ0(TK ,K )

(
1−

∆N(TK ,K )
∆Λ0(TK ,K )

)}]2
which can be consistently estimated by

σ̂ 2 =
1
n

n∑
i=1

[
(Zi − Z̄)

{
Ki−1∑
j=1

Λ̂n(TKi,j)

(
∆Ni(TKi,j+1)

∆Λ̂n(TKi,j+1)
−
∆Ni(TKi,j)

∆Λ̂n(TKi,j)

)
+ Λ̂n(TKi,Ki)

(
1−

∆Ni(TKi,Ki)

∆Λ̂n(TKi,Ki)

)}]2
,

where Z̄ =
∑n
i=1 Zi/n.
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The proof is given in theAppendix. Note that the asymptotic result requires Zi’s as independent and identically distributed
random variables. For example, this assumption is satisfied in randomized clinical trials, where all patients in the study
are randomly assigned to one of the treatments. Form the proof of the theorem, this assumption can be replaced by the
assumption that the Zi’s are uncorrelated random variables with common means and variances. By Theorem 1, if n is large,
the hypothesis H0 can be tested by using the statistic T = Un/σ̂ , which has an asymptotic standard normal distribution.

Remark. In Theorem 1, for convenience, we assume that Zi’s are scalars. The results are easily extended to vectors Zi’s. For
the k-sample problem (k > 2), let Zi be the k-dimensional vector of treatment indicators associated with subject i whose
lth element is equal to one if it is from population l and zero otherwise. Then Un has an asymptotic normal distribution with
mean vector 0 and covariance matrix

Σ = E

(Z − E(Z))(Z − E(Z))T {K−1∑
j=1

Λ0(TK ,j)
(
∆N(TK ,j+1)
∆Λ0(TK ,j+1)

−
∆N(TK ,j)
∆Λ0(TK ,j)

)
+Λ0(TK ,K )

(
1−

∆N(TK ,K )
∆Λ0(TK ,K )

)}2
which can be consistently estimated by

Σ̂ =
1
n

n∑
i=1

(Zi − Z̄)(Zi − Z̄)T {Ki−1∑
j=1

Λ̂n(TKi,j)

(
∆Ni(TKi,j+1)

∆Λ̂n(TKi,j+1)
−
∆Ni(TKi,j)

∆Λ̂n(TKi,j)

)
+ Λ̂n(TKi,Ki)

(
1−

∆Ni(TKi,Ki)

∆Λ̂n(TKi,Ki)

)}2 .
Note that the sum of all components of Un equals 0. Let U0 denote the first (k − 1) components of Un and 6̂0 the matrix
obtained by deleting the last row and column of 6̂. Then, using Theorem 1, the hypothesis H0 can be tested by means of the
statistic χ20 = UT06̂

−1
0 U0, which have asymptotically a central χ2-distribution with (k− 1) degrees of freedom.

4. Simulation study

To examine the finite-sample property of the proposed test statistic and compare it with those of the tests presented by
Sun and Fang (2003), Park et al. (2007) and Zhang (2006), we carry out a simulation study for the two-sample comparison
problem. Let T be defined as in Section 3. Let TSF denote the test proposed by Sun and Fang (2003), and let Ti (i = 1, 2, 3)
denote the tests presented by Park et al. (2007) and Zhang (2006) with three different weight processes: W (1)

n (t) = 1,
W (2)
n (t) = Yn(t) =

∑n
i=1 I(t ≤ TKi,Ki)/n, and W

(3)
n (t) = {Yn1(t)Yn2(t)}/Yn(t), where Ynl(t) =

∑
i∈Sl
I(t ≤ TKi,Ki)/nl, Sl

denotes the set of indices for subjects in group l and nl is the number of subjects in group l, l = 1, 2. To generate panel count
data {Ki, TKi,j,Ni(TKi,j), j = 1, . . . , Ki, i = 1, . . . , n}, wemimicmedical follow-up studies similar to the example discussed in
the next section.We first generate the number of observation times Ki from the uniform distributionU{1, . . . , 10}, and then,
given Ki, we generate observation times TKi,j’s from U{1, . . . , 10}, for simplicity. To generate Ni(TKi,j)’s, we assume that Ni’s
are nonhomogeneous Poisson ormixed Poisson processes. In particular, let {νi, i = 1, . . . , n} be independent and identically
distributed random variables, and given νi, let Ni(t) be a Poisson process with mean function Λi(t|νi) = E(Ni(t)|νi). Here,
it is assumed that Zi = 0 for i ∈ S1 and Zi = 1 for i ∈ S2. To assess the performance of the proposed test, we consider two
cases as follows:
Case 1.Λi(t|νi) = νit for i ∈ S1,Λi(t|νi) = νit exp(β) for i ∈ S2.
Case 2.Λi(t|νi) = νit for i ∈ S1,Λi(t|νi) = νi

√
βt for i ∈ S2.

Figs. 1 and 2 display the graphs of the true mean functions for two cases with ν = 1 and different values of β . It can be
seen that the two mean functions do not overlap in Case 1 and they cross over in Case 2.
For each case, we consider νi = 1 and νi ∼ Gamma(2, 1/2) corresponding to Poisson and mixed Poisson processes,

respectively. For each setting, we consider two sample sizes, n1 = n2 = 50 and 100, respectively. The NPMLE Λ̂n is
computed by using the modified iterative convex minorant algorithm (MICM); see Wellner and Zhang (2000). We first
compute the NPMPLE Λ̃n (the isotonic regression estimate) by using the max–min formula given in (2.6) of Wellner and
Zhang (2000). Then, following Wellner and Zhang (2000), we choose the linearly interpolated Λ̃n as the starting point for
the MICM algorithm. Based on this initial set-up, the MICM algorithm preforms well as Wellner and Zhang (2000) pointed
out. Here, we use the R code for the MICM algorithm provided by Zhang and Liu. All the results reported are based on 1000
Monte Carlo replications using R software.
Tables 1 and 2 present the estimated sizes and powers of the proposed test statistic T , the test TSF (Sun and Fang, 2003)

and the test statistics Ti’s (Park et al., 2007; Zhang, 2006) at significance level α = 0.05 for different values of β for the
two cases, respectively. When νi = 1, the Ni(t)’s are Poisson processes; when νi ∼ Gamma(2, 1/2), the Ni(t)’s are mixed
Poisson processes. The first part of the table is for the situation with the total sample size of 100 and the second part is for
the situation with the total sample size of 200. For the situations considered here, the proposed test displays the highest
power. As expected, the power increases when the sample size increases, and the power decreases in the presence of more
variability. In particular, when the mean functions overlap, it can be seen from Table 2 that the proposed test has a good
power while the powers of the tests based on the NPMPLE are very poor for β = 5 in Case 2 and worse for the case of the
mixed Poisson process. In this case, the proposed test based on the NPMLE is much more powerful than the existing tests
based on NPMPLE.
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Fig. 1. True mean functions for Case 1 with ν = 1 and β = 0.1, 0.2.

Fig. 2. True mean functions for Case 2 with ν = 1 and β = 3, 5.

Table 1
Estimated sizes and powers of the proposed test T and other tests TSF , T1, T2, T3 in Case 1.

n1 = n2 β Ni ’s are Poisson processes Ni ’s are mixed Poisson processes
T TSF T1 T2 T3 T TSF T1 T2 T3

50 0.0 0.051 0.047 0.053 0.055 0.055 0.046 0.044 0.045 0.047 0.047
0.1 0.298 0.207 0.214 0.200 0.200 0.098 0.083 0.084 0.085 0.085
0.2 0.855 0.693 0.697 0.667 0.665 0.223 0.183 0.185 0.184 0.184
0.3 1.000 0.979 0.981 0.974 0.974 0.450 0.370 0.380 0.375 0.375

100 0.0 0.049 0.041 0.043 0.047 0.047 0.043 0.046 0.048 0.045 0.045
0.1 0.553 0.422 0.423 0.405 0.405 0.141 0.111 0.114 0.111 0.111
0.2 0.990 0.957 0.958 0.948 0.947 0.411 0.316 0.317 0.307 0.307
0.3 1.000 1.000 1.000 1.000 1.000 0.710 0.590 0.596 0.592 0.592

5. Illustrative example

To illustrate the proposed method, we consider a floating gallstone study presented by Thall and Lachin (1988). The data
comprise the first year follow-up of the patients in two study groups, placebo (48) and high-dose chenodiol (65), from the
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Table 2
Estimated sizes and powers of the proposed test T and other tests TSF , T1, T2, T3 in Case 2.

n1 = n2 β Ni ’s are Poisson processes Ni ’s are mixed Poisson processes
T TSF T1 T2 T3 T TSF T1 T2 T3

50 3 1.000 0.955 0.956 0.900 0.899 0.864 0.380 0.386 0.321 0.318
4 0.998 0.592 0.600 0.439 0.437 0.635 0.185 0.188 0.141 0.141
5 0.972 0.188 0.189 0.113 0.111 0.403 0.086 0.089 0.071 0.071

100 3 1.000 0.999 0.999 0.993 0.993 0.994 0.691 0.695 0.594 0.594
4 1.000 0.894 0.896 0.726 0.725 0.894 0.309 0.313 0.238 0.237
5 1.000 0.284 0.290 0.140 0.139 0.667 0.095 0.096 0.066 0.066

National Cooperative Gallstone Study. The data include the successive visit times in study weeks and the associated counts
of episodes of nausea. The whole study consists of 916 patients who were randomized to placebo, low dose, or high dose
group and followed for up to two years and one of the objectives of the study is to test the difference of the two treatments
with respect to the incidence rate of nausea.
During the study, patients were scheduled to return for clinical visits at 1, 2, 3, 6, 9, and 12months. In reality, most of the

patients visited about six times within the first year, but actual visit times differed from patient to patient. Some patients
had only one visit and some had 9 visits. As pointed out by Thall and Lachin (1988), there is no evidence that the number of
observations and actual observation times are related to the incidence of nausea, and so it seems reasonable to assume that
conditions required for the asymptotic result are satisfied.
Define Zi = 1 for patients in the placebo group and Zi = 0 otherwise. To test the difference between the two groups,

we apply the proposed method to the data from 113 gallstone patients in the two groups. To compute the NPMLEΛn of the
commonmean function under the null hypothesis, we choose the linearly interpolated NPMPLE Λ̃n as the starting point for
the MICM algorithm again. Here, the MICM works well as in simulation. We then obtain T = 0.264 which yields a p-value
of 0.792 for testing H0 based on the asymptotic result in Theorem 1. This result suggests that the incidence rates of nausea
were not significantly different for the patients in the two groups, which agreeswith the findings of Schoenfield et al. (1981),
Sun and Fang (2003), and Park et al. (2007).

6. Concluding remarks

This paper discusses the problem of the nonparametric comparison of counting processes when only panel count data
are available. The nonparametric maximum likelihood estimators are used to estimate the mean functions of counting
processes. A new nonparametric test is proposed for the problem and the asymptotic property of the test statistic is derived.
Simulation studies are carried out which suggest that the proposed method works well for practical situations, and is
more powerful than the existing tests based on the nonparametric maximum pseudo-likelihood estimators of the mean
functions.
Note that the proposed procedure depends on the assumption that treatment indicators are uncorrelated random

variables with common means and variances and distributed independently of panel counts. If the treatment indicators
Zi’s and the event processes Ni’s are correlated, then the asymptotic result of Un no longer holds. More discussions about it
can be found in Sun and Kalbfleisch (1993). Our test also relies on the assumption that the observation scheme with respect
to the total number of observations K and panel observation times T is the same across different samples. If the observation
scheme is different for different treatment groups, then the asymptotic result of Un no longer holds since the asymptotic
properties of the NPMLE Λ̂n based on combined sample are not available anymore. Further research will be to develop
a class of tests applicable to general situations by using the nonparametric maximum likelihood estimates instead of the
nonparametric maximum pseudo-likelihood estimates for the mean functions.
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Appendix

Proof of Theorem 1. Let

h(X,Λ) =
K−1∑
j=1

Λ(TK ,j)
{
∆N(TK ,j+1)
∆Λ(TK ,j+1)

−
∆N(TK ,j)
∆Λ(TKi,j)

}
+Λ(TK ,K )

{
1−

∆N(TK ,K )
∆Λ(TK ,K )

}
.
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From Eq. (2), we have
n∑
i=1

h(Xi, Λ̂n) = 0.

Now Un can be expressed as

Un =
1
√
n

n∑
i=1

{Zi − E(Zi)} h(Xi, Λ̂n) = Vn +∆n,

where

Vn =
1
√
n

n∑
i=1

{Zi − E(Zi)} h(Xi,Λ0)

and

∆n =
1
√
n

n∑
i=1

{Zi − E(Zi)}{h(Xi, Λ̂n)− h(Xi,Λ0)}.

It is easy to see that Vn is aU-statistic and has an asymptotic normal distributionwithmean zero and variance σ 2 that can be
consistently estimated by σ̂ 2 presented earlier in Theorem 1. Hence, it is sufficient to show that∆n converges in probability
to zero. Let

F = {Λ : [0, τ ] → [0,∞)|Λ be nondecreasing, Λ(0) = 0},

and let d be the L2(µ)metric on F . Then forΛ1,Λ2 ∈ F ,

d2(Λ1,Λ2) =
∫
|Λ1(t)−Λ2(t)|2dµ(t)

= E

[
K∑
j=1

{Λ1(TK ,j)−Λ2(TK ,j)}2
]
.

Wellner and Zhang (2000) showed that

d(Λ̂n,Λ0)
a.s.
−→ 0

and hence the uniform consistency of Λ̂n can be shown by using the similar arguments to Proposition 5 of Schick and Yu
(2000); that is, conditions C.1, C.2, C.4 and C.5 imply that

sup
t∈[τ0,τ ]

|Λ̂n(t)−Λ0(t)|
a.s.
−→ 0.

Note that the uniform consistency of Λ̂n implies for every 0 < δ0 < min(L0/2,Λ0(τ0)) and any ε > 0, there exists a positive
integer Nε such that

sup
n>Nε

Pr

{
sup
t∈[τ0,τ ]

|Λ̂n(t)−Λ0(t)| > δ0

}
< ε.

Here, we fix δ0. Let

F0 =

{
Λ : Λ ∈ F , sup

t∈[τ0,τ ]
|Λ(t)−Λ0(t)| ≤ δ0

}
.

Define Λ̂∗n as

Λ̂∗n = argmax
Λ∈Ω∩F0

{
n∑
i=1

Ki∑
j=1

(
∆Ni(TKi,j) log(∆Λ(TKi,j))−∆Λ(TKi,j)

)}
,

where Ω is the class of nondecreasing step functions with possible jumps only at the observation time points {TKi,j, j =
1, . . . , Ki, i = 1, . . . , n}. Clearly, we have

sup
n>Nε

Pr(Λ̂n 6= Λ̂∗n) ≤ sup
n>Nε

Pr

{
sup
t∈[τ0,τ ]

|Λ̂n(t)−Λ0(t)| > δ0

}
< ε.
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Let∆∗n denote the version of∆n obtained by replacing Λ̂n with Λ̂
∗
n . Then, to prove that∆n converges to zero in probability, it

is sufficient to show that∆∗n = op(1) since P{Λ̂n 6= Λ̂
∗
n} < ε. From the assumption that Z is independent of X = (K , T ,N),

we have

E
{(
∆∗n
)2
|X1, . . . , Xn

}
=
σ 2z

n

n∑
i=1

{
h(Xi, Λ̂∗n)− h(Xi,Λ0)

}2
where σ 2z = E{Z − E(Z)}

2 <∞. Also from the definition of Λ̂∗n and conditions C.1–C.3, we have

0 < Λ0(τ0)− δ0 ≤ Λ0(t)− δ0 ≤ Λ̂∗n(t) ≤ Λ0(t)+ δ0 ≤ Λ0(τ )+ δ0 ≤ M + δ0

for t ∈ [τ0, τ ] and

0 < L0 − 2δ0 ≤ ∆Λ0(TKi,j)− 2δ0 ≤ ∆Λ̂
∗

n(TKi,j) ≤ ∆Λ0(TKi,j)+ 2δ0 ≤ 2M + 2δ0

for j = 1, . . . , Ki, i = 1, . . . , nwith probability 1. Hence, we have∣∣∣h(Xi, Λ̂∗n)− h(Xi,Λ0)∣∣∣ ≤ c1 Ki−1∑
j=1

∆Ni(TKi,j+1)
{
|Λ̂∗n(TKi,j)−Λ0(TKi,j)| + |Λ̂

∗

n(TKi,j+1)−Λ0(TKi,j+1)|
}

+ c2
Ki−1∑
j=1

∆Ni(TKi,j)
{
|Λ̂∗n(TKi,j)−Λ0(TKi,j)| + |Λ̂

∗

n(TKi,j−1)−Λ0(TKi,j−1)|
}

+ |Λ̂∗n(TKi,Ki)−Λ0(TKi,Ki)|

+ c3
Ki−1∑
j=1

∆Ni(TKi,Ki)
{
|Λ̂∗n(TKi,Ki)−Λ0(TKi,Ki)| + |Λ̂

∗

n(TKi,Ki−1)−Λ0(TKi,Ki−1)|
}

≤ c4

{
1+

Ki∑
j=1

∆Ni(TKi,j)

}
sup
t∈[τ0,τ ]

|Λ̂∗n(t)− λ0(t)|

= c4
{
1+ Ni(TKi,Ki)

}
sup
t∈[τ0,τ ]

|Λ̂∗n(t)− λ0(t)|,

for some constants c1, c2, c3 and c4, and so

1
n

n∑
i=1

{
h(Xi, Λ̂∗n)− h(Xi,Λ0)

}2
≤ c4 sup

t∈[τ0,τ ]
|Λ̂∗n(t)−Λ0(t)|

2 1
n

n∑
i=1

{
1+ Ni(TKi,Ki)

}2
.

Thus,∆∗n = op(1). This completes the proof of the theorem. �
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