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NEW MULTI-SAMPLE NONPARAMETRIC TESTS
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This paper considers the problem of multi-sample nonparametric com-
parison of counting processes with panel count data, which arise naturally
when recurrent events are considered. Such data frequently occur in med-
ical follow-up studies and reliability experiments, for example. For the prob-
lem considered, we construct two new classes of nonparametric test statistics
based on the accumulated weighted differences between the rates of increase
of the estimated mean functions of the counting processes over observation
times, wherein the nonparametric maximum likelihood approach is used to
estimate the mean function instead of the nonparametric maximum pseudo-
likelihood. The asymptotic distributions of the proposed statistics are derived
and their finite-sample properties are examined through Monte Carlo simula-
tions. The simulation results show that the proposed methods work quite well
and are more powerful than the existing test procedures. Two real data sets
are analyzed and presented as illustrative examples.

1. Introduction. Consider a study that concerns some recurrent event, and
suppose that each subject in the study gives rise to a counting process N(t), de-
noting the total number of occurrences of the event of interest up to time t . Also
suppose that for each subject, observations include only the values of N(t) at dis-
crete observation times or the numbers of occurrences of the event between the
observation times. Such data are usually referred to as panel count data [Sun and
Kalbfleisch (1995), Wellner and Zhang (2000)]. Our focus here will be on the sit-
uation when such a study involves k (≥ 2) groups. Let �l(t) denote the mean
function of N(t) corresponding to the lth group for l = 1, . . . , k. The problem of
interest is then to test the hypothesis H0 :�1(t) = · · · = �k(t).

A number of authors have discussed the analysis of recurrent event data when
each subject in the study is observed continuously over an interval or when the
exact times of occurrences of the recurrent event are known. For example, the
book by Andersen et al. (1993) presents many of the commonly used statistical
methods for the analysis of recurrent event data. In contrast, there exists limited
research on the analysis of panel count data. Sun and Kalbfleisch (1995) and Well-
ner and Zhang (2000) studied estimation of the mean function of N(t). Sun and
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Wei (2000) and Zhang (2002) discussed regression analysis for such data. To test
the hypothesis H0, Thall and Lachin (1988) suggested transforming the problem
to a multivariate comparison problem and then applying a multivariate Wilcoxon-
type rank test. Sun and Fang (2003) proposed a nonparametric procedure for this
problem, but their procedure depends on the assumption that treatment indica-
tors can be regarded as independent and identically distributed random variables,
which may not be the case in practice. Park, Sun and Zhao (2007) proposed a class
of nonparametric tests for the two-sample comparison based on the istonic regres-
sion estimator of the mean function of counting process. Zhang (2006) also pre-
sented nonparametric tests for the problem based on the nonparametric maximum
pseudo-likelihood estimator, which is equivalent to the istonic regression estima-
tor [Wellner and Zhang (2000)]. Also, Wellner and Zhang (2000) showed through
Monte Carlo simulations that the nonparametric maximum likelihood estimator
(NPMLE) of the mean function is more efficient than the nonparametric maxi-
mum pseudo-likelihood estimator (NPMPLE). However, no nonparametric tests
have been discussed in the literature for panel count data based on the NPMLE,
since the NPMLE is more complicated both theoretically and computationally. It
is, therefore, particularly important to develop nonparametric tests based on the
NPMLE for panel count data. One would naturally expect the tests based on the
NPMLE to be more powerful than the tests based on the NPMPLE. However,
unlike the isotonic regression estimate, the maximum likelihood estimate has no
closed-form expression and its computation requires an iterative convex minorant
algorithm. In this paper, we propose some nonparametric tests based on the max-
imum likelihood estimator and then compare them with the existing tests for the
problem of multi-sample nonparametric comparison of counting processes with
panel count data.

The rest of the paper is organized as follows. Section 2 discusses estimation of
the mean function and the existing nonparametric tests for the hypothesis H0 when
only panel count data are available. The asymptotic normality of the functional of
the NPMLE is established, while its proof is presented in Section 6. Section 3
presents two classes of nonparametric test statistics. The statistics, motivated by
the property of the NPMLE and the idea used in survival analysis, are formulated
as the integrated weighted difference between the rates of increase of the estimated
mean functions corresponding to the pooled data and each group or two groups.
The asymptotic normality of these test statistics is also established, while proofs
are given in Section 6. In Section 4, finite-sample properties of the proposed test
statistics are examined through Monte Carlo simulations. In Section 5, we apply
the proposed methods to two data from a floating gallstones study and a bladder
tumor study, respectively.

2. Nonparametric maximum likelihood estimation of mean function. Well-
ner and Zhang (2000) studied two estimators of the mean of a counting process
with panel count data: the nonparametric maximum pseudo-likelihood estimator
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and the nonparametric maximum likelihood estimator. To describe the test statis-
tics, we introduce first the NPMLE. Suppose that N = {N(t) : t ≥ 0} is a nonhomo-
geneous Poisson process with the mean function E(N(t)) = �0(t). Suppose that
K is an integer-valued random variable and T = {Tk,j , j = 1, . . . , k, k = 1,2, . . .}
is a random triangular array, where Tk,j−1 < Tk,j and Tk,0 = 0, for j = 1, . . . , k

and k = 1,2, . . . . We assume that {(K;TK,1, . . . , TK,K)} are independent of N .
Let X = (K,TK,NK), where Tk is the kth row of the triangular array T and
Nk = (N(Tk,1), . . . ,N(Tk,k)). Then, Xi = (Ki, TKi

,Ni,Ki
), i = 1, . . . , n is a ran-

dom sample of size n from the distribution of X. Let X = (X1, . . . ,Xn). Then, the
log-likelihood function for the mean function � is

ln(�|X) =
n∑

i=1

Ki∑
j=1

(
Ni(TKi,j ) − Ni(TKi,j−1)

)
log
(
�(TKi,j ) − �(TKi,j−1)

)

−
n∑

i=1

�(TKi,Ki
)

after omitting the parts independent of �.
Let t1 < · · · < tm denote the ordered distinct observation time points in the set of

all observation time points {TKi,j , j = 1, . . . ,Ki, i = 1, . . . , n}. Then the NPMLE
of �0, �̂n, is defined to be the nondecreasing, nonnegative step function with
possible jumps only occurring at t�, � = 1, . . . ,m that maximizes ln(�|X). Wellner
and Zhang (2000) gave the characteristic and the algorithm for computing this
estimator, and studied its asymptotic properties.

Next, we need some more notation, some of which was introduced by Schick
and Yu (2000) and Wellner and Zhang (2000). Let B denote the collection of Borel
sets in R, and let B[0,τ ] = {B ∩ [0, τ ] :B ∈ B}. Define measures μ1, μ2, μ3 and
ν on ([0, τ ],B[0,τ ]) by

μ1(B) =
∞∑

k=1

P(K = k)

k∑
j=1

P(Tk,j ∈ B|K = k),

μ2(B1 × B2) =
∞∑

k=1

P(K = k)

k∑
j=1

P(Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k),

μ3(B1 × B2 × B3)

=
∞∑

k=2

P(K = k)

k−1∑
j=1

P(Tk,j−1 ∈ B1, Tk,j ∈ B2, Tk,j+1 ∈ B3|K = k)

and

ν(B1 × B2) =
∞∑

k=1

P(K = k)P (Tk,k−1 ∈ B1, Tk,k ∈ B2|K = k)



TESTS FOR PANEL COUNT DATA 1115

for B,B1,B2,B3 ∈ B[0,τ ].
The existing nonparametric tests [Park, Sun and Zhao (2007), Zhang (2006)]

are based on the asymptotic normality of a smooth functional of the nonparametric
maximum pseudo-likelihood estimator (the istonic regression estimator) �̃n,

∫ τ

0
W(t){�̃n(t) − �0(t)}dμ1(t) = P

[
K∑

j=1

W(TK,j ){�̃n(TK,j ) − �0(TK,j )}
]
,

where W(t) is a weight function and P is the probability measure of X, Pf =∫
f dP . However, it is unknown if the asymptotic normality of the functional of

the nonparametric maximum likelihood estimator
∫ τ

0 W(t){�̂n(t)−�0(t)}dμ1(t)

still holds. We observe a key to the proof of such asymptotic normality is to use an
important characteristic of the �̃n given by

n∑
i=1

Ki∑
j=1

ϕ(�̃n(TKi,j ))
(
�̃n(TKi,j ) − Ni(TKi,j )

)= 0(2.1)

for any real function ϕ. However, from (2.13) of Wellner and Zhang (2000), the
corresponding characteristic of the NPMLE can be written as

n∑
i=1

[
Ki−1∑
j=1

�̂n(TKi,j )

{
�Ni(TKi,j+1)

��̂n(TKi,j+1)
− �Ni(TKi,j )

��̂n(TKi,j )

}
(2.2)

+ �̂n(TKi,Ki
)

{
1 − �Ni(TKi,Ki

)

��̂n(TKi,Ki
)

}]
= 0,

where

��(TK,j ) = �(TK,j ) − �(TK,j−1)

and

�N(TK,j ) = N(TK,j ) − N(TK,j−1).

Equation (2.2) can be extended to the form

n∑
i=1

[
Ki−1∑
j=1

ϕ(�̂n(TKi,j ))�̂n(TKi,j )

{
�Ni(TKi,j+1)

��̂n(TKi,j+1)
− �Ni(TKi,j )

��̂n(TKi,j )

}
(2.3)

+ ϕ(�̂n(TKi,Ki
))�̂n(TKi,Ki

)

{
1 − �Ni(TKi,Ki

)

��̂n(TKi,Ki
)

}]
= 0,

which will be shown in Lemma 1. Clearly, the structure of (2.3) is different from
that of (2.1) and is much more complicated. This is why the derivation of the
asymptotic property of

∫ τ
0 W(t){�̂n(t)−�0(t)}dμ1(t) has not been done yet. So,

we need to develop a new form of the test statistic when the NPMLE is used to
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estimate the mean function of counting process with panel count data. Motivated
by such characteristic of the NPMLE, we define

f�(X) =
K−1∑
j=1

W(TK,j )�(TK,j )

{
��0(TK,j+1)

��(TK,j+1)
− ��0(TK,j )

��(TK,j )

}
(2.4)

+ W(TK,K)�(TK,K)

{
1 − ��0(TK,K)

��(TK,K)

}
.

It is easy to see that Pf�(X) can be expressed as

Pf�(X) =
∫∫∫

W(u)�(u)

{
�0(v) − �0(u)

�(v) − �(u)
− �0(u) − �0(t)

�(u) − �(t)

}
dμ3(t, u, v)

+
∫∫

W(u)�(u)

{
1 − �0(u) − �0(t)

�(u) − �(t)

}
dν(t, u).

For establishing asymptotic results on Pf
�̂n

(X), we need the following regu-
larity conditions:

A. There exists a constant K0 such that P {K ≤ K0} = 1 and that the random
variables Tk,j ’s take values in a bounded set [τ0, τ ], where τ0, τ ∈ (0,∞).

B. The mean function �0 is strictly increasing such that �0(τ0) > 0 and
�0(τ ) ≤ M for some constant M ∈ (0,∞).

C. There exists a constant L0 such that

P

{
min

1≤j≤K

(
�0(TK,j ) − �0(TK,j−1)

)≥ L0

}
= 1.

D. E{ecN(t)} is uniformly bounded for t ∈ [0, τ ] and some constant c.
E. μ1({τ0}) > 0 and for all τ0 < τ1 < τ2 < τ , μ1((τ1, τ2)) > 0.

Condition C holds if �0 is differentiable, �′
0 has a positive lower bound in

[τ0, τ ] and P {min1≤j≤K(TK,j − TK,j−1) ≥ s0} = 1 for some fixed time s0, where
s0 can be considered as the smallest length of consecutive observation times. Con-
dition E holds if P {TK,1 = τ0} > 0 and μ′

1(t) > 0 for t ∈ (τ0, τ ).
Now, let �−1

0 denote the inverse function of �0, and let W ◦ �−1
0 denote com-

position of two functions W and �−1
0 . Zhang (2006) established the asymptotic

normality of
∫ τ

0 W(t){�̃n(t) − �0(t)}dμ1(t), when W ◦ �−1
0 is not only bounded

Lipschitz but also monotone. However, the assumption that W ◦ �−1
0 is monotone

is not required for the tests with interval-censored data as a special case of panel
count data [see Huang and Wellner (1995) and Zhang, Liu and Zhan (2001)]. Here,
we do not need this monotonicity condition for W ◦ �−1

0 .

THEOREM 2.1. Suppose that Conditions A, B, C, D and E hold. Further,
suppose that W(t) is a bounded weight process such that W ◦ �−1

0 is a bounded
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Lipschitz function. Then, as n → ∞,√
nPf

�̂n
(X) −→ Uw(2.5)

in distribution, where Uw has a normal distribution with mean zero and variance
σ 2

w with

σ 2
w = E

[
K−1∑
j=1

W(TK,j )�0(TK,j )

{
�N(TK,j+1)

��0(TK,j+1)
− �N(TK,j )

��0(TK,j )

}
(2.6)

+ W(TK,K)�0(TK,K)

{
1 − �N(TK,K)

��0(TK,K)

}]2

,

which can be consistently estimated by

σ̂ 2
w = 1

n

n∑
i=1

[
Ki−1∑
j=1

W(TKi,j )�̂n(TKi,j )

{
�Ni(TKi,j+1)

��̂n(TKi,j+1)
− �Ni(TKi,j )

��̂n(TKi,j )

}
(2.7)

+ W(TKi,Ki
)�̂n(TKi,Ki

)

{
1 − �Ni(TKi,Ki

)

��̂n(TKi,Ki
)

}]2

.

3. Nonparametric tests. Consider a longitudinal study that is concerned with
some recurrent event and involves n independent subjects, nl in the lth group with
n1 + · · · + nk = n and k ≥ 2. Let Ni(t) denote the counting process arising from
subject i and �l(t) (l = 1, . . . , k) be as defined before, for i = 1, . . . , n. Suppose
that each subject is observed only at discrete time points 0 < TKi,1 < · · · < TKi,Ki

and that no information is available about Ni(t) between observation times; that
is, only panel count data are available. For simplicity, assume that H0 is true and
let �0(t) denote the common mean function of the Ni(t)’s.

Let �̂nl
denote the nonparametric maximum likelihood estimate of �l based on

samples from all the subjects in the lth group, and �̂n based on the pooled data.
To test the hypothesis H0, motivated by our asymptotic results in Section 2 and an
idea commonly used in survival analysis [e.g., Andersen et al. (1993), Pepe and
Fleming (1989), Petroni and Wolfe (1994), Cook, Lawless and Nadeau (1996),
Zhang, Liu and Zhan (2001), Park, Sun and Zhao (2007), Zhang (2002, 2006)], we
propose the statistics

U(l)
n = 1√

n

n∑
i=1

[
Ki−1∑
j=1

W(l)
n (TKi,j )�̂n(TKi,j )

×
{
��̂nl

(TKi,j+1)

��̂n(TKi,j+1)
− ��̂nl

(TKi,j )

��̂n(TKi,j )

}
(3.1)

+ W(l)
n (TKi,Ki

)�̂n(TKi,Ki
)

{
1 − ��̂nl

(TKi,Ki
)

��̂n(TKi,Ki
)

}]
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(for l = 1, . . . , k) and

V (l)
n = 1√

n

n∑
i=1

[
Ki−1∑
j=1

W(l)
n (TKi,j )�̂n(TKi,j )

×
{(

��̂n1(TKi,j+1)

��̂n(TKi,j+1)
− ��̂n1(TKi,j )

��̂n(TKi,j )

)

−
(

��̂nl
(TKi,j+1)

��̂n(TKi,j+1)
− ��̂nl

(TKi,j )

��̂n(TKi,j )

)}
(3.2)

+ W(l)
n (TKi,Ki

)�̂n(TKi,Ki
)

×
{(

1 − ��̂n1(TKi,Ki
)

��̂n(TKi,Ki
)

)
−
(

1 − ��̂nl
(TKi,Ki

)

��̂n(TKi,Ki
)

)}]

(for l = 2, . . . , k), where W
(l)
n (t)’s are bounded weight processes. The statistic

U
(l)
n is the integrated weighted difference between the rates of increase of �̂n

and �̂nl
over the observation times and the statistic V

(l)
n has a similar mean-

ing. For the selection of the weight process W
(l)
n (t), a simple and natural choice

is W
(1,l)
n (t) = 1, l = 1, . . . , k. Another natural choice is W

(2,l)
n (t) = Yn(t) =∑n

i=1 I (t ≤ TKi,Ki
)/n, l = 1, . . . , k, in which case weights are proportional to

the number of subjects under observation. Based on groups, one may choose the
weight process W

(l)
n (t) as

W(3,l)
n (t) = Ynl

(t) or
Ynl

(t)

Yn(t)
or

Yn1(t)Ynl
(t)

Yn(t)
,

where Ynl
(t) (l = 1, . . . , k) are defined as Yn(t), with the summation being only

over subjects in the lth group. Some weight processes similar to W
(3)
n have been

used when recurrent event data are observed [see Andersen et al. (1993)]. In ad-
dition,

∑n
i=1 I (t > TKi,Ki

)/n is also chosen as another weight process by Zhang
(2006). Some other possible choices are

1 − Ynl
(t),

1 − Ynl
(t)

1 − Yn(t)
and

(1 − Yn1(t))(1 − Ynl
(t))

1 − Yn(t)
.

Now, we state the asymptotic distribution of Un = (U
(1)
n , . . . ,U

(k)
n )T and Vn =

(V
(2)
n , . . . , V

(k)
n )T .

THEOREM 3.1. Suppose that Conditions A, B, C, D and E hold. Further, sup-
pose that W

(l)
n (t)’s are bounded weight processes and that there exists a bounded

function W(t), such that W ◦ �−1
0 is a bounded Lipschitz function and[∫ τ

0

{
W(l)

n (t) − W(t)
}2

dμ1(t)

]1/2

= op(n−1/6), l = 1, . . . , k.(3.3)
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Also, suppose that nl/n → pl as n → ∞, where 0 < pl < 1, l = 1, . . . , k and
p1 + · · · + pk = 1. Then, under H0 :�1 = · · · = �k = �0:

(i) Un has an asymptotic normal distribution with mean vector 0 and covari-
ance matrix

�Uw
= � diag(σ 2

1 , σ 2
2 , . . . , σ 2

k )�′,(3.4)

where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
p1 −

√
1

p1

√
p2 · · · √

pk

√
p1

√
p2 −

√
1

p2
· · · √

pk

· · · · · · · · · · · ·
√

p1
√

p2 · · · √
pk −

√
1

pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and σ 2
1 = · · · = σ 2

k = σ 2
w given in (2.6).

(ii) Vn has an asymptotic normal distribution with mean vector 0 and covari-
ance matrix

�Vw
= H diag(σ 2

1 , σ 2
2 , . . . , σ 2

k )H′,(3.5)

where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

1

p1

√
1

p2
0 · · · 0

−
√

1

p1
0

√
1

p3
· · · 0

· · · · · · · · · · · · · · ·
−
√

1

p1
0 0 · · ·

√
1

pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and σ 2
l is as given in (i).

(iii) In addition, if

max
1≤i≤n

E

[
Ki∑

j=1

{
W(l)

n (TKi,j ) − W(TKi,j )
}2
]

−→ 0(3.6)

for l = 1, . . . , k, then �Uw
and �Vw

can be consistently estimated by

�̂Un = �n diag(σ̂ 2
1 , σ̂ 2

2 , . . . , σ̂ 2
k )�′

n(3.7)

and

�̂Vn = Hn diag(σ̂ 2
1 , σ̂ 2

2 , . . . , σ̂ 2
k )H′

n,(3.8)
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where

�n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
n1

n
−
√

n

n1

√
n2

n
· · ·

√
nk

n√
n1

n

√
n2

n
−
√

n

n2
· · ·

√
nk

n· · · · · · · · · · · ·√
n1

n

√
n2

n
· · ·

√
nk

n
−
√

n

nk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
√

n

n1

√
n

n2
0 · · · 0

−
√

n

n1
0

√
n

n3
· · · 0

· · · · · · · · · · · · · · ·
−
√

n

n1
0 0 · · ·

√
n

nk

⎞
⎟⎟⎟⎟⎟⎟⎠

and

σ̂ 2
l = 1

n

n∑
i=1

[
Ki−1∑
j=1

W(l)
n (TKi,j )�̂n(TKi,j )

×
{

�Ni(TKi,j+1)

��̂n(TKi,j+1)
− �Ni(TKi,j )

��̂n(TKi,j )

}
(3.9)

+ W(l)
n (TKi,Ki

)�̂n(TKi,Ki
)

{
1 − �Ni(TKi,Ki

)

��̂n(TKi,Ki
)

}]2

for l = 1, . . . , k.

Let U0 denote the first (k − 1) components of Un and �̂0 the matrix obtained
by deleting the last row and column of �̂Un . Then, using Theorem 3.1, two tests

can be carried out for testing H0 by means of the statistic χ2
0 = UT

0 �̂
−1
0 U0 and

VT
n �̂

−1
Vn

Vn, which have asymptotically a central χ2-distribution with (k − 1) de-
grees of freedom. This can be seen readily from the proof of the theorem.

REMARK 1. If the weight process W
(l)
n is symmetric about X1, . . . ,Xn, then

(3.6) is equivalent to

E

[
K1∑
j=1

{
W(l)

n (TK1,j ) − W(TK1,j )
}2
]

−→ 0.

REMARK 2. For selection of weight processes, Zhang (2006) required that
Wn(t), W(t) and W ◦�−1

0 are monotone. These monotonicity assumptions restrict

availability of weight processes. For example, the weight process
Yn1 (t)Yn2 (t)

Yn1 (t)+Yn2 (t)
is
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often used in survival analysis, but it is not monotone. In addition, the monotonic-
ity assumption on the weight process is not appropriate for deriving optimal tests
under alternatives. In the above theorem, we have removed these assumptions.
Therefore, compared to those stated in Zhang (2006), more weight processes are
available here. It can be easily shown that the weight processes mentioned earlier
all satisfy the conditions required by the theorem.

4. Simulation study. To examine the finite-sample properties of the proposed
test statistics and compare them with those of the tests presented by Sun and Fang
(2003), Park, Sun and Zhao (2007) and Zhang (2006), we carry out a simulation
study for the two-sample comparison problem. When k = 2, the null hypothesis
can be tested by T1 = U

(1)
n /σ̂U and T2 = V

(2)
n /σ̂V , which have asymptotic standard

normal distribution, where

σ̂U =
{(√

n1

n
−
√

n

n1

)2

σ̂ 2
1 + n2

n
σ̂ 2

2

}1/2

,

σ̂V =
{

n

n1
σ̂ 2

1 + n

n2
σ̂ 2

2

}1/2

,

and U
(1)
n , V

(2)
n and σ̂l are as given in (3.1), (3.2) and (3.9), respectively. Let TSF,

TPSZ and TZ denote the tests presented by Sun and Fang (2003), Park, Sun and
Zhao (2007) and Zhang (2006), respectively. Here, we focus on evaluating the
performance of T1 and T2 and comparing them to those of TPSZ, TZ and TSF.
Note that TZ = TPSZ for k = 2. To generate panel count data {ki, tij , nij , j =
1, . . . , ki, i = 1, . . . , n}, we mimic medical follow-up studies such as the exam-
ples discussed in the next section. We first generate the number of observation
times ki from the uniform distribution U{1, . . . ,10}, and then, given ki , we gen-
erate observation times tij ’s from U{1, . . . ,10}, for simplicity. To generate nij ’s,
we assume that Ni ’s are nonhomogeneous Poisson or mixed Poisson processes.
In particular, let {νi, i = 1, . . . , n} be independent and identically distributed ran-
dom variables, and given νi , let Ni(t) be a Poisson process with mean function
�i(t |νi) = E(Ni(t)|νi). Let Sl denote the set of indices for subjects in group l,
l = 1,2. For the objective of the study, we consider two cases as follows:

CASE 1. �i(t |νi) = νit for i ∈ S1, �i(t) = νit exp(β) for i ∈ S2;

CASE 2. �i(t |νi) = νit for i ∈ S1, �i(t) = νi

√
βt for i ∈ S2.

Figures 1 and 2 display the graphs of the true mean functions for two cases with
ν = 1 and different values of β . It can be seen that the two mean functions do not
overlap in Case 1 and they cross over in Case 2.

For each case, we consider νi = 1 and νi ∼ Gamma(2,1/2), corresponding to
Poisson and mixed Poisson processes, respectively. For each setting, we consider
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FIG. 1. True mean functions for Case 1, with ν = 1 and β = 0.1,0.2.

FIG. 2. True mean functions for Case 2, with ν = 1 and β = 3,5.
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two sample sizes, n1 = n2 = 50 and 100, respectively. As mentioned earlier in
Section 3, we choose the four weight processes

W(1)
n (t) = 1, W(2)

n (t) = Yn(t) = 1

n

n∑
i=1

I (t ≤ tki ,ki
),

W(3)
n (t) = Yn1(t)Yn2(t)

Yn(t)
and W(4)

n (t) = 1 − Yn(t) = 1

n

n∑
i=1

I (t > tki ,ki
).

The NPMLEs �̂n and �̂nl
are computed by using the modified iterative convex mi-

norant algorithm (MICM) [see Wellner and Zhang (2000)]. All the results reported
here are based on 1000 Monte Carlo replications using R software.

Tables 1–4 present the estimated sizes and powers of the proposed test statistics
T1 and T2 and those of the test statistics TPSZ, TZ and TSF [Park, Sun and Zhao
(2007), Zhang (2006), Sun and Fang (2003)] at significance level α = 0.05 for dif-
ferent values of β and the four weight processes based on the simulated data for
the two cases with νi = 1 and νi ∼ Gamma(2,1/2), respectively. When νi = 1, the
Ni(t)’s are Poisson processes; when νi ∼ Gamma(2,1/2), the Ni(t)’s are mixed
Poisson processes. The first part of the table is for the situation with the total sam-
ple size of 100, and the second part is for the situation with the total sample size of
200. For Case 1 considered here, the proposed tests display good power properties

TABLE 1
Estimated size and power of the proposed test for Poisson processes in Case 1

T2 TPSZ and TZ

β W
(1)
n W

(2)
n W

(3)
n W

(4)
n W

(1)
n W

(2)
n W

(3)
n W

(4)
n TSF

n1 = n2 = 50
0.0 0.060 0.058 0.058 0.056 0.063 0.061 0.061 0.063 0.061
0.1 0.298 0.210 0.209 0.194 0.214 0.200 0.200 0.204 0.207
0.2 0.858 0.747 0.748 0.790 0.697 0.667 0.665 0.695 0.693
0.3 1.000 0.987 0.983 0.986 0.981 0.974 0.974 0.968 0.979

n1 = n2 = 100
0.0 0.047 0.047 0.047 0.049 0.044 0.046 0.046 0.045 0.043
0.1 0.542 0.472 0.471 0.489 0.423 0.405 0.405 0.411 0.422
0.2 0.993 0.967 0.964 0.991 0.958 0.948 0.947 0.952 0.950
0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T1 T1
n1 = n2 = 50 n1 = n2 = 100

0.0 0.052 0.051 0.051 0.053 0.051 0.049 0.049 0.050
0.1 0.340 0.218 0.218 0.220 0.548 0.479 0.474 0.492
0.2 0.868 0.787 0.764 0.798 0.996 0.976 0.974 0.993
0.3 1.000 0.997 0.995 0.991 1.000 1.000 1.000 1.000
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TABLE 2
Estimated size and power of the proposed test for mixed Poisson processes in Case 1

T2 TPSZ and TZ

β W
(1)
n W

(2)
n W

(3)
n W

(4)
n W

(1)
n W

(2)
n W

(3)
n W

(4)
n TSF

n1 = n2 = 50
0.0 0.043 0.040 0.042 0.045 0.037 0.040 0.040 0.042 0.035
0.1 0.100 0.097 0.097 0.099 0.084 0.085 0.085 0.086 0.083
0.2 0.221 0.205 0.207 0.204 0.185 0.184 0.184 0.180 0.183
0.3 0.458 0.407 0.408 0.415 0.380 0.375 0.375 0.379 0.370

n1 = n2 = 100
0.0 0.043 0.041 0.041 0.046 0.048 0.045 0.045 0.044 0.046
0.1 0.140 0.125 0.125 0.138 0.114 0.111 0.111 0.112 0.111
0.2 0.410 0.364 0.362 0.368 0.317 0.307 0.307 0.314 0.316
0.3 0.708 0.663 0.662 0.672 0.596 0.592 0.592 0.593 0.590

T1 T1
n1 = n2 = 50 n1 = n2 = 100

0.0 0.054 0.048 0.048 0.046 0.048 0.047 0.047 0.051
0.1 0.108 0.102 0.102 0.100 0.142 0.126 0.123 0.137
0.2 0.216 0.205 0.206 0.207 0.412 0.388 0.390 0.391
0.3 0.474 0.404 0.402 0.437 0.710 0.672 0.670 0.671

TABLE 3
Estimated power of the proposed test for Poisson processes in Case 2

T2 TPSZ and TZ

W
(1)
n W

(2)
n W

(3)
n W

(4)
n βW

(1)
n W

(2)
n W

(3)
n W

(4)
n TSF

n1 = n2 = 50
3 1.000 0.787 0.766 1.000 0.956 0.900 0.899 1.000 0.955
5 0.969 0.080 0.077 1.000 0.189 0.113 0.111 0.880 0.188
8 0.127 0.674 0.688 0.993 0.403 0.559 0.562 0.069 0.400

n1 = n2 = 100
3 1.000 0.964 0.960 1.000 0.999 0.993 0.993 1.000 0.999
5 1.000 0.078 0.079 1.000 0.290 0.140 0.139 0.988 0.284
8 0.222 0.935 0.939 1.000 0.670 0.843 0.846 0.082 0.667

T1 T1
n1 = n2 = 50 n1 = n2 = 100

3 1.000 0.784 0.769 1.000 1.000 0.958 0.955 1.000
5 0.969 0.088 0.086 1.000 1.000 0.084 0.083 1.000
8 0.130 0.675 0.689 0.995 0.232 0.932 0.935 1.000
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TABLE 4
Estimated power of the proposed test for mixed Poisson processes in Case 2

T2 TPSZ and TZ

W
(1)
n W

(2)
n W

(3)
n W

(4)
n βW

(1)
n W

(2)
n W

(3)
n W

(4)
n TSF

n1 = n2 = 50
3 0.858 0.301 0.294 0.992 0.386 0.321 0.318 0.708 0.380
5 0.424 0.078 0.078 0.943 0.089 0.071 0.071 0.289 0.086
8 0.062 0.255 0.263 0.771 0.117 0.158 0.158 0.039 0.111

n1 = n2 = 100
3 0.992 0.534 0.530 1.000 0.695 0.594 0.594 0.949 0.691
5 0.677 0.071 0.072 1.000 0.100 0.065 0.065 0.473 0.095
8 0.096 0.434 0.437 0.961 0.185 0.280 0.280 0.067 0.182

T1 T1
n1 = n2 = 50 n1 = n2 = 100

3 0.858 0.299 0.289 0.991 0.993 0.533 0.529 1.000
5 0.396 0.074 0.074 0.942 0.685 0.068 0.066 1.000
8 0.063 0.259 0.268 0.771 0.094 0.432 0.438 0.960

and the powers are close for the four weight processes. As expected, the power
increases when the sample size increases, and the power decreases in the presence
of more variability. As seen in Tables 1 and 2, the proposed tests with W

(1)
n (t)

have the best power performance, and the proposed tests based on the NPMLE are
more powerful than the tests based on NPMPLE when more variability exists, as
one would expect. For Case 2 considered here, the proposed tests also display good
power properties, but the powers rely on choices of weight processes. As seen in
Tables 3 and 4, the proposed tests with W

(4)
n have the best power performance,

and the proposed tests with appropriate weights based on NPMLE are much more
powerful and more robust than those based on NPMPLE in this case. For example,
when β = 5,8 for mixed Poisson processes, the new tests with W

(4)
n have good

powers, but the tests TPSZ and TZ [Park, Sun and Zhao (2007), Zhang (2006)]
with four weights and TSF [Sun and Fang (2003)] have very poor powers. For all
situations considered here, the performance of T1 and T2 are the same.

Note that the tests with different weights have different powers for Case 2. Let’s
explain why these results are reasonable. In this case, two true mean functions
cross over at time t = β , the differences before this time point and after this time
point have different signs; the difference after this point seems to dominate the
difference before this point for the cases of β = 3,5 and seems to be dominated by
the difference before this point for the case of β = 8. When β = 3,5, the tests with
W

(1)
n and W

(4)
n have better powers than those with W

(2)
n and W

(3)
n , and the test with

W
(4)
n has the largest power since it weights the difference at later times more than

those with W
(1)
n , W

(2)
n and W

(3)
n . In particular, when β = 5, the powers of the tests
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with W
(2)
n and W

(3)
n are very poor. This is because the small difference with large

weights before this point and the large difference with small weights after this
point seem to cancel each other. When β = 8, the tests with W

(2)
n , W

(3)
n and W

(4)
n

perform better than the test with W
(1)
n . When β = 8, the biggest difference between

two mean functions occurs at an earlier time, so that the tests with W
(2)
n and W

(3)
n

have reasonable powers. But the test with W
(1)
n = 1 has a poor power though the

difference at earlier times seems to dominate the difference at later times. This
can be understood from the expressions of the test statistics Un and Vn, where the
differences with different signs multiplied by the value of the mean function may
cancel each other, since the mean function takes small values at earlier times and
large values at later times. When β = 8, the test with W

(4)
n still perform well. This

is because it puts zero weight at earlier times and heavier weight at later times.
Similar situations happened in real examples considered in the next section.

To evaluate the asymptotic result given in Theorem 3.1, the quantile plots of the
test statistic T2 against the standard normal distribution are constructed. Figures 3
and 4 present the plots for the cases with Wn(t) = W

(1)
n (t) and n = 100 and n =

200, respectively, and they clearly reveal that the asymptotic approximation is very
good. Similar plots were obtained for test statistic T1 and other situations as well.

In the above simulation study, we did examine all four weight processes sug-
gested earlier in Section 3; in Case 1, the weight process W

(1)
n yielded slightly

FIG. 3. Simulation study. Normal quantile plot for T2 (n = 100).
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FIG. 4. Simulation study. Normal quantile plot for T2 (n = 200).

higher power than the other three weight processes, and in Case 2, the weight
process W

(4)
n yielded the largest power. These simulation results suggest that,

when the mean functions do not cross over, the test with the equal weight has a
good power; otherwise, the test with the unequal and appropriate weight will also
have a good power. In general, one can choose the weight process based on the
behavior of the NPMLEs of the mean functions to improve power, since the true
mean functions are unknown. When the difference of mean functions at earlier
times dominate the difference at later times, the tests with W

(2)
n and W

(3)
n tend to

have good powers; when the difference of mean functions at later times dominate
the difference at earlier times, the test with W

(4)
n tends to have a good power. In

addition to the four processes considered here, some other weight processes can
be found in Andersen et al. (1993), which discusses nonparametric treatment com-
parison based on recurrent event data. It would, therefore, be of great interest to
investigate the problem of the selection of a weight process based on data.

The new tests based on the NPMLE are more powerful and more robust than the
existing tests based on the NPMPLE. One possible reason is that the NPMLE is
more efficient than the NPMPLE. The main drawback of the NPMPLE is that the
dependence of events within a subject is ignored. Another reason is that the struc-
ture of new test statistic is more reasonable, since it is based on the characteristic
of the NPMLE.
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5. Illustrative examples. To illustrate the proposed method, we consider here
two examples: a floating gallstones study and a bladder tumor study.

5.1. A floating gallstones study. Thall and Lachin (1988) described a follow-
up study on patients with floating gallstones. The data consist of the first year
follow-up of the patients in two study groups, placebo (48) and high-dose chen-
odiol (65), from the National Cooperative Gallstone Study. The observed data
include the successive visit times in study weeks and the associated counts of
episodes of nausea for patients in different treatment groups [see Table 1 of Thall
and Lachin (1988)]. The whole study consists of 916 patients who were random-
ized to placebo, low dose or high dose group and followed for up to two years.
During the study, patients were scheduled to return for clinical visits at 1, 2, 3, 6,
9 and 12 months. In reality, most of the patients visited about six times within the
first year, but actual visit times differ from patient to patient. Some patients had
only one visit and some had 9 visits. As pointed out by Thall and Lachin (1988),
there is no evidence that the number of observations and actual observation times
are related to the incidence of nausea, and so it seems reasonable to assume that
conditions required for the asymptotic results hold in this case. The problem of
interest here is to compare the two treatment groups in terms of the incidence rates
of nausea.

To test the difference between the two groups, we treated the placebo group as
Group 1 (�1(t)) and the high-dose chenodiol group as Group 2 (�2(t)) and ap-
plied the proposed method to the data from 113 gallstone patients in the two groups
to test the null hypothesis H0 :�1(t) = �2(t). The nonparametric maximum like-
lihood estimators of the incidence rates of nausea and the increments of the esti-
mators are shown in Figures 5 and 6. We obtained T1 = 0.175 and T2 = 0.206 with
Wn(t) = W

(1)
n (t), giving p-values of 0.861 and 0.837 based on the standard nor-

mal distribution, and T1 = −337.221, −494.571 and 241.159 and T2 = −193.238,
−283.739 and 138.311 with Wn(t) = W

(2)
n (t), W

(3)
n (t) and 1 − W

(2)
n (t), which

correspond to p-values � 0.0001. The proposed tests with appropriate weights
suggest that the incidence rates of nausea were significantly different for the pa-
tients in the two groups, and this agrees with the results given in Thall and Lachin
(1988); the proposed unweighted test fails to reject H0. This can be easily under-
stood by looking at the behavior of increments of the estimators. From Figure 6,
we can see clearly that the increment of the mean event rate in the placebo group
is higher than that in the high dose group at earlier times and in contrast, the incre-
ment of the mean event rate in the high dose group is higher than that in the placebo
group at later times in the year. So, the test with equal weights could not detect the
difference between two groups. In comparison, the use of the approach in Sun and
Fang (2003) gave a p-value of 0.1428; Park, Sun and Zhao (2007) gave p-values
0.454, 0.417 and 0.413 with three weights, respectively; and the tests presented by
Zhang (2006) would give the same result as above. Thus, none of the existing tests
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FIG. 5. Floating gallstone study. Estimates of the mean functions.

FIG. 6. Floating gallstone study. Increments of the estimated mean functions.
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based on NPMPLE can detect the difference of two treatments, and the proposed
tests with suitable weights have detected successfully that, as we expected. One
possible reason for this is that the nonparametric maximum likelihood estimator is
more efficient than the nonparametric pseudo-likelihood estimator.

5.2. A bladder tumor study. We consider a bladder tumor study conducted
by the Veterans Administration Co-operative Urological Research Group (VAC-
URG), and the data are presented in Andrews and Herzberg (1985). For some
earlier analyses of these data, one may refer to Byar, Blackard and The VACURG
(1977), Byar (1980), Wellner and Zhang (2000), Sun and Wei (2000), and Zhang
(2002, 2006). The data were obtained from a randomized clinical trial. All pa-
tients had superficial bladder tumors when they entered the trial, and they were
assigned randomly to one of three treatments: placebo, thiotepa a pyridoxine. At
subsequent follow-up visits, any tumors noticed were removed and treatment was
continued. The study included 116 patients, of which there were 47 in placebo
group, 38 in thiotepa group and 31 in pyridoxine. We can get a set of panel count
data {ki, tij , nij , j = 1, . . . , ki, i = 1, . . . , n} where for the ith patient, ki is the
number of visits, tij ’s are all visit times and nij is total number of tumors until tij
(j = 1, . . . , ki). The objective of the study is to determine the effect of treatment
on the frequency of tumor recurrence.

Let �1(t),�2(t) and �3(t) be the mean functions corresponding to the three
treatment groups: placebo, thiotepa and pyridoxine, respectively. The nonparamet-
ric maximum likelihood estimators of mean functions and their increments from
the three groups are presented in Figures 7 and 8, respectively. We observe from
Figure 7 that the difference of the three groups becomes larger when the time in-
creases. To test the null hypothesis H0 :�1(t) = �2(t) = �3(t), we applied the
proposed method to this panel count data. We obtained χ2

0 = 3.617,3.269 and
p-value = 0.164,0.195 with Wn(t) = 1, χ2

0 = 1196123,300179.2 and p-values
< 10−8 with Wn(t) = Yn(t), and χ2

0 = 489000.4,121908.1 and p-values < 10−8

with Wn(t) = 1 − Yn(t), based on the asymptotic distributions for test statistics
Un and Vn given in Theorem 3.1, respectively. The proposed tests having weights
suggest that the frequency of tumor recurrence are significantly different for the
patients in the three groups at 0.01 level of significance, while the proposed un-
weighted test fails to detect the difference. This can also be understood from the
behavior of the increments of the estimated mean functions shown in Figure 8. In-
cidentally, through a regression analysis of the data from two treatments, placebo
and thiotepa, Sun and Wei (2000) and Zhang (2002) concluded that thiotepa ef-
fectively reduces the recurrence of tumors. However, the existing test procedures
[Sun and Fang (2003), Zhang (2006)] based on NPMPLE fail to reject the null
hypothesis at level 0.05.

These examples illustrate that different weights may result in different conclu-
sions, and the tests with appropriate weight process could lead to better power of
the test. Therefore, the selection of a suitable weight process would be important
for detecting difference between groups.
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FIG. 7. Bladder tumor study. Estimates of the mean functions.

FIG. 8. Bladder tumor study. Increments of the estimated mean functions.



1132 N. BALAKRISHNAN AND X. ZHAO

6. Proofs. In this section we present the proofs of Theorems 2.1 and 3.1.

6.1. Proof of Theorem 2.1. We begin with some preliminary results. For con-
venience, let us first recall some notation given in Wellner and Zhang (2000). Set

F = {� : [0, τ ] → [0,∞) | � is nondecreasing,�(0) = 0}.
Let t1 < t2 < · · · < tm denote the ordered distinct observation time points in the
set of all observation time points {TKi,j , j = 1, . . . ,Ki, i = 1, . . . , n}. Also, let
� = {u = (u1, u2, . . . , um) : 0 ≤ u1 ≤ · · · ≤ um < ∞} and the map A :F → � be
defined by

u = A(�) = (�(t1),�(t2), . . . ,�(tm)) for all � ∈ F .

We also define a rank function R: {TKi,j : j = 1,2, . . . ,Ki; i = 1,2, . . . , n} →
{1,2, . . . ,m} such that

R(TKi,j ) = s if TKi,j = ts .

Then, the log-likelihood function can be rewritten as

φ(u|X) =
n∑

i=1

[
Ki∑

j=1

{Ni(TKi,j ) − Ni(TKi,j−1)}

× log
{
uR(TKi ,j

) − uR(TKi ,j−1)

}− uR(TKi ,Ki
)

]
,

and the NPMLE �̂n of �0 is then given by

(�̂n(t1), �̂(t2), . . . , �̂n(tm)) = ûn = arg max
u∈�

φ(u|X).

Set

φ�(u) = ∂φ(u|X)

∂u�

=
n∑

i=1

φi,�(u) for � = 1,2, . . . ,m,

where

φi,�(u) =
Ki−1∑
j=1

{
Ni(TKi,j ) − Ni(TKi,j−1)

uR(TKi ,j
) − uR(TKi ,j−1)

− Ni(TKi,j+1) − Ni(TKi,j )

uR(TKi ,j+1) − uR(TKi ,j
)

}
1{TKi ,j

=t�}

+
{
Ni(TKi,Ki

) − Ni(TKi,Ki−1)

uR(TKi ,Ki
) − uR(TKi ,Ki−1)

− 1
}

1{TKi ,Ki
=t�}.
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LEMMA 1. Let ϕ be any real function. Then,

m∑
�=1

ϕ(û�)

{
n∑

i=1

φi,�(û)

}
= 0.(6.1)

PROOF. Let αj = �̂n(tj ) − �̂n(tj−1), j = 1, . . . ,m. Using arguments similar
to Proposition 2.1 of Groenebom (1996), we have

m∑
j=i

∂φ(û)

∂uj

= 0 if αi > 0 or i = 1.

Let tk1 < tk2 < · · · < tkp be jump points of �̂n. Then,

m∑
�=kj

n∑
i=1

φi,�(û) = 0, j = 1, . . . , p,

and so

∑
kj≤�<kj+1

n∑
i=1

φi,�(û) = 0, j = 1, . . . , p − 1.

Thus,

∑
kj≤�<kj+1

ϕ(û�)

n∑
i=1

φi,�(û) = 0, j = 1, . . . , p − 1,

since û� = �̂(t�) is a constant for kj ≤ � < kj+1. Therefore, we conclude
that

m∑
�=1

ϕ(û�)

n∑
i=1

φi,�(û) = 0.

Hence, the lemma follows. �

Now, let μi be as defined in Section 2, and let di be the L2(μi) metric on F ,
i = 1,2. Then, for �1,�2 ∈ F ,

d2
1 (�1,�2) =

∫
|�1(t) − �2(t)|2 dμ1(t)

(6.2)

= E

[
K∑

j=1

{�1(TK,j ) − �2(TK,j )}2

]
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and

d2
2 (�1,�2)

=
∫∫ ∣∣(�1(s) − �1(t)

)− (�2(s) − �2(t)
)∣∣2 dμ2(s, t)(6.3)

= E

[
K∑

j=1

{(
�1(TK,j ) − �1(TK,j−1)

)− (�2(TK,j ) − �2(TK,j−1)
)}2
]
.

If P(K ≤ K0) = 1 for some constant K0, then we have

1
2d2(�1,�2) ≤ d1(�1,�2) ≤ K0d2(�1,�2).(6.4)

Wellner and Zhang (2000) showed that

d1(�̂n,�0)
a.s.−→ 0,(6.5)

and hence that the uniform consistency of �̂n can be shown by using arguments
similar to Proposition 5 of Schick and Yu (2000) under Conditions A, B, D and E;
that is,

sup
t∈[τ0,τ ]

|�̂n(t) − �0(t)| a.s.−→ 0.(6.6)

Note that the uniform consistency of �̂n implies that for every 0 < δ0 <

min{L0/2,�0(τ0)} and any ε > 0, there exists a positive integer Nε such that

sup
n>Nε

P

{
sup

t∈[τ0,τ ]
|�̂n(t) − �0(t)| > δ0

}
< ε.(6.7)

Here, we fix δ0. Let

F0 =
{
� :� ∈ F , sup

t∈[τ0,τ ]
|�(t) − �0(t)| ≤ δ0

}
.(6.8)

Define �̂∗
n as

�̂∗
n = arg max

�∈�∩F0

{
n∑

i=1

Ki∑
j=1

(
�Ni(TKi,j ) log(��(TKi,j )) − ��(TKi,j )

)}
,

where � is the class of nondecreasing step functions with possible jumps only at
the observation time points {TKi,j , j = 1, . . . ,Ki, i = 1, . . . , n}. Clearly, we have

sup
n>Nε

P (�̂n �= �̂∗
n) ≤ sup

n>Nε

P

{
sup

t∈[τ0,τ ]
|�̂n(t) − �0(t)| > δ0

}
< ε.(6.9)

LEMMA 2. We have d1(�̂
∗
n,�0) = Op(n−1/3).
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PROOF. To establish the rate of convergence for �̂∗
n, we shall apply Theo-

rem 3.2.5 of Van der Vaart and Wellner (1996). Define

m�(X) =
K∑

j=1

[(
N(TK,j ) − N(TK,j−1)

)
log{�(TK,j ) − �(TK,j−1)}

(6.10)
− {�(TK,j ) − �(TK,j−1)}]

and

M(�) = Pm�(X).(6.11)

Let h(x) = x(log(x) − 1) + 1. Then, h(x) ≥ 1
5(x − 1)2 for x in a neighborhood of

x = 1. Thus, in a neighborhood of �0,

M(�0) − M(�)

= P

[
K∑

j=1

{�(TK,j ) − �(TK,j−1)}h
(

�0(TK,j ) − �0(TK,j−1)

�(TK,j ) − �(TK,j−1)

)]

=
∫∫

{�(u) − �(v)}h
(

�0(u) − �0(v)

�(u) − �(v)

)
dμ2(u, v)

≥ 1

5

∫∫
{�(u) − �(v)}

{
�0(u) − �0(v)

�(u) − �(v)
− 1
}2

dμ2(u, v)

= 1

5

∫∫ {(�0(u) − �(u)) − (�0(v) − �(v))}2

�(u) − �(v)
dμ2(u, v)

≥ c1d
2
1 (�,�0)

for some constant c1, and hence the separation condition of the theorem is satisfied.
Also, let

Fδ = {� :d1(�,�0) ≤ δ,� ∈ F0} (δ > 0)(6.12)

and

Mδ = {m�(X) − m�0(X) :� ∈ Fδ}.(6.13)

Note that Fδ is a class of monotone nondecreasing functions. Then, it follows from
Theorem 2.7.5 of Van der Vaart and Wellner (1996) that for any η > 0, there exists
a set of brackets {[�L

i ,�R
i ] : i = 1, . . . , J }, where J ≤ ec2/η for some constant c2

and d1(�
L
i ,�R

i ) ≤ η such that for any � ∈ Fδ , �L
i ≤ � ≤ �R

i for some i with
1 ≤ i ≤ J . Note that �L

i ,�R
i (i = 1, . . . , J ) may not belong to Fδ , and so they

may not have a uniform positive lower bound and a uniform finite upper bound in
[τ0, τ ]. Also note that for any � ∈ F0, we have from Conditions A, B and C that

0 < �0(τ0) − δ0 ≤ �0(t) − δ0 ≤ �(t) ≤ �0(t) + δ0 ≤ �0(τ ) + δ0 ≤ M + δ0
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for t ∈ [τ0, τ ] and

0 < L0 − 2δ0 ≤ ��0(TK,j ) − 2δ0

≤ ��(TK,j ) ≤ ��0(TK,j ) + 2δ0 ≤ 2M + 2δ0

for j = 1, . . . ,K with probability 1. Hence, for Mδ , we can construct a set of
brackets {[ML

i (X),MR
i (X)] : i = 1, . . . , J } as follows:

ML
i (X) =

K∑
j=1

[
�N(TK,j )

× log
{
max

(
�L

i (TK,j ) − �R
i (TK,j−1),��0(TK,j ) − 2δ0

)}
− {�R

i (TK,j ) − �L
i (TK,j−1)

}]
− m�0(X)

and

MR
i (X) =

K∑
j=1

[�N(TK,j ) log{�R
i (TK,j ) − �L

i (TK,j−1)}

− {�L
i (TK,j ) − �R

i (TK,j−1)}] − m�0(X).

Set ‖ · ‖P,B be the Bernstein norm as defined in Van der Vaart and Wellner (1996)
and N[·] the braking number for the class Mδ . Then, it follows from Condition D
that

‖MR
i (X) − ML

i (X)‖2
P,B ≤ c3d

2
1 (�L

i ,�R
i ) ≤ c3η

2, i = 1, . . . , J

for some constant c3 and for any � ∈ Fδ , and

‖m�(X) − m�0(X)‖2
P,B ≤ c4d

2
1 (�,�0) ≤ c4δ

2

for some constant c4. So,

logN[·](η,Mδ,‖ · ‖P,B) ≤ c5η
−1

for some constant c5. Hence, by applying Lemma 3.4.3 of Van der Vaart and Well-
ner (1996), we have

E∗∥∥√n(Pn − P)
∥∥
Mδ

≤ c6φn(δ)

for some constant c6, where E∗ denotes the outer expectation, Pn is the empirical
measure corresponding to X, Pnf =∑n

i=1 f (Xi)/n and φn(δ) = δ1/2 +δ−1n−1/2.
Now, upon using Theorem 3.2.5 of Van der Vaart and Wellner (1996), d1(�̂

∗
n,�0)

converges in probability to zero of order at least n−1/3. This completes the proof
of the lemma. �
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Now we turn to the proof of Theorem 2.1. First, note that
√

nPf
�̂n

(X) = −I1n + I2n + I3n,(6.14)

where

I1n = √
n(Pn − P)f

�̂n
(X),

I2n = √
nPn

[
K−1∑
j=1

W(TK,j )�̂n(TK,j )

{
�N(TK,j+1)

��̂n(TK,j+1)
− �N(TK,j )

��̂n(TK,j )

}

+ W(TK,K)�̂n(TK,K)

{
1 − �N(TK,K)

��̂n(TK,K)

}]

and

I3n = √
nPn

[
K−1∑
j=1

W(TK,j )�̂n(TK,j )

{
��0(TK,j+1) − �N(TK,j+1)

��̂n(TK,j+1)

− ��0(TK,j ) − �N(TK,j )

��̂n(TK,j )

}

+ W(TK,K)�̂n(TK,K)
�N(TK,K) − ��0(TK,K)

��̂n(TK,K)

]
.

Let

g�(X) =
K−1∑
j=1

W(TK,j )�(TK,j )

{
��0(TK,j+1) − �N(TK,j+1)

��(TK,j+1)

− ��0(TK,j ) − �N(TK,j )

��(TK,j )

}

+ W(TK,K)�(TK,K)
�N(TK,K) − ��0(TK,K)

��(TK,K)
.

Note that

I3n = √
n(Pn − P)g

�̂n
(X) = I4n + I5n,

where

I4n = √
n(Pn − P){g

�̂n
(X) − g�0(X)}

and

I5n = √
n(Pn − P)g�0(X).

It is easy to see that I5n is a U -statistic and has an asymptotic normal distribution
with mean zero and variance σ 2

w that can be consistently estimated by σ̂ 2
w as given
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in the statement of the theorem. Hence, it is sufficient to show that I1n, I2n and I4n

all converge in probability to zero.
We will show the convergence of I1n first. Let I ∗

1n denote the version of I1n

obtained by replacing �̂n with �̂∗
n. Then, to prove that I1n converges to zero in

probability, it is sufficient to show that I ∗
1n = op(1), since P {�̂n �= �̂∗

n} < ε. Let

F1 = {f�(X) :� ∈ F0}.
Also, let {[�L

i ,�R
i ] : i = 1, . . . , J } be a set of η-brackets for covering F0 with J ≤

ec/η for some constant c by Theorem 2.7.5 of Van der Vaart and Wellner (1996).
Then, for F1, we can construct a set of brackets {[f L

i (X), f R
i (X)] : i = 1, . . . , J }

as follows:

f L
i (X) =

K−1∑
j=1

W(TK,j )

[
�L

i (TK,j )��0(TK,j+1)

�R
i (TK,j+1) − �L

i (TK,j )

− �R
i (TK,j )��0(TK,j )

max{�L
i (TK,j ) − �R

i (TK,j−1),��0(TK,j ) − 2δ0}
]

+ W(TK,K)

[
�L

i (TK,K)

− �R
i (TK,K)�0(TK,K)

max{�L
i (TK,K) − �R

i (TK,K−1),��0(TK,K) − 2δ0}
]

and

f R
i (X) =

K−1∑
j=1

W(TK,j )

×
[

�R
i (TK,j )��0(TK,j+1)

max{�L
i (TK,j+1) − �R

i (TK,j ),��0(TK,j+1) − 2δ0}

− �L
i (TK,j )��0(TK,j )

�R
i (TK,j ) − �L

i (TK,j−1)

]

+ W(TK,K)

[
�R

i (TK,K) − �L
i (TK,K)�0(TK,K)

�R
i (TK,K) − �L

i (TK,K−1)

]
.

It can be shown that

P {f R
i (X) − f L

i (X)}2 ≤ c1d
2
1 (�R

i ,�L
i )

for some constant c1 and for any � ∈ F0, Pf 2
�(X) ≤ c2d

2
1 (�,�0) for some con-

stant c2. Hence, F1 is a P-Donsker class, and it follows from Lemma 2 and Corol-
lary 2.3.12 of Van der Vaart and Wellner (1996) that I ∗

1n = op(1).
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Next, we show the convergence of I2n. Set W0 = W ◦ �−1
0 . Then, from

Lemma 1, we can rewrite I2n as

I2n = √
nPn

[
K−1∑
j=1

{W0(�0(TK,j )) − W0(�̂n(TK,j ))}�̂n(TK,j )

×
{

�N(TK,j+1)

��̂n(TK,j+1)
− �N(TK,j )

��̂n(TK,j )

}

+ {W0(�0(TK,K)) − W0(�̂n(TK,K))}�̂n(TK,K)

×
{

1 − �N(TK,K)

��̂n(TK,K)

}]

= �1n + �2n,

where

�1n = √
n(Pn − P)

[
K−1∑
j=1

{W0(�0(TK,j )) − W0(�̂n(TK,j ))}�̂n(TK,j )

×
{

�N(TK,j+1)

��̂n(TK,j+1)
− �N(TK,j )

��̂n(TK,j )

}

+ {W0(�0(TK,K)) − W0(�̂n(TK,K))}�̂n(TK,K)

×
{

1 − �N(TK,K)

��̂n(TK,K)

}]

and

�2n = √
nP

[
K−1∑
j=1

{W0(�0(TK,j )) − W0(�̂n(TK,j ))}�̂n(TK,j )

×
{

�N(TK,j+1)

��̂n(TK,j+1)
− �N(TK,j )

��̂n(TK,j )

}

+ {W0(�0(TK,K)) − W0(�̂n(TK,K))}�̂n(TK,K)

×
{

1 − �N(TK,K)

��̂n(TK,K)

}]
.

Let �∗
1n and �∗

2n denote the versions of �1n and �2n obtained by replacing �̂n

with �̂∗
n, respectively. Set

h�(X) =
K−1∑
j=1

{W0(�0(TK,j )) − W0(�(TK,j ))}�(TK,j )
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×
{
�N(TK,j+1)

��(TK,j+1)
− �N(TK,j )

��(TK,j )

}

+ {W0(�0(TK,K)) − W0(�(TK,K))}�(TK,K)

×
{

1 − �N(TK,K)

��(TK,K)

}

and

F2 = {h�(X) :� ∈ F0}.
Note that the uniform covering entropy for F0 is bounded by c/η for some constant
c from Theorem 2.7.5 of Van der Vaart and Wellner (1996). Since W0 is a bounded
Lipschitz function, it can be shown that for �1,�2 ∈ F0,

P
{(

h�1(X) − h�2(X)
)2}≤ c3d

2
1 (�1,�2)

for some constant c3 and for any � ∈ F0,

P(h2
�(X)) ≤ c4d

2
1 (�,�0)

for some constant c4. Hence, the uniform entropy for F2 is bounded by c/η, and
then F2 is a P-Donsker class from Theorem 2.5.2 of Van der Vaart and Wellner
(1996). Since d1(�̂

∗
n,�0) →p 0, it follows from the uniform asymptotic equicon-

tinuity of the empirical process [Van der Vaart and Wellner (1996), pages 168–171]
that �∗

1n = op(1). Then, we have �1n = op(1), since P {�1n �= �∗
1n} < ε.

For �∗
2n, since W0 is a bounded Lipschitz function, it follows that

|�∗
2n| ≤ c5

√
nd2

1 (�̂∗
n,�0),

where c5 is a constant. This shows, from Lemma 2 and P(�̂n �= �̂∗
n) < ε, that

�2n = op(1).
For I4n, we let I ∗

4n denote the version of I4n obtained by replacing �̂n with �̂∗
n,

and let

F3 = {g�(X) − g�0(X) :� ∈ F0}.
We can use the same techniques as those used for proving the convergence of I1n

to show that F3 is P-Donsker and P {g�(X) − g�0(X)}2 ≤ c6d
2
1 (�,�0) for some

constant c6, and hence I ∗
4n = op(1), which completes the proof of the theorem.

6.2. Proof of Theorem 3.1. (i) To obtain the asymptotic distribution of Un, we
first note that U

(l)
n can rewritten as

U(l)
n = U

(l)
1n −

√
n

nl

U
(l)
2n + U

(l)
3n + U

(l)
4n + U

(l)
5n + U

(l)
6n ,(6.15)
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where, for l = 1, . . . , k,

U
(l)
1n = √

nP

[
K−1∑
j=1

W(TK,j )�̂n(TK,j )

{
��0(TK,j+1)

��̂n(TK,j+1)
− ��0(TK,j )

��̂n(TK,j )

}

+ W(TK,K)�̂n(TK,K)

{
1 − ��0(TK,K)

��̂n(TK,K)

}]
,

U
(l)
2n = √

nlP

[
K−1∑
j=1

W(TK,j )�̂nl
(TK,j )

{
��0(TK,j+1)

��̂nl
(TK,j+1)

− ��0(TK,j )

��̂nl
(TK,j )

}

+ W(TK,K)�̂nl
(TK,K)

{
1 − ��0(TK,K)

��̂nl
(TK,K)

}]
,

U
(l)
3n = √

n(Pn − P)

[
K−1∑
j=1

W(l)
n (TK,j )�̂n(TK,j )

×
{

��̂nl
(TK,j+1)

��̂n(TK,j+1)
− ��̂nl

(TK,j )

��̂n(TK,j )

}

+ W(TK,K)�̂n(TK,K) ×
{

1 − ��̂nl
(TK,K)

��̂n(TK,K)

}]
,

U
(l)
4n = √

nP

[
K−1∑
j=1

{
W(l)

n (TK,j ) − W(TK,j )
}
�̂n(TK,j )

×
{
��̂nl

(TK,j+1)

��̂n(TK,j+1)
− ��̂nl

(TK,j )

��̂n(TK,j )

}

+ {W(l)
n (TK,K) − W(TK,K)

}
�̂n(TK,K)

×
{

1 − ��̂nl
(TK,K)

��̂n(TK,K)

}]
,

U
(l)
5n = √

nP

[
K−1∑
j=1

W(TK,j ){�̂n(TK,j ) − �̂nl
(TK,j )}

×
{
��̂nl

(TK,j+1) − ��0(TK,j+1)

��̂n(TK,j+1)

− ��̂nl
(TK,j ) − ��0(TK,j )

��̂n(TK,j )

}
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+ W(TK,K)�̂n(TK,K)

{
−��̂nl

(TK,K) − ��0(TK,K)

��̂n(TK,K)

}]

and

U
(l)
6n = √

nP

[
K−1∑
j=1

W(TK,j )�̂nl
(TK,j )

{(
��̂nl

(TK,j+1) − ��̂0(TK,j+1)
)

×
(

1

��̂n(TK,j+1)
− 1

��̂nl
(TK,j+1)

)

− (��̂nl
(TK,j ) − ��̂0(TK,j )

)
×
(

1

��̂n(TK,j )
− 1

��̂nl
(TK,j )

)}

− W(TK,K)�̂nl
(TK,K){��̂nl

(TK,K) − ��0(TK,K)}

×
{

1

��̂n(TK,K)
− 1

��̂nl
(TK,K)

}]
.

From the proof of Theorems 2.1, we have, for l = 1, . . . , k,

U
(l)
1n = Yn + op(1)

and

U
(l)
2n = Y (l)

n + op(1),

where

Yn = √
n(Pn − P)

[
K−1∑
j=1

W(TK,j )�0(TK,j )

{
�N(TK,j+1)

��0(TK,j+1)
− �N(TK,j )

��0(TK,j )

}

+ W(TK,K)�0(TK,K)

{
1 − �N(TK,K)

��0(TK,K)

}]

and

Y (l)
n = √

nl(Pnl
− P)

[
K−1∑
j=1

W(TK,j )�0(TK,j )

{
�N(TK,j+1)

��0(TK,j+1)
− �N(TK,j )

��0(TK,j )

}

+ W(TK,K)�0(TK,K)

{
1 − �N(TK,K)

��0(TK,K)

}]
,

where Pnl
f = 1

nl

∑
i∈Sl

f (Xi) and Sl denotes the set of indices for subjects in

group l, l = 1, . . . , k. Evidently, Y
(l)
n ’s are independent and identically distrib-

uted, and
√

nYn = ∑k
l=1

√
nlY

(l)
n . Set Z

(l)
n = Yn −

√
n
nl

Y
(l)
n , l = 1, . . . , k and
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Zn = (Z
(1)
n , . . . ,Z

(k)
n )T . Then,

Z(l)
n =

k∑
i=1

√
ni

n
Y (i)

n −
√

n

nl

Y (l)
n , l = 1, . . . , k,

and so

Zn = �nYn = �Yn + op(1),

where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
p1 − 1√

p1

√
p2 · · · √

pk

√
p1

√
p2 − 1√

p2
· · · √

pk

· · · · · · · · · · · ·√
p1

√
p2 · · · √

pk − 1√
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Yn = (Y (1)
n , . . . , Y (k)

n

)T
converges in distribution to Yw , having a k-dimensional normal distribution with
mean vector 0 and covariance matrix diag(σ 2

1 , . . . , σ 2
k ), where σ 2

l ’s are given in the
statement of the theorem. Thus, we have Zn converging in distribution to a random
variable Uw that has a normal distribution N(0,�Uw

), where �Uw
is given in (3.4)

of Theorem 3.1.
Now, we need to show that U

(l)
3n , U

(l)
4n , U

(l)
5n and U

(l)
6n all converge in probability

to 0, l = 1, . . . , k. Let U
(l)∗
3n , U(l)∗

4n , U(l)∗
5n and U

(l)∗
6n denote the version of U

(l)
3n , U(l)

4n ,

U
(l)
5n and U

(l)
6n obtained by replacing �̂n with �̂∗

n and �̂nl
with �̂∗

nl
, respectively.

Then, to prove that U
(l)
3n , U

(l)
4n , U

(l)
5n and U

(l)
6n all converge in probability to 0, l =

1, . . . , k, it is sufficient to show that U
(l)∗
3n , U

(l)∗
4n , U

(l)∗
5n , and U

(l)∗
6n all converge in

probability to 0, l = 1, . . . , k.
For U

(l)∗
3n , set

G = {ξ : [0, τ ] → [0, b]},
where b is the uniform upper bound of weight process W

(l)
n (l = 1, . . . , k),

ψ�1,�2(ξ,X) =
K−1∑
j=1

ξ(TK,j )�1(TK,j )

{
��2(TK,j+1)

��1(TK,j+1)
− ��2(TK,j )

��1(TK,j )

}

+ ξ(TK,K)�1(TK,K)

{
1 − ��2(TK,K)

��1(TK,K)

}
,

and, for ξ ∈ G,

�δ(ξ) = {ψ�1,�2(ξ,X) :�1,�2 ∈ Fδ}.
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Note that it follows from Theorem 2.7.5 of Van der Vaart and Wellner (1996) that

N[·](η,Fδ,L2(P )) ≤ ec1/η

for some constant c1. Then, we have

N[·](η,�δ(ξ),L2(P )) ≤ e2c1/η.

It can be easily shown that |ψ�1,�2(ξ,X)| ≤ ψ(X), where ψ(X) = c2K , and
Pψ2

�1,�2
(ξ,X) ≤ c3δ

2, where c2 and c3 are universal constants for ξ . Thus,

J[·](δ,�δ(ξ),L2(P )) =
∫ δ

0

√
1 + logN[·](η‖ψ‖P,2,�δ(ξ),L2(P )) dη ≤ c4δ

1/2

for some constant universal c4. Hence, from Theorem 2.14.2 of Van der Vaart and
Wellner (1996), we have

E∗
{

sup
ψ�1,�2 (ξ,X)∈�δ(ξ)

∣∣√n(Pn − P)ψ�1,�2(ξ,X)
∣∣}

≤ c5
[
J[·](δ,�δ(ξ),L2(P )) + √

nPψ
{
ψ >

√
na(δ)

}]
,

where c5 is a universal constant and

a(δ) = δ‖ψ‖P,2/
√

1 + logN[·](δ‖ψ‖P,2,�δ(ξ),L2(P )).

Then, it can be easily shown that

lim sup
n→∞

E∗
{

sup
ψ�1,�2 (ξ,X)∈�δ(ξ)

∣∣√n(Pn − P)ψ�1,�2(ξ,X)
∣∣}≤ c6δ

1/2

for some universal constant c6. It follows from d1(�̂n, �̂nl
)

a.s.−→ 0 that

lim sup
n→∞

E
∣∣√n(Pn − P)ψ

�̂∗
n,�̂∗

nl

(
W(l)

n ,X
)∣∣≤ c6δ

1/2.

Letting δ → 0, we have

lim
n→∞E

∣∣√n(Pn − P)ψ
�̂∗

n,�̂∗
nl

(
W(l)

n ,X
)∣∣= 0,

which yields U
(l)∗
3n = op(1).

For U
(l)∗
4n , we note that

∣∣U(l)∗
4n

∣∣ ≤ c7

[√
nP

{
K∑

j=1

∣∣W(l)
n (TK,j−1) − W(TK,j−1)

∣∣

× |�̂∗
n(TK,j ) − �̂∗

nl
(TK,j )|

}
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+ √
nP

{
K∑

j=1

∣∣W(l)
n (TK,j ) − W(TK,j )

∣∣|�̂∗
n(TK,j ) − �̂∗

nl
(TK,j )|

}

+ √
nP

{
K∑

j=1

∣∣W(l)
n (TK,j ) − W(TK,j )

∣∣

× |�̂∗
n(TK,j−1) − �̂∗

nl
(TK,j−1)|

}]

= c7
(
A

(l)
1n + A

(l)
2n + A

(l)
3n

)
for some constant c7, where

A
(l)
1n = √

n

∫∫ ∣∣W(l)
n (u) − W(u)

∣∣|�̂∗
n(v) − �̂∗

nl
(v)|dμ2(u, v)

≤ √
n

∫∫ ∣∣W(l)
n (u) − W(u)

∣∣|�̂∗
n(v) − �0(v)|dμ2(u, v)

+ √
n

∫∫ ∣∣W(l)
n (u) − W(u)

∣∣|�̂∗
nl

(v) − �0(v)|dμ2(u, v),

A
(l)
2n = √

n

∫ τ

0

∣∣W(l)
n (t) − W(t)

∣∣|�̂∗
n(t) − �̂∗

nl
(t)|dμ1(t)

≤ √
n

∫ τ

0

∣∣W(l)
n (t) − W(t)

∣∣|�̂∗
n(t) − �0(t)|dμ1(t)

+ √
n

∫ τ

0

∣∣W(l)
n (t) − W(t)

∣∣|�̂∗
nl

(t) − �0(t)|dμ1(t)

and

A
(l)
3n = √

n

∫∫ ∣∣W(l)
n (v) − W(v)

∣∣|�̂∗
n(u) − �̂∗

nl
(u)|dμ2(u, v)

≤ √
n

∫∫ ∣∣W(l)
n (v) − W(v)

∣∣|�̂∗
n(u) − �0(u)|dμ2(u, v)

+ √
n

∫∫ ∣∣W(l)
n (v) − W(v)

∣∣|�̂∗
nl

(u) − �0(u)|dμ2(u, v).

Using the Cauchy–Schwarz inequality, we have
√

n

∫∫ ∣∣W(l)
n (u) − W(u)

∣∣|�̂∗
n(v) − �0(v)|dμ2(u, v)

≤ c8
√

n

{∫ τ

0

(
W(l)

n (t) − W(t)
)2

dμ1(t)

}1/2

×
{∫ τ

0

(
�̂∗

n(t) − �0(t)
)2

dμ1(t)

}1/2

−→ 0,
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in probability, where c8 is a constant, since[∫ τ

0
{�̂∗

n(t) − �0(t)}2 dμ1(t)

]1/2

= Op(n−1/3).

Similarly, we have

√
n

∫∫ ∣∣W(l)
n (u) − W(u)

∣∣|�̂∗
nl

(v) − �0(v)|dμ2(u, v) = op(1).

Thus, A
(l)
1n = op(1). Similarly, we have A

(l)
2n = op(1) and A

(l)
3n = op(1). Hence,

U
(l)∗
4n = op(1), l = 1, . . . , k.

For U
(l)∗
5n and U

(l)∗
6n , we note that

∣∣U(l)∗
5n

∣∣ ≤ c9

[√
nP

{
K∑

j=1

|�̂∗
n(TK,j ) − �0(TK,j )|2

}

+ √
nP

{
K∑

j=1

|�̂∗
nl

(TK,j ) − �0(TK,j )|2
}]

= c9
{√

nd2
1 (�̂∗

n,�0) + √
nd2

1 (�̂∗
nl

,�0)
}

and ∣∣U(l)∗
6n

∣∣≤ c10
{√

nd2
1 (�̂∗

n,�0) + √
nd2

1 (�̂∗
nl

,�0)
}

for some constants c9 and c10. Hence, U
(l)∗
5n = op(1) and U

(l)∗
6n = op(1), l =

1, . . . , k. Therefore, the proof of part (i) is complete.
(ii) We note that V

(l)
n = U

(1,l)
n − U

(l)
n , l = 2, . . . , k, where U

(1,l)
n is defined as

U
(1)
n by replacing W

(1)
n with W

(l)
n for l = 2, . . . , k. Then, it follows from (i) that

V (l)
n = −

√
n

n1
Y (1)

n +
√

n

nl

Y (l)
n + op(1)

for l = 2, . . . , k, and so

Vn = HnYn + op(1) = HYn + op(1),

where Hn and H are given in the theorem. This completes the proof of part (ii).
(iii) To show that σ̂ 2

l − σ 2
w = op(1) for l = 1, . . . , k, we set

φ(ξ,�,X) =
K−1∑
j=1

ξ(TK,j )�(TK,j )

{
�N(TK,j+1)

��(TK,j+1)
− �N(TK,j )

��(TK,j )

}

+ ξ(TK,K)�(TK,K)

{
1 − �N(TK,K)

��(TK,K)

}
.
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Then, σ 2
w = Pφ2(W,�0,X) and σ̂ 2

l = Pnφ
2(W

(l)
n , �̂n,X). Note that

σ̂ 2
l − σ 2

w = Pn

{
φ2(W(l)

n , �̂n,X
)− φ2(W(l)

n ,�0,X
)}

+ Pn

{
φ2(W(l)

n ,�0,X
)− φ2(W,�0,X)

}
+ (Pn − P)φ2(W,�0,X).

It can be easily shown that

Pn

{
φ2(W(l)

n , �̂n,X
)− φ2(W(l)

n ,�0,X
)}= op(1)

and

(Pn − P)φ2(W0,�0,X) = op(1).

Since it follows from Condition C that∣∣φ(W(l)
n ,�0,X

)− φ(W,�0,X)
∣∣

= ∣∣φ(W(l)
n − W,�0,X

)∣∣
≤ b1{1 + N(TK,K)}

K∑
j=1

∣∣W(l)
n (TK,j ) − W(TK,j )

∣∣
with probability 1 for some constant b1 and∣∣φ(W(l)

n ,�0,X
)+ φ(W,�0,X)

∣∣= ∣∣φ(W(l)
n + W,�0,X

)∣∣
≤ b2K{1 + N(TK,K)}

with probability 1 for some constant b2, then we have, from the Cauchy–Schwarz
inequality, Conditions P {K ≤ K0} = 1 and D, and (3.6)

E
∣∣φ2(W(l)

n ,�0,Xi

)− φ2(W,�0,Xi)
∣∣

≤ b3E

[
{1 + Ni(TKi,Ki

)}2

{
Ki∑

j=1

∣∣W(l)
n (TKi,j ) − W(TKi,j )

∣∣}]

≤ b3[E{1 + Ni(TKi,Ki
)}4]1/2

[
E

{
Ki∑

j=1

|W(l)
n (TKi,j ) − W(TKi,j )|

}2]1/2

≤ b4 max
1≤i≤n

[
E

{
Ki∑

j=1

∣∣W(l)
n (TKi,j ) − W(TKi,j )

∣∣2}]1/2

−→ 0,

where b3 and b4 are finite positive constants, which completes the proof of part
(iii).
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REMARK 3. The monotonicity assumption of the weight process required
by Zhang (2006) can be removed by using the same techniques as those used
here.
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