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Abstract. We propose a novel smoothing active set method for linearly constrained non-4
Lipschitz nonconvex problems. At each step of the proposed method, we approximate the objective5
function by a smooth function with a fixed smoothing parameter and employ a new active set method6
for minimizing the smooth function over the original feasible set, until a special updating rule for the7
smoothing parameter meets. The updating rule is always satisfied within finite number of iterations8
since the new active set method for smooth problems proposed in this paper forces at least one sub-9
sequence of projected gradients to zero. Any accumulation point of the smoothing active set method10
is a stationary point associated with the smoothing function used in the method, which is necessary11
for local optimality of the original problem. And any accumulation point for the `2 − `p (0 < p < 1)12
sparse optimization model is a limiting stationary point, which is a local minimizer under a certain13
second-order condition. Numerical experiments demonstrate the efficiency and effectiveness of our14
smoothing active set method for hyperspectral unmixing on 3D image cube of large size.15
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1. Introduction. Active set methods have been successfully used for linearly19

constrained smooth optimization problems of large size; see [8, 13, 17, 18, 25, 42]20

and references therein. Hager and Zhang developed a novel active set algorithm for21

the bound constrained smooth optimization problems in [17], and ten years later they22

extended the method to solve linearly constrained smooth optimization problems [18].23

The active set method in [18] switches between phase one that employs the gradient24

projection algorithm for the original problem and phase two that uses an algorithm25

with certain requirements for solving linearly constrained optimization problems on a26

face of the original feasible set. Hager and Zhang [18] showed that any accumulation27

point of the sequence generated by their method is a stationary point, and only phase28

two is performed after a finite number of iterations under certain conditions.29

For linearly constrained nonsmooth convex optimization problems, Panier pro-30

posed an active set method [29], in which the search direction is computed by a31

bundle principle. And the convergence result is obtained under a certain nondegener-32

acy assumption. Wen et al. developed an active set algorithm for the unconstrained33

`1 minimization with good numerical performance and convergence results [36, 37].34

For bound-constrained nonsmooth nonconvex optimization, Keskar and Wächter pro-35

posed a limited-memory quasi-Newton algorithm which uses an active set selection36

strategy to define the subspace in which search directions are computed [21]. Numer-37

ical experiments were conducted to show the efficacy of the algorithm, but theoretical38

convergence guarantees are elusive even for the unconstrained case. To the best of39

our knowledge, there is no active set method that tackles linearly constrained non-40

Lipschitz nonconvex optimization problems with solid convergence results.41
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2 CHAO ZHANG AND XIAOJUN CHEN

One effective way to overcome the nonsmoothness in optimization is the type42

of smoothing methods, which uses the structure of the problem to define smoothing43

functions and the algorithms for solving smooth problems. Nesterov proposed a s-44

moothing scheme [27] for minimizing a nonsmooth convex function over a convex set.45

Zhang and Chen proposed a smoothing projected gradient method [41] for minimiz-46

ing a Lipschitz continuous function over a convex set. Bian and Chen developed a47

smoothing quadratic regularization method [4] for a class of linearly constrained non-48

Lipschitz optimization problems arising from image restoration. Xu et al. proposed49

a smoothing sequential quadratic programming method [38] for solving degenerate50

nonsmooth and nonconvex constrained optimization problems with applications to51

bilevel programs. Liu et al. proposed a smoothing sequential quadratic programming52

framework [26] for a class of composite `p (0 < p < 1) minimization over polyhedron.53

Inspired by the active set method [18] and the smoothing technique, we develop54

a novel smoothing active set method with solid convergence results for the following55

minimization problem56

min f(x) s.t. x ∈ Ω,(1.1)57

where f : Rn → R is continuous but not necessarily Lipschitz continuous and58

Ω = {x ∈ Rn : cTi x = di, i ∈ME ; cTi x ≤ di, i ∈MI}.(1.2)59

Here ME = {1, 2, . . . ,me}, MI = {me + 1,me + 2, . . . ,m}, M = ME

⋃
MI , and60

ci ∈ Rn, di ∈ R for i = 1, 2, . . . ,m.61

Problem (1.1) involving a sparsity penalized term in the objective function has62

recently intrigued a lot of interests. It serves as a basic model for a variety of im-63

portant applications, including the compressed sensing [1], the edge-preserving image64

restoration [4, 28], the sparse nonnegative matrix factorization for data classification65

[40], and the sparse portfolio selection [9, 15]. For example, the widely used `2 − `p66

(0 < p < 1) sparse optimization model67

min ‖Ax− b‖2 + τ‖x‖pp s.t. x ≥ 0,(1.3)68

where ‖ · ‖ refers to the Euclidean norm, ‖x‖pp =
∑n
i=1 |xi|p, and A ∈ Rl×n, b ∈ Rl,69

and τ > 0 are given. The non-Lipschitz nonconvex term ‖x‖pp in the objective function70

and the nonnegative constraints benefit to recover some prior knowledge such as the71

sparsity of the signal, or the range of pixels. It is worth mentioning that in typical72

compressive sensing or image restoration, the dimension of optimization problems is73

large.74

In order to develop the smoothing active set method, we first assume f is smooth75

in (1.1) in section 2 and develop an efficient new active set method for the linearly76

constrained smooth problems, which can be considered as a modification of the active77

set algorithm [18]. The new active set method combines the projected gradient (PG)78

method [8] and a linearly constrained optimizer (LCO) that satisfies mild require-79

ments. We show in Theorem 2.2 that the new active set method forces at least one80

subsequence of projected gradients to zero. This property is essential in developing81

the smoothing active set method with global convergence in section 3. It is guaran-82

teed that any accumulation point of the sequence generated by the new active set83

method is a stationary point. Moreover, if the sequence generated by the new active84

set method converges to a stationary point x∗, then the sequence can identify the set85

of strongly active constraints and hence is trapped by the face exposed by −∇f(x∗)86
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SMOOTHING ACTIVE SET METHOD 3

after a finite number of iterations. The convergence and identification properties are87

not guaranteed by the active set method in [18] for the smooth problems. Based on88

the identification properties, we also prove the local convergence result that if the89

sequence converges to x∗ and the strong second-order sufficient optimality condition90

holds, then only the LCO is executed after a finite number of iterations.91

Combining the new active set method for linearly constrained smooth minimiza-92

tion problem with delicate smoothing strategies, we then develop in section 3 a novel93

smoothing active set method that solves the linearly constrained non-Lipschitz min-94

imization problem (1.1). The new active set method for smooth problems is used to95

solve the smoothing problems. We give the concept of a stationary point associated96

with the smoothing function and show that it is necessary for optimality of the original97

problem. We show that any accumulation point generated by the smoothing active98

set method is a stationary point of the original problem. Moreover, it is a limiting99

stationary point of problem (1.3). If in addition a second-order condition holds, it is100

also a strict local minimizer of (1.3).101

We conduct numerical experiments on real applications of large scale in hyper-102

spectral unmixing in section 4. The numerical results manifest that the smoothing103

active set method performs favorably in comparison to several state-of-the-art meth-104

ods in hyperspectral unmixing.105

Throughout the paper, we use the following notation. 〈x, y〉 = xT y presents the106

inner product of two vectors x and y of the same dimension. Rn+ = {x ∈ Rn : x ≥ 0}107

and Rn++ = {x ∈ Rn : x > 0}. |S| corresponds to the cardinality of a finite set S. If108

S is a subset of {1, 2, . . . , n}, then for any vector u ∈ Rn and M ∈ Rn×n, uS is the109

subvector of u whose entries lie in u indexed by S, and MSS denotes the submatrix110

of M whose rows and columns lie in S. N (M) is the null space of M . Let N be the111

set of all natural numbers and N ]
∞ be the infinite subsets of N. We use the notation112

−→
N

for the convergence indexed by N ∈ N ]
∞. The normal cone to a closed convex set113

Ω at x is denoted by NΩ(x), and PΩ[x] = argmin{‖z− x‖ : z ∈ Ω} is the orthogonal114

projection from x into Ω. The ball with center x∗ and radius δ is denoted by Bδ(x
∗).115

For any x ∈ Rn, the active and free index sets are defined by116

A(x) :=ME ∪ {i ∈MI : cTi x = di}, F(x) := {i ∈MI : cTi x < di}.117

2. A new active set method for linearly constrained smooth minimiza-118

tion. In this section, we consider the following linearly constrained smooth problem119

min f(x) s.t. x ∈ Ω,(2.1)120

where f is continuously differentiable and Ω is defined in (1.2).121

Recall that the projected gradient ∇Ωf(x) is defined by122

∇Ωf(x) ≡ PT (x)[−∇f(x)] = argmin{‖v +∇f(x)‖ : v ∈ T (x)},123

where T (x) is the tangent cone to Ω at x. Calamai and Moré (Lemma 3.1 of [8])124

showed that x∗ ∈ Ω is a stationary point of (2.1) if and only if ∇Ωf(x∗) = 0. It is125

worth mentioning that ‖∇Ωf(x)‖ can be bounded away from zero in a neighborhood of126

a stationary point x∗, since ‖∇Ωf(·)‖ is not continuous, but only lower semicontinuous127

on Ω according to Lemma 3.3 of [8]. That is, for any {xk} ⊂ Ω converging to x,128

‖∇Ωf(x)‖ ≤ lim inf
k→∞

‖∇Ωf(xk)‖.129

A stationary point x∗ of (2.1) is often characterized as130

d1(x∗) := PΩ[x∗ −∇f(x∗)]− x∗ = 0.131
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We find that convergence of most existing active set methods for (2.1) is to show
lim infk→∞ ‖d1(xk)‖ = 0, such as the active set method in [18]. However, since the
norm of projected gradient is not continuous, lim infk→∞ ‖d1(xk)‖ = 0 does not imply
lim infk→∞ ‖∇Ωf(xk)‖ = 0. See Example 1 in section 2. The new active set method
proposed in this section aims to have

lim inf
k→∞

‖∇Ωf(xk)‖ = 0,

which is essential for showing the convergence result of the smoothing active set132

method for solving nonsmooth problem (1.1) proposed in section 3.133

2.1. Structure of the new active set method. Now we introduce the neces-134

sary notation used in the new active set method. Let us denote g(x) = ∇f(x). Given135

an index set S satisfying ME ⊆ S ⊆M, we define gS(x) ∈ Rn by136

gS(x) = PN (CT
S )[g(x)] = arg min{‖y − g(x)‖ : y ∈ Rn and CTS y = 0},(2.2)137

where CS ∈ Rn×|S| is the matrix whose columns are ci, i ∈ S. In particular, we denote138

gA(x) for S = A(x) and if A(x) = ∅, then gA(x) = g(x). Thus gA(x) is the unique139

optimal solution of the strongly convex problem140

min
1

2
‖y − g(x)‖2 s.t. cTi y = 0, i ∈ A(x).(2.3)141

From the first-order optimality conditions, it is easy to find that for x ∈ Ω, gA(x) = 0142

if and only if x is a stationary point of f on its associated face143

Ω̆(x) :={y ∈ Ω : cTi y = di for all i ∈ A(x)}.(2.4)144

Let x∗ be a stationary point of (2.1) and Λ(x∗) be the set of Lagrange multipliers145

associated with the constraints. That is, x∗ ∈ Ω and for any λ∗ ∈ Λ(x∗), (x∗, λ∗)146

satisfies147

(2.5)
g(x∗) +

∑
i∈M λ∗i ci = 0,

λ∗i ≥ 0 if i ∈MI ∩ A(x∗), λ∗i = 0 if i ∈ F(x∗),
λ∗i (c

T
i x
∗ − di) = 0 for all i ∈MI .

148

Consider149

y(x, α) = PΩ[x− αg(x)] = argmin
{
‖x− αg(x)− y‖2 : y ∈ Ω

}
,(2.6)150

where α > 0 is a given number. Thus there exists λ ∈ Rm such that (y(x, α), λ)151

satisfies152

(2.7)
y(x, α)− (x− αg(x)) +

∑
i∈M λici = 0,

λi ≥ 0 if i ∈MI ∩ A(y(x, α)), λi = 0 if i ∈ F(y(x, α)),
λi(c

T
i y(x, α)− di) = 0 for all i ∈MI .

153

Let Λ(x, α) be the set of Lagrange multipliers satisfying (2.7) at the solution y =154

y(x, α) of (2.6). It is easy to see that155

y(x∗, α) = x∗ and Λ(x∗, α) = αΛ(x∗).(2.8)156
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SMOOTHING ACTIVE SET METHOD 5

In the new active set method, it employs either the iteration of the PG method157

or the iteration of the LCO by given rules. Let xk be the current iterate and the LCO158

be chosen to get the new iterate. Then the LCO solves the problem159

min f(y) s.t. y ∈ Ω̆(xk),(2.9)160

which operates on the faces of Ω. Compared to the original problem (2.1), there are161

usually much more equality constraints in (2.9) which may lead the efficiency of the162

LCO. This is obviously true when the feasible set is defined by the bound constraints163

or the simplex constraint (which are sometimes called “hard constraints” and it is164

better to satisfy them strictly rather than penalize them into the objective function).165

The PG step comes from the classic “piecewise PG method” proposed in [8], and an166

arbitrary LCO can be chosen as long as it satisfies certain requirements listed below.167

• PG method168

Given ρ, β ∈ (0, 1). For k = 1, 2, . . . ,169

set dk = −g(xk) and let xk+1 = PΩ[xk + αkd
k] where αk is determined by170

the Armijo line search, i.e., αk = max{ρ0, ρ1, . . .} is chosen such that171

f(xk+1) ≤ f(xk) + β〈g(xk), xk+1 − xk〉.(2.10)172

• LCO Requirements173

For k = 1, 2, . . . ,174

F1: xk ∈ Ω and f(xk+1) ≤ f(xk) for each k.175

F2: A(xk) ⊆ A(xk+1) for each k.176

F3: If ∃ k̄ > 0 such that A(xj) ≡ Ā for all j ≥ k̄, then lim inf
j→∞

‖gA(xj)‖ = 0.177

F1 and F2 of the LCO Requirements are satisfied, as long as the LCO adopts178

a monotone line search, and whenever a new constraint becomes active, it changes179

the corresponding inequality constraint to the equality constraint in (2.9). Later we180

always assume the two strategies are incorporated in the LCO. F3 requires that if the181

active set becomes stable as A(xj) ≡ Ā, then at least one accumulation point x∗ of182

the sequence {xk} generated by the LCO is a stationary point of problem (2.9) with183

Ω̆(xk) = {y ∈ Ω : cTi y = di for all i ∈ Ā}. Note that in this case x∗ is a stationary184

point if and only if gĀ(x∗) = 0. And since gĀ(x) = PN (CT
Ā)[g(x)], we know that185

gĀ(·) : Rn → Rn is a continuous function. Thus gĀ(x∗) = 0 indicates186

lim inf
j→∞

‖gA(xj)‖ = lim inf
j→∞

‖gĀ(xj)‖ = 0.187

Therefore the LCO Requirements can be easily fulfilled by many algorithms based188

on gradient or Newton type iterations that employ a monotone line search and add189

constraints to the active set whenever a new constraint becomes active, e.g., the pro-190

jected gradient method [8], the method of Zoutendijk (section 10.1 of [2]), the Frank-191

Wolfe algorithm [16], the first-order interior-point method [33], and the affine-scaling192

interior-point method [19]. When Ω = Rn+, we can employ the LCO using essentially193

unconstrained optimization methods such as the conjugate gradient method as in [17].194

Now we are ready to outline the new active set method for problem (2.1).195

2.2. Convergence analysis.196

Assumption 2.1. For any Γ ∈ R, the level set

LΓ = {x ∈ Ω : f(x) ≤ Γ}

is bounded.197
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Algorithm 2.1 A new active set method

1: Parameters: ε ∈ [0,∞), θ and η ∈ (0, 1). x1 = PΩ[x0], k = 1.
2: Phase one:
3: while ‖∇Ωf(xk)‖ > ε, do
4: Execute the PG step to obtain xk+1 from xk. Let k ← k + 1.
5: If ‖gA(xk)‖ ≤ θ‖∇Ωf(xk)‖, then θ ← ηθ.
6: If ‖gA(xk)‖ > θ‖∇Ωf(xk)‖, then go to phase two.
7: end while
8: Phase two:
9: while ‖∇Ωf(xk)‖ > ε, do

10: Execute the LCO step to obtain xk+1 from xk. Let k ← k + 1.
11: If ‖gA(xk)‖ ≤ θ‖∇Ωf(xk)‖, then go to phase one and θ ← ηθ.
12: end while

In the remainder of this paper, we assume that the LCO satisfies the LCO Re-198

quirements F1-F3, and Assumption 2.1 holds. We now show the global convergence199

of Algorithm 2.1 for problem (2.1).200

Theorem 2.2. Let {xk} be the sequence generated by Algorithm 2.1 with ε = 0.201

Then there exists at least one accumulation point of {xk},202

lim inf
k→∞

‖∇Ωf(xk)‖ = 0,(2.11)203

and any accumulation point of {xk} is a stationary point of (2.1).204

Proof. By Assumption 2.1, there exists at least one accumulation point x∗ of205

{xk}. Let {xk}k∈K be an infinite subsequence of {xk} such that lim
k→∞, k∈K

xk = x∗.206

If only phase one is performed for k sufficiently large, then by Assumption 2.1207

and Theorem 2.4 of [8],208

lim
k→∞, k∈K

xk+1 − xk

αk
= 0.209

Hence for k →∞, k ∈ K,210

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk − x∗‖ → 0,211

which indicates limk→∞, k∈K x
k+1 = x∗. According to Theorem 3.4 of [8],

lim
k→∞, k∈K

‖∇Ωf(xk+1)‖ = 0.

By the lower semicontinuity of ‖∇Ωf(·)‖ shown in Lemma 3.3 of [8],212

‖∇Ωf(x∗)‖ ≤ lim
k→∞, k∈K

‖∇Ωf(xk+1)‖ = 0,213

which guarantees that x∗ is a stationary point of (2.1).214

If only phase two is performed for k sufficiently large, then there exists θ̂ > 0 such215

that θ ≡ θ̂ for k sufficiently large, because θ is never reduced in phase two. Hence for216

k sufficiently large,217

‖gA(xk)‖ ≥ θ̂‖∇Ωf(xk)‖.(2.12)218
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SMOOTHING ACTIVE SET METHOD 7

Note that the LCO works on the faces of Ω and no index in the active set can be219

freed from xk to xk+1 using the LCO. By F2 of the LCO Requirements, the active set220

becomes stable for k large enough and hence lim infk→∞ ‖gA(xk)‖ = 0 according to221

F3. From (2.12) we then have (2.11) holds. By the lower semicontinuity of ‖∇Ωf(·)‖,222

x∗ is a stationary point of (2.1).223

The remaining case is that there are an infinite number of branches from phase224

two to phase one for {xk}k∈K . Then phase one is performed an infinite number225

of times at k1 < k2 < · · · < · · · , where {ki} ⊆ K. By Theorem 3.4 of [8],226

limki→∞ ‖∇Ωf(xki+1)‖ = 0. Again we find x∗ is a stationary point by using {xki+1} →227

x∗ and the lower semicontinuity of ‖∇Ωf(·)‖. The proof is completed.228

Identification properties of an algorithm for linearly constrained problems are229

significant from both a theoretical and a practical point of view [14, 25]. For a230

stationary point x∗, the set of strongly active constraints is defined by231

A+(x∗) =ME ∪ {i ∈MI : cTi x
∗ = di, and ∃λ∗ ∈ Λ(x∗) such that λ∗i > 0}.232

In convex analysis, the face of a convex set Ω exposed by the vector w ∈ Rn is

E[w] ≡ argmax{wTx : x ∈ Ω}.

A computation based on the definition of a face shows that for the polyhedral set Ω233

given in (1.2),234

E[−∇f(x∗)] = {x ∈ Ω : cTi x = di if λ∗i > 0 for i ∈MI},(2.13)235

where λ∗ ∈ Λ(x∗). Note that this expression is valid for any choice of Lagrange236

multipliers λ∗ ∈ Λ(x∗).237

We say that the linear independence constraint qualification (LICQ) holds at a238

point x ∈ Ω, if the gradients ci, i ∈ A(x) are linearly independent.239

Theorem 2.3. Let {xk} be a sequence generated by Algorithm 2.1 with ε = 0
which converges to x∗. Suppose that the LICQ holds at x∗, and for some δ > 0, g
is Lipschitz continuous in Bδ(x

∗) with a Lipschitz constant %. Then there exists an

integer k̂0 > 0 such that

A+(x∗) ⊆ A(xk) and xk ∈ E[−∇f(x∗)], for k ≥ k̂0.

Proof. Since {xk} converges to x∗, there exists k0 > 0 such that xk ∈ Bδ(x∗) for240

any k ≥ k0. Using the definition of y(x, α) in (2.6) and the Lipschitz continuity of g241

with the Lipschitz constant % in Bδ(x
∗), we have for any α > 0 and k ≥ k0,242

‖y(xk, α)− x∗‖ = ‖y(xk, α)− y(x∗, α)‖243

= ‖PΩ[xk − αg(xk)]− PΩ[x∗ − αg(x∗)]‖244

≤ ‖xk − x∗ + α(g(x∗)− g(xk))‖245

≤ (1 + α%)‖xk − x∗‖.246

Since {xk} converges to x∗, there is an integer k̄ > 0 such that F(x∗) ⊆ F(y(xk, α)) for247

k ≥ k̄. We know that Λ(x∗) is a singleton, since the gradients of the active constraints248

at x∗ are linearly independent. Thus Λ(x∗, α) = αΛ(x∗) is also a singleton for any249

given α > 0. Moreover, Λ(xk, α) is a singleton for k ≥ k̄, because A(y(xk, α)) ⊆250

A(x∗) for k ≥ k̄ and the gradients of the active constraints at y(xk, α) are linearly251

independent.252
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Consider the linear system253

q +
∑
i∈M

λici = 0, λi ≥ 0 for i ∈MI , λi = 0 for i ∈ F(x∗).(2.14)254

Let
p1 = y(xk, α)− xk + αg(xk), and p2 = y(x∗, α)− x∗ + αg(x∗).

According to (2.7), λk ∈ Λ(xk, α) is feasible in the linear system (2.14) with q = p1.
And by (2.5) and (2.8), it is easy to see that for λ∗ ∈ Λ(x∗), αλ∗ ∈ Λ(x∗, α) is also
feasible in the same system (2.14) but with q = p2. Hence by Hoffman’s result (see,
e.g., Theorem 7.12 of [32]) and the fact that Λ(x∗, α) is a singleton, there exists a
positive constant ν, independent of p1 and p2 and depending only on ci, i ∈M, such
that

‖λk − αλ∗‖ ≤ ν‖p1 − p2‖ ≤ 2ν(1 + α%)‖xk − x∗‖.

For any i0 ∈MI ∩ A+(x∗), the Lagrange multiplier λ∗ ∈ Λ(x∗) satisfies λ∗i0 > 0.255

Thus there exists an integer k̃i0 > 0 such that λki0 > 0 for all k ≥ k̃i0 . Now we256

consider (2.6) and its first-order optimality conditions given in (2.7). We find that257

cTi0y(xk, α) = di0 by complementarity and hence i0 ∈ A(y(xk, α)). Let258

k̃ = max{k̃i, i ∈MI ∩ A+(x∗)} and k̂ = max{k̄, k̃}.259

Clearly for any i ∈ A+(x∗) and any given α > 0,

i ∈ A(y(xk, α)) for all k ≥ k̂.

We need to consider two possible cases.260

Case 1: There exists an integer k̂1 ≥ k̂ such that xk̂1+1 is obtained from the PG261

step in Algorithm 2.1. Then for any k ≥ k̂1 such that xk+1 is obtained from xk by262

the PG step in Algorithm 2.1, we know by (2.6)263

xk+1 = PΩ[xk − αkg(xk)] = y(xk, αk),264

and consequently i ∈ A(xk+1) for any i ∈ A+(x∗). Since no active constraint can be265

freed by the LCO step in phase two, we get266

i ∈ A(xk) for any k ≥ k̂1 + 1.267

Case 2: xk+1 is obtained from the LCO step in phase two for any k ≥ k̂. By F2268

of the LCO Requirements, we find A(xk) ⊆ A(xk+1) for all k ≥ k̂. Then the active269

constraints become unchanged after a finite number of steps. Thus there exists an270

integer k̂2 > k̂ such that271

A(xk) ≡ Ã ⊆ A(x∗) for all k ≥ k̂2.272

By the definition of gÃ(xk), and the first-order optimality conditions at the global273

optimizer gÃ(xk), there exists a unique vector πk ∈ Rm such that274

(2.15)
gÃ(xk)− g(xk)−

∑
i∈Ã π

k
i ci = 0,

cTi g
Ã(xk) = 0, i ∈ Ã, πki = 0 if i 6∈ Ã.

275

Here the vector πk is unique because the column vectors ci, i ∈ Ã ⊆ A(x∗) are276

linearly independent. Similarly, by the strong convexity of problem (2.3) with x277
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being replaced by x∗, and the linear independence of {ci, i ∈ A(x∗)}, there exist a278

unique vector gA(x∗) ∈ Rn and a unique vector λ ∈ Rm such that279

(2.16)
gA(x∗)− g(x∗)−

∑
i∈A(x∗) λici = 0,

cTi g
A(x∗) = 0, i ∈ A(x∗), λi = 0 if i 6∈ A(x∗).

280

And there exists a unique vector λ∗ ∈ Rm such that281

g(x∗) = −
∑

i∈A(x∗)

λ∗i ci, λ∗i = 0 if i 6∈ A(x∗),(2.17)282

since x∗ is a stationary point of (2.1) and the gradients of the active constraints at283

x∗ are linearly independent.284

We get gA(x∗) = 0 and λ = λ∗, by comparing (2.16), (2.17) and using the285

uniqueness of gA(x∗) and λ in (2.16). Moreover, lim infk→∞ gÃ(xk) = 0 according to286

F3 of the LCO Requirements. Let {kj} ⊆ {k} be an infinite subsequence such that287

limkj→∞ gÃ(xkj ) = 0. Taking limit to the first linear system in (2.15), we have288

0 = lim
kj→∞

gÃ(xkj ) = g(x∗) +
∑
i∈Ã

lim
kj→∞

π
kj
i ci.(2.18)289

Comparing (2.17) and (2.18), and noting the uniqueness of λ∗ in (2.17), we find290

lim
kj→∞

π
kj
i = λ∗i > 0 for any i ∈ A+(x∗) \ME .291

Since πki = 0 if i 6∈ Ã for k sufficiently large according to (2.15), we know292

lim
kj→∞

π
kj
i = 0 for any i ∈ A+(x∗) \ Ã.293

This indicates A+(x∗) \ Ã = ∅. Hence for any i ∈ A+(x∗), we get i ∈ Ã ≡ A(xk) for294

k ≥ k̂2.295

Thus in any case, there exists an index k̂0 (k̂0 = k̂1 + 1 if Case 1 occurs, and

k̂0 = k̂2 if Case 2 happens otherwise) such that

A+(x∗) ⊆ A(xk) for k ≥ k̂0.

This, combined with (2.13), implies

xk ∈ E[−∇f(x∗)] for k ≥ k̂0.

We complete the proof.296

Based on the identification properties analyzed above, we will show the local297

convergence result that only iterations in phase two occur for k sufficiently large, if298

we further assume that the strong second-order sufficient optimality condition holds at299

x∗. A stationary point x∗ of (2.1) satisfies the strong second-order sufficient optimality300

condition if there exists σ > 0 such that301

vT∇2f(x∗)v ≥ σ‖v‖2(2.19)302

for all v ∈ Rn such that cTi v = 0 for all i ∈ A+(x∗).303
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Lemma 2.4. Let {xk} be a sequence generated by Algorithm 2.1 with ε = 0 which304

converges to x∗. Suppose that the LICQ holds at x∗, and for some δ > 0, g is Lipschitz305

continuous in Bδ(x
∗) with a Lipschitz constant %. Then306

‖∇Ωf(xk)‖ ≤ %‖xk − x∗‖ for k sufficiently large.(2.20)307

Proof. From the nonexpansive property of the projection operator,308

‖∇Ωf(xk)‖ = ‖PT (xk)[−g(xk)]− PT (xk)[−g(x∗)] + PT (xk)[−g(x∗)]‖
≤ ‖g(xk)− g(x∗)‖+ ‖PT (xk)[−g(x∗)]‖.(2.21)309

Similarly,310

‖PT (xk)[−g(x∗)]‖
= ‖PT (xk)[−g(x∗)]− PT (xk)[−g(xk)] + PT (xk)[−g(xk)]‖
≤ ‖g(xk)− g(x∗)‖+ ‖∇Ωf(xk)‖.

(2.22)311

From (2.21) and (2.22),312

‖∇Ωf(xk)‖ − ‖g(xk)− g(x∗)‖ ≤ ‖PT (xk)[−g(x∗)]‖ ≤ ‖∇Ωf(xk)‖+ ‖g(xk)− g(x∗)‖.313

Theorem 2.3 guarantees that there is an integer k̂0 such that xk ∈ E[−∇f(x∗)] for all314

k ≥ k̂0. Thus according to Theorem 3.1 of [25], limk→∞ ‖∇Ωf(xk)‖ = 0. This, com-315

bined with (2.22) and the facts that {xk} → x∗ and g is locally Lipschitz continuous316

at x∗, yields317

lim
k→∞

‖PT (xk)[−g(x∗)]‖ = 0.(2.23)318

By direct computation,319

T (xk) = {v : cTi v = 0, i ∈ME ; cTi v ≤ 0, i ∈MI ∩ A(xk)}.(2.24)320

When xk is sufficiently near x∗, we know F(x∗) ⊆ F(xk). Then by Theorem 2.3, we321

find322

A+(x∗) ⊆ A(xk) ⊆ A(x∗).(2.25)323

From the inclusions in (2.25) and the fact that A(x∗) has finite number of subsets,
there are only a finite number of index sets A1, . . . ,Aν for A(xk), k = 1, 2, . . .. From
the expression of T (xk) in (2.24), let us define

Tj = {v : cTi v = 0, i ∈ME ; cTi v ≤ 0, i ∈MI ∩ Aj} for j = 1, 2, . . . , ν.

Without loss of generality, we assume324

{T1, T2, . . . , Tt} ⊆ {T1, T2, . . . , Tν}325

is composed by all the elements in {T1, T2, . . . , Tν} such that each Tj , j = 1, 2, . . . , t,326

contains an infinite number of T (xk), k = 1, 2, . . . . Hence we get PTj [−g(x∗)] = 0 for327

j = 1, 2, . . . , t, according to (2.23). Consequently, for all k sufficiently large, we have328

PT (xk)[−g(x∗)] ∈ {PT1
[−g(x∗)], PT2

[−g(x∗)], . . . , PTt
[−g(x∗)]} ,329

which indicates330

PT (xk)[−g(x∗)] = 0 for all k sufficiently large.(2.26)331

Substituting (2.26) into (2.21) and using the Lipschitz continuity of g with the Lips-332

chitz constant % in Bδ(x
∗), we get our desired result (2.20).333
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Lemma 2.5. Let {xk} be a sequence generated by Algorithm 2.1 with ε = 0 which334

converges to x∗. If f is twice continuously differentiable in a neighborhood of x∗,335

the LICQ holds at x∗, and the strong second-order sufficient optimality condition in336

(2.19) holds at x∗, then there exists θ∗ > 0 such that337

‖gA(xk)‖ ≥ θ∗‖∇Ωf(xk)‖ for all k sufficiently large.(2.27)338

Proof. By Theorem 2.3, A+(x∗) ⊆ A(xk) for k ≥ k0. Thus xk − x∗ satisfies339

cTi (xk − x∗) = 0 for all i ∈ A+(x∗) and k ≥ k0. By the strong second-order suffi-340

cient optimality condition, we find x∗ is a strict local minimizer of (2.1), and for k341

sufficiently large,342

(xk − x∗)T (g(xk)− g(x∗)) ≥ 0.5σ‖xk − x∗‖2.(2.28)343

Using the first-order necessary optimality conditions for a local minimizer of (2.1), we344

know that there exists a multiplier λ∗ ∈ Rm such that345

g(x∗) +
∑
i∈M

λ∗i ci = 0, (di − cTi x∗)λ∗i = 0, i ∈M; λ∗i ≥ 0, i ∈MI .(2.29)346

We have for k sufficiently large, A+(x∗) ⊆ A(xk) and di−cTi x∗ = 0 = di−cTi xk when347

i ∈ A+(x∗), and λ∗i = 0 when i 6∈ A+(x∗). Hence348

λ∗i c
T
i (xk − x∗) = λ∗i [(di − cTi x∗)− (di − cTi xk)] = 0 for all i ∈M.349

This, combined with (2.29), yields350

(xk − x∗)T g(x∗) = (xk − x∗)T [g(x∗) +
∑
i∈M

λ∗i ci] = 0.(2.30)351

Denote here S = A(xk) for simplicity. The first-order optimality conditions for352

the minimizer gS(xk) in (2.2) implies the existence of λS ∈ R|S| such that353

gS(xk)− g(xk) + CSλS = 0.(2.31)354

Because A(xk) ⊆ A(x∗) for k ≥ k0, we have cTi (xk − x∗) = 0 for all i ∈ S. Hence355

[CTS (xk − x∗)]TλS = 0, for all k sufficiently large.(2.32)356

By (2.31) and (2.32), we find357

(xk − x∗)T g(xk) = (xk − x∗)T [gS(xk) + CSλS ] = (xk − x∗)T gS(xk).(2.33)358

Using the Cauchy-Schwarz inequality, (2.33), (2.28) and (2.30) sequentially, we get359

‖xk − x∗‖‖gS(xk)‖ ≥ (xk − x∗)T gS(xk)360

= (xk − x∗)T g(xk)361

= (xk − x∗)T [g(xk)− g(x∗) + g(x∗)]362

≥ 0.5σ‖xk − x∗‖2.363

Reminding that S = A(xk), we have364

‖gA(xk)‖ ≥ 0.5σ‖xk − x∗‖ for k sufficiently large.(2.34)365

This, together with Lemma 2.4, deduces (2.27) with θ∗ = 0.5
σ

%
.366
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12 CHAO ZHANG AND XIAOJUN CHEN

We are ready to show that the new active set method given in Algorithm 2.1 will367

only perform the LCO within a finite number of iterations.368

Theorem 2.6. Let {xk} be a sequence generated by Algorithm 2.1 with ε = 0369

which converges to x∗. If the assumptions in Lemma 2.5 hold, then within a finite370

number of iterations, only phase two is executed.371

Proof. First we claim that phase two must occur within a finite number of it-372

erations. If on the contrary only phase one is occurred, then θ is decreased in each373

iteration, and will be decreased to θ < θ∗ after a finite number of iterations. Then374

according to Lemma 2.5, ‖gA(xk)‖ > θ‖∇Ωf(xk)‖ will occur. Once this holds, phase375

one branches to phase two. This is a contradiction.376

Once phase two is invoked, then phase two cannot branch to phase one infinite377

times. Otherwise, θ will be reduced to θ < θ∗ and again ‖gA(xk)‖ > θ‖∇Ωf(xk)‖ will378

occur, and after that phase two cannot branch to phase one.379

Now we make clear the novelty of our new active set method in Algorithm 2.1,380

compared to the active set method proposed by Hager and Zhang [18]. Algorithm381

2.1 adopts the so-called piecewise PG method with xk+1 = PΩ[xk − αkg(xk)] so that382

the search direction within one iteration is along the projection arc [8]. While the383

active set method by Hager and Zhang [18] chooses the so-called gradient projection384

algorithm (GPA) in which the single projection is used to define the feasible search385

direction dk = PΩ[xk − ᾱg(xk)] − xk where ᾱ > 0 is a fixed parameter, and the386

next iterate point xk+1 = xk + skd
k is obtained by backtracking toward the starting387

point along dk. As pointed out by Bertsekas in subsection 2.3 of [3] that the iterates388

obtained by the piecewise PG method used in this paper are more likely to be at the389

boundary than the GPA used in [18]. Moreover, the finite identification property of390

the new active set method is shown in Theorem 2.3. On contrast, after Lemma 6.1 of391

[18], the authors stated that there is a fundamental difference between the GPA and392

the PG method, and consequently they can not show the finite identification property393

of the active set method in [18].394

The main motivation of such modification lies in that Algorithm 2.1 guarantees395

lim infk→∞ ‖∇Ωf(xk)‖ = 0, which is novel and essential in providing the convergence396

result of the new smoothing active set method given in the next section. This conver-397

gence result is stronger than that of the active set method in [18] which guarantees398

lim infk→∞ ‖d1(xk)‖ = 0, since by Lemma 2.2 of [8],399

‖∇Ωf(xk)‖ = lim
α↓0

‖PΩ[xk − α∇f(xk)]− PΩ[xk]‖
α

≥ ‖d1(xk)‖.(2.35)400

But lim infk→∞ ‖d1(xk)‖ = 0 does not imply lim infk→∞ ‖∇Ωf(xk)‖ = 0 because the401

norm of projected gradient is not continuous and can be large near the solution. This402

can be explained by the following simple example.403

Example 1 Let us consider the linearly constrained strongly convex quadratic404

programming405

min 0.01(10x1 + x2)2 + 10(x1 + 10.1x2 + 1)2 + x2
3406

s.t. x2 ≥ 1, x3 ≥ 0.407

We know M = MI = {1, 2} for this problem. It is easy to calculate that x∗ =
(x∗1, x

∗
2, x
∗
3)T = (−10.1, 1, 0)T is the unique global minimizer. The Lagrangian mul-

tipliers corresponding to the constraint x2 ≥ 1 and x3 ≥ 0 at x∗ are λ∗1 = 200 and
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λ∗2 = 0, respectively. Hence A+(x∗) = {1}, A(x∗) =M = {1, 2}, and x∗ is a degener-
ate stationary point. The tangent cone to the feasible region at x∗, and the gradient
at x∗ are

T (x∗) = {(d1, d2, d3)T ∈ R3 : d2 ≥ 0, d3 ≥ 0}, ∇f(x∗1, x
∗
2, x
∗
3) = (0, 200, 0)T .

Let xk = (xk1 , x
k
2 , x

k
3)T = (−10.1 + (0.5)k/2, 1 + (0.5)k, (0.5)k)T → x∗ as k → +∞.408

By direct computation, the tangent cone to the feasible region at xk is T (xk) = R3.409

Since f is twice continuously differentiable near x∗, we know that410

∇f(xk)→ ∇f(x∗) = (0, 200, 0)T as k →∞,411

and consequently412

‖∇Ωf(xk)‖ = ‖PT (xk)[−∇f(xk)]‖ = ‖ − ∇f(xk)‖ → 200 as k →∞.413

Hence lim
k→∞

‖∇Ωf(xk)‖ = 200 > 0, although lim
k→∞

‖d1(xk)‖ = 0.414

Remark 2.7. Suppose {xk} → x∗, ∇f is locally Lipschitz continuous at x∗, and415

the active constraints are identified after finite iterations. Then there exists k0 > 0416

such that T (xk) ≡ T (x∗) for all k ≥ k0, and consequently limk→∞ ‖∇Ωf(xk)‖ = 0417

and limk→∞ ‖d1(xk)‖ = 0 are equivalent. However, the active set method in [18] may418

not identify the active constraints, but only owns the property in Lemma 6.2 of [18]419

that the violation of the constraints cTi x − di = 0 for i ∈ A+(x∗) by iterate xk is on420

the order of the error in xk squared under certain conditions. Using Example 1, we421

find422

x̄k = argminy{‖xk − y‖ : y2 = 1} = (xk1 , 1, x
k
3)T ,423

and424

lim
k→∞

‖xk − x̄k‖
‖xk − x∗‖2

= lim
k→∞

|xk2 − 1|
‖xk − x∗‖2

= lim
k→∞

(0.5)k

(0.5)k + (0.5)2k + (0.5)2k
= 1.425

This indicates that although under certain conditions any sequence generated by the426

active set method [18] satisfies the property in Lemma 6.2 of [18], this property does427

not guarantee lim infk→∞ ‖∇Ωf(xk)‖ = 0 that we need in designing the smoothing428

active set method with convergence result.429

3. Smoothing active set method. In this section, we develop a smoothing430

active set method for solving (1.1) with solid convergence result. Here the objective431

function f is continuous, but not necessarily Lipschitz continuous.432

To characterize the stationary points of (1.1), we review first the concepts of rly433

several subdifferentials that are often used in nonsmooth analysis [6, 31] and references434

therein. Let f : Rn → R be a proper lower semi-continuous function and x ∈ Rn be a435

point where f(x) is finite. The Fréchet subdifferential, the limiting (or Mordukhovich)436

subdifferential, the horizontal (or singular Mordukhovich) subdifferential, and the437

Clarke subdifferential (Definition 1 of [6]) are defined respectively as438

∂̂f(x) := {v : f(y) ≥ f(x) + vT (y − x) + o(‖y − x‖), ∀y},439

∂f(x) :=
{
v : ∃xk f−→ x, vk → v with vk ∈ ∂̂f(xk), ∀k

}
,440

∂∞f(x) :=
{
v : ∃xk f−→ x, tkv

k → v, tk ↓ 0 with vk ∈ ∂̂f(xk), ∀k
}
,441

∂◦f(x) := c̄o{∂f(x) + ∂∞f(x)},442
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where xk
f−→ x means that xk → x and f(xk) → f(x), and “c̄o” means the closure443

of convex hull. We say that x∗ is a Clarke stationary point of (1.1), if there is444

V ∈ ∂◦f(x∗) such that445

〈V, x∗ − z〉 ≤ 0 for all z ∈ Ω.(3.1)446

If there exists V ∈ ∂f(x∗) such that (3.1) holds, then x∗ is a limiting stationary point447

of (1.1). Under the basic qualification (BQ)448

−∂∞f(x∗) ∩NΩ(x∗) = {0},(3.2)449

if x∗ is a local minimizer, then x∗ is a limiting stationary point (Rockafellar and Wets,450

Theorem 8.15 of [31]). It is easy to see that BQ in (3.2) holds if f is locally Lipschitz451

continuous at x∗, or x∗ is an interior point of Ω. However, BQ often fails if f is452

non-Lipschitz at a boundary point x∗ as pointed out in [9].453

We use the following definition for smoothing function.454

Definition 3.1. Let f : Rn → R be a continuous function. We call f̃ : Rn ×455

R+ → R a smoothing function of f , if f̃(·, µ) is continuously differentiable in Rn for456

any µ ∈ R++, and for any x ∈ Rn,457

lim
z→x, µ↓0

f̃(z, µ) = f(x),(3.3)458

and there exists a constant κ > 0 and a function ω : R++ → R++ such that459

|f̃(x, µ)− f(x)| ≤ κω(µ) with lim
µ↓0

ω(µ) = 0.(3.4)460

For each fixed µ > 0, the smooth subproblem is then defined by461

min f̃(x, µ) s.t. x ∈ Ω,(3.5)462

and the projected gradient ∇Ωf̃(x, µ) is defined by463

∇Ωf̃(x, µ) ≡ PT (x)[−∇xf̃(x, µ)] = argmin{‖v +∇xf̃(x, µ)‖ : v ∈ T (x)},464

where T (x) is the tangent cone to Ω at x. Now we present our smoothing active set465

method, Algorithm 3.1.466

Algorithm 3.1 Smoothing active set method

1: Let γ̂ be a positive constant, ζ be a constant in (0, 1), and n1 > 0 be a positive
integer. Choose x0 ∈ Ω and µ0 > 0.
For k ≥ 0:

2: Let y0,k = xk, j := 0.
3: while ‖∇Ωf̃(yj,k, µk)‖ > γ̂µk or j < n1, do
4: Execute one iterate of the active set method in Algorithm 2.1 for (3.5) with

µ = µk from the initial point yj,k and get the new point yj+1,k.
Set j := j + 1.

5: end while
6: Set xk+1 = yj,k.
7: Choose µk+1 ≤ ζµk.
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Remark 3.2. It is worth mentioning that Algorithm 3.1 can be extended to a467

general framework of smoothing method, since the new active set method in Algorithm468

2.1 that used in Algorithm 3.1 can be substituted by any other type of algorithm469

for minimizing smooth function (SA for short) on a closed convex set, as long as the470

algorithm satisfies the SA Requirement defined below. And then the same convergence471

result developed in this section can be obtained without difficulty.472

SA Requirement For any fixed µ > 0, let {xk} be generated by the SA that473

solves (3.5). Then474

lim inf
k→∞

∇Ωf̃(xk, µ) = 0.475

476

When Ω = Rn, then (3.5) reduces to unconstrained smooth optimization and477

hence ∇Ωf̃(x, µ) = −∇f̃(x, µ). Many unconstrained algorithms (UAs) for (3.5)478

meet the SA Requirement, e.g., the steepest descent method, the accelerated gra-479

dient method proposed by Nesterov, the conjugate gradient method, the trust region480

method, and the quasi-Newton method. When Ω is a general closed convex set, the481

projected gradient method satisfies the SA Requirement. When Ω is constructed by482

linear constraints defined in (1.2), the new active set method developed in section 2483

meets the SA Requirement as we desired. Although the proposed active set method484

is in spirit very similar to Hager and Zhang’s approach [18], the satisfaction of the SA485

Requirement makes it necessary and novelty for building up the convergence of the s-486

moothing active set method that tackles linearly constrained non-Lipschitz nonconvex487

optimization problems.488

Since we use a smoothing function in Algorithm 3.1, the convergence result is489

natural to connect with the smoothing function employed.490

Definition 3.3. We say that x∗ is a stationary point of (1.1) associated with a491

smoothing function f̃ , if492

lim inf
x→x∗, x∈Ω, µ↓0

〈∇xf̃(x, µ), x− z〉 ≤ 0 for all z ∈ Ω.(3.6)493

For any fixed x ∈ Ω, denote494

Gf̃ (x) := {V : ∃N ∈ N ]
∞, x

ν −→
N
x, µν ↓ 0 with ∇xf̃(xν , µν) −→

N
V }.(3.7)495

By Corollary 8.47 (b) in [31], we have

∂f(x) ⊆ Gf̃ (x).

When f is Lipschitz continuous, it is shown in [7, 10, 31] that many smoothing func-
tions satisfy the gradient consistency property

∂◦f(x∗) = Gf̃ (x∗).

Then the stationary point of (1.1) associated with f̃ coincides to the Clarke stationary496

point, i.e., there exists V ∈ ∂◦f(x∗) such that (3.1) holds. When f is continuously dif-497

ferentiable at x∗, then ∂◦f(x∗) = {∇f(x∗)} and x∗ coincides to the classic stationary498

point for smooth minimization problems.499

Now we show that x∗ being a stationary point of (1.1) associated with a smoothing500

function f̃ is a necessary optimality condition for x∗ being a local minimizer, without501

the requirement for BQ.502
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Proposition 3.4. For any given smoothing function f̃ defined in Definition 3.1,503

if x∗ is a local minimizer of (1.1), then x∗ is a stationary point of (1.1) associated504

with f̃ .505

Proof. Since x∗ is a local minimizer of (1.1), there exists a constant δ > 0 such506

that507

f(x∗) ≤ f(x) for any x ∈ Bδ(x∗) ∩ Ω.508

This, combined with (3.4) in Definition 3.1 for the smoothing function, yields that for509

all x ∈ Bδ(x∗) ∩ Ω,510

f̃(x∗, µ) ≤ f(x∗) + κω(µ) ≤ f(x) + κω(µ) ≤ f̃(x, µ) + 2κω(µ).(3.8)511

For any z ∈ Ω, let xµ = x∗+
√
ω(µ)(z−x∗). Since Ω is a convex set and limµ↓0 ω(µ) =512

0, we get xµ ∈ Bδ(x∗)∩Ω for all µ sufficiently small and xµ → x∗ as µ ↓ 0. By Taylor’s513

theorem,514

f̃(x∗, µ) = f̃(xµ, µ) +∇xf̃(xµ, µ)T (x∗ − xµ) + o(‖x∗ − xµ‖)515

= f̃(xµ, µ) +
√
ω(µ)∇xf̃(xµ, µ)T (x∗ − z) + o(

√
ω(µ)).(3.9)516

Substituting (3.9) into the left side of (3.8) and replacing x by xµ into the right side517

of (3.8), we get518 √
ω(µ)∇xf̃(xµ, µ)T (x∗ − z) + o(

√
ω(µ)) ≤ 2κω(µ).519

Dividing both sides of the above inequality by
√
ω(µ), and taking the limit as µ ↓ 0,520

we find521

lim sup
µ↓0

〈∇xf̃(xµ, µ), x∗ − z〉 ≤ 0.(3.10)522

Note that523

〈∇xf̃(xµ, µ), xµ − z〉 = (1−
√
ω(µ))〈∇xf̃(xµ, µ), x∗ − z〉.524

This, together with (3.10), yields that525

lim inf
µ↓0

〈∇xf̃(xµ, µ), xµ − z〉 = lim inf
µ↓0

(1−
√
ω(µ))〈∇xf̃(xµ, µ), x∗ − z〉 ≤ 0,526

which indicates527

lim inf
x→x∗, x∈Ω, µ↓0

〈∇xf̃(x, µ), x− z〉 ≤ 0 for all z ∈ Ω.(3.11)528

Hence (3.6) holds and x∗ is a stationary point of (1.1) with respect to f̃ .529

Now we are ready to give the global convergence result of Algorithm 3.1.530

Theorem 3.5. Assume Assumption 2.1 holds. Then any accumulation point x∗531

of {xk} generated by Algorithm 3.1 is a stationary point of (1.1) associated with the532

smoothing function f̃ .533
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Proof. By (3.4) of Definition 3.1, for each fixed µ > 0,534

f(x)− κω(µ) ≤ f̃(x, µ) ≤ f(x) + κω(µ).535

Then for each fixed µ > 0,

Lµ,Γ = {x ∈ Ω : f̃(x, µ) ≤ Γ}

is bounded for any Γ, because f̃(x, µ) ≤ Γ implies f(x) ≤ Γ + κω(µ) and LΓ+κω(µ) is536

bounded by Assumption 2.1.537

By (2.11) of Theorem 2.2, we know Algorithm 3.1 is well-defined and538

‖∇Ωf̃(xk+1, µk)‖ ≤ γ̂µk, and lim
k→∞

µk = 0.(3.12)539

According to Calamai and Moré [8],540

min{〈∇xf̃(xk+1, µk), v〉 : v ∈ T (xk+1), ‖v‖ ≤ 1} = −‖∇Ωf̃(xk+1, µk)‖.(3.13)541

For any z ∈ Ω, it is easy to see that542

v =
z − xk+1

‖z − xk+1‖
∈ T (xk+1) and ‖v‖ = 1,543

and hence by (3.13)544

〈∇xf̃(xk+1, µk), xk+1 − z〉 ≤ ‖∇Ωf̃(xk+1, µk)‖‖z − xk+1‖.545

This, combined with (3.12), yields546

〈∇xf̃(xk+1, µk), xk+1 − z〉 ≤ γ̂µk‖z − xk+1‖ for any z ∈ Ω.(3.14)547

Since x∗ is an accumulation point of {xk}, there exists an infinite sequence K̂ ∈548

N ]
∞ such that limk→∞, k∈K̂ x

k = x∗. Let us denote K = {k − 1 : k ∈ K̂} and then549

limk→∞, k∈K x
k+1 = x∗. We get from (3.14) that550

lim inf
k→∞, k∈K

〈∇xf̃(xk+1, µk), xk+1 − z〉 ≤ 0 for any z ∈ Ω.(3.15)551

Therefore x∗ is a stationary point of (1.1) associated with f̃ .552

The objective function f in this paper is a general non-Lipschitz nonconvex func-553

tion, which is broader than that considered in [4, 5, 11, 26]. In [5], the optimality and554

complexity for the convexly-constrained minimization problem are considered with555

the objective function in the following form556

f(x) := Θ(x) + c(h(x)), with h(x) := (h1(DT
1 x), h2(DT

2 x), . . . , hm(DT
mx))T .557

Here Θ : Rn → R and c : Rm → R are continuously differentiable, Di ∈ Rn×r, and558

hi : Rr → R, i = 1, . . . ,m are continuous, but not necessarily Lipschitz continuous.559

This type of functions include all the objective functions considered in [4, 11, 26]. A560

generalized stationary point based on the generalized directional derivative is proposed561

in Definition 2 of [5], which is shown to be a necessary optimality condition, and562

satisfies the necessary optimality conditions given or used in [4, 11, 26]. Note that563
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18 CHAO ZHANG AND XIAOJUN CHEN

any v ∈ T (xk+1) and ‖v‖ ≤ 1, there exists z ∈ Ω such that v = z − xk+1 ∈ T (xk+1).564

By (3.14) of Theorem 3.5 and ‖z − xk+1‖ ≤ 1,565

〈∇xf̃(xk+1, µk), v〉 = 〈∇xf̃(xk+1, µk), z − xk+1〉 ≥ −γ̂µk‖z − xk+1‖ ≥ −γ̂µk,566

which implies that (44) in Corollary 2 of [5] holds, and consequently any accumulation567

point of {xk} generated by the smoothing active set method is also a generalized568

stationary point of (1.1) defined in [5] for the same type of functions in [5] and Ω569

defined in (1.2).570

Remark 3.6. In Algorithm 3.1, we require for each fixed µk, the iterations of the571

inner loop is no less than n1. This strategy has no effect for convergence analysis, but572

aims to enhance the computational performance of finding a better stationary point573

with respect to f̃ .574

3.1. `2 − `p sparse optimization model. Problem (1.3) is a special case of575

problem (1.1), for which we show that Algorithm 3.1 has stronger convergence results576

than that in Theorem 3.5.577

For |t|, we construct its smoothing function as follows,578

sµ(t) =

{
|t| if |t| ≥ µ,
t2

2µ + µ
2 if |t| < µ.

(3.16)579

By simple computation, for any p ∈ (0, 1) and any t ∈ R, we have |sµ(t)p−|t|p| ≤ 2µp.580

We then easily find that581

f̃(x, µ) = ‖Ax− b‖2 + τ

n∑
i=1

(sµ(xi))
p

582

is a smoothing function of the objective function f in (1.3), and for any x ∈ Rn,583

|f̃(x, µ)− f(x)| ≤ κµp, with κ = 2τn.(3.17)584

The gradient of f̃(x, µ) is585

∇xf̃(x, µ) = 2AT (Ax− b) + τp

n∑
i=1

(sµ(xi))
p−1s′µ(xi).(3.18)586

Theorem 3.7. There exists at least one accumulation point x∗ of {xk} generated587

by Algorithm 3.1 with the smoothing function f̃ . Suppose lim
k→∞, k∈K

xk+1 = x∗. Then588

{ lim
k→∞, k∈K

∇xf̃(xk+1, µk)} is nonempty and bounded, and x∗ is a limiting stationary589

point of (1.3).590

Proof. Assumption 2.1 holds for f in (1.3), since the objective function in (1.3)591

satisfies that f(x)→ +∞ if ‖x‖ → +∞. Moreover, we know from (3.17) that592

f̃(xj+1, µj)− f(xj+1) ≥ −κµpj and f̃(xj , µj)− f(xj) ≤ κµpj .593

Therefore for any natural number k,594

f(xk+1) ≤ f̃(xk+1, µk) + κµpk ≤ f̃(xk, µk) + κµpk ≤ f(xk) + 2κµpk595

≤ · · ·596

≤ f(x0) + 2κ[µp0 + (ζµ0)p + (ζ2µ0)p + . . .+ (ζkµ0)p]597

≤ f(x0) + 2κµp0
1

1− ζp
.598
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Hence {xk} is bounded and there exists at least one accumulation point x∗ of {xk}599

generated by Algorithm 3.1.600

For any index i0 such that x∗i0 > 0, by direct computation,601

lim
k→∞, k∈K

(∇xf̃(xk+1, µk))i0 = (2AT (Ax∗ − b))i0 + τp(x∗i0)p−1.602

For i0 such that x∗i0 = 0, let K2 = {k ∈ K : xk+1
i0

> 0}. If K2 is an infinite603

subsequence, then we define zk+1,1 and zk+1,2 in Rn+ for each k ∈ K2, where604

zk+1,1
i =

{
xk+1
i if i 6= i0,

0 if i = i0,
and zk+1,2

i =

{
xk+1
i if i 6= i0,

2xk+1
i if i = i0.

605

Replacing zk+1,1 and zk+1,2 in (3.14) of Theorem 3.5 respectively, we get eventually606

−γ̂µk ≤ (∇xf̃(xk+1, µk))i0 ≤ γ̂µk for any k ∈ K2,607

and consequently608

lim
k→∞, k∈K2

(∇xf̃(xk+1, µk))i0 = 0.(3.19)609

Otherwise, there exists an integer k̄ > 0 such that xk+1
i0

= 0 for all k ≥ k̄, k ∈ K. In610

this case611

(∇xf̃(xk+1, µk))i0 = (2AT (Axk+1 − b))i0 + τp(sµk
(xk+1
i0

))p−1s′µk
(xk+1
i0

)612

= (2AT (Axk+1 − b))i0 + τp(
µk
2

)p−1
xk+1
i0

µk
613

= (2AT (Axk+1 − b))i0 for all k ≥ k̄, k ∈ K.614

Consequently615

lim
k→∞, k∈K

(∇xf̃(xk+1, µk))i0 = (2AT (Ax∗ − b))i0 .(3.20)616

Combining (3.19) and (3.20), we can easily find that any accumulation point V ∈ Rn617

of {∇xf̃(xk+1, µk)}K is of the special form618

Vi =

{
(2AT (Ax∗ − b))i + τp(x∗i )

p−1 if x∗i > 0
(2AT (Ax∗ − b))i or 0, if x∗i = 0

(3.21)619

that is bounded.620

Furthermore, we know V ∈ ∂f(x) by the definition of the limiting subdifferential,621

which indicates that x∗ is also a limiting stationary point of (1.3).622

Theorem 3.8. Let x∗ be an accumulation point of a sequence {xk} generated by623

Algorithm 3.1 for solving (1.3). If F(x∗) = ∅, then x∗ = 0 is a local minimizer of624

(1.3). If F(x∗) 6= ∅ and625

2(ATA)F(x∗)F(x∗) + τp(p− 1)diag((x∗F(x∗))
p−2) is positive definite,(3.22)626

then x∗ is a strict local minimizer of (1.3).627
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Proof. By Theorem 3.7, and (3.15) in the proof of Theorem 3.5, there exists an
accumulation point V of {limk→∞, k∈K ∇xf̃(xk+1, µk)} in the form of (3.21) such
that

〈V, x∗ − z〉 ≤ 0 for all z ≥ 0.

This indicates Vi = 0 for all i ∈ F(x∗).628

Let us define ςi := 2
τ

(
max{−(AT (Ax∗ − b))i, 0}+ 1

)
for all i ∈ A(x∗), and629

f̄(x) := ‖Ax− b‖2 + τ
∑

i∈F(x∗)

|xi|p + τ
∑

i∈A(x∗)

ςixi.(3.23)630

Now we consider the minimization problem631

min f̄(x) s.t. x ≥ 0,(3.24)632

whose objective function is twice continuously differentiable around x∗ ∈ Rn+. By633

direct computation, f̄(x∗) = f(x∗) and the gradient ∇f̄(x∗) has the form634

(∇f̄(x∗))i =

{
(2AT (Ax∗ − b))i + τp(x∗i )

p−1 if i ∈ F(x∗),
(2AT (Ax∗ − b))i + τςi if i ∈ A(x∗).

635

Clearly, (∇f̄(x∗))i = Vi = 0 for all i ∈ F(x∗) and (∇f̄(x∗))i ≥ 2 for all i ∈ A(x∗).636

Therefore, x∗ is a stationary point of (3.24) since637

x∗ ≥ 0, ∇f̄(x∗) ≥ 0, x∗T∇f̄(x∗) = 0.(3.25)638

Note that for any p ∈ (0, 1),

lim
t↓0, t 6=0

tp

t
= lim
t↓0, t 6=0

tp−1 = +∞.

Thus there exists δ1 > 0 such that for any x ∈ Bδ1(x∗) ∩Rn+639

ςixi ≤ xpi for all i ∈ A(x∗).640

Consequently for any x ∈ Bδ1(x∗) ∩Rn+,641

f̄(x)− f(x) = τ
∑

i∈A(x∗)

(ςixi − xpi ) ≤ 0.(3.26)642

If F(x∗) = ∅, then x∗ = 0 and f̄(x) in (3.23) is a convex function. Any stationary
point of (3.24) is a global minimizer of (3.24). Hence

f̄(x∗) ≤ f̄(x) for any x ∈ Rn+.

This, combined with (3.26), yields643

f(x∗) = f̄(x∗) ≤ f̄(x) ≤ f(x) for any x ∈ Bδ1(x∗) ∩Rn+.644

Hence x∗ is a local minimizer of (1.3).645

Now we consider F(x∗) 6= ∅. Noting (3.25), we know that (x∗, λ∗) satisfies646

the KKT conditions if and only if λ∗ = ∇f̄(x∗). Since for any i ∈ A(x∗), λ∗i =647

(∇f̄(x∗))i ≥ 2, it follows that the critical cone648

C(x∗, λ∗) = {d ∈ Rn : di = 0 for i ∈ A(x∗), and di ≥ 0 for i ∈ F(x∗) }.649
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It is easy to see that (3.22) is equivalent to650

dT∇2f̄(x∗)d > 0 for any d ∈ C(x∗, λ∗), d 6= 0,651

which are the second-order sufficient conditions for x∗ being a strict local minimizer652

of (3.24). Then there exists δ > 0 such that653

f(x∗) = f̄(x∗) < f̄(x) for any x ∈ Bδ(x∗) ∩Rn+.(3.27)654

This, combined with (3.26), yields655

f(x∗) < f(x) for any x ∈ Bδ̆(x
∗) ∩Rn+,656

where δ̆ = min{δ, δ1}. Hence x∗ is a strict local minimizer of (1.3).657

4. Numerical experiments. Hyperspectral image is a 3D image cube at hun-658

dreds of contiguous and narrow spectral channels often used in earth observation and659

remote sensing. Due to the low spatial resolution of hyperspectral cameras, pixels660

are often a mixture of several spectra of materials in a scene. This, together with661

the 3D image cube, makes the hyperspectral image hard to display and understand.662

Hyperspectral unmixing is the process of estimating a common set of spectral bases663

(called endmembers) and their corresponding composite percentages (called abun-664

dance) at each pixel so that people can better visualize, analyze and understand the665

hyperspectral image.666

In this section, we apply Algorithm 3.1 with Algorithm 2.1 to the constrained667

sparse nonnegative matrix factorization (NMF) used in hyperspectral unmixing. The668

mathematical model is as follows.669

min
W,H

1

2
‖V −WH‖2F + τ‖H‖pp(4.1)670

s.t. W ≥ 0, H ≥ 0,(4.2)671

1TKH = 1TN ,(4.3)672

where V = [v1, v2, . . . , vN ] ∈ RL×N+ is the given hyperspectral image data with L673

channels and N pixels, W = [w1, w2, . . . , wK ] ∈ RL×K+ is the endmember matrix674

including K endmember vectors with K � min{L,N}, and H = [h1, h2, . . . , hN ] ∈675

RK×N+ is the corresponding abundance matrix. Here 1K and 1N are the column676

vectors of all ones of dimension K and N , respectively.677

In the objective function in (4.1), the parameter τ > 0 balances the data fidelity678

term 1
2‖V −WH‖2F and the sparse regularization term ‖H‖pp, p ∈ (0, 1) that forces679

the sparsity of the abundance matrix. The sparse regularization term is effective680

for spectral unmixing since only a few endmembers can contribute to representing681

an observed pixel. To be physically meaningful, the nonnegative constraints in (4.2)682

are necessary. Moreover, the abundance sum-to-one constraints (ASC) in (4.3) are683

required since each column of H is the abundance vector whose components are the684

proportions of each endmember contributing to the mixed pixel. Let Hij denote the685

(i, j)-entry of the matrix H. The existence of ASC makes the usually used sparsity-686

induced regularization term ‖H‖1 =
∑
i,j |Hij | meaningless since in this case ‖H‖1687

equals a constant N .688

To solve the constrained sparse NMF model, the two block coordinate descent689

method is adopted. That is, W and H are considered to be two separate block690

variables, and the scheme alternatively solves the two subproblems of matrix-based691
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optimization problems. The difficulty of solving problem (4.1)-(4.3) for block H lies692

in two aspects: the non-Lipschitz regularization term of the objective function in (4.1)693

and the numerous N constraints defined by ASC in (4.3).694

In [30], Qian et al. considered the special case p = 1
2 and called the model L1/2-695

NMF. To deal with the ASC, Qian et al. adopted the strategy akin to that in [20] by696

augmenting the data matrix V and the endmember matrix W to Va and Wa as697

Va =

(
V
δ1TN

)
and Wa =

(
W
δ1TK

)
,(4.4)698

where δ > 0 controls the impact of the additivity constraint over the endmember699

abundances. This strategy, in fact, leads to solve the penalized counterpart700

min
W≥0, H≥0

1

2
‖V −WH‖2F + τ‖H‖pp +

1

2
δ2‖1TKH − 1TN‖2F .(4.5)701

The multiplicative update (MU) method [23] for classic NMF is extended to solve702

the L1/2-NMF, by alternatively updating W and H as703

W ←W. ∗ (V HT )./(WHHT ),(4.6)704

H ← H. ∗ (WT
a Va)./(WT

a WaH +
τ

2
Tξ(H)−

1
2 ),(4.7)705

where (Tξ(H)−
1
2 )ij = H

− 1
2

ij if Hij > ξ and (Tξ(H)−
1
2 )ij = 0 otherwise for a predefined706

threshold ξ > 0 to avoid computationally instability. Here “.∗” and “./” denote the707

elementwise matrix multiplication and division, respectively.708

Here we use the two block proximal alternating optimization (PAO) framework709

to solve (4.5). Let W k
a be the augmented matrix in (4.4) where the block W in Wa is710

replaced by W k.711

Algorithm 4.1 PAO Framework

1: Initialize W 1 ≥ 0, H1 ≥ 0, and parameters τ1 > 0 and τ2 > 0.
2: Repeat until a stopping criterion is satisfied

2.1 Find W k+1 and Hk+1 such that

W k+1 = arg min
W≥0
{1

2
‖V −WHk‖2F +

1

2
τ1‖W −W k‖2F },(4.8)

Hk+1 = arg min
H≥0
{1

2
‖Va −W k

aH‖2F + τ‖H‖pp +
1

2
τ2‖H −Hk‖2F }.(4.9)

2.2 Set k := k + 1.

We combine Algorithm 2.1 and Algorithm 3.1 proposed in this paper to solve the712

two subproblems (4.8) and (4.9) in Algorithm 4.1.713

• To solve the W -subproblem in (4.8), we use ASCG, i.e., Algorithm 2.1 with714

the LCO employing the conjugate gradient (CG) method [12].715

• To solve the H-subproblem in (4.9) that involves the non-Lipschitz term,716

we use SASCG, i.e., Algorithm 3.1 with ASCG that solves the smoothing717

H-subproblem of (4.9). The smoothing function of ‖H‖pp is constructed by718

using (3.16).719

We denote the method as PAO-ASCG-SASCG for short.720
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We also use the two block proximal alternating optimization (PAO) framework721

to solve (4.1)-(4.3) directly without penalization to the equality constraints, by sub-722

stituting (4.9) in Algorithm 4.1 by723

Hk+1 = arg min
H≥0, 1T

KH=1T
N

{FWk,Hk(H)},(4.10)724

where725

FWk,Hk(H) :=
1

2
‖V −W kH‖2F + τ‖H‖pp +

1

2
τ2‖H −Hk‖2F .(4.11)726

727

We then combine Algorithm 2.1 and Algorithm 3.1 proposed in this paper to solve728

(4.8) and (4.10) in the PAO framework.729

• To solve the W -subproblem in (4.8), we use the projected gradient method.730

• To solve the H-subproblem in (4.10), we use SASPG, i.e., Algorithm 3.1,731

together with Algorithm 2.1 in which the LCO being the projected gradient732

method. The smoothing function of ‖H‖pp is also constructed by using (3.16).733

We denote the method as PAO-PG-SASPG-O for short. Here ‘-O’ indicates that the734

original L1/2-NMF problem (4.1)-(4.3) is solved.735

It is worth mentioning that the constraints in (4.10) are N independent simplex736

hj ≥ 0,
∑K
i=1Hij = 1, j = 1, 2, . . . , N . Let737

A(Hk) := {(i, j) : Hk
ij = 0},738

Ω̆(Hk) := {H ∈ Ω : Hij = 0 if (i, j) ∈ A(Hk)}.739

740

The efficiency of Algorithm 2.1 depends on the fast computation of matrices741

PΩ[H], PΩ̆(Hk)[H], ∇ΩFWk,Hk(H), and gA(H). Here PΩ̆(Hk)[H] is used for the pro-742

jected gradient method that works on the faces Ω̆(Hk) of Ω. All the four types of743

matrices are essentially composed by projections of a vector on a certain polyhedron.744

The projections of a vector on a polyhedron can be obtained efficiently, e.g., [18]. Here745

we compute them in matrix form directly, since N is in general no less than 10000.746

We adopt the Matlab code SimplexProj in [34] for obtaining PΩ[H]. And by using747

the grouping idea of inactive indices as in [22], we use SimplexProj for computing748

PΩ̆(Hk)[H] on each group with the same inactive constraints. Moreover, the projected749

gradient ∇ΩFWk,Hk(H), and gA(H) can be computed efficiently in matrix form using750

the KKT conditions.751

We use two real-world data in the experiment.752

Jasper Ridge, is a popular hyperspectral data. There are 512 × 614 pixels in753

it. In this image, each pixel is recorded at 224 channels ranging from 0.38 to 2.5µm,754

and the spectral resolution is up to 9.46nm. Because this hyperspectral image is755

too complex to get the groundtruth, we consider a subimage of 100 × 100 as in [43],756

the first pixel of which is the (105, 269)-th pixel in the original image. After the757

channels 1–3, 108–112, 154–166 and 220–224 are removed (due to dense water vapor758

and atmospheric effects), we remain 198 channels (this is a common preprocess for759

hyperspectral unmixing analysis). There are 4 endmembers in groundtruth: ]1 Tree,760

]2 Soil, ]3 Water, ]4 Road.761

Urban, is one of the most widely used hyperspectral data in the hyperspectral762

unmixing study. There are 307 × 307 pixels, each of which corresponds to a 2 × 2763
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m2 area. In this image, there are 210 wavelengths ranging from 400 nm to 2500 nm,764

resulting in a spectral resolution of 10 nm. After the channels 1–4, 76, 87, 101–111,765

136–153 and 198–210 are removed, we remain 162 channels. There are 4 endmembers766

in ground truth: ]1 Asphalt, ]2 Grass, ]3 Tree, ]4 Roof.767

We choose p = 1
2 and consider the L1/2-NMF problem. We compare our methods768

(PAO-ASCG-SASCG and PAO-PG-SASPG-O) with the other three methods. The769

information of all the methods are summarized as follows.770

1) Our method: PAO-ASCG-SASCG that solves the penalized counterpart of771

L1/2-NMF problem in (4.5).772

2) Our method: PAO-PG-SASPG-O that solves the original L1/2-NMF problem773

in (4.1)-(4.3).774

3) PAO-PG-SPG-O: this method solves the original L1/2-NMF problem in (4.1)-775

(4.3). It employs the PAO framework in Algorithm 4.1 with (4.9) substituted776

by (4.10). The W -subproblem is solved by the PG method [24] and the H-777

subproblem is solved by the smoothing projected gradient method [41]. No778

active set strategy is adopted.779

4) MU method: this method is a state-of-art method that employs (4.6) and780

(4.7) recursively to solve the penalized counterpart of L1/2-NMF problem in781

(4.5).782

5) Adaptive HT method: this method is proposed in [35]. It employs the half-783

thresholding algorithm and an adaptive strategy for automatically choosing784

regularization parameters τkj , j = 1, 2, . . . , N in kth iteration, and solving the785

penalized L1/2 sparsity-constrained NMF defined by786

min
W≥0,H≥0

1

2
‖V −WH‖2F +

N∑
j=1

τkj ‖hj‖
1
2
1
2

.(4.12)787

788

We set the maximum CPU time to be 3000 seconds for all the methods, and789

the maximum number of iterations for the MU method to be 3000, and the max-790

imum number of iterations for the PAO-ASCG-SASCG, PAO-PG-SASPG-O, and791

PAO-PG-SPG-O methods to be 1000, and n1 = 5 in Algorithm 3.1. To overcome792

the nonconvexity of the original problem (4.1)-(4.3), and the penalized problem (4.5),793

we randomly choose 10 initial points for W 1 and H1 using the Matlab commands794

rand(L,K) and rand(K,N) for all the methods, respectively. And each column of795

H1 is further rescaled to be sum to one, according to the ASC in (4.3). The MU and796

the PAO-ASCG-SASCG methods involve two essential parameters τ and δ, while the797

Adaptive HT method only has one parameter δ, and the PAO-PG-SASCG-O meth-798

ods only has one parameter τ . In order to estimate an optimal parameter, we first799

determine the intervals [τmin, τmax], and/or [δmin, δmax] by trying the values at large800

steps. We then search the optimal parameters by trying more values in the interval801

[τmin, τmax], and/or [δmin, δmax].802

If (W,H) is a solution of NMF, then (WD,D−1H) is also a solution of NMF for803

any positive diagonal matrices D. To get rid of this kind of uncertainty, one intuitive804

method is to scale each column of W to be the unit `1− or `2-norm [39, 43], e.g.,805

Wlk ←
Wlk√∑
W 2
lk

, Hkn ← Hkn

√∑
W 2
lk.(4.13)806
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Considering the ASC in (4.3), we further let807

Hkn ←
Hkn∑
kHkn

.(4.14)808

To evaluate the performance of the computed solution, we use the spectral an-809

gle distance (SAD) and the root mean squared error (RMSE) [30, 35, 43] as two810

benchmark metrics. The SAD is used to evaluate the endmembers, which is defined811

as812

SAD(w, ŵ) = arccos

(
wT ŵ

‖w‖‖ŵ‖

)
,(4.15)813

where w is an estimated endmember, and ŵ is the corresponding ground-truth end-814

member. The RMSE is used to evaluate the performance of the estimated abundance,815

which is given by816

RMSE(z, ẑ) =

(
1

N
‖z − ẑ‖2

)1/2

,(4.16)817

where N is the number of pixels in the image, z is the estimated abundance map818

(a row vector in the abundance matrix H), and ẑ is the corresponding ground-truth819

abundance map. In general, a smaller SAD and a smaller RMSE correspond to a820

better hyperspectral unmixing result.821

We draw in Fig. 1 the corresponding objective value 1
2‖V − WH‖2F + τ‖H‖

1
2
1
2

822

of each iterate point versus the CPU time obtained by the PAO-PG-SASPG-O and823

the PAO-PG-SPG-O method, using the same optimal parameter τ = 1.5 × 106, and824

the same initial point on Jasper Ridge data, respectively. We divide the x-axis to be825

[0, 200] and [200, 3000] in two subfigures to see clear the decrease tendency and the826

final objective value. We can find from Fig. 1 that our PAO-PG-SASPG-O decreases827

faster and gets lower objective value than the PAO-PG-SPG-O method. The final828

objective value obtained by the PAO-PG-SASPG-O method is 2.6494e10, which is829

much lower than 2.6988e10 that obtained by the PAO-PG-SPG-O method. It is easy830

to see that the active set strategy helps fasten the computational speed.831
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Fig. 1. Convergence curve of objective value versus CPU time using the PAO-PG-SPG-O
and the PAO-PG-SASPG-O on the Jasper Ridge data, respectively.

For Jasper Ridge, we record in Table 1 the final SAD and RMSE for each end-832

member corresponding to the computed solution with the smallest sum of SAD and833
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RMSE, among the 10 trials of initial points as well as the choices of parameters. The834

lowest SAD and RMSE for each endmember, and the lowest average SAD and RMSE835

are indicated in bold face in Table 1. It is easy to see that the computed solution836

obtained by the PAO-PG-SASPG-O method proposed in this paper has the lowerest837

average SAD and RMSE of the four endmembers. Our proposed PAO-ASCG-SASCG838

method that solves the penalized version of L1/2-NMF also provides lower average839

SAD and RMSE than the MU and the Adaptive HT methods.840

For Urban, we record in Table 2 the final SAD and the final RMSE for each841

endmember. The lowest SAD and RMSE for each endmember, and the lowest average842

SAD and RMSE are indicated in bold face in Table 2. Clearly the PAO-ASCG-SASCG843

method provides the solution that obtains the lowest average SAD and RMSE than844

the other four methods. The PAO-PG-SPG-O and PAO-ASCG-SASCG-O method845

for solving the original model (4.1)-(4.3) do not provide satisfying SAD and RMSE.846

The reason, we think, is due to the model itself. As pointed out in [43], applying an847

identical strength of constraints to all the factors, (that is, in our case, using the same848

p = 1
2 for all the columns of H) does not hold in practice. Therefore, in [43] they849

proposed to solve850

min
W≥0,H≥0

1

2
‖V −WH‖2 + τ

N∑
j=1

‖hj‖pjpj ,(4.17)851

where pj ∈ (0, 1), j = 1, 2, . . . , N , are estimated from the original data V using852

two-steps procedures. If the pixels indeed have very different levels of sparsity as in853

Urban, the sum-to-one constraints will make the original model (4.1)-(4.3) deviate a854

lot from the true model. The PAO-ASCG-SASCG method, in contrast, because of855

the lack of the sum-to-one constraints, has the ability to adjust the sparsity levels of856

different pixels to some degree. The Adaptive HT method, which adaptively adjusts857

the different regularization parameter for each column of H, also has the effect to858

assign different level of sparsity for each pixel. When the pixels have not so much859

different levels of sparsity as in Jasper, the PAO-PG-SASPG-O that solves the original860

model (4.1)-(4.3) with the sum-to-one constraints provides the best SAD and RMSE.861

862

Table 1
SAD and RMSE on the Jasper Ridge data estimated by our methods and the other methods

SAD Avg.

Jasper Ridge (K = 4) ]1 ]2 ]3 ]4 ]1 ∼ ]4

MU 0.2070 0.1185 0.3324 0.2939 0.2379

Adaptive HT 0.1451 0.3099 0.1367 0.1515 0.1858

PAO-ASCG-SASCG 0.1241 0.0690 0.1859 0.1645 0.1359

PAO-PG-SPG-O 0.1315 0.0606 0.1132 0.0516 0.0892

PAO-PG-SASPG-O 0.1301 0.0616 0.1019 0.0609 0.0886

RMSE Avg.

MU 0.1235 0.0953 0.1773 0.0953 0.1361

Adaptive HT 0.1016 0.1483 0.1761 0.1885 0.1536

PAO-ASCG-SASCG 0.0836 0.0425 0.1244 0.1052 0.0889

PAO-PG-SPG-O 0.0846 0.0581 0.0929 0.0875 0.0808

PAO-PG-SASPG-O 0.0840 0.0578 0.0930 0.0842 0.0798

The abundance fractions for Jasper Ridge from the ground-truth, and separated863

by the five methods are shown in Fig. 2. We can also see that our proposed PAO-864

This manuscript is for review purposes only.



SMOOTHING ACTIVE SET METHOD 27

Table 2
SAD and RMSE on the Urban data estimated by our methods and the other methods

SAD Avg.

Urban (K = 4) ]1 ]2 ]3 ]4 ]1 ∼ ]4

MU 0.1976 0.0318 0.0454 0.1445 0.1048

Adaptive HT 0.0715 0.0393 0.0704 0.3288 0.1275

PAO-ASCG-SASCG 0.0738 0.0525 0.0314 0.0736 0.0578

PAO-PG-SPG-O 0.0900 0.1940 0.0423 0.3424 0.1672

PAO-PG-SASPG-O 0.0925 0.1026 0.0397 0.2153 0.1125

RMSE Avg.

MU 0.0989 0.1037 0.0707 0.0995 0.0932

Adaptive HT 0.1165 0.0964 0.0794 0.0895 0.0954

PAO-ASCG-SASCG 0.1101 0.1085 0.0562 0.0548 0.0824

PAO-PG-SPG-O 0.2595 0.2242 0.1281 0.2052 0.2242

PAO-PG-SASPG-O 0.2452 0.1715 0.1435 0.2082 0.1921

ASCG-SASCG and PAO-PG-SASPG-O methods provide good estimates of abun-865

dance. The abundance fractions for Urban from the ground-truth, and separated by866

the MU, the Adaptive HT, and the PAO-ASCG-SASCG methods are shown in Fig.867

3. It is easy to see that our proposed PAO-ASCG-SASCG method provide the best868

estimates of abundance.869

The numerical results demonstrate that our proposed PAO-PG-SASPG-O method870

and PAO-ASCG-SASCG method can efficiently solve the original and penalized L1/2-871

NMF problem, respectively. Moreover, at least one of our methods provides an excel-872

lent unmixing performance, compared to the popular MU method and the Adaptive873

HT method.874

It is worth pointing out that our smoothing active set method can deal with the875

sum-to-one constraints, but the MU method and the Adaptive HT method can not.876

Our smoothing active set method is flexible to solve the new model in (4.17) with877

additional sum-to-one constraints. It is interesting to further investigate how to get878

good estimation of pj , j = 1, 2, . . . , N , and whether applying our smoothing active879

set method to this new model can provide even better unmixing results in future.880

5. Conclusion remarks. We develop Algorithm 3.1, a novel smoothing active881

set method, for solving problem (1.1) where the objective function f may be non-882

Lipschitz continuous. We approximate f by a continuously differentiable function f̃883

and employ Algorithm 2.1 for solving the smooth optimization problem (3.5) until the884

special updating rule holds in the inner loop of Algorithm 3.1. Algorithm 2.1 is a new885

active set method for linearly constrained smooth optimization, which ensures that for886

any positive smoothing parameter µk, the iterate xk+1 satisfies ‖∇Ωf̃(xk+1, µk)‖ ≤887

γ̂µk. This property is essential for the convergence result of Algorithm 3.1. It is888

worth noting that convergence results of most existing active set methods for the889

smooth minimization problem (2.1) are in the sense lim infk→∞ PΩ[xk − ∇f(xk)] −890

xk = 0, which does not imply lim infk→∞ ‖∇Ωf(xk)‖ = 0. See inequality (2.35)891

and Example 1. Our global convergence result, as well as the nice finite identification892

property, and the local convergence result makes Algorithm 2.1 not only important for893

approximately solving subproblems in Algorithm 3.1 for non-Lipschitz minimization894

problem (1.1), but also advanced for smooth problem (2.1).895

Acknowledgements. We are very grateful to Prof. W. W. Hager and the896
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1-Tree 2-Water 3-Dirt 4-Road

Fig. 2. Abundance maps from the ground-truth, MU, Adaptive HT, PAO-ASCG-SASCG,
PAO-PG-SPG-O, and PAO-PG-SASPG-O (from the first row to the last row sequentially)
for four targets in the Jasper Ridge data.
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