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A SMOOTHING ACTIVE SET METHOD FOR LINEARLY
CONSTRAINED NON-LIPSCHITZ NONCONVEX OPTIMIZATION *

CHAO ZHANGT AND XIAOJUN CHEN¥

Abstract. We propose a novel smoothing active set method for linearly constrained non-
Lipschitz nonconvex problems. At each step of the proposed method, we approximate the objective
function by a smooth function with a fixed smoothing parameter and employ a new active set method
for minimizing the smooth function over the original feasible set, until a special updating rule for the
smoothing parameter meets. The updating rule is always satisfied within finite number of iterations
since the new active set method for smooth problems proposed in this paper forces at least one sub-
sequence of projected gradients to zero. Any accumulation point of the smoothing active set method
is a stationary point associated with the smoothing function used in the method, which is necessary
for local optimality of the original problem. And any accumulation point for the €2 — £, (0 < p < 1)
sparse optimization model is a limiting stationary point, which is a local minimizer under a certain
second-order condition. Numerical experiments demonstrate the efficiency and effectiveness of our
smoothing active set method for hyperspectral unmixing on 3D image cube of large size.
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stationary point
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1. Introduction. Active set methods have been successfully used for linearly
constrained smooth optimization problems of large size; see [8, 13, 17, 18, 25, 42]
and references therein. Hager and Zhang developed a novel active set algorithm for
the bound constrained smooth optimization problems in [17], and ten years later they
extended the method to solve linearly constrained smooth optimization problems [18].
The active set method in [18] switches between phase one that employs the gradient
projection algorithm for the original problem and phase two that uses an algorithm
with certain requirements for solving linearly constrained optimization problems on a
face of the original feasible set. Hager and Zhang [18] showed that any accumulation
point of the sequence generated by their method is a stationary point, and only phase
two is performed after a finite number of iterations under certain conditions.

For linearly constrained nonsmooth convex optimization problems, Panier pro-
posed an active set method [29], in which the search direction is computed by a
bundle principle. And the convergence result is obtained under a certain nondegener-
acy assumption. Wen et al. developed an active set algorithm for the unconstrained
¢1 minimization with good numerical performance and convergence results [36, 37].
For bound-constrained nonsmooth nonconvex optimization, Keskar and Wachter pro-
posed a limited-memory quasi-Newton algorithm which uses an active set selection
strategy to define the subspace in which search directions are computed [21]. Numer-
ical experiments were conducted to show the efficacy of the algorithm, but theoretical
convergence guarantees are elusive even for the unconstrained case. To the best of
our knowledge, there is no active set method that tackles linearly constrained non-
Lipschitz nonconvex optimization problems with solid convergence results.
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2 CHAO ZHANG AND XIAOJUN CHEN

One effective way to overcome the nonsmoothness in optimization is the type
of smoothing methods, which uses the structure of the problem to define smoothing
functions and the algorithms for solving smooth problems. Nesterov proposed a s-
moothing scheme [27] for minimizing a nonsmooth convex function over a convex set.
Zhang and Chen proposed a smoothing projected gradient method [41] for minimiz-
ing a Lipschitz continuous function over a convex set. Bian and Chen developed a
smoothing quadratic regularization method [4] for a class of linearly constrained non-
Lipschitz optimization problems arising from image restoration. Xu et al. proposed
a smoothing sequential quadratic programming method [38] for solving degenerate
nonsmooth and nonconvex constrained optimization problems with applications to
bilevel programs. Liu et al. proposed a smoothing sequential quadratic programming
framework [26] for a class of composite £, (0 < p < 1) minimization over polyhedron.

Inspired by the active set method [18] and the smoothing technique, we develop
a novel smoothing active set method with solid convergence results for the following
minimization problem

(1.1) min f(z) st. e,
where f: R™ — R is continuous but not necessarily Lipschitz continuous and
(1.2) Q={zeR" : cfr=d;, i€ Mg; clx<d;, i € Mz}

Here Mg = {1,2,...,m.}, My = {me +1,m.+2,...,m}, M = Mg|JM;, and
c € R",die Rfori=1,2,...,m.

Problem (1.1) involving a sparsity penalized term in the objective function has
recently intrigued a lot of interests. It serves as a basic model for a variety of im-
portant applications, including the compressed sensing [1], the edge-preserving image
restoration [4, 28], the sparse nonnegative matrix factorization for data classification
[40], and the sparse portfolio selection [9, 15]. For example, the widely used ¢y — £,
(0 < p < 1) sparse optimization model

(1.3) min [|[Az — b||* + 7||z|} st x>0,

where || - || refers to the Euclidean norm, [|z|5 = Y7, |2;|P, and A € R™*", b € R',
and 7 > 0 are given. The non-Lipschitz nonconvex term [|z||} in the objective function
and the nonnegative constraints benefit to recover some prior knowledge such as the
sparsity of the signal, or the range of pixels. It is worth mentioning that in typical
compressive sensing or image restoration, the dimension of optimization problems is
large.

In order to develop the smoothing active set method, we first assume f is smooth
in (1.1) in section 2 and develop an efficient new active set method for the linearly
constrained smooth problems, which can be considered as a modification of the active
set algorithm [18]. The new active set method combines the projected gradient (PG)
method [8] and a linearly constrained optimizer (LCO) that satisfies mild require-
ments. We show in Theorem 2.2 that the new active set method forces at least one
subsequence of projected gradients to zero. This property is essential in developing
the smoothing active set method with global convergence in section 3. It is guaran-
teed that any accumulation point of the sequence generated by the new active set
method is a stationary point. Moreover, if the sequence generated by the new active
set method converges to a stationary point x*, then the sequence can identify the set
of strongly active constraints and hence is trapped by the face exposed by —V f(x*)
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SMOOTHING ACTIVE SET METHOD 3

after a finite number of iterations. The convergence and identification properties are
not guaranteed by the active set method in [18] for the smooth problems. Based on
the identification properties, we also prove the local convergence result that if the
sequence converges to z* and the strong second-order sufficient optimality condition
holds, then only the LCO is executed after a finite number of iterations.

Combining the new active set method for linearly constrained smooth minimiza-
tion problem with delicate smoothing strategies, we then develop in section 3 a novel
smoothing active set method that solves the linearly constrained non-Lipschitz min-
imization problem (1.1). The new active set method for smooth problems is used to
solve the smoothing problems. We give the concept of a stationary point associated
with the smoothing function and show that it is necessary for optimality of the original
problem. We show that any accumulation point generated by the smoothing active
set method is a stationary point of the original problem. Moreover, it is a limiting
stationary point of problem (1.3). If in addition a second-order condition holds, it is
also a strict local minimizer of (1.3).

We conduct numerical experiments on real applications of large scale in hyper-
spectral unmixing in section 4. The numerical results manifest that the smoothing
active set method performs favorably in comparison to several state-of-the-art meth-
ods in hyperspectral unmixing.

Throughout the paper, we use the following notation. (x,y) = 27y presents the
inner product of two vectors z and y of the same dimension. R = {z € R" : = > 0}
and R, = {z € R" : 2> 0}. |S| corresponds to the cardinality of a finite set S. If
S is a subset of {1,2,...,n}, then for any vector u € R™ and M € R"™*"™, ugs is the
subvector of u whose entries lie in u indexed by S, and Mgs denotes the submatrix
of M whose rows and columns lie in S. N(M) is the null space of M. Let IN be the
set of all natural numbers and N¥, be the infinite subsets of IN. We use the notation
— for the convergence indexed by N € N . The normal cone to a closed convex set
Q at z is denoted by Ng(x), and Pox] = argmin{||z — x| : z € Q} is the orthogonal
projection from z into . The ball with center 2* and radius 6 is denoted by Bs(z*).
For any x € R™, the active and free index sets are defined by

Alz) = Mgu{ie M; : cfe=d}, Fl):={iecM; : cfz<d}.

2. A new active set method for linearly constrained smooth minimiza-
tion. In this section, we consider the following linearly constrained smooth problem

(2.1) min f(z) st. z€Q,

where f is continuously differentiable and 2 is defined in (1.2).
Recall that the projected gradient Vg, f(z) is defined by

Vaf(x) = Pr[=Vf(2)] = argmin{|jv + V()| : v e T(2)},

where T'(x) is the tangent cone to Q at x. Calamai and Moré (Lemma 3.1 of [8])
showed that z* € € is a stationary point of (2.1) if and only if Vo f(z*) = 0. It is
worth mentioning that ||Vq f(z)| can be bounded away from zero in a neighborhood of
a stationary point z*, since ||V f(+)|| is not continuous, but only lower semicontinuous
on € according to Lemma 3.3 of [8]. That is, for any {x*} C Q converging to ,

IVaf(z)| < liminf Vo f(®)].
k—o0
A stationary point x* of (2.1) is often characterized as

d'(x*) := Poz* — Vf(z*)] —2* = 0.
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4 CHAO ZHANG AND XIAOJUN CHEN

We find that convergence of most existing active set methods for (2.1) is to show

lim infy,_, o [|d*(z¥)|| = 0, such as the active set method in [18]. However, since the
norm of projected gradient is not continuous, lim infy_,« ||d*(2*)|| = 0 does not imply
liminfy o [|[Vaf(z¥)|| = 0. See Example 1 in section 2. The new active set method

proposed in this section aims to have
lim inf |V f(z")| = 0,
k—o0
which is essential for showing the convergence result of the smoothing active set

method for solving nonsmooth problem (1.1) proposed in section 3.

2.1. Structure of the new active set method. Now we introduce the neces-
sary notation used in the new active set method. Let us denote g(x) = V f(x). Given
an index set S satisfying Mg C S C M, we define g°(z) € R" by

(22)  ¢°(z) = Pyenlo(2)] = argmin{||y — g(2)|| : y € R" and C§y = 0},
where Cs € R™*IS| is the matrix whose columns are ¢;,i € S. In particular, we denote

g (z) for S = A(z) and if A(x) = 0, then g(z) = g(z). Thus g*(z) is the unique
optimal solution of the strongly convex problem

1
(2.3) min §||y —g@)]? st. cfy=0,i¢cA).

From the first-order optimality conditions, it is easy to find that for € Q, g**(z) = 0
if and only if x is a stationary point of f on its associated face

(2.4) Qz) ={yeQ : ¢f'y=d, for all i € A(z)}.

Let z* be a stationary point of (2.1) and A(z*) be the set of Lagrange multipliers
associated with the constraints. That is, * € Q and for any A* € A(z*), (*, \*)
satisfies

9(&") + X pmAici = 0,
(2.5) XS 0ifie MyNA(zY), \=0ifie Fla*),
Xi(cla* —d;) =0 for all i € M.
Consider

(2.6) y(z,0) = Polzr — ag(z)] = argmin {||z — ag(z) —y|* : y € Q},

where @ > 0 is a given number. Thus there exists A € R"™ such that (y(z,«), )
satisfies

y(@, ) = (z — ag(z)) + 35 p Aici = 0,
(2.7) Ai 20ifi e MyNA(y(z, ), N =0ifie Fy(r,a)),
Ni(cFy(x,a) —d;) =0 for all i € M.

Let A(z,a) be the set of Lagrange multipliers satisfying (2.7) at the solution y =
y(z,a) of (2.6). It is easy to see that

(2.8) y(z*,a) =2* and A(z", ) = alA(z).

This manuscript is for review purposes only.
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SMOOTHING ACTIVE SET METHOD 5

In the new active set method, it employs either the iteration of the PG method
or the iteration of the LCO by given rules. Let 2* be the current iterate and the LCO
be chosen to get the new iterate. Then the LCO solves the problem

(2.9) min  f(y) st. ye Q)

which operates on the faces of 2. Compared to the original problem (2.1), there are
usually much more equality constraints in (2.9) which may lead the efficiency of the
LCO. This is obviously true when the feasible set is defined by the bound constraints
or the simplex constraint (which are sometimes called “hard constraints” and it is
better to satisfy them strictly rather than penalize them into the objective function).
The PG step comes from the classic “piecewise PG method” proposed in [8], and an
arbitrary LCO can be chosen as long as it satisfies certain requirements listed below.

e PG method
Given p,8 € (0,1). For k =1,2,...,
set d¥ = —g(2%) and let 2**! = Pq[a* + ai.d¥] where ay is determined by
the Armijo line search, i.e., ap = max{p®, p!,...} is chosen such that
(2.10) FEY) < f@*) + Blg(a®), " —at).
e LCO Requirements
For k=1,2,...,

Fl: ¥ € Q and f(2F*1!) < f(aF) for each k.

F2: A(z*) C A(z**1) for each k. B

F3: If 3 k > 0 such that A(27) = A for all j > k, then liminf ||g*(27)|| = 0.
j—o00

F1 and F2 of the LCO Requirements are satisfied, as long as the LCO adopts
a monotone line search, and whenever a new constraint becomes active, it changes
the corresponding inequality constraint to the equality constraint in (2.9). Later we
always assume the two strategies are incorporated in the LCO. F3 requires that if the
active set becomes stable as A(x’) = A, then at least one accumulation point x* of
the sequence {z*} generated by the LCO is a stationary point of problem (2.9) with
QzF) ={yeQ : Ty=d, for all i € A}. Note that in this case z* is a stationary
point if and only if g*(z*) = 0. And since g*(z) = PN(CE)[g(x)], we know that

gA(-) : R — R™ is a continuous function. Thus g (z*) = 0 indicates
lim inf [|g* (27)|| = lim inf [|g% (7)[| = 0.
J—00 J—00

Therefore the LCO Requirements can be easily fulfilled by many algorithms based
on gradient or Newton type iterations that employ a monotone line search and add
constraints to the active set whenever a new constraint becomes active, e.g., the pro-
jected gradient method [8], the method of Zoutendijk (section 10.1 of [2]), the Frank-
Wolfe algorithm [16], the first-order interior-point method [33], and the affine-scaling
interior-point method [19]. When Q = R}, we can employ the LCO using essentially
unconstrained optimization methods such as the conjugate gradient method as in [17].

Now we are ready to outline the new active set method for problem (2.1).

2.2. Convergence analysis.

Assumption 2.1. For any ' € R, the level set
Lr={zeQ: f(z) <T}

is bounded.

This manuscript is for review purposes only.



6 CHAO ZHANG AND XIAOJUN CHEN

Algorithm 2.1 A new active set method

1: Parameters: € € [0,00), § and n € (0,1). 2! = Py[2Y], k = 1.
2: Phase one:
3: while ||[Vqf(2%)| > ¢, do
4:  Execute the PG step to obtain z**! from z*. Let k « k + 1.
5. I ||lg*(a®)|| < 0]|Vaf(z)], then 6 < né.
6:  If [|g”(z®)]| > 0]|Vaf(2z®)||, then go to phase two.
7: end while

8: Phase two:

9: while ||[Vqf(z*)| > ¢, do

10:  Execute the LCO step to obtain z**! from z*. Let k < k + 1.
1: - If [|gA(2F)| < 0||Vaf(z¥)|, then go to phase one and 6 + 7.
12: end while

In the remainder of this paper, we assume that the LCO satisfies the LCO Re-
quirements F1-F3, and Assumption 2.1 holds. We now show the global convergence
of Algorithm 2.1 for problem (2.1).

THEOREM 2.2. Let {z*} be the sequence generated by Algorithm 2.1 with ¢ = 0.
Then there exists at least one accumulation point of {z*},

(2.11) lim inf |V f(z*)| = 0,
k—o0

and any accumulation point of {x*} is a stationary point of (2.1).

Proof. By Assumption 2.1, there exists at least one accumulation point z* of

{x*}. Let {z*}rex be an infinite subsequence of {z*} such that o, Jim ka =z*
—00

s

If only phase one is performed for k sufficiently large, then by Assumption 2.1
and Theorem 2.4 of [8],

Rt k
lim — =0.
k—oo, keK QA
Hence for k — o0, k € K,
[t — || < 2™+ — 2P| + 2" —2*|| = 0,

k+1

which indicates limy o0, kex © = z*. According to Theorem 3.4 of [8],

: k+1 _
lim [ Vaf@) = o,

By the lower semicontinuity of |V f(-)| shown in Lemma 3.3 of [§],

* < . k+1 —
IVafG)l < lim_ [¥af@ )] =0,

which guarantees that z* is a stationary point of (2.1).

If only phase two is performed for k sufficiently large, then there exists 6 > 0 such
that 0 = 6 for k sufficiently large, because @ is never reduced in phase two. Hence for
k sufficiently large,

(2.12) lg ()| = 0|V f (")l

This manuscript is for review purposes only.
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SMOOTHING ACTIVE SET METHOD 7

Note that the LCO works on the faces of €2 and no index in the active set can be
freed from z* to z**! using the LCO. By F2 of the LCO Requirements, the active set
becomes stable for k large enough and hence liminfy o [|g*(2*)|| = 0 according to
F3. From (2.12) we then have (2.11) holds. By the lower semicontinuity of |V f(+)||,
x* is a stationary point of (2.1).

The remaining case is that there are an infinite number of branches from phase
two to phase one for {z¥}rcx. Then phase one is performed an infinite number
of times at k; < ko < --- < ---, where {k;} € K. By Theorem 3.4 of [8],
limy, o0 [|[Vaf(z%1)|| = 0. Again we find z* is a stationary point by using {z*+1} —
z* and the lower semicontinuity of ||V f(-)||. The proof is completed. O

Identification properties of an algorithm for linearly constrained problems are
significant from both a theoretical and a practical point of view [14, 25]. For a
stationary point x*, the set of strongly active constraints is defined by

AL(z*)=MpuUlie My : cl'a* =d;, and IN* € A(z*) such that X} > 0}.

i
In convex analysis, the face of a convex set €2 exposed by the vector w € R™ is
Elw] = argmax{w’z : z € Q}.

A computation based on the definition of a face shows that for the polyhedral set
given in (1.2),
(2.13) E[-Vfx*))={zeQ : ¢fx=d; if \} >0 foriec Mj},
where A* € A(z*). Note that this expression is valid for any choice of Lagrange
multipliers A* € A(z*).

We say that the linear independence constraint qualification (LICQ) holds at a
point x € Q, if the gradients ¢;,7 € A(x) are linearly independent.

THEOREM 2.3. Let {x*} be a sequence generated by Algorithm 2.1 with ¢ = 0
which converges to x*. Suppose that the LICQ holds at x*, and for some § > 0, g
is Lipschitz continuous in Bs(x™) with a Lipschitz constant 9. Then there exists an
integer ko > 0 such that

Ay (z*) C A(®) and 2* € E[-Vf(z¥)], for k> ko.

Proof. Since {x*} converges to z*, there exists kg > 0 such that z* € Bs(x*) for
any k > ko. Using the definition of y(x, ) in (2.6) and the Lipschitz continuity of g
with the Lipschitz constant ¢ in Bs(z*), we have for any o > 0 and k > ky,

*

ly(a®, a) — 2*|| = [ly(z*, a) — y(a*, )|
= [|Palz" — ag(a")] - Palz™ — ag(a")]|
< [lz* — " + a(g(z*) — g(z"))|
< (1+ag)fa® — ™.

Since {x*} converges to x*, there is an integer k& > 0 such that F(2*) C F(y(z*, a)) for
k > k. We know that A(z*) is a singleton, since the gradients of the active constraints
at «* are linearly independent. Thus A(z*,a) = aA(z*) is also a singleton for any
given a > 0. Moreover, A(z* ) is a singleton for k > k, because A(y(z*,a)) C
A(x*) for k > k and the gradients of the active constraints at y(z*, a) are linearly
independent.

This manuscript is for review purposes only.
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8 CHAO ZHANG AND XIAOJUN CHEN

Consider the linear system
(2.14) g+ > Xici =0, A =0forie My, A =0forie F(z*).
ieM
Let

p1=y(zk a) — 2% + ag(z®), and py =y(z*, a)—z* + ag(z®).
According to (2.7), A\¥ € A(x*, ) is feasible in the linear system (2.14) with ¢ = p;.
And by (2.5) and (2.8), it is easy to see that for A* € A(z*), aX* € A(z*,a) is also
feasible in the same system (2.14) but with ¢ = po. Hence by Hoffman’s result (see,
e.g., Theorem 7.12 of [32]) and the fact that A(z*,«) is a singleton, there exists a
positive constant v, independent of p; and ps and depending only on ¢;, i € M, such
that
IN* = aX*|| < vllpy — poll < 20(1 + ag)a® — 2*.

For any ig € My N Ay (x), the Lagrange multiplier \* € A(x™) satisfies A} > 0.
Thus there exists an integer I;:io > 0 such that )\fo > 0 for all £k > I;io. Now we
consider (2.6) and its first-order optimality conditions given in (2.7). We find that
¢l y(x*, o) = di, by complementarity and hence iy € A(y(z*,@)). Let

k=max{k;, i€ M;NA,(z*)} and k= max{k,k}.
Clearly for any i € A, (z*) and any given « > 0,
i€ Aly(z,a)) for all k > k.

We need to consider two possible cases. A

Case 1: There exists an integer 12:1 > k such that z*1*! is obtained from the PG
step in Algorithm 2.1. Then for any k > ky such that z¥*1 is obtained from z* by
the PG step in Algorithm 2.1, we know by (2.6)

oM = Pola® — arg(ah)] = y(2", an),

and consequently i € A(z**1) for any i € A4 («*). Since no active constraint can be
freed by the LCO step in phase two, we get

i€ A(zF) for any k > ky + 1.

Case 2: 2**1 is obtained from the LCO step in phase two for any k > k. By F2
of the LCO Requirements, we find A(z*) C A(z**+1) for all k > k. Then the active
constraints become unchanged after a finite number of steps. Thus there exists an
integer ko > k such that

A(z*) = A C A(z*) for all k > ky.

By the definition of g“‘I (%), and the first-order optimality conditions at the global
optimizer g(z*), there exists a unique vector 7% € R™ such that

(215) A" —9(a") — Eiggmie =0,
cFgh(z*)=0,ie A, nF=0ifig A

7
Here the vector 7% is unique because the column vectors ¢;, i € A C A(z*) are

linearly independent. Similarly, by the strong convexity of problem (2.3) with x

This manuscript is for review purposes only.
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SMOOTHING ACTIVE SET METHOD 9

being replaced by x*, and the linear independence of {¢;,i € A(x*)}, there exist a
unique vector g(z*) € R™ and a unique vector A € R™ such that

A (% * _
g7 (") —g(z*) — ZieA(x*) Aic; =0,
(2.16) TgA(z*) = 0, i € A(e™), A =0ifig A",

And there exists a unique vector A* € R™ such that

(2.17) = D> N, A =0ifig A,

i€ A(z*)

since z* is a stationary point of (2.1) and the gradients of the active constraints at
xz* are linearly independent.

We get g(z*) = 0 and A = \*, by comparing (2.16), (2.17) and using the
uniqueness of g (z*) and A in (2.16). Moreover, lim inf;_, gA(xk) = 0 according to
F3 of the LCO Requirements. Let {k;} C {k} be an infinite subsequence such that
limg; 00 g"i(xkf ) = 0. Taking limit to the first linear system in (2.15), we have
(2.18) 0= lim ¢ ( )+ Z hm 7r Ieq.

kj—o00

Comparing (2.17) and (2.18), and noting the uniqueness of A* in (2.17), we find

lim wk’—)\* 0 foranyie Ay(z")\ Mg.

kj—o0

Since 7F = 0 if i ¢ A for k sufficiently large according to (2.15), we know

hmﬂ' =0 foranyiec Ai(z")\ A

kj—o0

This indicates A, (z*) \ A = 0. Hence for any i € A, (z*), we get i € A = A(z¥) for
k> k.

Thus in any case, there exists an index I%O (/%0 = 1%1 + 1 if Case 1 occurs, and
IACO = ky if Case 2 happens otherwise) such that

Ay (z*) C A(z®)  for k > k.
This, combined with (2.13), implies
a* € E[-Vf(z*)] for k> ko.

We complete the proof. O

Based on the identification properties analyzed above, we will show the local
convergence result that only iterations in phase two occur for k sufficiently large, if
we further assume that the strong second-order sufficient optimality condition holds at

x*. A stationary point z* of (2.1) satisfies the strong second-order sufficient optimality
condition if there exists ¢ > 0 such that

(2.19) VIV2 f (") > offu])?

for all v € R™ such that c¢l'v =0 for all i € A, (z*).

This manuscript is for review purposes only.
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10 CHAO ZHANG AND XIAOJUN CHEN

LEMMA 2.4. Let {z*} be a sequence generated by Algorithm 2.1 with € = 0 which
converges to x*. Suppose that the LICQ holds at x*, and for some 6 > 0, g is Lipschitz
continuous in Bs(x*) with a Lipschitz constant o. Then

(2.20) [Vaf@®)|| < ollz® —x*||  for k sufficiently large.
Proof. From the nonexpansive property of the projection operator,

IVaf @) = Prges=9(@*)] — Prgas [—g@)] + Prisy[—g(@)]l
(221) < Jlg(z*) = g + [ Prgeny o ()]

Similarly,

| Przry[—g(z )]
= || Prmy [—g(z*)] = Prer)[—g9(zF)] + Prer[—g(=F)]]|
< lg(@®) = g(@)l + [[Vaf(@h)].

From (2.21) and (2.22),
IVaf(@)l = llg(z*) = 9@ < |Prew [=g@) < IVaf@®)] +llg(@®) — gl

Theorem 2.3 guarantees that there is an integer ko such that 2% € E[—V f(2*)] for all
k > ko. Thus according to Theorem 3.1 of [25], limg_o |V f(2*)| = 0. This, com-
bined with (2.22) and the facts that {#*} — z* and g is locally Lipschitz continuous
at x*, yields

(2.23) [ Pree [=g(z")]]| = 0.
—00

(2.22)

By direct computation,
(2.24) T ={v: cfv=0,iec Mg, cfv<0,iecM;nA=)}.

When z* is sufficiently near x*, we know F(z*) C F(z*). Then by Theorem 2.3, we
find

(2.25) A (a") C A() € A@).

From the inclusions in (2.25) and the fact that A(z*) has finite number of subsets,
there are only a finite number of index sets A1, ..., A, for A(z*), k =1,2,.... From
the expression of T'(z*) in (2.24), let us define

Tj={v:clv=0,icMg clv<0,ic MiNA} for j=1,2,... v
Without loss of generality, we assume
{TlaT27"'aTt}g {T17T27"'7T1/}

is composed by all the elements in {T1,T,...,T,} such that each T}, j = 1,2,...,t,
contains an infinite number of T'(z*), k = 1,2,.... Hence we get Pr,[—g(z*)] = 0 for
j=1,2,...,t, according to (2.23). Consequently, for all k£ sufficiently large, we have

Prn[=g(")] € {Pr,[=g(z")], Pr,[=g(«")], ..., Pr,[-g(z")]},
which indicates
(2.26) Prgxy[—g(z*)] =0 for all k sufficiently large.

Substituting (2.26) into (2.21) and using the Lipschitz continuity of g with the Lips-
chitz constant p in Bs(z*), we get our desired result (2.20). d
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SMOOTHING ACTIVE SET METHOD 11

LEMMA 2.5. Let {x*} be a sequence generated by Algorithm 2.1 with € = 0 which
converges to x*. If f is twice continuously differentiable in a meighborhood of x*,
the LICQ holds at z*, and the strong second-order sufficient optimality condition in
(2.19) holds at x*, then there exists 6* > 0 such that

(2.27) g (@®) || > 0% |Vaf(®)|  for all k sufficiently large.

Proof. By Theorem 2.3, A, (z*) C A(z*) for k > ky. Thus z* — 2* satisfies
cF(zF —2%) = 0 for all i € A, (2*) and k > ko. By the strong second-order suffi-

K2
cient optimality condition, we find z* is a strict local minimizer of (2.1), and for k

sufficiently large,
(2.28) (2" — &) (g(") — g(a*)) = 0.50]a* — 2" 2

Using the first-order necessary optimality conditions for a local minimizer of (2.1), we
know that there exists a multiplier A* € R™ such that

(2.29) g(z*) + Z Nei=0, (di—cla)\=0,i€cM; X >0,i€M;.
€M

We have for k sufficiently large, A4 (2*) C A(2*) and d; — cf'2* = 0 = d; — cF 2% when
1€ Ay (z*), and A\ =0 when ¢ € A, (z*). Hence

Nl (oF — %) = X [(di — ¢ x*) — (di — ¢ 2®)] =0 for all i € M.
This, combined with (2.29), yields

(2.30) (" —2")Tg(a™) = (" —2")Tg(a™) + Y Ne] =0.
ieM

Denote here S = A(2*) for simplicity. The first-order optimality conditions for
the minimizer g% (z*) in (2.2) implies the existence of As € RIS! such that

(2.31) g° (@) — g(a®) + Cshs = 0.

Because A(z*) C A(x*) for k > ko, we have ¢! (z¥ — 2*) = 0 for all i € S. Hence
(2.32) [CT(z% — 2*)]TAs = 0, for all k sufficiently large.

By (2.31) and (2.32), we find

(2:33)  (2F —a")Tg(a®) = (a* —2*)T[g%(@") + CsAs] = («* — ") T g% (a").

Using the Cauchy-Schwarz inequality, (2.33), (2.28) and (2.30) sequentially, we get

lz* = 2*[[lg° @)l > (&* — 2*)T g% (z")
= (@ — ") Tg(a")
= (¢ —2*)Tg(z") — g(a") + g(a™)]
> 0.50|z% — 2|2,

Reminding that S = A(x*), we have

(2.34) g™ (@®)|| > 0.50||z* — 2*|| for k sufficiently large.

This, together with Lemma 2.4, deduces (2.27) with 6* = 0.5%. |
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12 CHAO ZHANG AND XIAOJUN CHEN

We are ready to show that the new active set method given in Algorithm 2.1 will
only perform the LCO within a finite number of iterations.

THEOREM 2.6. Let {x*} be a sequence generated by Algorithm 2.1 with ¢ = 0
which converges to x*. If the assumptions in Lemma 2.5 hold, then within o finite
number of iterations, only phase two is executed.

Proof. First we claim that phase two must occur within a finite number of it-
erations. If on the contrary only phase one is occurred, then 6 is decreased in each
iteration, and will be decreased to 6 < 6* after a finite number of iterations. Then
according to Lemma 2.5, ||g”(2*)|| > 0||Va.f ()| will occur. Once this holds, phase
one branches to phase two. This is a contradiction.

Once phase two is invoked, then phase two cannot branch to phase one infinite
times. Otherwise, 8 will be reduced to § < 6* and again ||g*(zF)|| > 0||Vaf(x)|| will
occur, and after that phase two cannot branch to phase one. 0

Now we make clear the novelty of our new active set method in Algorithm 2.1,
compared to the active set method proposed by Hager and Zhang [18].  Algorithm
2.1 adopts the so-called piecewise PG method with z¥T! = Py[z* — az,g(2*)] so that
the search direction within one iteration is along the projection arc [8]. While the
active set method by Hager and Zhang [18] chooses the so-called gradient projection
algorithm (GPA) in which the single projection is used to define the feasible search
direction d* = Pqla* — ag(z*)] — 2% where @ > 0 is a fixed parameter, and the
next iterate point zFt1 = ¥ 4 s5,.d* is obtained by backtracking toward the starting
point along d*. As pointed out by Bertsekas in subsection 2.3 of [3] that the iterates
obtained by the piecewise PG method used in this paper are more likely to be at the
boundary than the GPA used in [18]. Moreover, the finite identification property of
the new active set method is shown in Theorem 2.3. On contrast, after Lemma 6.1 of
[18], the authors stated that there is a fundamental difference between the GPA and
the PG method, and consequently they can not show the finite identification property
of the active set method in [18].

The main motivation of such modification lies in that Algorithm 2.1 guarantees
liminfy o | Vaf(2*)|| = 0, which is novel and essential in providing the convergence
result of the new smoothing active set method given in the next section. This conver-
gence result is stronger than that of the active set method in [18] which guarantees
lim infj,_, o ||d*(z*)|| = 0, since by Lemma 2.2 of [8],

[Pafa® — aVf(a")] — Pola*]]

(2.35) IVaf(®)| = lim > [ld* (")

But liminfg_ o ||d'(2*)|| = 0 does not imply lim infy_, [|[Va.f(z¥)|| = 0 because the
norm of projected gradient is not continuous and can be large near the solution. This
can be explained by the following simple example.

Example 1 Let us consider the linearly constrained strongly convex quadratic
programming

min  0.01(10z; 4 22)? 4+ 10(z; + 1012y + 1) + 23
st. x9>1, 3> 0.

We know M = M; = {1,2} for this problem. It is easy to calculate that z* =

(z%, 25, 25)T = (-=10.1,1,0)T is the unique global minimizer. The Lagrangian mul-
tipliers corresponding to the constraint o > 1 and xz3 > 0 at z* are A\] = 200 and
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SMOOTHING ACTIVE SET METHOD 13

5 =0, respectively. Hence A (z*) = {1}, A(z*) = M = {1,2}, and z* is a degener-
ate stationary point. The tangent cone to the feasible region at z*, and the gradient
at x* are

T(z*) = {(d1,do,d3)T € R® : dy >0, d3 >0}, Vf(x},23,23) = (0,200,0)7.

Let 2* = (2, 25,257 = (=10.1 + (0.5)%/2,1 + (0.5)%,(0.5)%)T — z* as k — +oo.
By direct computation, the tangent cone to the feasible region at z* is T'(z*) = R3.
Since f is twice continuously differentiable near z*, we know that

Vi(a®) — Vf(z*) = (0,200,0)7 as k — oo,
and consequently
IV f (@) = | Pres) =V f @]l = | = VF(*)]| =200 as k — oo.
Hence khﬂngo [Vaf(x®)| = 200 > 0, although klin;o |d (x*)]| = 0.

Remark 2.7. Suppose {z¥} — z*, Vf is locally Lipschitz continuous at z*, and
the active constraints are identified after finite iterations. Then there exists kg > 0
such that T(z*) = T(z*) for all k > kg, and consequently limy_,o [|[Vaf(z*)| = 0
and limy_, , [|d'(2")|| = 0 are equivalent. However, the active set method in [18] may
not identify the active constraints, but only owns the property in Lemma 6.2 of [18]
that the violation of the constraints ¢!z — d; = 0 for i € A, (x*) by iterate z* is on
the order of the error in z* squared under certain conditions. Using Example 1, we
find

" = argmin, {[|a* —yl| : g2 =1} = (a7,1,25)",

and
¥ =z |25 — 1] (0.5)%

lim = = 1 _ B Sl BN =1.
Koo |28 — 2|2 koo |[2F — 2|2 koo (0.5)F + (0.5)2F + (0.5)2F

This indicates that although under certain conditions any sequence generated by the
active set method [18] satisfies the property in Lemma 6.2 of [18], this property does
not guarantee liminfy_, ||Vaf(z*)|| = 0 that we need in designing the smoothing
active set method with convergence result.

3. Smoothing active set method. In this section, we develop a smoothing
active set method for solving (1.1) with solid convergence result. Here the objective
function f is continuous, but not necessarily Lipschitz continuous.

To characterize the stationary points of (1.1), we review first the concepts of rly
several subdifferentials that are often used in nonsmooth analysis [6, 31] and references
therein. Let f : R™ — R be a proper lower semi-continuous function and = € R™ be a
point where f(z) is finite. The Fréchet subdifferential, the limiting (or Mordukhovich)
subdifferential, the horizontal (or singular Mordukhovich) subdifferential, and the
Clarke subdifferential (Definition 1 of [6]) are defined respectively as

Of (@) :={v : fy) = f(@)+ 0" (y—2) +ollly — ), Yy},
of(x) :== {v LR z, 0" = v with o* € éf(mk), Vk},

O® f(x) = {v . 3k Iy z, tpvk — vt | 0 with oF € éf(xk), Vk},
9°f(z) = co{of(z) + 0™ f(z)},
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14 CHAO ZHANG AND XIAOJUN CHEN

where z* 5 & means that z* — 2 and f(z*¥) — f(z), and “co” means the closure

of convex hull. We say that z* is a Clarke stationary point of (1.1), if there is
V € 0° f(x*) such that

(3.1) (Vya* —z) <0 for all z € Q.

If there exists V' € df(x*) such that (3.1) holds, then a* is a limiting stationary point
of (1.1). Under the basic qualification (BQ)

(3-2) —0* f(«") N Na(z") = {0},

if * is a local minimizer, then x* is a limiting stationary point (Rockafellar and Wets,
Theorem 8.15 of [31]). It is easy to see that BQ in (3.2) holds if f is locally Lipschitz
continuous at x*, or x* is an interior point of 2. However, BQ often fails if f is
non-Lipschitz at a boundary point z* as pointed out in [9].

We use the following definition for smoothing function.

DEFINITION 3.1. Let f : R" — R be a continuous function. We call f:R"x
Ry — R a smoothing function of f, if f(-, ) is continuously differentiable in R™ for
any p € Ry, and for any x € R",

(3.3) lim  f(z,p) = f(2),

z—x, pnl0

and there exists a constant kK > 0 and a function w: Ry, — Ry, such that

(3.4) (@, ) = @) < wwlp) - with limew(p) = 0.
For each fixed p > 0, the smooth subproblem is then defined by
(3.5) min f(z,p) st. xeQ,
and the projected gradient Vg f(x, 1) is defined by
Vaf(@,1) = Pry -V f(z, p)] = argmin{[lo + Vo f(a, p)|| : v e T(2)},

where T'(z) is the tangent cone to Q at z. Now we present our smoothing active set
method, Algorithm 3.1.

Algorithm 3.1 Smoothing active set method

1: Let 4 be a positive constant, ¢ be a constant in (0,1), and n; > 0 be a positive
integer. Choose 2° €  and po > 0.
For k > 0:
2: Let yOF = xf“, 7:=0.
3. while |Vof(y?*, us)|| > Apx or j < ny, do
Execute one iterate of the active set method in Algorithm 2.1 for (3.5) with
it = pu, from the initial point y* and get the new point /%,
Set j:=j5+1.
5: end while
6: Set zFtl = gk,
7: Choose pgy1 < (.
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SMOOTHING ACTIVE SET METHOD 15

Remark 3.2. It is worth mentioning that Algorithm 3.1 can be extended to a
general framework of smoothing method, since the new active set method in Algorithm
2.1 that used in Algorithm 3.1 can be substituted by any other type of algorithm
for minimizing smooth function (SA for short) on a closed convex set, as long as the
algorithm satisfies the SA Requirement defined below. And then the same convergence
result developed in this section can be obtained without difficulty.

SA Requirement For any fixed u > 0, let {z*} be generated by the SA that
solves (3.5). Then

lim inf Vo f (2%, 1) = 0.
k—o00

When Q = R", then (3.5) reduces to unconstrained smooth optimization and
hence Vof(z,p) = —Vf(x,u). Many unconstrained algorithms (UAs) for (3.5)
meet the SA Requirement, e.g., the steepest descent method, the accelerated gra-
dient method proposed by Nesterov, the conjugate gradient method, the trust region
method, and the quasi-Newton method. When € is a general closed convex set, the
projected gradient method satisfies the SA Requirement. When (2 is constructed by
linear constraints defined in (1.2), the new active set method developed in section 2
meets the SA Requirement as we desired. Although the proposed active set method
is in spirit very similar to Hager and Zhang’s approach [18], the satisfaction of the SA
Requirement makes it necessary and novelty for building up the convergence of the s-
moothing active set method that tackles linearly constrained non-Lipschitz nonconvex
optimization problems.

Since we use a smoothing function in Algorithm 3.1, the convergence result is
natural to connect with the smoothing function employed.

DEFINITION 3.3. We say that x* is a stationary point of (1.1) associated with a
smoothing function f, if

(3.6) liminf  (Vf(z,p),x —2) <0 for all z € Q.

z—a*, z€Q, plo
For any fixed x € Q, denote
(3.7) Gj(z):={V : 3N eNE, z¥ —x, pu, 4 0 with Vi f(z”, 1) — Vi
By Corollary 8.47 (b) in [31], we have

0f(z) C G ().

When f is Lipschitz continuous, it is shown in [7, 10, 31] that many smoothing func-
tions satisfy the gradient consistency property

9°f(z") = G(a").

Then the stationary point of (1.1) associated with f coincides to the Clarke stationary
point, i.e., there exists V' € 9° f(z*) such that (3.1) holds. When f is continuously dif-
ferentiable at x*, then 9° f(z*) = {V f(2*)} and z* coincides to the classic stationary
point for smooth minimization problems.

Now we show that x* being a stationary point of (1.1) associated with a smoothing
function f is a necessary optimality condition for * being a local minimizer, without
the requirement for BQ.

This manuscript is for review purposes only.
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PROPOSITION 3.4. For any given smoothing function f defined in Definition 3.1,
if ** is a local minimizer of (1.1), then x* is a stationary point of (1.1) associated
with f.

Proof. Since z* is a local minimizer of (1.1), there exists a constant § > 0 such
that

f(z®) < f(z) for any z € Bs(x™) N

This, combined with (3.4) in Definition 3.1 for the smoothing function, yields that for
all x € Bs(z*) N Q,

(3.8) fla*,p) < f(@) + rw(p) < f(@) + rw(p) < flo, 1) + 2r0 ().

For any z € Q, let x,, = 2™+ /w(u)(z—x*). Since Q is a convex set and lim,, ;o w(p) =
0, we get x,, € Bs(x*)NQ for all p sufficiently small and «,, — 2* as i | 0. By Taylor’s
theorem,

Fa* 1) = f@p, ) + Vo f (@ )T (@ —2,) + ol |l2* = z,])

(@0 1) + V() Vo [, 1) (27 = 2) + o(V/w(p)).

Substituting (3.9) into the left side of (3.8) and replacing = by z,, into the right side
of (3.8), we get

=f
(3.9) =f

VW) Vo f(@u, n) (@ = 2) +o(Vw(p)) < 2rw().

Dividing both sides of the above inequality by /w(p), and taking the limit as p | 0,
we find

(3.10) limsup(V, f(z,, 1), 2% — 2z) < 0.
w0

Note that

<vm.f(xlu/u')7xll - Z> = (1 Y W(M))<me($mﬂ)7ff* - Z>

This, together with (3.10), yields that

liminf(fo(xu,u),xu —z) =lminf(1 — \/w()) (Ve f(zu, p),z* —2) <0,
10 10

which indicates

(3.11) liminf  (Vuf(z,p),x —2) <0 forall z € Q.

rz—x*, €, pulo

Hence (3.6) holds and z* is a stationary point of (1.1) with respect to f. 0
Now we are ready to give the global convergence result of Algorithm 3.1.

THEOREM 3.5. Assume Assumption 2.1 holds. Then any accumulation point x*
of {z*} generated by Algorithm 5.1 is a stationary point of (1.1) associated with the
smoothing function f.
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SMOOTHING ACTIVE SET METHOD 17
Proof. By (3.4) of Definition 3.1, for each fixed p > 0,
(@) = kw(p) < fla,p) < flx) + rw(p).
Then for each fixed p > 0,
Lur={zeQ : flz,n) <T}
is bounded for any I', because f(x, p) < T implies f(x) < T+ xw(p) and Lpy () is

bounded by Assumption 2.1.
By (2.11) of Theorem 2.2, we know Algorithm 3.1 is well-defined and

(3.12) IV f@™ p)| < Apw, and - lim py =0,

According to Calamai and Moré [8],

(3.13) min{(V. f(z" ', i), 0) : v € T, ||ol| < 1} = —|[Vaf@**, wo)].
For any z € ), it is easy to see that

o — karl

U E =

€ T(z*) and |jv] =1,

and hence by (3.13)

(Va (@, ), a1 = 2) < Vo f @, o)l — 1]
This, combined with (3.12), yields
(3.14) (Vo fa® ), — 2) < qupllz — 28| for any z € Q.

Since z* is an accumulation point of {x*}, there exists an infinite sequence K e
NE such that lim, ,__ wei ¥ = x*. Let us denote K = {k —1 : k € K} and then

limy, o0, kere 2¥T1 = 2%, We get from (3.14) that

(3.15) liminf (V,f(z**, ), 2 —2) <0 for any z € Q.
k—oo, keK
Therefore z* is a stationary point of (1.1) associated with f . 0

The objective function f in this paper is a general non-Lipschitz nonconvex func-
tion, which is broader than that considered in [4, 5, 11, 26]. In [5], the optimality and
complexity for the convexly-constrained minimization problem are considered with
the objective function in the following form

f(2) :=O(z) +c(h(x), with h(z):= (hi(Diz), ha(D3x),... , hy(DEx))T.
Here © : R® — R and ¢ : R™ — R are continuously differentiable, D; € R™*", and
h;i : R" — R, =1,...,m are continuous, but not necessarily Lipschitz continuous.
This type of functions include all the objective functions considered in [4, 11, 26]. A
generalized stationary point based on the generalized directional derivative is proposed
in Definition 2 of [5], which is shown to be a necessary optimality condition, and
satisfies the necessary optimality conditions given or used in [4, 11, 26]. Note that
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18 CHAO ZHANG AND XIAOJUN CHEN

any v € T(x**1) and ||v|| < 1, there exists z € Q such that v = z — 2**1 € T(2F+1).
By (3.14) of Theorem 3.5 and ||z — 2*+1|| < 1,

<fo($k+17ﬂk)7v> = <wa($k+laﬂk)az - xk+1> Z _’?MkHZ - xk+1|| Z _’Ay,uka

which implies that (44) in Corollary 2 of [5] holds, and consequently any accumulation
point of {z¥} generated by the smoothing active set method is also a generalized
stationary point of (1.1) defined in [5] for the same type of functions in [5] and Q
defined in (1.2).

Remark 3.6. In Algorithm 3.1, we require for each fixed puy, the iterations of the
inner loop is no less than n;. This strategy has no effect for convergence analysis, but
aims to enhance the computational performance of finding a better stationary point
with respect to f.

3.1. ¢, — {, sparse optimization model. Problem (1.3) is a special case of
problem (1.1), for which we show that Algorithm 3.1 has stronger convergence results
than that in Theorem 3.5.

For [t|, we construct its smoothing function as follows,

lt| if [t] > p,
3.16 su(t) = 2 .
(3.16) w(®) {éu—i—g if |t| < p.
By simple computation, for any p € (0,1) and any ¢ € R, we have |s,,(t)? —[¢|?| < 2pP.
We then easily find that

Fle,u) = Az = 0)° + 7 " (su(@i)?

i=1

is a smoothing function of the objective function f in (1.3), and for any = € R™,

(3.17) |f(z, 1) — f2)] < kP,  with k = 27n.

The gradient of f(z, u) is

(3.18) Vo f(@,n) = 2AT(Az = b) +7p Y (s,(2:))P s}, (1)
i=1

THEOREM 3.7. There exists at least one accumulation point x* of {z*} generated
by Algorithm 5.1 with the smoothing function f. Suppose  lim  zF+t1 =2*. Then

k—oo, kEK

{k limk Kvxf(xk“,uk)} is nonempty and bounded, and x* is a limiting stationary
—00, ke
point of (1.3).

Proof. Assumption 2.1 holds for f in (1.3), since the objective function in (1.3)
satisfies that f(x) — 400 if ||z|| = +00. Moreover, we know from (3.17) that

F@h ) = f@*) > —mpfand - f(a7, ) = f(2?) < wpef
Therefore for any natural number k,

FE@ETY) < Fa™ ) + wpd < F(a, ) + wpd < F(a) + 2kp]

IAINA

F@°) + 26[u8 + (Co)” + (CPpo)” + .. + (¢Frao)?]
f

IN

(2%) + 2k pb

1
1—¢r
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SMOOTHING ACTIVE SET METHOD 19

Hence {z*} is bounded and there exists at least one accumulation point z* of {x*}
generated by Algorithm 3.1.
For any index ig such that 7 > 0, by direct computation,

fr k41 - T * ) * \p—1
b (Vaf (@70 i))ig = (247 (Ax™ — b)), +7p(,)"

For ip such that z; = 0, let Ky = {k € K : ¥ > 0}, If Ky is an infinite

io
subsequence, then we define 511 and z#T12 in R"} for each k € K>, where

k41 ep - . k41 p .
€T ifi#1 T ifi#14
11 :{ ; Ao and oA12 { i 7 o,

é 0 if ¢ = iy, 22K i i = 4y
Replacing 211 and 212 in (3.14) of Theorem 3.5 respectively, we get eventually
g < (Vo f (@ 1k))ig < Apx for any k€ Ko,

and consequently

(3.19) o dm (Vo f@ )i, = 0.

Otherwise, there exists an integer & > 0 such that xf{j‘l =0forallk >k ke K. In
this case

(Vaf (@™ 1))ip = QAT (A2 = 0))ig + 7p(sp0, (25, )P s, (1)

20 ME "0
k+1
x”
= (24T (Aah ! b)), + p(Hry
22

= (24T (A"t — b)) for all k > k, k € K.

i
Consequently

(8.20) dm (V@ )i, = (24T (A = b)),

Combining (3.19) and (3.20), we can easily find that any accumulation point V' € R"
of {V.f(z**1 us)} i is of the special form

*

(3.21)

%

Vi = (AT (Az* —b)); + mp(xF)P~1 ifaf >0
T (24T (Az* —b)); or 0, ifxf=0

N

that is bounded.
Furthermore, we know V' € 9f(x) by the definition of the limiting subdifferential,
which indicates that z* is also a limiting stationary point of (1.3). |

THEOREM 3.8. Let z* be an accumulation point of a sequence {z*} generated by
Algorithm 3.1 for solving (1.3). If F(z*) = 0, then z* = 0 is a local minimizer of
(1.3). If F(z*) # 0 and
(3.22) 2(ATA)r()F(ar) + TP(P — 1)diag((a:*]_-(m*))p*2) is positive definite,

then x* is a strict local minimizer of (1.3).
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20 CHAO ZHANG AND XIAOJUN CHEN

Proof. By Theorem 3.7, and (3.15) in the proof of Theorem 3.5, there exists an
accumulation point V' of {limy_ oo, ker me(:ck“,uk)} in the form of (3.21) such
that

(Viz* —2z) <0 forall z>0.

This indicates V; = 0 for all i € F(z*).
Let us define g; := %(max{f(AT(Ax* -0));,0} + 1) for all : € A(z*), and

(3.23) f@)y=lAz=blP+7 > |ml+7 D
1€F (z*) i€A(z*)

Now we consider the minimization problem

(3.24) min f(z) st. x>0,

whose objective function is twice continuously differentiable around z* € R}. By
direct computation, f(z*) = f(z*) and the gradient V f(z*) has the form

[ QAT(Az — b))+ o)l i e Fla),
Vil ))i‘{ (247 (A" b)), + 75 it € Az

Clearly, (Vf(z*)); = V; = 0 for all i € F(z*) and (Vf(x*)); > 2 for all i € A(z*).
Therefore, z* is a stationary point of (3.24) since

(3.25) 2* >0, Vi(@*) >0, 22"V f(z*) = 0.

Note that for any p € (0,1),

lim = lim #!=+c0.
t10, t£0 t tw t£0

Thus there exists d; > 0 such that for any = € Bs, (z*) N R’}
G, <abf forall i€ A(x*).

Consequently for any x € Bs, (z*) N R,

(3.26) f@)—f@) =7 3 (qai—ab) <o.

i€ A(x*)

If F(x*) = (), then z* = 0 and f(z) in (3.23) is a convex function. Any stationary
point of (3.24) is a global minimizer of (3.24). Hence

f(x*) < f(z) for any z € R.
This, combined with (3.26), yields
F(@*) = F@*) < f(z) < f(z) forany x € By, (+) N RY.

Hence z* is a local minimizer of (1.3).

Now we consider F(z*) # 0. Noting (3.25), we know that (x*, \*) satisfies
the KKT conditions if and only if \* = Vf(z*). Since for any i € A(z*), \f =
(Vf(z*)); > 2, it follows that the critical cone

Cla*,\*)={de R" : d;=0foriec A(z"), and d; > 0 for ¢ € F(z*) }.
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It is easy to see that (3.22) is equivalent to
d'V2f(z*)d >0 for any d € C(z*,\*), d # 0,

which are the second-order sufficient conditions for z* being a strict local minimizer
of (3.24). Then there exists § > 0 such that

(3.27) f(@*) = f(z*) < f(z) for any z € Bs(z*) N RY}.
)

This, combined with (3.26), yields

f(x™) < f(xz) for any x € By(z*) N R,

where § = min{é,d;}. Hence z* is a strict local minimizer of (1.3). O

4. Numerical experiments. Hyperspectral image is a 3D image cube at hun-
dreds of contiguous and narrow spectral channels often used in earth observation and
remote sensing. Due to the low spatial resolution of hyperspectral cameras, pixels
are often a mixture of several spectra of materials in a scene. This, together with
the 3D image cube, makes the hyperspectral image hard to display and understand.
Hyperspectral unmixing is the process of estimating a common set of spectral bases
(called endmembers) and their corresponding composite percentages (called abun-
dance) at each pixel so that people can better visualize, analyze and understand the
hyperspectral image.

In this section, we apply Algorithm 3.1 with Algorithm 2.1 to the constrained
sparse nonnegative matrix factorization (NMF) used in hyperspectral unmixing. The
mathematical model is as follows.

.1
(4.) wmin oV~ WH|+ 7| H|}
(4.2) st. W>0, H>Q0,
(4.3) 1LH=1%,
where V' = [v1,va,...,0n] € RiXN is the given hyperspectral image data with L
channels and N pixels, W = [wy,ws,...,wk] € RiXK is the endmember matrix

including K endmember vectors with K <« min{L, N}, and H = [hy,ha,... , hy] €
Rf *N is the corresponding abundance matrix. Here 1x and 1y are the column
vectors of all ones of dimension K and N, respectively.

In the objective function in (4.1), the parameter 7 > 0 balances the data fidelity
term ||V — WH||3, and the sparse regularization term ||H||?, p € (0,1) that forces
the sparsity of the abundance matrix. The sparse regularization term is effective
for spectral unmixing since only a few endmembers can contribute to representing
an observed pixel. To be physically meaningful, the nonnegative constraints in (4.2)
are necessary. Moreover, the abundance sum-to-one constraints (ASC) in (4.3) are
required since each column of H is the abundance vector whose components are the
proportions of each endmember contributing to the mixed pixel. Let H;; denote the
(i,j)-entry of the matrix H. The existence of ASC makes the usually used sparsity-
induced regularization term ||H|[y = ), . |H;;| meaningless since in this case ||H]||
equals a constant N.

To solve the constrained sparse NMF model, the two block coordinate descent
method is adopted. That is, W and H are considered to be two separate block
variables, and the scheme alternatively solves the two subproblems of matrix-based

i |
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22 CHAO ZHANG AND XIAOJUN CHEN

optimization problems. The difficulty of solving problem (4.1)-(4.3) for block H lies
in two aspects: the non-Lipschitz regularization term of the objective function in (4.1)
and the numerous N constraints defined by ASC in (4.3).

In [30], Qian et al. considered the special case p = % and called the model L, /o-
NMEF. To deal with the ASC, Qian et al. adopted the strategy akin to that in [20] by

augmenting the data matrix V and the endmember matrix W to V, and W, as

1% W
(4.4) Ve, = ( 61% ) and W, = ( 61% ),

where & > 0 controls the impact of the additivity constraint over the endmember
abundances. This strategy, in fact, leads to solve the penalized counterpart

. 1 2 p o Lot T |12
(@5) mm LV WHIE 4 HE + L8 1

The multiplicative update (MU) method [23] for classic NMF is extended to solve
the L,,-NMF, by alternatively updating W and H as

(4.6) W W.x (VHT).JWHHT),
(4.7) H  H.x (W]Vo)./ (W W,H + STe(H) %),

where (Te(H)™%);; = Hi;% if Hy; > ¢ and (Te(H)~2);; = 0 otherwise for a predefined
threshold £ > 0 to avoid computationally instability. Here “.x” and “./” denote the
elementwise matrix multiplication and division, respectively.

Here we use the two block proximal alternating optimization (PAO) framework
to solve (4.5). Let WF be the augmented matrix in (4.4) where the block W in W, is
replaced by W*.

Algorithm 4.1 PAO Framework

1: Initialize W' > 0, H' > 0, and parameters 7, > 0 and 75 > 0.
2: Repeat until a stopping criterion is satisfied
2.1 Find W*+! and H**! such that

1 1
k+1 . + _ k2 - _ k12
(48) WA = arg i {JIV ~ WH I3+ W - W),
.1 1
(4.9)  HY = argmin{C Vo = WoH|% + 7| HIF + 5mllH — HY[7}.

2.2 Set k:=k+1.

We combine Algorithm 2.1 and Algorithm 3.1 proposed in this paper to solve the
two subproblems (4.8) and (4.9) in Algorithm 4.1.

e To solve the W-subproblem in (4.8), we use ASCG, i.e., Algorithm 2.1 with
the LCO employing the conjugate gradient (CG) method [12].

e To solve the H-subproblem in (4.9) that involves the non-Lipschitz term,
we use SASCG, i.e., Algorithm 3.1 with ASCG that solves the smoothing
H-subproblem of (4.9). The smoothing function of |[H||} is constructed by
using (3.16).

We denote the method as PAO-ASCG-SASCG for short.
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We also use the two block proximal alternating optimization (PAO) framework
to solve (4.1)-(4.3) directly without penalization to the equality constraints, by sub-
stituting (4.9) in Algorithm 4.1 by

(4.10) H* = arg min {Fwe ge(H)},
H>0, 1L H=1% ’
where
1 1
(4.11) Fye gr(H) == 5||V - W H||% + 7| H|? + 5Tz||H — H*||2.

We then combine Algorithm 2.1 and Algorithm 3.1 proposed in this paper to solve
(4.8) and (4.10) in the PAO framework.
e To solve the W-subproblem in (4.8), we use the projected gradient method.
e To solve the H-subproblem in (4.10), we use SASPG, i.e., Algorithm 3.1,
together with Algorithm 2.1 in which the LCO being the projected gradient
method. The smoothing function of || H ||} is also constructed by using (3.16).
We denote the method as PAO-PG-SASPG-O for short. Here -O’ indicates that the
original L;/o-NMF problem (4.1)-(4.3) is solved.
It is worth mentioning that the constraints in (4.10) are N independent simplex
h; >0, K Hij=1,j=1,2,...,N. Let

A(HY) = {(i,j) = Hjj; =0},
QH*):={HeQ : Hy;=0 if(i,j) € A(H")}.

The efficiency of Algorithm 2.1 depends on the fast computation of matrices
Po[H|, Py gey[H], VaFys ge(H), and g*(H). Here Py [H] is used for the pro-
jected gradient method that works on the faces Q(H k) of Q. All the four types of
matrices are essentially composed by projections of a vector on a certain polyhedron.
The projections of a vector on a polyhedron can be obtained efficiently, e.g., [18]. Here
we compute them in matrix form directly, since IV is in general no less than 10000.
We adopt the Matlab code SimplexProj in [34] for obtaining Pn[H]. And by using
the grouping idea of inactive indices as in [22], we use SimplexProj for computing
PQ( ) [H] on each group with the same inactive constraints. Moreover, the projected

gradient Vo Fyyx g (H), and g (H) can be computed efficiently in matrix form using
the KKT conditions.

We use two real-world data in the experiment.

Jasper Ridge, is a popular hyperspectral data. There are 512 x 614 pixels in
it. In this image, each pixel is recorded at 224 channels ranging from 0.38 to 2.5um,
and the spectral resolution is up to 9.46nm. Because this hyperspectral image is
too complex to get the groundtruth, we consider a subimage of 100 x 100 as in [43],
the first pixel of which is the (105,269)-th pixel in the original image. After the
channels 1-3, 108-112, 154-166 and 220-224 are removed (due to dense water vapor
and atmospheric effects), we remain 198 channels (this is a common preprocess for
hyperspectral unmixing analysis). There are 4 endmembers in groundtruth: §1 Tree,
12 Soil, 43 Water, 4 Road.

Urban, is one of the most widely used hyperspectral data in the hyperspectral
unmixing study. There are 307 x 307 pixels, each of which corresponds to a 2 x 2
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24 CHAO ZHANG AND XIAOJUN CHEN

m? area. In this image, there are 210 wavelengths ranging from 400 nm to 2500 nm,
resulting in a spectral resolution of 10 nm. After the channels 1-4, 76, 87, 101-111,
136-153 and 198-210 are removed, we remain 162 channels. There are 4 endmembers
in ground truth: §1 Asphalt, §2 Grass, §3 Tree, #4 Roof.

We choose p = % and consider the L; o-NMF problem. We compare our methods
(PAO-ASCG-SASCG and PAO-PG-SASPG-0) with the other three methods. The
information of all the methods are summarized as follows.

1) Our method: PAO-ASCG-SASCG that solves the penalized counterpart of
Ly />-NMF problem in (4.5).

2) Our method: PAO-PG-SASPG-O that solves the original L, ;o-NMF problem
in (4.1)-(4.3).

3) PAO-PG-SPG-O: this method solves the original L, j,-NMF problem in (4.1)-
(4.3). It employs the PAO framework in Algorithm 4.1 with (4.9) substituted
by (4.10). The W-subproblem is solved by the PG method [24] and the H-
subproblem is solved by the smoothing projected gradient method [41]. No
active set strategy is adopted.

4) MU method: this method is a state-of-art method that employs (4.6) and
(4.7) recursively to solve the penalized counterpart of L;/,-NMF problem in
(4.5).

5) Adaptive HT method: this method is proposed in [35]. It employs the half-
thresholding algorithm and an adaptive strategy for automatically choosing
regularization parameters Tj’-“, j=1,2,..., N in kth iteration, and solving the
penalized L/, sparsity-constrained NMF defined by

1
(4.12) min -

N
W>0,H>02 IV —WH|% + ZT}CHhJ‘” .

Jj=1

SIS

We set the maximum CPU time to be 3000 seconds for all the methods, and
the maximum number of iterations for the MU method to be 3000, and the max-
imum number of iterations for the PAO-ASCG-SASCG, PAO-PG-SASPG-O, and
PAO-PG-SPG-0O methods to be 1000, and n; = 5 in Algorithm 3.1. To overcome
the nonconvexity of the original problem (4.1)-(4.3), and the penalized problem (4.5),
we randomly choose 10 initial points for W' and H' using the Matlab commands
rand(L, K) and rand(K, N) for all the methods, respectively. And each column of
H! is further rescaled to be sum to one, according to the ASC in (4.3). The MU and
the PAO-ASCG-SASCG methods involve two essential parameters 7 and 0, while the
Adaptive HT method only has one parameter 4, and the PAO-PG-SASCG-O meth-
ods only has one parameter 7. In order to estimate an optimal parameter, we first
determine the intervals [Timin, Tmax), and/0r [Omin, dmax] by trying the values at large
steps. We then search the optimal parameters by trying more values in the interval
[Tmin, Tmax), a0d/0r [dmin, Omax]-

If (W, H) is a solution of NMF, then (WD, D~'H) is also a solution of NMF for
any positive diagonal matrices D. To get rid of this kind of uncertainty, one intuitive
method is to scale each column of W to be the unit £;— or £o-norm [39, 43], e.g.,

%%
(413) I/I/lk < ﬁ, Hk'n, — Hkn\/m
Ik
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Considering the ASC in (4.3), we further let

Hkn
Zk Hyy

To evaluate the performance of the computed solution, we use the spectral an-
gle distance (SAD) and the root mean squared error (RMSE) [30, 35, 43] as two
benchmark metrics. The SAD is used to evaluate the endmembers, which is defined
as

(4.14) Hin

T A
(4.15) SAD(w, W) = arccos (w ui ),
[[wllll@]]
where w is an estimated endmember, and w is the corresponding ground-truth end-
member. The RMSE is used to evaluate the performance of the estimated abundance,
which is given by

1 1/2
(4.16) RMSE(z, 2) = (Nllz - 2ll2) ;

where N is the number of pixels in the image, z is the estimated abundance map
(a row vector in the abundance matrix H), and Z is the corresponding ground-truth
abundance map. In general, a smaller SAD and a smaller RMSE correspond to a
better hyperspectral unmixing result.

1
We draw in Fig. 1 the corresponding objective value ||V — WH||% + 7||H||3
2

of each iterate point versus the CPU time obtained by the PAO-PG-SASPG-O and
the PAO-PG-SPG-O method, using the same optimal parameter 7 = 1.5 x 10°, and
the same initial point on Jasper Ridge data, respectively. We divide the x-axis to be
[0,200] and [200,3000] in two subfigures to see clear the decrease tendency and the
final objective value. We can find from Fig. 1 that our PAO-PG-SASPG-O decreases
faster and gets lower objective value than the PAO-PG-SPG-O method. The final
objective value obtained by the PAO-PG-SASPG-O method is 2.6494e10, which is
much lower than 2.6988e10 that obtained by the PAO-PG-SPG-O method. It is easy
to see that the active set strategy helps fasten the computational speed.

o a0
|===—PAO-PG-SASPG-O |====PAO-PG-SASPG-O
B =='PAO-PG-SPG-0 =='PAO-PG-SPG-0
5

Objective

e e

26
o 2 4 e @ 1o 120 140 10 180 20 20 50 1000 1500 2000 2500 3000
CcPUtime CPUtime

F1c. 1. Convergence curve of objective value versus CPU time using the PAO-PG-SPG-0O
and the PAO-PG-SASPG-0 on the Jasper Ridge data, respectively.

For Jasper Ridge, we record in Table 1 the final SAD and RMSE for each end-
member corresponding to the computed solution with the smallest sum of SAD and
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RMSE, among the 10 trials of initial points as well as the choices of parameters. The
lowest SAD and RMSE for each endmember, and the lowest average SAD and RMSE
are indicated in bold face in Table 1. It is easy to see that the computed solution
obtained by the PAO-PG-SASPG-0O method proposed in this paper has the lowerest
average SAD and RMSE of the four endmembers. Our proposed PAO-ASCG-SASCG
method that solves the penalized version of L;,,-NMF also provides lower average
SAD and RMSE than the MU and the Adaptive HT methods.

For Urban, we record in Table 2 the final SAD and the final RMSE for each
endmember. The lowest SAD and RMSE for each endmember, and the lowest average
SAD and RMSE are indicated in bold face in Table 2. Clearly the PAO-ASCG-SASCG
method provides the solution that obtains the lowest average SAD and RMSE than
the other four methods. The PAO-PG-SPG-O and PAO-ASCG-SASCG-O method
for solving the original model (4.1)-(4.3) do not provide satisfying SAD and RMSE.
The reason, we think, is due to the model itself. As pointed out in [43], applying an
identical strength of constraints to all the factors, (that is, in our case, using the same
p = % for all the columns of H) does not hold in practice. Therefore, in [43] they
proposed to solve

N
IV = WH|* + ) lIh,

j=1

1
4.1 i —
( 7) WZH(%,IJI}IZO 2

where p; € (0,1), j = 1,2,..., N, are estimated from the original data V using
two-steps procedures. If the pixels indeed have very different levels of sparsity as in
Urban, the sum-to-one constraints will make the original model (4.1)-(4.3) deviate a
lot from the true model. The PAO-ASCG-SASCG method, in contrast, because of
the lack of the sum-to-one constraints, has the ability to adjust the sparsity levels of
different pixels to some degree. The Adaptive HT method, which adaptively adjusts
the different regularization parameter for each column of H, also has the effect to
assign different level of sparsity for each pixel. When the pixels have not so much
different levels of sparsity as in Jasper, the PAO-PG-SASPG-O that solves the original
model (4.1)-(4.3) with the sum-to-one constraints provides the best SAD and RMSE.

TABLE 1
SAD and RMSE on the Jasper Ridge data estimated by our methods and the other methods

SAD Avg.
Jasper Ridge (K = 4) 1 2 3 g4 11 ~ 4
MU 0.2070 0.1185 0.3324 0.2939 0.2379
Adaptive HT 0.1451 0.3099 0.1367 0.1515 0.1858
PAO-ASCG-SASCG 0.1241 0.0690 0.1859 0.1645 0.1359
PAO-PG-SPG-O 0.1315 0.0606 0.1132 0.0516 0.0892
PAO-PG-SASPG-O 0.1301 0.0616 0.1019 0.0609 0.0886

RMSE Avg.
MU 0.1235 0.0953 0.1773 0.0953 0.1361
Adaptive HT 0.1016 0.1483 0.1761 0.1885 0.1536
PAO-ASCG-SASCG 0.0836 0.0425 0.1244 0.1052 0.0889
PAO-PG-SPG-O 0.0846 0.0581 0.0929 0.0875 0.0808
PAO-PG-SASPG-O 0.0840 0.0578 0.0930 0.0842 0.0798

The abundance fractions for Jasper Ridge from the ground-truth, and separated
by the five methods are shown in Fig. 2. We can also see that our proposed PAO-

This manuscript is for review purposes only.



865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

896
897

SMOOTHING ACTIVE SET METHOD 27

TABLE 2
SAD and RMSE on the Urban data estimated by our methods and the other methods

SAD Avg.
Urban (K = 4) 1 #2 3 f4 H1 ~ f4
MU 0.1976 0.0318 0.0454 0.1445 0.1048
Adaptive HT 0.0715 0.0393 0.0704 0.3288 0.1275
PAO-ASCG-SASCG 0.0738 0.0525 0.0314 0.0736 0.0578
PAO-PG-SPG-O 0.0900 0.1940 0.0423 0.3424 0.1672
PAO-PG-SASPG-O 0.0925 0.1026 0.0397 0.2153 0.1125

RMSE Avg.
MU 0.0989 0.1037 0.0707 0.0995 0.0932
Adaptive HT 0.1165 0.0964 0.0794 0.0895 0.0954
PAO-ASCG-SASCG 0.1101 0.1085 0.0562 0.0548 0.0824
PAO-PG-SPG-O 0.2595 0.2242 0.1281 0.2052 0.2242
PAO-PG-SASPG-O 0.2452 0.1715 0.1435 0.2082 0.1921

ASCG-SASCG and PAO-PG-SASPG-O methods provide good estimates of abun-
dance. The abundance fractions for Urban from the ground-truth, and separated by
the MU, the Adaptive HT, and the PAO-ASCG-SASCG methods are shown in Fig.
3. It is easy to see that our proposed PAO-ASCG-SASCG method provide the best
estimates of abundance.

The numerical results demonstrate that our proposed PAO-PG-SASPG-0O method
and PAO-ASCG-SASCG method can efficiently solve the original and penalized L /-
NMF problem, respectively. Moreover, at least one of our methods provides an excel-
lent unmixing performance, compared to the popular MU method and the Adaptive
HT method.

It is worth pointing out that our smoothing active set method can deal with the
sum-to-one constraints, but the MU method and the Adaptive HT method can not.
Our smoothing active set method is flexible to solve the new model in (4.17) with
additional sum-to-one constraints. It is interesting to further investigate how to get
good estimation of p;, 7 = 1,2,..., N, and whether applying our smoothing active
set method to this new model can provide even better unmixing results in future.

5. Conclusion remarks. We develop Algorithm 3.1, a novel smoothing active
set method, for solving problem (1.1) where the objective function f may be non-
Lipschitz continuous. We approximate f by a continuously differentiable function f
and employ Algorithm 2.1 for solving the smooth optimization problem (3.5) until the
special updating rule holds in the inner loop of Algorithm 3.1. Algorithm 2.1 is a new
active set method for linearly constrained smooth optimization, which ensures that for
any positive smoothing parameter jy, the iterate o¥+1 satisfies ||V f(zF+1, ug)|| <
Auk. This property is essential for the convergence result of Algorithm 3.1. It is
worth noting that convergence results of most existing active set methods for the
smooth minimization problem (2.1) are in the sense liminf},_, ., Po[z* — Vf(2*)] —
x¥ = 0, which does not imply liminf,_, [|[Vaf(z¥)]| = 0. See inequality (2.35)
and Example 1. Our global convergence result, as well as the nice finite identification
property, and the local convergence result makes Algorithm 2.1 not only important for
approximately solving subproblems in Algorithm 3.1 for non-Lipschitz minimization
problem (1.1), but also advanced for smooth problem (2.1).

Acknowledgements. We are very grateful to Prof. W. W. Hager and the
anonymous referees for valuable comments.

This manuscript is for review purposes only.



898

899

28

CHAO ZHANG AND XIAOJUN CHEN

FiG. 2. Abundance maps from the ground-truth, MU, Adaptive HT, PAO-ASCG-SASCG,

PAO-PG-SPG-0, and PAO-PG-SASPG-O (from the first row to the last row sequentially)
for four targets in the Jasper Ridge data.
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