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Abstract

The iteratively reweighted `1 minimization algorithm (IRL1) has been widely
used for variable selection, signal reconstruction and image processing. However
the convergence of the IRL1 has not been proved. In this paper, we prove that
any sequence generated by the IRL1 is bounded and any accumulation point is a
stationary point of the `2-`p minimization problem with 0 < p < 1. Moreover, the
stationary point is a global minimizer and the convergence rate is approximately
linear under certain conditions. We derive posteriori error bounds which can be
used to construct practical stopping rules for the algorithm.

Keywords. `p minimization, stationary points, nonsmooth and nonconvex opti-
mization, pseudo convex, global convergence.
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1 Introduction

The nonsmooth, non-Lipschitz `p(0 < p < 1) regularization has advantages over smooth,
convex regularization for restoring image with near edges, sparse signal reconstruction
and variable selection. Iteratively reweighted `1 minimization algorithms have been
widely used for solving minimization problems with `p regularization

min
x∈Rn

‖Ax− b‖2
2 + λ‖x‖p

p, 0 < p < 1, (1.1)

where A ∈ Rm×n, b ∈ Rm, λ is a positive penalty parameter and

‖x‖p
p =

n∑

i=1

|xi|p.

See [1, 2, 4, 5, 13, 16, 18]. A version of the IRL1 for solving the `2-`p minimization
problem (1.1) is as follows:

xk+1 ∈ arg min
x∈Rn

fk(x, ε) := ‖Ax− b‖2
2 + λ‖W kx‖1 (1.2)
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where the weight W k =diag(wk) is defined by the previous iterates and updated in each
iteration as

wk
i =

p

(|xk
i |+ ε)1−p

, i = 1, . . . , n.

Here ε is a positive parameter to ensure that the algorithm is well-defined.
At each iteration, the IRL1 (1.2) solves a convex `2-`1 minimization problem. Ex-

tensive numerical experiments have shown that the IRL1 (1.2) is an efficient method for
variable selection, signal reconstruction and image processing. However no convergence
results have been given for (1.2).

In this paper, we prove that any sequence generated by the IRL1 (1.2) is bounded
and any accumulation point is a stationary point x∗ of the following `2-`p minimization
problem.

min
x∈Rn

f(x, ε) := ‖Ax− b‖2
2 + λ

n∑

i=1

(|xi|+ ε)p, 0 < p < 1. (1.3)

Moreover, we show that the stationary point is a global minimizer of (1.3) in certain
domain and the convergence rate is approximately linear under certain conditions. More-
over, we derive posteriori error bounds

‖xk − x∗‖2 ≤ γ‖xk+1 − xk‖2,

with a positive constant γ, which can be used to construct practical stopping rules for
the algorithm.

Note that the problem (1.2) may have multiple solutions since the objective is not
strictly convex. However, our convergence results hold for any choice xk+1 in the solution
set arg minx∈Rn fk(x, ε).

The model (1.3) can be considered as an approximation to the following constrained
`p optimization problem

min
x∈Rn

n∑

i=1

(|xi|+ ε)p, s.t. Ax = b, (1.4)

which is an approximation of the `p minimization problem

min
x∈Rn

‖x‖p
p, s.t. Ax = b. (1.5)

Problems (1.4) and (1.5) have been widely used [1, 2, 3, 4, 5, 10, 13] when the vector
b contains little or no noise. The models (1.1) and (1.3) are also called denoising models
of (1.4) and (1.5). Recently, it has been proved that these four problems are NP-hard
in [6, 11]. An advantage of (1.4) and (1.3) is that their objective functions are Lipschitz
continuous.

We summarize some notations and results in nonsmooth optimization [7], which will
be used in this paper. It is known that a Lipschitz function g : Rn → R is almost
everywhere differentiable and its subgradient is defined by

∂g(y) = co{ lim
yk→y

yk∈Dg

∇g(yk)},
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where ”co” denotes the convex hull and Dg is the set of points at which g is differentiable.
We say x∗ is a stationary point of g if 0 ∈ ∂g(x∗). If g is a convex function, then x∗

is a global minimizer of g in Rn if and only if x∗ is a stationary point of g.
A function g is convex if and only if ∂g is a monotone operator, that is,

(y − x, ξy − ξx) ≥ 0, ∀ ξy ∈ ∂g(y), ∀ ξx ∈ ∂g(x).

We say a function g : Rn → R is strongly pseudoconvex at x on D if for every
ξ ∈ ∂g(x) and every y ∈ D,

ξT (y − x) ≥ 0 ⇒ g(y) ≥ g(x).

We say a function g : Rn → R is strongly pseudoconvex on D if g is strongly pseudoconvex
at every point in D.

Throughout this paper, ‖ · ‖ denotes the `2 norm. |x| is the absolute value vector of
x, that is, |x| = (|x1|, · · · , |xn|)T . The vector ei ∈ Rn is the ith column of the identity
matrix. The vector ai ∈ Rm is the ith column of the matrix A. The cardinality of a
subset T ⊂ {1, . . . , n} is denoted by |T |, and its complement set is denoted by TC .

2 Convergence analysis

In this section, we give convergence analysis for the IRL1 (1.2). Note that both objective
functions f and fk are Lipschitz continuous for any fixed ε > 0. Hence we can define
their subgradients in Rn. Moreover, both functions are nonnegative and satisfy

f(x, ε) →∞, fk(x, ε) →∞ as ‖x‖ → ∞. (2.1)

Therefore, the solution sets of (1.2) and (1.3) are nonempty and bounded.

Lemma 2.1. For any nonnegative constants α, β and t ∈ (0, 1), we have

α1−tβt ≤ (1− t)α + tβ, (2.2)

and equality holds if and only if α = β.

Proof. Young’s inequality states that for any nonnegative constants µ and ν,

µν ≤ 1
q
µq +

1
r
νr, (

1
q

+
1
r

= 1 )

where equality holds if and only if µq = νr. Set 1
q = 1 − t, µq = α and νr = β in this

inequality. We obtain (2.2) and equality holds if and only if α = β. ¤

Lemma 2.2. Let {xk} be the sequence generated by the IRL1 (1.2). Then we have

f(xk+1, ε) ≤ f(xk, ε)− ‖A(xk+1 − xk)‖ − δ(xk+1, xk), (2.3)

where δ(xk+1, xk) ≥ 0 and equality holds if and only if |xk+1| = |xk|. If p = 1
2 , then

δ(xk+1, xk) = λ
1
2

n∑

i=1

(
(|xk+1

i |+ ε)
1
2 − (|xk

i |+ ε)
1
2

)2

(|xk
i |+ ε)

1
2

.
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Proof. Since xk+1 is a solution of problem (1.2), the zero vector is contained in the
generalized differential with respect to x, that is,

0 ∈ ∂fk(xk+1, ε).

See [7]. The function fk is the sum of n + 1 convex functions, namely, ‖Ax − b‖2 and
|xi|, i = 1, . . . , n. By the addition rule of subgradient for the sum of convex functions [7,
Corollary 3, p40], we have

∂fk(x, ε) = λ

n∑

i=1

p∂|xi|
(|xk

i |+ ε)1−p
ei + 2AT (Ax− b). (2.4)

Hence, we find

0 ∈ ∂fk(xk+1, ε) = λ

n∑

i=1

p

(|xk
i |+ ε)1−p

∂|xk+1
i |ei + 2AT (Axk+1 − b), (2.5)

which means that there exist ck+1
i ∈ ∂|xk+1

i |, i = 1, · · · , n such that

λ
( pck+1

i

(|xk
i |+ ε)1−p

)
1≤i≤n

+ 2AT (Axk+1 − b) = 0. (2.6)

By the definition of the subdifferential for |xi|, we have

ck+1
i =





1, if xk+1
i > 0,

−1, if xk+1
i < 0,

α, if xk+1
i = 0, α ∈ [−1, 1].

(2.7)

By (2.6), (2.7) and (2.2), we obtain

f(xk, ε)− f(xk+1, ε)

= λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p

)
+ ‖Axk+1 −Axk‖2 + 2(Axk −Axk+1)T (Axk+1 − b)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p +

pck+1
i (xk+1

i − xk
i )

(|xk
i |+ ε)1−p

)
(2.8)

≥ ‖Axk+1 −Axk‖2 + λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p +

p(|xk+1
i | − |xk

i |)
(|xk

i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

((|xk
i |+ ε)− (|xk

i |+ ε)1−p(|xk+1
i |+ ε)p + p(|xk+1

i | − |xk
i |)

(|xk
i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

((1− p)(|xk
i |+ ε) + p(|xk+1

i |+ ε)− (|xk
i |+ ε)1−p(|xk+1

i |+ ε)p

(|xk
i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + δ(xk+1, xk)

≥ ‖Axk+1 −Axk‖2,

where the first inequality uses

ck+1
i xk+1

i = |xk+1
i | and |ck+1

i | ≤ 1
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and the last inequality uses Lemma 2.1 to claim that

δi(xk+1, xk) = λ
(1− p)(|xk

i |+ ε) + p(|xk+1
i |+ ε)− (|xk

i |+ ε)1−p(|xk+1
i |+ ε)p

(|xk
i |+ ε)1−p

≥ 0,

and δ(xk+1, xk) =
∑n

i=1 δi(xk+1, xk) ≥ 0. ¤

Lemma 2.3. Suppose that g1 : Rn → R and −g2 : Rn → R are convex on a closed

convex set Ω, and g1(x) ≥ 0 and g2(x) > 0, for all x ∈ Ω then h(x) =
g1(x)
g2(x)

is strongly

pseudoconvex on Ω.

Proof. This lemma is a simple generalization of [14, Proposition 5.2, p943], which proved
that the condition number of a symmetric positive definite matrix is pseudoconvex. For
completeness, we give a proof of this lemma.

From the convexity assumption, g1 and g2 are locally Lipschitz continuous and for
any x, y ∈ Ω and ξ1 ∈ ∂g1(x), ξ2 ∈ ∂g2(x), we have

g1(y)− g1(x) ≥ ξT
1 (y − x),

and
−g2(y) + g2(x) ≥ −ξT

2 (y − x).

Hence we obtain

g1(y)− h(x)g2(y) = g1(y)− g1(x) + h(x)(−g2(y) + g2(x))

≥ ξT
1 (y − x)− h(x)ξT

2 (y − x)

= (ξ1 − h(x)ξ2)T (y − x)

= g2(x)
(ξ1g2(x)− g1(x)ξ2

g2(x)2
)T

(y − x).

By the quotient rule for the Clarke generalized gradient [7, Proposition 2.3.14], we find

that
ξ1g2(x)− g1(x)ξ2

g2(x)2
∈ ∂h(x), from that g2 and g1 are Clarke regular. Therefore we

have h(y) ≥ h(x) if ξT (y − x) ≥ 0 with ξ ∈ ∂h(x). ¤

Lemma 2.4. For constants α > 0, ε > 0 and p ∈ (0, 1), let

φ(t) = |t|+ (αt2 + βt)(|t|+ ε)1−p.

Then φ is convex in [0,∞) and (−∞, 0] if

|β| ≤ αε

1− p
. (2.9)

Proof. The function φ is differentiable in R except t = 0. To show the convexity of φ,
we consider the second derivative of φ for t 6= 0.

First we consider t > 0. By simple calculation, we get

φ
′′
(t) = (t + ε)−1−p(c1t

2 + c2t + c3),
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where
c1 = α(2 + (4− p)(1− p)),

c2 = (2− p)((1− p)β + 4αε),

c3 = 2ε(αε + (1− p)β).

Obviously, ci > 0, i = 1, 2 and c3 ≥ 0. This implies that φ is convex for t > 0.
Now, we consider t < 0. In this case,

φ(t) = −t + (αt2 + βt)(−t + ε)1−p.

Similarly, we can find that for t < 0,

φ
′′
(t) = (−t + ε)−1−p(c1t

2 + c4t + c5)

where
c4 = (2− p)((1− p)β − 4αε),

c5 = 2ε(αε− (1− p)β).

Obviously, c4 < 0 and c5 ≥ 0. This implies that φ′′(t) ≥ 0 and thus φ is convex for t < 0.
By the continuity of φ and that for t1t2 > 0

φ(µt1 + (1− µ)t2) ≤ µφ(t1) + (1− µ)φ(t2), for 0 ≤ µ ≤ 1,

we can take t1 → 0 or t2 → 0, and claim that φ is convex in [0,∞) and (−∞, 0].
¤

Theorem 2.1. Let {xk} be a sequence generated by the IRL1 (1.2). Then the sequence
{xk} is bounded and limk→∞(xk+1−xk) = 0. Moreover, any accumulation point of {xk}
is a stationary point x∗ of (1.3).

Proof. By Lemma 2.2, the sequence {f(xk, ε)} is monotonically decreasing and bounded
below. Hence it converges. It is clear that the sequence {xk} is contained in the level set

L(x0) = {x | f(x, ε) ≤ f(x0, ε)}.

Obviously, L(x0) is bounded from (2.1).
By (2.3), we have δ(xk+1, xk) → 0, as k →∞. From Lemma 2.1 and δi(xk+1, xk) ≥ 0,

we have

lim
k→∞

f(xk, ε)− f(xk+1, ε) = lim
k→∞

‖A(xk+1 − xk)‖ = lim
k→∞

(|xk| − |xk+1|) = 0. (2.10)

This, together with (2.8), implies

lim
k→∞

ck+1
i (xk+1

i − xk
i ) = 0, i = 1, . . . , n, (2.11)

where ck+1
i is defined in (2.7). Note that ck+1

i = 0 only if xk+1
i = 0, and |ck+1

i | = 1 if
xk+1

i 6= 0. For a fixed i, suppose that there is a subsequence {xkj+1
i } such that x

kj+1
i = 0,
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then from (2.10) we have limk→∞ xk
i = 0. Otherwise, we have |ck+1

i | = 1 for sufficiently
large k, which, together with (2.11), we have

lim
k→∞

(xk+1
i − xk

i ) = 0, i = 1, . . . , n. (2.12)

Let {xnk} be a subsequence of {xk} which converges to x∗. By (2.6) and (2.12), there
exist c∗i ∈ ∂|x∗i |, i = 1, . . . , n such that

0 = lim
k→∞

λ
( pcnk

i

(|xnk
i + xnk−1

i − xnk
i |+ ε)1−p

)
1≤i≤n

+ 2AT (Axnk − b)

= λ
( pc∗i

(|x∗i |+ ε)1−p

)
1≤i≤n

+ 2AT (Ax∗ − b) ∈ ∂f(x∗, ε). (2.13)

Hence x∗ is a stationary point of (1.3).
Let AI = [a1, . . . , ai−1, ai+1, . . . , an] and x∗I = [x∗1, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
n]T .

Theorem 2.2. Let x∗ be a stationary point of (1.3). The following statements hold.

(1) If for some i, ε ≥
(

λ(1− p)p
2‖ai‖2

) 1
2−p

holds, then

f(x∗, ε) ≤ f(x∗ + tei, ε), for t ∈
{

[−x∗i ,∞) if x∗i ≥ 0,

(−∞,−x∗i ] if x∗i ≤ 0.
(2.14)

(2) If for some i, |aT
i (AIx

∗
I − b)| ≤ ‖ai‖2ε

2(1− p)
holds, then (2.14) holds. Moreover, if for

some i, aT
i (AIx

∗
I − b) = 0 holds, then x∗i = 0 and

f(x∗, ε) ≤ f(x∗ + tei, ε), for t ∈ R. (2.15)

Proof. (1) Let
ϕ(t) = λ‖|x∗ + tei|+ ε‖p

p + ‖A(x∗ + tei)− b‖2. (2.16)

The subdifferential of ϕ is

∂ϕ(t) = λ
p sign(x∗i + t)

(|x∗i + t|+ ε)1−p
+ 2aT

i (A(x∗ + tei)− b).

By (2.13), we have 0 ∈ ϕ(0), that is, 0 is a stationary point of ϕ. For t1 and t2 satisfying
(x∗i + t1)(x∗i + t2) > 0, ϕ is continuously twice differentiable on [t1, t2]. Thus there is t0
between t1 and t2 such that

ϕ′(t1)− ϕ′(t2) = (− λ(1− p)p
(|x∗i + t0|+ ε)2−p

+ 2‖ai‖2)(t1 − t2).

Hence if ε ≥
(

λ(1− p)p
2‖ai‖2

) 1
2−p

, then

(t1 − t2)(ϕ′(t1)− ϕ′(t2)) = (− λ(1− p)p
(|x∗i + t0|+ ε)2−p

+ 2‖ai‖2)(t1 − t2)2

≥ (−λ(1− p)p
ε2−p

+ 2‖ai‖2)(t1 − t2) ≥ 0.
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Hence ϕ is convex in [−x∗i ,∞) if x∗i ≥ 0, and in (−∞,−x∗i ] if x∗i ≤ 0. This, together with
0 ∈ ∂ϕ(0) implies that 0 is the minimizer of ϕ in (−x∗i ,∞) if x∗i ≥ 0, and in (−∞,−x∗i )
if x∗i ≤ 0. This gives (2.14).

(2) To prove this part, we show ϕ defined in (2.16) is strongly pseudoconvex in
[−x∗i ,∞) and (−∞,−x∗i ]. The function ϕ can be rewritten as

ϕ(t) = λ(|x∗i + t|+ ε)p + ‖ai‖2(x∗i + t)2 + 2aT
i (AIx

∗
I − b)(x∗i + t) + c0,

= λ
( |x∗i + t|+ ε +

(‖ai‖2
λ (x∗i + t)2 + 2aT

i (AIx∗I−b)
λ (x∗i + t)

)
(|x∗i + t|+ ε)1−p

(|x∗i + t|+ ε)1−p

)
+ c0,

where c0 is a constant. Using Lemma 2.4, with

α =
‖ai‖2

λ
and β =

2aT
i (AIx

∗
I − b)

λ
,

we find that the function

|x∗i + t|+ ε +
(‖ai‖2

λ
(x∗i + t)2 +

2aT
i (AIx

∗
I − b)

λ
(x∗i + t)

)
(|x∗i + t|+ ε)1−p

is convex. Since (|x∗i + t|+ ε)1−p is concave, we find that ϕ is strongly pseudoconvex by
Lemma 2.3.

By the definition of the strong pseudo convexity and (2.13), from ϕ(0) = f(x∗, ε) and
ϕ(t) = f(x∗ + tei, ε), we obtain (2.14).

If aT
i (AIx

∗
I − b) = 0, then (2.13) implies that

0 ∈ λ
( pc∗i

(|x∗i |+ ε)1−p

)
+ 2aT

i aix
∗
i . (2.17)

Since c∗i = 1 if x∗i > 0 and c∗i = −1 if x∗i < 0, (2.17) only holds at x∗i = 0. Moreover, it is
easy to see that in such case with x∗i = 0,

ϕ(−x∗i ) = ϕ(0) ≤ ϕ(t), for t ∈ R,

that is,
f(x∗ − x∗i ei, ε) = f(x∗, ε) ≤ f(x∗ + tei, ε), for t ∈ R.

We obtain the desired results. ¤
In [5], it was shown that any local minimizer x∗ of (1.1) satisfies

either |x∗i | = 0 or |x∗i | ≥ Li, ∀ i = 1, · · · , n, (2.18)

where

Li :=
(λp(1− p)

2‖ai‖2

) 1
2−p

.

This lower bound for absolute value of nonzero elements of any local minimizer of (1.1)
can be easily extended to the model (1.3). We give the lower bound theory for (1.3) in
the following theorem.
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Theorem 2.3. If 0 ≤ ε < L := min1≤i≤n Li, then every local minimizer x∗ of (1.3)
satisfies

either |x∗i | = 0 or |x∗i | ≥ Li − ε, ∀ i = 1, · · · , n. (2.19)

Proof. This Theorem is a simple generalization of Theorem 2.1 in [5]. For completeness,
we give a brief proof.

Let x∗ be a local minimizer of (1.3) with ‖x∗‖0 = k, without loss of generality, we
assume

x∗ = (x∗1, · · · , x∗k, 0, · · · , 0)T .

Let z∗ = (x∗1, · · · , x∗k)
T and B ∈ Rm×k be the submatrix of A, whose columns are the

first k columns of A. For a fixed ε ≥ 0, define a function g : Rk → R by

g(z, ε) = ‖Bz − b‖2 + λ
k∑

i=1

(|zi|+ ε)p + (n− k)εp.

We have

f(x∗, ε) = ‖Ax∗ − b‖2 + λ
n∑

i=1

(|x∗i |+ ε)p = ‖Bz∗ − b‖2 + λ

k∑

i=1

(|z∗i |+ ε)p + (n− k)εp.

Since |z∗i | > 0, i = 1, · · · , k, g is continuously differentiable at z∗. Moreover, in a neigh-
bourhood of x∗,

g(z∗, ε) = f(x∗, ε) ≤ min{f(x, ε)|xi = 0, i = k + 1, · · · , n}
= min{g(z, ε)|z ∈ Rk},

which implies that z∗ is a local minimizer of the function g. Hence the second order
necessary condition for

min
z∈Rk

g(z, ε) (2.20)

holds at z∗, which gives that the matrix

2BT B + λp(p− 1)diag((|z∗|+ ε)p−2)

is positive semi-definite. Therefore, we obtain

2eT
i BT Bei + λp(p− 1)diag((|z∗i |+ ε)p−2) ≥ 0, i = 1, · · · , k

where ei is the ith column of the identity matrix of Rk×k.
Note that ‖ai‖2 = eT

i BT Bei. We find that

(|z∗i |+ ε)p−2 ≤ 2‖ai‖2

λp(1− p)
, i = 1, · · · , k

which implies that

|z∗i | ≥
(λp(1− p)

2‖ai‖2

) 1
2−p − ε = Li − ε, i = 1, · · · , k.

Hence for any local minimizer x∗ of (1.3) if x∗i 6= 0, then |x∗i | ≥ Li − ε. ¤
Now we derive the convergence rate of the IRL1 (1.2) and error bounds.

9



Theorem 2.4. Assume that the sequence {xk} generated by (1.2) converges to a local
minimizer x∗ of (1.3). Denote S = {i| |x∗i | 6= 0} and β = mini∈S |x∗i |. If

λp(1− p)
β2−p

≤ 2λmin(AT
SAS), (2.21)

then there exist positive constants γi, i = 1, 2, 3 and c ∈ (0, 1) such that for all sufficiently
large k

‖xk
S − x∗S‖ ≤ γ1‖xk

S − xk+1
S ‖+ γ2‖xk+1

SC ‖,
and

‖xk+1
S − x∗S‖ ≤ c‖xk

S − x∗S‖+ γ3‖xk+1
SC ‖.

Proof. Denote Sk = { i| |xk
i | 6= 0 }. Since xk → x∗, by (2.19) for sufficiently large k, we

have S ⊂ Sk and there exists a small constant δ ∈ (0, ε) such that |xk
i | ≥ β− δ, for i ∈ S.

Consider the function

g(z, ε) =
∑

i∈S

λ(|zi|+ ε)p + ‖ASz − b‖2 + λ
∑

i∈SC

εp, z ∈ R|S|.

From the proof of Theorem 2.3, we see that x∗S is a local minimizer of g(z, ε). Therefore
we have from the optimal condition for minimizing g(z, ε) that

( λp sign(x∗i )
(|x∗i |+ ε)1−p

)
i∈S

+ 2AT
S (ASx∗S − b) = 0, (2.22)

and the matrix
diag

(( λp(p− 1)
(|x∗i |+ ε)2−p

)
i∈S

)
+ 2AT

SAS

is positive semi-definite, which implies that the matrix AT
SAS is positive definite since

p− 1 < 0.
Since xk+1 is a local minimizer of fk(x, ε) and for sufficiently large k,

sign(xk+1
i ) = sign(xk

i ) = sign(x∗i ), i ∈ S,

we have 


( λp sign(x∗i )
(|xk

i |+ ε)1−p

)
i∈S

( λp ck+1
i

(|xk
i |+ ε)1−p

)
i∈SC


 + 2

(
AT

S (Axk+1 − b)
ASC (Axk+1 − b)

)
= 0, (2.23)

where ck+1
i ∈ ∂|xk+1

i |. By (2.22) and (2.23), we have

BS(xk
S − x∗S) = 2AT

SAS(xk
S − xk+1

S )− 2AT
SASC xk+1

SC , (2.24)

and

xk+1
S − x∗S = −(2AT

SAS)−1DS(xk
S − x∗S)− (AT

SAS)−1AT
SASC xk+1

SC , (2.25)

where ζi is between x∗i and xk
i for any i ∈ S, and

DS = diag
(( λp(p− 1)

(|ζi|+ ε)2−p

)
i∈S

)
, BS = DS + 2AT

SAS .
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From sign(xk
i ) = sign(x∗i ), we have |ζi| ≥ β − δ > 0, for i ∈ S. Moreover, from (2.21)

and the following inequalities

λp(1− p)
(|ζi|+ ε)2−p

≤ λp(1− p)
(β − δ + ε)2−p

<
λp(1− p)
(β)2−p

≤ 2λmin(AT
SAS), (2.26)

we obtain that BS is nonsingular and we have from (2.24) and (2.25) that

‖xk
S − x∗S‖ ≤ 2‖B−1

S ‖‖AT
SAS‖‖xk

S − xk+1
S ‖+ 2‖B−1

S ‖‖AT
SASC‖‖xk+1

SC ‖,

and

‖xk+1
S − x∗S‖ ≤ ‖(2AT

SAS)−1DS‖‖xk
S − x∗S‖+ ‖(AT

SAS)−1AT
SASC‖‖xk+1

SC ‖.

By (2.21) and (2.26), we have ‖(2AT
SAS)−1DS‖ < 1. Therefore, we complete the proof

with γ1 = 2‖B−1
S ‖‖AT

SAS‖, γ2 = 2‖B−1
S ‖‖AT

SASC‖, γ3 = ‖(AT
SAS)−1AT

SASC‖ and c =
‖(2AT

SAS)−1DS‖. ¤
Based on Theorem 2.3, for large k, entries xk

i satisfying |xk
i | << Li − ε very likely

converge to zero. If we can guess the index set S of nonzero elements x∗ correctly and
set xk

SC = 0 for all large k. Then from Theorem 2.4, we have

‖xk − x∗‖ = ‖xk
S − x∗S‖ ≤ γ1‖xk

S − xk+1
S ‖ = γ1‖xk − xk+1‖

and
‖xk+1 − x∗‖ = ‖xk+1

S − x∗S‖ ≤ c‖xk
S − x∗S‖ = c‖xk − x∗‖.

3 Conclusion

Regularized minimization problems with `p regularization arise frequently in many fields
such as finance, econometrics and signal processing. On the statistical side, the `p regu-
larization is called the bridge penalty and minimizers of the minimization problem (1.1)
with ‖x‖p

p regularization are called bridge estimators [12]. Theoretical results show that
the bridge estimators have various attractive features due to the concavity and non-
Lipschitzian property of the regularization function ‖x‖p

p. However, the minimization
problem (1.1) is nonconvex and non-Lipschitz. There are not many optimization theo-
ries and algorithms for solving (1.1). The reweighted `1 minimization algorithm (IRL1)
is developed to solve (1.1). The IRL1 has been widely used for variable selection, signal
reconstruction and image processing. Moreover, extensive numerical experiments showed
that the IRL1 is efficient for many applications. However no convergence results have
been given for IRL1. This paper proves that any sequence generated by the IRL1 is
bounded and any accumulation point is a stationary point of the minimization problem
(1.3). In general, a stationary point of the minimization problem (1.3) is not a minimizer
of (1.1). Hence, this paper provides a negative certificate by showing that the IRL1 can-
not find bridge estimators in most cases. On the positive side, Theorem 2.3 shows any
local minimizer of (1.3) has certain sparsity. These results are important for developing
algorithms for solving the nonconvex and non-Lipschitz minimization problem (1.1) and
applications in variable selection, signal reconstruction and image processing.
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