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Optimality conditions for nonsmooth nonconvex-nonconcave min-max problems
and generative adversarial networks*

Jie Jiang'? and Xiaojun Chen’

Abstract. This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine
learning and games. We first provide sufficient conditions for the existence of global minimax points
and local minimax points. Next, we establish the first-order and second-order optimality conditions
for local minimax points by using directional derivatives. These conditions reduce to smooth min-
max problems with Fréchet derivatives. We apply our theoretical results to generative adversarial
networks (GANSs) in which two neural networks contest with each other in a game. Examples are
used to illustrate applications of the new theory for training GANs.
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1. Introduction. Consider the following min-max problem

1.1 minmax f(z,y),

(1) mip mas f(z,9)
where X C R™ and Y C R™ are nonempty, closed and convex sets, f : R” x R™ — R is a
locally Lipschitz continuous function. Define an envelope function

p(z) = max f(z,y).

In this paper, we assume that ¢(z) is finite-valued for any x € X. We say problem (1.1) is
nonconvex-nonconcave if for a fixed z € X, f(x,-) is not concave, and for a fixedy € Y, f(-,y)
is not convex.

The min-max problem (1.1) has many applications in machine learning and games [20,
30, 35], for instance, the popular generative adversarial networks (GANs) in machine learning
[2, 9, 16, 17, 26]. Let D : R™ x R* — (0,1) be a parameterized discriminator, G : R™ x
R%2 — R%! be a parameterized generator and &; be a s;-valued random vector with probability
distribution P; and support =Z; C R® for ¢ = 1,2. Then the plain vanilla GAN model can be
formulated as

(1.2) gél)r{lglea;( Ep, [log (D(y,&))} +Ep, [log (1 — D(y, G(x,gg))ﬂ,
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2 J. JIANG AND X. CHEN

where x and y are the parameters to control D and G with ranges X and Y, respectively.
Here Ep,[-] denotes the expected value with probability distribution P; over Z; for i = 1,2.
We assume that the expected values are finite for any fixed z € X and y € Y. Since the range
of D is (0,1), for any fixed =,

¢(r) = max Ep, |log (D(y.&) | +Ep, | log (1~ D(v.0(r.&))|
is real-valued. The functions D and G are usually defined by deep neural networks (see section
4 for a specific example). It is noteworthy that unconstrained min-max problems for training
GANSs are widely used, while constrained min-max problems are also used for improved GANS,
Wasserstein GANs and some games. One can refer to [2, 3, 19] for more details.

Since the pioneering work [29] by Von Neumann in 1928, convex-concave min-max prob-
lems have been investigated extensively, based on the concept of saddle points (see e.g.
[6, 28, 35, 36] and the references therein). In recent years, driving by important applica-
tions, nonconvex-nonconcave min-max problems have attracted considerable attention [21,
22, 24, 31]. However, it is well-known that a nonconvex-nonconcave min-max problem may
not have a saddle point. How to properly define its local optimal points and optimality condi-
tions has been of great concern. In [1, 12, 25], the concept of local saddle points was studied,
but it is pointed out in [21] that the concept of local saddle points is not suitable for most
applications of min-max optimization in machine learning. A nonconvex-nonconcave min-max
problem may not have a local saddle point (see Example 2.7 in this paper). In [21], the au-
thors argued that a local solution cannot be determined just based on the function value in
an arbitrary small neighborhood of a given point. For that reason, they proposed the concept
of local minimax points of unconstrained smooth nonconvex-nonconcave min-max problems
and studied the first-order and second-order optimality conditions.

Optimality conditions for minimization problems have been extensively studied [7, 32].
Moreover, the study of optimality conditions for simultaneous games has a long history, whose
solutions are commonly described as the Nash equilibrium. According to the definition of Nash
equilibrium, the optimality conditions are the combination of each player’s optimality condi-
tion when the rivals’ decisions are fixed. Therefore, optimality conditions for simultaneous
games can be viewed as an extension of those for minimization problems. For more details, one
can refer to [4, 7, 14, 27, 32]. However, optimality and stationarity of nonsmooth nonconvex-
nonconcave min-max problems are not well understood. Necessary optimality conditions for
unconstrained weakly-convex—concave min-max problems and their application in machine
learning were studied in [23, 31]. In [21], from the viewpoint of sequential games, the local
minimax points and the first-order and second-order optimality conditions for unconstrained
smooth nonconvex-nonconcave min-max problems were defined. Based on the concept of the
local minimax points proposed in [21], necessary and sufficient optimality conditions for the
local minimax points of constrained smooth min-max problems were studied in [11]. It is
worth noting that the min-max problem can be viewed as a specific bi-level optimization
problem. The general practice to solve a bi-level optimization problem is to replace the lower
level optimization by its first-order optimality conditions, so that the bi-level optimization
problem becomes a mathematical programming with equilibrium constraints (MPEC) and its
optimality conditions are derived based on the MPEC formulation [13]. However, optimality
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conditions for global/local minimax points of nonsmooth bi-level problems where the upper
level problem is nonconvex and the lower level problem is nonconcave have not been studied
yet.

The main contributions of this paper can be summarized as follows.

e We define the first-order and second-order optimality conditions of local minimax
points of constrained min-max problem (1.1) by using directional derivatives. Our op-
timality conditions extend the work [21] for unconstrained smooth min-max problems
to constrained nonsmooth min-max problems. These conditions reduce to smooth
min-max problems with Fréchet derivatives. Moreover, we rigorously describe the
relationships between saddle points, local saddle points, global minimax points, local
minimax points and stationary points defined by these first-order and second-order op-
timality conditions. The relationships among these points is illustrated by interesting
examples and summarized in Figure 1.

e We establish new mathematical optimization theory for the GAN model with both
smooth and nonsmooth activation functions. In particular, we give new properties
of global minimax points, local minimax points and stationary points of problem
(1.2) under some specific settings. Examples with the sample average approximation
approach show that our results are helpful and efficient for training GANs.

The reminder of the paper is organized as follows. In section 2, we give some notations and
preliminaries. In section 3, we study the first-order and second-order optimality conditions of
nonsmooth and smooth min-max problems, respectively. In section 4, we apply our results
to GANs and use examples to show the effectiveness of our results. Finally, we make some
concluding remarks in section 5.

2. Notations and preliminaries. In this paper, N denotes the natural numbers. R’} de-
notes the nonnegative part of R”. ||-|| denotes the Euclidean norm. cl(2), int(£2) and bd(f2)
denote the closure, the interior and the boundary of set €, respectively. o(|t|) denotes the
infinitesimal of a higher order than |t| as ¢ — 0. O(|t|) denotes the same order as |t| as ¢ — 0.
B(z,r) denotes the closed ball centred at x with radius » > 0. Denote ()4 := max{0,-} the
ReLU activation function. The indicator function of a set (2 is denoted by dq, i.e., do(z) =0
if x € Q and dq(z) = oo otherwise. The extended-valued functions are functions that are
allowed to be extended-real-valued, i.e., to take values in R U {£o0}.

Let © C R™ be a closed and convex set. The tangent cone [32, Definition 6.1] to Q at « € Q,

denoted by Tq(z), is defined as To(x) = {w L z,tF | 0 such that limj_,oo Ii—;x = w} .
The normal cone [32, Definition 6.3] to Q at x € , denoted by Nq(z), is

Nao(z) ={y e R": (y,w —x) < 0,Vw € Q}.

It also knows from [32, Proposition 6.5] that Ng(z) = {v : (v,w) <0, for Vw € To(z)}.
Definition 2.1. We say that (Z,y9) € X XY is a saddle point of problem (1.1), if

(2.1) f(@,y) < f(2,9) < f(z,9)

holds for any (x,y) € X x Y.

This manuscript is for review purposes only.
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4 J. JIANG AND X. CHEN

Definition 2.2. We say that (&,9) € X XY is a local saddle point of problem (1.1), if there
exists a 0 > 0 such that, for any (x,y) € X XY satisfying ||z — z|| < § and ||y — 9] < 0, (2.1)
holds.

In the convex-concave setting, saddle points are usually used to describe the optimality of
min-max problems. However, one significant drawback of considering (local) saddle points of
nonconvex-nonconcave problems is that such points might not exist [21, Proposition 6]. Also,
(local) saddle points correspond to simultaneous game, but many applications (such as GANs
and adversarial training) correspond to sequential games. In view of this, we consider in what
follows global and local minimax points proposed in [21], which are from the viewpoint of
sequential games.

Definition 2.3. We say that (Z,9) € X XY is a global minimaz point of problem (1.1), if

f(@,y) < f(&,9) < max f(z,y)
y'ey

holds for any (x,y) € X x Y.

Definition 2.4. We say that (Z,9) € X XY s a local minimaz point of problem (1.1), if
there exist a 69 > 0 and a function 7 : Ry — Ry satisfying 7(§) — 0 as 6 — 0, such that for
any 6 € (0,00] and any (z,y) € X XY satisfying ||x — z|| < and ||y — g|| <, we have

fEy) < f(2,9) < flz,y').

max
y'e{yeY:|ly—glI<T(6)}

Remark 2.5. Tt is noteworthy that the function 7 in Definition 2.4 can be further restricted
to be monotone or continuous without changing Definition 2.4 [21, Remark 15]. Hereafter, we
always assume that 7 is monotone and continuous.

Global or local minimax points are motivated by many practical applications and the
probable nonconvexity-nonconcavity of the min-max problem. Obviously, a saddle point is a
global minimax point and a local saddle point is a local minimax point. However, problem
(1.1) may not have a local saddle point. The following proposition gives some sufficient
conditions for the existence of global (local) minimax points. Note that the existence of a
global (local) minimax point does not imply the existence of a local saddle point.

Proposition 2.6. (i) If &, :={z € X : p(x) < u} is nonempty and bounded for some
scalar w and {y € Y : f(x,y) > I} is bounded for every x € ®,, and some scalar l,
then problem (1.1) has at least a global minimax point.

(i1) ([21, Lemma 16]) (x*,y*) € X XY is a local minimaz point if and only if y* is a
local mazimum of f(z*,-) and there exists a dg > 0 such that x* is a local minimum
of @5(x) = maxye fyey-ly—yr<a) S (@) for any 6 € (0,60].

Proof. (i) According to the continuity of f(z,y), ¢ is lower semicontinuous. We know
from [32, Theorem 1.9] that argmin .y ¢(z) C ®, is nonempty and compact. Let z* €
argmin,e x ¢(z) and consider the set argmax, ¢y f(2*,y). Since {y € Y : f(2",y) > lo+} is
bounded, we know from the continuity of f(z*,-) that the maximum can be achieved. Let
y* € argmax, ¢y f(2",y). It is easy to check that (z*,y") is a global minimax point. [ |
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Specifically, if both X and Y are bounded, then all conditions in (i) of Proposition 2.6
hold. Thus problem (1.1) has a global minimax point. However, a local minimax point may
not exist even X and Y are bounded (see Example 3.24). Also, a global minimax point may
not be a local minimax point (see Example 3.24). The following example tells that the global
and local minimax points exist but (local) saddle points do not.

Ezample 2.7 ([21, Figure 1]). Let n=m =1and X =Y = [-1,1]. Consider f(z,y) =
—2? 4+ 5xy — y?. Note that

2
—x° —bdzx — 1, we[—l,
() = max (—z°+5zy —y?) = { Za?, ve[-22];

e[-1,1]
! —? 4+ 5z — 1, me[%,l].
It is not difficult to examine that ming,e[_1 @(zr) = 0 when = = 0. In this case, y = 0.

Therefore, (0,0) is a global minimax point. Moreover, let §y = % and 7(9) = %5 in Definition
2.4. Then for any § < dp, (z,y) € [—1,1] x [—1, 1] satisfying |z| < § and |y| < J, we have

21
max f(117,y/) = 7‘%2
y'efyeY:ly|<3s} 4
when y = %a: Thus, we obtain
2 / 21 4
4" =f0,9) < f0,0)=0< = max _ fz,y)=- a7
y'e{yeY:ly|<56}

which implies that (0,0) is also a local minimax point.

Note that the solutions of max,¢[_s 5 mingc|_s4) f(7,y) are (4,0) and (-4, 0) for any § €
(0,1]. Thus, we have

. 2 .

22) yEl-00] zel-b4] fley) =0 #0= vel-50] yel- 0] f@.y).
which implies that (0,0) is neither a saddle point (i.e., (2.2) holds with § = 1, see Definition
2.1) nor a local saddle point (i.e., (2.2) holds with a sufficiently small §, see Definition 2.2).

Example 2.7 gives a nonconvex-nonconcave min-max problem that has global and local
minimax points, but does not have a local saddle point. Thus, global and local minimax
points defined in Definitions 2.3 and 2.4 respectively are good supplements of (local) saddle
points, especially in the nonconvex-nonconcave setting.

3. Optimality and stationarity. In this section, we first discuss the first-order and second-
order optimality conditions when f in problem (1.1) is nonsmooth. The smooth case is
considered as a special case of the nonsmooth ones when the directional derivatives can be
represented by Fréchet derivatives. Our results extend the study of necessary optimality
conditions of unconstrained smooth min-max problems in [21]. In particular, in the nonsmooth
case, our results extend [21] from unconstrained smooth ones to constrained nonsmooth ones
and in the smooth case, our results extend [21] from unconstrained ones to constrained ones.
We also illustrate these theoretical results by three examples.

To proceed further, we give the description of tangents to convex sets.

This manuscript is for review purposes only.
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Lemma 3.1 ([32, Theorem 6.9]). If Q2 C R" is convex and T € ), then
To(z) = cl{w : I > 0 with T + Aw € Q}, int (To(Z)) = {w : IX > 0 with T + A\w € int(Q)}.

Denote
To(Z) :=={w: 3N > 0 with 4+ dw € Q}.

It is not difficult to verify that 7o (z), int(7q(z)) and 73 (Z) are convex cones if § is convex.
Moreover, we have the following relationship int (7o(Z)) C 735(Z) C Ta(Z). If Q is polyhedral,
then 73(z) = Ta(Z).

3.1. Nonsmooth case. In this subsection, we consider problem (1.1) when f is not dif-
ferentiable. For this purpose, we introduce some definitions for nonsmooth analysis.

Let g : R™ — R. The (first-order) subderivative dg(x)(v) at x € R™ for v € R" is defined
as [32, Definition 8.1]

g4 t) —g(x)
d .= liminf .
g(z)(v) Jm inf ;

The function g is semidifferentiable at x for v [32, Definition 7.20] if the (possibly infinite)
limit
gt ) — g(@)
v'—=wv,t]0 t

exists. Further, if the above limit exists for every v € R", we say that g is semidifferentiable
at z. It is easy to see that if ¢ is Lipschitz continuous in a neighborhood of x, then this limit
is finite.

There are two types of second-order subderivatives [32, Definition 13.3]. The second-order
subderivative at x € R™ for w and v is

d?g(z|v)(w) ;= liminf 9(z +tw') — g(z) —t{v,0')

w! —w,t 0 §t2

The second-order subderivative at x € R™ for w (without mention of v) is

d2g(z)(w) := liminf 2 (z +tw') — g(x) — tdg(x)(w')
C W Sw,tlo %tQ :

We say that g is twice semidifferentiable at x if it is semidifferentiable at x and the
(possibly infinite) limit

. gl +tw') —g(x) —tdg(z)(w')
lim T
w! —w,t|0 §t2

exists for any w € R™.
The one-side directional derivative ¢'(x;v) at @ € R™ along the direction v € R™ is defined
as
t —
g (x;v) := lim 9(z + t) g(:B)
tl0 t

This manuscript is for review purposes only.
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The function g is directionally differentiable at x if ¢'(z;v) exists for all directions v € R™.
If g is locally Lipschitz continuous near z, then semidifferentiability at z is equivalent to
directional differentiability at x.

The second-order directional derivative of g at x € R™ along the direction v € R"™ is defined
as [32, Chapter 13.B]

_ — 1t (-
t}0 §t2

Obviously, if ¢ is semidifferentiable at z, then dg(z)(v) = ¢'(z;v); if g is twice semidiffer-
entiable at z, then d?g(z)(w) = ¢@ (z;w).

As a generalization of classical directional derivatives, the (Clarke) generalized directional
derivative of g at x € R™ along the direction v € R™ is defined as [7, Section 2.1]

/ t _ /
g°(z;v) := limsup 9@’ +tv) —g( )
z'—x,t]0 t

We say that g is Clarke regqular at x [7, Definition 2.3.4] if ¢’ (x;v) exists and ¢°(z;v) = ¢'(z;v)
for all v. By using the generalized directional derivative, we can define the (Clarke) generalized
subdifferential as

0g(z) :={z e R": (z,v) < ¢°(x;v) Yv € R"}.

In turn, we know from [7, page 10] that
(3.1) 9°(z;v) = max{{¢,v) : ¢ € Og(z)}.

The generalized second-order directional derivative of g at x € R™ along the direction
(u,v) € R™ x R™ is defined as ([8, Definition 1.1] and [32, Theorem 13.52])

/ N / B , .
9°° (5 u,v) := limsup g(@' +ou+tv) —g(z J:Sfu) g(@ +tv) +g(')

t10,610

Especially, when u = v, we write ¢g°°(z;v,v) as ¢°°(x;v) for simplicity.

Remark 3.2. When f is continuously differentiable at (Z,9), fo(Z,y;v) = dz f(2,9)(v) =
Vaf(&,9) v and fo(@,95w) = dy f(2,9)(w) = Vyf(:i",g))Tw ([32, Exercise 8.20]). Moreover, if
f is twice continuously differentiable at (#,7), we know from [32, Example 13.8, Proposition
13.56] that f;°(2,9;0) = d3f(4,9)(v) = v Vif(@,9)v and f°(,9;w) = djf(2,9)(w) =
w V21, §)w.

Ezxample 3.3. Consider a two-layer neural network with the ReLLU activation function as
follows:

F(W,b) := p(Wa(Wi€ + b1)4 + b2)

for a fixed £ € R®, where W7 € R%1%5 by € R, Wy € R%2%51 by € R%2, p: R%2 — R is a
continuously differentiable function, W = (Wi, W) and b = (b1, b2). Obviously, F is locally

This manuscript is for review purposes only.
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180 Lipschitz continuous. For fixed W = (W, W3) and b = (by, by), we consider

F(W.b:T7.5) = lim F(W +tW,b+tb) — F(W,b)
tl0 t

181 _ _ _
— Iim p((WQ + tWQ)((Wl + th)f + b1 + tb1>+ + by + tbg) — p(WQ(Wlf + b1)+ + bg)
t10 t
and
i (Wo + tW o) (W1 +tW )& + by +tby) 4 + by + thy — (Wo (W€ + b1y + ba)
tl0 t
. Wo (W1 + tW1)E+ by 4 thy) 1 — (Wi€+b1)4) + t (Wa((Wy 4+ tW1)E + by + thy)4 + ba)
© o t
Wi +tW by +th1)y — (Wi€+b — -
:WQ <1t1%1 (( 1+ 1)£+ 1‘: 1)-‘1— ( 15"’ 1)+) +W2(W1€+b1)++b2
For¢=1,---,sq, iienote WZI and Wf the ith row vectors of W and Wy, and B’i and bi1 the
ith components of by and by, respectively. Then, for i = 1,--- , s1 and sufficiently small ¢ > 0,
we have

(Wi + W) €+ b8 +tby) 1 — (WHTE+b)4

HI3)TE + b, if (WHTE+ b8 > 0;

_J o, if (WHTe+0bt <0

) W W) Te+ b, if (WH)TE+bi =0and (W)T€+0b > 0;
0, if (WHTE+bi =0and (W) T€+bi < 0.

Hence we obtain

(Wi + (W) TE+ b+ b)) — (W)€ + b))

lim

tl0 t

W) TEHD, i (WHTE+BL > 00r (W))TE+D, =0and (W) TE+ b > 0;
0, if (WHTE+bi <0or (WHTE+b =0and (W))T¢+0bi <0.

Thus, we have that the following limit

T =W, <lim (Wi + tW1)E + by +tb1)4 — (W€ +b1)+

i ; ) + Wa(Wi€ +b1)4 + bo

182 exists. Therefore, we have that F'is semidifferentiable based on the locally Lipschitz continuity.
If, moreover, p is twice continuously differentiable, we have

W W.5) = liminf F(W +tW b+ tb)) — F(W,b) — tdF (W, b) (W', ')
W’%%O,E’AE %t2

= YTV p(Wo(Wi& 4 b))y + b)Y,

183  which implies that F' is twice semidifferentiable.
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The following lemma tells the necessary optimality conditions for an unconstrained mini-
mization problem by using subderivatives.

Lemma 3.4 ([32, Theorems 10.1 & 13.24]). Let g : R™ — (—o00, 40| be a proper extended-
valued function. If T is a local minimum of g over R, then dg(z)(v) > 0 and d?g(z|0)(v) > 0
for any v € R™.

The following lemma shows that we can replace d?g(Z|0)(v) > 0 by d?¢(Z)(v) > 0 under
certain mild conditions.

Lemma 3.5. Let g : R" — (—o00,+00] be twice semidifferentiable at z. If dg(z)(v) = 0,
then d2g(z]0)(v) = d2g(7)(v).

Proof. Let dg(z)(v) = 0. Note that

Pol)(o) — i 001 ~0@) ~ g @) o gla+ ) — gle) — tdg(a)(w)
v'—v,t10 112 V' —v,t40 12
i 9(Z +tv) — gl(sc) —tdg(z)(v) _ i g(z + tlv) —9(@) _ &2g(2]0)(0).
tl0 5t t}0 12

where the second equality follows from the twice semidifferentiability of ¢ at Z and the third
equality follows from the existence of the limit. |

Lemma 3.6 ([32, Theorem 8.2]). For the indicator function dx of a set X C R™ and any
point x € X, one has déx(z)(v) = 07 (z)(v) for any v € R™.

A function g : R™ — R is called positively homogeneous of degree p > 0 if g(Aw) = NPg(w)
for all A > 0 and w € R™ (see [32, Definition 13.4]).
The following lemma shows the expansion of a function via subderivatives.

Lemma 3.7 ([32, Theorem 7.21 & Exercise 13.7]). Let g : R — R. Then
(i) g is semidifferentiable at T if and only if

g(x) = g(7) + dg(T)(z — ) + o([lx — ),

where dg(z)(-) is a finite, continuous, positively homogeneous function.
(ii) Suppose that g is semidifferentiable at . Then g is twice semidifferentiable at T if and

only if .
9(x) = 9(7) +dg(7)(z — 7) + 5d%(7)(x — 7) + ol - z|*),

where d®g(z)(+) is a finite, continuous, positively homogeneous of degree 2 function.

The following lemma gives the first-order and second-order optimality conditions for min-
imizing a semidifferentiable function, which extends a sub-result of [10, Proposition 2.3] from
a polyhedral set to a general convex and closed set.

Lemma 3.8. Let X C R"™ be a closed and convez set, g : R™ — R be semidifferentiable at
Z € X, and T be a local minimum point of g over X. Then dg(z)(v) > 0 for all v € Tx(T).
Moreover, if g is twice semidifferentiable at z, then d2g(Z)(v) > 0 for all v € T(z) N {v :

dg(z)(v) = 0}.

This manuscript is for review purposes only.
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Proof. Since T is a local minimum point of g over X', we know from Lemma 3.4 that
dg(z)(v) > 0 and d?g(z|0)(v) > 0 for any v € R™, where § = g + dx. From Lemma 3.6, we
have for all v € Tx(Z) that

0 < dg(7)(v) = Tim inf g(Z 4+ t') — g(z) + ox (T + tv') — dx(Z)

v’ —v,t,0 t
) ol
— liming SEH) =@ 00,
v'—=v,tl0 t

where the second equality follows from the observation that dx(Z) = 0 due to € X and v’ is
selected such that dx(Z + tv') = 0 (see Lemma 3.1) for sufficient small ¢ to achieve the limit
inferior.
Based on the above results, for v € T2(z) C Tx(Z), dg(z)(v
0. Thus, T3(z) N {v : dg(z)(v) = 0} = T (z) N {v : dg(z)(v) =
We know from Lemma 3.5 that for v € T3(z)N{v : dg(z)(v)
Therefore, for v € Tp(Z) N {v : dg(z)(v) = 0}, we have

) }: 0 if and only if dg(z)(v) =
0}.
= 0}, d%g(7(0)(v) = d*g(z)(v).

(@)

0 < g(@(e) @ it 2T+ (@ + 1) — o(x) — dx() ~ 1dg(x) ()

v’ —v,t10 %tQ
() . . P
< lim i LE L) F02(@ + 1) — 9(2) — x() ~ tdg(@)(v)
tl0 §t2
© . g9 +tv) —g(&) —tdg(Z)(v) @ o ,_
ki 12 = dg(a)(0)

where (a) follows from the definition of the second-order subderivative d2g(z)(v), (b) follows
from the definition of limit inferior (see [32, Definition 1.5]), (c) follows from z € X and z+tv €
X for sufficiently small ¢ due to v € T¢(Z) and (d) follows from the twice semidifferentiability
of g at x. |

The following lemma gives a description of the generalized second-order directional deriv-

ative by using directional derivatives.

Lemma 3.9 ([8, Proposition 1.3]). Let g : R" — R be a continuous function that admits
a directional derivative at every point near x. Then g°°(x;u,v) is the generalized directional
deriwative of ¢'(-,v) at x along direction w, that is

N 4t o) — o (2
9% (xu,v) = 1imsupg (@' +tus;v) — g'(x av)'
! =z t

t10

Remark 3.10. Note that

¢ (2:0) > lim g(x 4+ tv+tv) — g(z + tv) — g(x + tv) + g(z)

£10 2 = 9% (x;0).

Recall that g : R — R is twice subregular at x [8, Definition 3.1] if the limit

iy 9@t outtv) —g(z+du) — gz +tv) + g(z)
10,610 ot
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exists and the above limit equals to ¢°°(z;u, v). Thus, we know that g°°(z;v) = ¢ (z;v) if ¢
is twice subregular at x.

Now we are ready to give the main results of this subsection.

Theorem 3.11. Let the tuple (&,9) € X x Y be a local minimax point of problem (1.1).
(i) If f is semidifferentiable at (Z,7), then

(3.2a) fo(&,g;v) >0 for all v € Tx (%),
(3.2b) dy f(2,9)(w) <0 for allw € Ty (9),

where fo(Z,y;v) denotes the generalized directional derivative of f with respect to x
at T along the direction v for fixed .
(ii) Assume, further, that f is twice semidifferentiable at (Z,9) and f is Clarke regular in
a neighborhood of (z,4). Then
(3.3a) f2°(2,9;v) >0 for allv e Ty (2)N{v:35 > 0,d. f(Z,y")(v) =0,Vy € B(g,6)NY},

T

(3.3b) dif(&,9)(w) <0 for all w € T(P) N{w : dy f(2,9)(w) = 0},

where f2°(Z,y;v) denotes the generalized second-order directional derivative of f with respect
to x at & along the direction (v,v) for fized 7.

Proof. (3.2b) and (3.3b) directly follow from Lemma 3.8. Therefore, we only focus on
(3.2a) and (3.3a), respectively.

(i) Since (z,9) is a local minimax point, there exist a dgp > 0 and a function 7: Ry — R4
satisfying 7(6) — 0 as § — 0, such that for any 6 € (0,0 and (x,y) € X x Y satisfying
|l — || < ¢ and ||y — || < 0, we have

3.4 Ly) < f&9) < e
(3.4) f(@,y) < f(2,9) v e{yeY:|ly—9lI<7(8)}

f(z,y).

For any v € Tx (), according to the convexity of X, there exist {v¥};>1 with v¥ — v as
k — oo and {t}r>1 with t; | 0 as k — oo, such that zF =2 + tpo* € X (see Lemma 3.1).
Let 0 = ka — :%H and §* be defined by

(3.5) gt e arg max fzF, ).
y' e{yeY:|ly—9l|<r(dx)}

Obviously, §r — 0 and H;&k — gH — 0 as kK — 00. According to the second inequality of (3.4),
we have (for sufficiently large k) that

f(a*,5°) — £(@.5%).

Note from the mean-value theorem [7, Theorem 2.3.7] that there exists an #* lying in the
segment between z* and & such that

ﬂﬁ@%—f@@ﬂe<wmﬂ¢x6f3>.

(3.6)

IN
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12 J. JIANG AND X. CHEN

0
not less than 0. Thus, by dividing ¢; in both sides and letting & — oo, due to the upper
semicontinuity of 9f(-,-) (see [7, Proposition 2.1.5]), we obtain

. : L ooy [tV o
It indicates that there exists an element contained in <8 f@k, g%, ( kY )> such that it is

o< s (¢ (5)) 250 =)

Cedf(,9

where (a) follows from (3.1) and f2(&, §;v) denotes the Clarke generalized directional deriva-
tive of f with respect to x at Z along the direction v for fixed g.

(i) Let v € Tg(2) N{v : 30 > 0,d, f(&,9)(v) = 0,Vy € B(y,0) NY}. Then there exists
a sequence {tx}r>1 with ¢ | 0, such that zF =% +tpv € X. Let 6 = H$k — i”, and §* be
defined in (3.5).

From the mean-value theorem, there is (; € (0, ;) such that

. - . . - trv
f@ +teo, §%) — f(2,5°) € 0 (& + o, §") < 0 > :
Similar to (3.6), we have f(& + tyv,5*) — f(&,7*) > 0. Thus, we have

(3.7) (& + G, 7% v,0) = sup <0, <g>> > 0.
)

0€0f (2+Crv, 5"

Then, according to the Clarke regularity of f near (Z,7), we have from (3.7) that

(b) o4 7.0 (4 7 0.0
0< hmsupf (x_'_CkUay U, ) (é) hmsupf (x+<kv7y U, )
k—00 Ck k00 Ck
(4 ~k. gl k. ., ,. iAo,
@ i sup 2 E T EVT50,0) = F@,5750,0) g o 4 0.y, 0) = f(E 50, 0)
k—o0 Ck m’—)a”ci(y)’—»g) t
t

(€) poors -~ o /n -
=L@, 5 0,0) = f7(@, 95 v),

where (b) follows from (3.7), (c) follows from the Clarke regularity of f near (z,9), (d) follows
from f'(Z,7";v,0) = 0 for sufficiently large k, (e) follows from Lemma 3.9 and f2°(Z,;v)
denotes the generalized second-order directional derivative of f with respect to = at Z along
the direction (v, v) for fixed . [ ]

We illustrate Theorem 3.11 by Example A.1 in Appendix A.

Remark 3.12. We know from (3.1) that for any v, f7(%,9;v) = max.cp, f(3,9) (#,v). Thus,
(3.2a) can be equivalently reformulated as maxcg, ¢(3,5) (2, v) > 0, Vv € Tx(Z), which, based
on the definition of normal cone, is equivalent to 0 € 9, f(Z,9) + Nx(&).

Generally, (3.2b) implies the Clarke stationary condition 0 € —0,f(&,9) + Ny (9), but
not vice versa. Moreover, by using the (generalized) directional derivatives, we can establish
the second-order necessary optimality conditions for the nonsmooth case. Therefore, the
(generalized) directional derivatives are employed in Theorem 3.11.

This manuscript is for review purposes only.
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Remark 3.13. Tt is noteworthy that the necessary optimality conditions (3.2a)-(3.2b) and
(3.32)-(3.3b) with respect to x and y are not symmetric. Generally, (3.2a) and (3.3a) are
weaker than

(3.8) de f(2,9;0) > 0 for all v € Tx ()
and
(3.9) d2f(&,9;v) > 0 for all v € Tg(2) N {v: da f(&,9)(v) = 0},

respectively, because f2(&,9;v) > do f (2, 9;v), fo°(2,9;v) > d2f(#,9;v) (Remark 3.10) and
Tx (@) N{v:36 > 0,daf(2,9)(v) = 0,y € B(§,0) NV} € Tx(2) N{v: daf (&, §)(v) = O}

The main reason is that a local minimax point may not be a local saddle point. If we replace
(3.2a) and (3.3a) by (3.8) and (3.9) respectively, the necessary optimality conditions for local
saddle points are derived. Indeed, if (Z,3) € X x Y is a local saddle point of problem (1.1),
then Z is a local minimum of mingex f(x,9) and ¢ is a local maximum of maxycy f(Z,y) by
Definition 2.2. Hence by Lemma 3.8, we obtain that (3.8) and (3.9) are necessary optimality
conditions for local saddle points of problem (1.1).

If, in addition, f is Clarke regular at (&, ), then

£ 50) D @500 L @ 50,00 € df @ 9)(0.0) Y du £(2,9) (),

where (a) follows from the definition of fg, (b) follows from the Clarke regularity, (c) follows
from [10, Section 2.1] and (d) follows from the definition of d, f. Thus, (3.2a) can be replaced
by (3.8).

If, in addition, f is twice subregular at (Z,y), then

00 (a - () . ) -
Fo(#,9:0,0) = A f(2,9)(v,0) = dz f(2,9)(v),

where (e) follows from [10, Section 2.1] and (f) follows from the definition of d2f. Thus (3.3a)
can be replaced by

d2f(z,9)(v) >0 for all v € Tg(2) N {v:36 > 0,d.f(2,9)(v) = 0,¥y € B(7,0) NY}.

Remark 3.14. Suppose that f is twice semidifferentiable, Clarke regular and twice sub-
regular. Then we have f2(%,9;v) = dof(2,9)(v) and f2°(#,9;v) = d2f(#,9)(v). Based on
Lemma C.4 and (3.3), we can have
(&, 9;v) >0 for all 0 # v € Tx () N{v:ds f(Z,9)(v) = 0},
Q21 (3, §)(w) > 0 for all 0 £ w € Ty (§) N {w: dy f(2,9)(w) = 0},

with (3.2) as a second-order sufficient condition for a local saddle point. Since a local saddle
point is a local minimax point, (3.10) together with (3.2) is also a sufficient condition for a
local minimax point.

(3.10)

Based on Theorem 3.11, we define the first-order and second-order d-stationary points of
min-max problems.

Definition 3.15. We call that (,35) € X XY is a first-order d-stationary point of problem
(1.1) if it satisfies (3.2a)-(3.2b). If (Z,y) also satisfies (3.3a)-(3.3b), we call it a second-order
d-stationary point of problem (1.1).

This manuscript is for review purposes only.
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314 3.2. Smooth case. In this subsection, we consider the necessary optimality conditions of
315 problem (1.1) when f is (twice) continuously differentiable. For any (z,y) € X x Y, denote
316 I(z,y) ={veTx(@) :viVyf(z,y)}, Ti(z,y) ={veTx@):vLlVyf(z,y)},

§{§ Fg(%?/) = {U} € 7?(?/) : wJ—vyf(‘T7y)}a F2($,y) = {U) € 7;/(?/) : wJ_Vyf(az,y)}

319 It is noteworthy that cl(I'{(x,y)) # I'i(z,y) and cl(I'S(x,y)) # T2(x,y) generally even
320 if we have cl(Tg(x)) = Tx(z) and cl(Ty¥(y)) = Ty (y). We summarize their relationships as
321 follows.

322 Lemma 3.16. Let (z,y) € X xY. Then I'{(z,y), I'i(z,y), I'S(z,y) and I'y(z,y) are convex
323 cones, and we have cll'{(z,y) C T'1(z,y) and cll'$(x,y) C I'a(z,y). Moreover, if X and'Y are
324 polyhedral, then I'S(z,y) = cll'§(z,y) =T'i(x,y) and I'§(z,y) = cll'$(z,y) = Ta(x,y).

Proof. Since X and Y are closed and convex, we know from Lemma 3.1 that 7y (z), and
Ty (y) are convex cones, Tx(x) and Ty (y) are closed convex cones, and

clTx () € Tx(z) and clTy(7) € Ty (9)-

325 Thus, we obtain that I'{(x,y), T'1(z,y), I'S(x,y) and I's(x,y) are convex cones. Moreover, we
326 have

cl'f(z,y) = cl{v € Tx(z) : vL V. f(z,y)} C{v € clTx(x) : vLV,f(z,y)}

397 C {veTx():vlVaf(z,y)} =TIi(z,y).

328  Similarly, we can verify clI'§(x,y) C I'a(z,y).
329 If, further, X and Y are polyhedral, we have 7¢(Z) = Tx(Z) and 7y (y) = Ty (). Thus,

cdl(z,y) CT(z,y) ={v € Tx(z) : vLV,.f(z,y)}

330 ={veTe(z) :vLV.f(z,y)} = T5(x,y),

331 which implies that I'{(z,y) = cll'{(z,y) = I'i(z,y). Similarly, we can verify I'§(z,y) =
332 cdlS(z,y) = Loz, y). [ ]
333 Theorem 3.17. Let f be continuously differentiable and the tuple (,3) € X XY be a local

334 manimaz point of problem (1.1).
335 (i) Then it holds that

336 (3.11a) 0€ V.f(z,9) + Nx(2),

337 (3.11Db) 0e -Vy,f(z,9) +Ny(9).

339 (i) Assume, further, that f is twice continuously differentiable. Then

340 (3.12a) (v, V2, f(&, g)v) >0 for allvec{v:36>0,0 €T9(2,¢),Vy €B(H,9)},
343 (3.12b) (w,Vy, f(2,9)w) <0 for all w € cl'5(%,7).

343 Proof. (i) The proof is similar to Theorem 3.11. Here we give a simple proof of (3.11a)

k

344 and (3.12a) for completeness. For any x X iask o 00, denote & = ka —ﬁ;H and §*
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is defined in (3.5). Obviously, dy — 0 and Hyjk — ng — 0 as £ — oco. From the continuous
differentiability of f, we have

xk — i

0< fak,5") = 1(@,5%) = VIE 55T (gk_gk> = Vo f(@,9) (" = 3)+o ([ — 2])

k

where Z¥ is some point lying in the segment between & and z*. Thus, we obtain

Vo f(@,9)T (e — &) <o (ka . xH) :

We know from [32, Definition 6.3] that —V, f(Z,9) € Nx (&), which verifies (3.11a).

(ii) We only need to prove that (3.12a) holds with v € I'{(#,y') for all ¥ € B(g,d) and
some 6 > 0. According to the definition of 7¢(Z), there exists a sequence {t;}r>1 with ¢, L 0
as k — oo, such that 2% := 2 +t,v € X. Let 6 =t} ||v||, and §* is denoted in (3.5). Similarly,
we have that

0< SR — £ 09 D Vol 07T (@ - 8) + 56— )TV IE ) - )
U910, @ = )+ (o = )V f )~ ) +o o o] ).

where (a) follows from Taylor’s theorem for multivariate functions with Lagrange’s remainder,
and #* is some point lying in the segment between # and z¥; (b) follows from the twice
continuous differentiability of f and ¥ — & as k — oo. Thus, we obtain

Vo f (2,75 v+t2 v'V2 (&, 9)v + ||v][* o) > 0.

Since V. f(Z,7*) v = 0 for sufficiently large k, dividing by t% in both sides and letting k£ — oo,
we complete the proof. [ |

Remark 3.18. The asymmetry between (3.12a) and (3.12b) mainly arises from the asym-
metry between z and y in a local minimax point. Conversely, if the conditions in (ii) of
Theorem 3.17 hold except that cl{w : 3§ > 0,w € T'{(&,vy),Vy' € B(9,6)} and cll'3(z, ) are
replaced by I'1(Z,9) and I'y(Z, ), respectively, and the inequality is strict when v # 0 and
w # 0, then (&,7) is a local saddle point. In that case, (3.12) together with (3.11) are the
so-called second-order sufficient condition for a local saddle point. This fact can be easily de-
rived by using the sufficient optimality condition for minimization problems (see [32, Example
13.25]) and the definition of local saddle points (see Definition 2.2). Specifically, by invoking
Lemma C.3 (ii), these conditions imply that ¢ is a local maximum of maxycy f(z,y) for fixed
Z, and & is a local minimum of min,cx f(z,y) for fixed §. Hence (&, 7) is a local saddle point.

Corollary 3.19. Let f be twice continuously differentiable. If, further, for local minimaz
point (,9), there exists an T such that 7(6) = o(8) as § | 0, then (3.12a) can be replaced by

<v,V?E f(z,9) v> >0 for all v € clI'{(Z, 7).

This manuscript is for review purposes only.
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Proof. Let 0 # v € I'{(Z,9). According to the definition of 7¢ (), there exists a sequence
{tk}x>1 with t; | 0 as k — oo, such that 2k =% +tpv € X. Let 6 := Hmk — J%H, and §* be
denoted in (3.5). Since 7(6) = o(J) as ¢ | 0, we have ngk - QH =0 (ka - QEH) for sufficiently
large k. We know from the twice continuous differentiability of f that

FEF ) = F(&,9) + Vo f (@,9) " (2" —2) + Vy f(2,9)" (7" - 9)

(@9
b o~ )TV 0) — 2) + (2~ )TV, 75 ) )
+%(yk—y) Vol (@9)(F" -9 +0<Hx —x( 2)

£, 5% = F(@9) + Vo 0) TG~ 9) + 56— 5) V3,7 )G )
vo(l7 ).
Using t, V. f(2,9) v = V. f(2,9) " (2¥ — ) = 0 for v € (%, 7)), we have
0< f(z*,4") — £(2,5")

= S~ &TV2 S 9) &)+ (o~ )TV, 7( )@~ 5)

colfer=af + - of) o (Jot- o)

— &) V2, (@, 9) (" — &) + (o5 =) V2 F(@ )5 — ) +o (ka - asHQ)
of (@& 9)v + o(tf),

where (a) follows from the fact that ngk - g)H =0 (H:ck - ﬁ:H) for sufficiently large k& and (b)
follows from the fact that

(= &)V, £@, )" - 9)| < |o* = & V2, 0.9

7 = 3| = o).

Finally, dividing by ¢? in both sides and letting ¢;, — 0, we complete the proof. |
Y k

Remark 3.20. In Corollary 3.19, the asymmetry of optimality conditions between on z
and on y has been removed. The main reason lies in that we restrict the scope of the local
minimax points by requiring 7(6) = 0(d) as 0 | 0 in Definition 2.4.

The following example illustrates cl{w : w € I'{(Z,y),Vy' € B(,d)} for some § > 0.
Ezample 3.21. Let n=m =1, X =Y = [-1,1]. Consider

min  max f(z,y) = —xt +42%y? — oL,
ze[-1,1] ye[—1,1]

This manuscript is for review purposes only.
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We have

pla) = max (—at+da%y? —yt) =

3at, T e [-% Q (y* = +V22);
ye[-1,1] —zt+ 42?2 -1, [-1,1]\ [—72

72} (v =1),

which is not a convex function over [—1,1]. Moreover, it can be examined that (0,0) is a

3

global minimax point. In fact, it is also a local minimax point. Let 7(4) = 26? and &y = 72
Then, for any § € (0,8] and any (z,y) € [—1,1]? satisfying || < § and |y| < §, we have

4 ! 4
-y~ = f(0,y) < f(0,0) < max z,y ) = 3x".
y" = f(0,y) < f(0,0) y,e{yg:'y‘g(é)}f( y)

Therefore, for any § € (0, 1],

cl {w fw e F?(Oa y/)vvy/ € B(Oa 5)} =dl m {’LUl € 7Eil,l] (0) : le—sz(Ovy,)} =R.
y'€B(0,9)

Similarly, we have cI['5(0,0) = {w2 € T2 1.1)(0) 1 wa LV, (0, 0)} —R.
In this case, the second-order optimality condition (3.12) means VZ,f(0,0) > 0 and
vz, f(0,0) <0.

In Theorem 3.17, the first-order and second-order optimality necessary conditions are
given in a sense of geometry. In particular, for the case that X and Y are polyhedral, we
derive the corresponding Karush-Kuhn-Tucker (KKT) systems in Appendix B.

Definition 3.22. We call that (Z,9) € X XY is a first-order stationary point of problem
(1.1) if it satisfies (3.11a)-(3.11b). Moreover, if (&,7) also satisfies (3.12a)-(3.12b), we call it
a second-order stationary point of problem (1.1).

The existence results of the first-order stationary points can be obtained by using existing

. iy V. f(z,y) )
results in [15, Proposition 2.2.3, Corollary 2.2.5]. Let F'(x,y) = e .
[ P y ] (z,9) (—Vyf(x,y)

(i) If there exist a bounded open set Z C X x Y and a point (Z,7) € (X x Y) N Z such
that

<F(a:,y), ("; - §>> >0, Y(z,y) € (X x Y)Nbd(Z),

then problem (1.1) has at least a first-order stationary point.

(ii) Specially, if X and Y are bounded, the first-order stationary point set of problem (1.1)

is nonempty.

We know from [21, Proposition 21] that a global minimax point can be neither a local
minimax point nor a stationary point. However, some global minimax points can be the
first-order stationary points.

The following proposition claims that under mild conditions a class of global minimax
points are first-order stationary points.
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Proposition 3.23. Let f be continuously differentiable over X XY, and (&,7) be a global
minimax point of (1.1) satisfying

=T y' ey

g € limsup (arg max f(x, y’)) )

where “limsup” denotes outer limit ([32, Definition 4.1]), then (£,9) is a first-order stationary
point.

Proof. Since (&, ) is a global minimax point, we have for any (z,y) € X x Y that

(a) (b)
(3.13) f@,y) < f(2,9) < max f(z,9).
y'ey

The inequality (a) of (3.13) implies (3.11b). In the sequel, we only consider (3.11a) through
inequality (b) of (3.13). Since

¢ € limsup (arg max f(x, y')) )

T y'ey

without loss of generality, we know from the definition of outer limit that there exist a sequence
{2*} and §* € arg max, ¢y f(z*, /) such that ¥ — 7 as k — co. By a similar procedure to
the proof for (i) of Theorem 3.17, we have

0< Vof(d,§") (2" —2)+o (ka B x“)
= Vaof (#,9)" (& = 2) + (Vo f(&,7") = Vo f(2,9) T (2" = 2) + 0 (Hf”k N “"H>
= V. f(&,9)" (=" - @) +0( 2t ”H)

which implies that —V, f(2,9) € Nx(&). [ |

In general, a global minimax point can be neither a local minimax point nor a stationary
point [21, Proposition 21]. Moreover, a first-order stationary point may not be a local minimax
point. We use the following example to show this assertion.

Ezxample 3.24 ([21, Figure 2]). Let n =m =1, X = [-1,1] and Y = [-5,5]. Consider
the following minimax problem

=

3.14 i y) = ay — .
(3.14) Lopin | max f(z,y) =2y — cos(y)

By direct calculation, we have

o(z) = max (zy — cos(y)) = {z (m — arcsin(—x)) — cos(m — arcsin(—zx)), z € [0,1];

y€[-5,5] (—m — arcsin(—=x)) — cos(—m — arcsin(—z)), x € [—1,0],

where the optima is achieved when y = 7 — arcsin(—z) and y = —7 — arcsin(—z), respectively.
It can observe from the definition of ¢(z) that z = 0 is the minimum. In this case, (0, —m)
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and (0, 7) are two global minimax points. However, they both fail to satisfy (3.11a)-(3.11b),
that is,

0€y+No1y(=),

0 € x +sin(y) + N_55 (),
which has a unique solution (0,0). Thus, neither (0, —7) nor (0,7) is a first-order stationary
point, which implies from Theorem 3.17 that they cannot be local minimax points either.
Therefore, a global minimax point can be neither a local minimax point nor a first-order
stationary point.

Next, we show that even (0, 0) is not a local minimax point. For any y satisfying 0 < |y| < §

with any sufficiently small § > 0, we have — cos(y) = f(0,y) > f(0,0) = —1, which, according
to the definition of local minimax points in Definition 2.4, concludes that (0,0) is not a local

minimax point. Therefore, problem (3.14) here does not have a local minimax point even
both X and Y are bounded.

Sometimes we can find that a global minimax point may be a stationary point (Example
2.7). In the following proposition, we conclude some sufficient conditions such that a global
minimax point is a local minimax point.

Proposition 3.25. Let (&,4) be a global minimax point and f be Lipschitz continuous over
X xY. Assume that for each x in a neighborhood of &, max,cy f(x,y’) has a unique and
uniformly bounded solution. Then (Z,9) is a local minimaz point.

Proof. Since max,cy f(z,y’) has a unique solution for all z in a neighborhood of Z, we
use y(z) to denote this unique solution. Consider

max g(y') .= f(&,y) and max §(y') == f(a,y).
y'ey y'ey

Note that f(z,-) is continuous and g(x) is uniformly bounded for z in a neighborhood of
Z. Then, by using Lemma C.1, we know that ||g(x) — 9| — 0 as x — Z, which implies
that there exists a dp > 0 such that for any = € X satisfying ||z — z|| < 0 < dp, 7(6) — 0
where 7(0) 1= supgzex:||a—z| <oy |9(z) — 9. As (2,9) is a global minimax point, we have for
any x € X and y € Y that f(Z,y) < f(&,9) < maxycy f(z,y'). This indicates that for x
satisfying ||l — z|| < 6(< dp) and y satisfying ||y — g|| < 7(5), we have

f(&,y) < f(2,9) < g}g;cf(fﬂvy') = flz,9(z) = f@y).

max.
y' e{yeY:lly—glI<r ()}

Thus, (&,9) is a local minimax point based on Definition 2.4. [ ]

Obviously, when f(z,-) is strictly concave for all x in a neighborhood of Z, the condition
for the uniqueness of the maximization problem holds.

To end this section, we summarize relationships between saddle points, local saddle points,
global minimax points, local minimax points and first-order and second-order stationary points
in Figure 1.
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Figure 1. Venn diagram for saddle points, minimaz points and stationary points:
a saddle point = a local saddle point (Definitions 2.1 € 2.2),
a global (local) minimazx point # a local saddle point (Example 2.7),
a local saddle point = a local minimaz point (Definitions 2.2 & 2.4),
a local minimaz point = a first-order or second-order stationary point (Theorems 3.11 & 3.17),
a first-order stationary point % a local minimaz point (Example 3.24),
a second-order stationary point = a first-order stationary point (Definition 3.22).

4. Generative adversarial networks. In this section, we consider the first-order and second
-order optimality conditions of the GAN using nonsmooth activation functions, which can be
formulated as nonsmooth nonconvex-nonconcave min-max problem (1.1).

The GAN is one of the most popular generative models in machine learning. It is comprised
of two ingredients: the generator, which creates samples that are intended to follow the same
distribution as the training data, and the discriminator, which examines samples to determine
whether they are real or fake. For more motivations and advantages of GANs, one can refer
to [17]. Recently, Wang gave a mathematical introduction to GANs in [34].

The plain vanilla GAN model can be formulated as (1.2), where D and G are given by
feedforward neural networks with parameters = and y, respectively. The activation function
is a function from R to R that is used to compute the hidden layer values and introduce
the nonlinear property. There are several commonly-used activation functions, such as ReLU
o(z) = max{0, z}, the logistic sigmoid o(z) = 1/(14exp(—z)), the softplus activation function
o(z) = In(1 + exp(z)), etc.

We give an intuition for D and G which are consist of linear models with activation
functions in the following example.

Ezxample 4.1. Consider that the discriminator D is a single-layer network with a logistic
sigmoid activation function [18] and the generator G is a two-layer network with an activation

function o as follows G(z,&3) := Wao(W1i&s + b1) + by and D(y, &) = m, where

x = (vec(W1) ", vec(W2) T, b{ ,by )T and vec(-) denotes the columnwise vectorization operator
of matrices, W7 € R**%2, by € RS, Wy € R1*5 by € R and o : R® — R®. Here, o is a
separable vector activation function that aggregates the individual neuron activations.
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In this case, the GAN model (1.2) can be explicitly written as

. 1
minmax flz,y) = (Epl [log ( [ )]
(4.1)

+ Ep, [log (1 “1r exp(yT(WQG(l‘/‘GfQ +b1)+ 52)))]

If X and Y are compact and o is continuous, by Proposition 2.6, problem (4.1) has a global
minimax point.

Obviously, if D(+,&1) and G(+,&2) are smooth (i.e. o is smooth), the necessary optimality
conditions in Theorem 3.17 hold. Next, we focus on the nonsmooth case with the ReLU
activation function.

Proposition 4.2. Let f be defined in (4.1) with o(-) = (-)4+. Assume that support sets =,
and Zo are bounded. Then the following statements hold.

(i) f is locally Lipschitz continuous and twice semidifferentiable in X x Y.

(ii) If, in addition, f is Clarke regular and twice subregular at (z,y), we have

(4.2a) folz,y;v) = Ep, [pr (Wa(Wi&s +br)4 +b2) " Y(v, 52)} :

(4.2b) fo (x,y;v) = Ep, {T(Uafz)TV%y(Wz(Wl& +b1)+ + 52)T(%§2)] ,

where v = (vec(Wl)T,vec(Wz)T,EI,E;F) e R”, py(:) :=log (1 ) and

-1
I+exp(y ' ()

(v, &) :=Wa <lim (W1 +tW1)& + b1 +thi)4 — (Wh€ + bl)+>
T £10

(4.3) t
+ Wo(Wi&s + b))+ + ba,
and
(4.4a)
dy f(z,y)(w) = (Ep, [Vylog (D(y,&1)] + Ep, [Vy log (1 — D(y, G(x, &))" w,
(4.4b)

&2 f(z,y)(w) =w' (Ep, [Vilog (D(y,&1))] +Ep, [Vilog (1 — D(y,G(z,&)))]) w,
where w € R™.

Proof. (i) Let p1(y) = Ep, [log (D(y,&1))], p2(z,y) = Ep, [log (1 — D(y, G(x,&2)))] . Since

for any fixed & € Za, G(z,&2) and log (1 — m) are locally Lipschitz continuous

in X x Y, the local Lipschitz continuity of f(x,y) = p1(y) + p2(x,y) follows the continuous
differentiability of log and exp functions. Moreover, the twice semidifferentiability follows
directly from Example 3.3.

(ii) Since py(-) is twice continuously differentiable, we have

fae,y0) @ fiey0) @ B, [V, (WM& +51)4 + 1) T(0,6)]
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where (a) follows from the Clarke regularity, (b) follows from Fatou-Lebesgue theorem and
Example 3.3 and Y (v, &2) is defined in (4.3). Again, by twice subregularity, we have

2 (z,y50) = P (2, y,0) =Ep, [T(U,52)Tv2py(W2(W1§2 +01)4 +02)Y (v, &) .

Note that, for given z, £ and &2, D(y, &1) and D(y, G(x, &2)) are continuously differentiable
with respect to y. By Lemma C.2 and the boundedness of Z; and Eg, we know that f(z,y)
is continuously differentiable with respect to y. Moreover, we have (see Remark 3.2)

dyf(@,9)(w) = Vyf(z,y) w = (Vyp1(y) + Vypa(z,y)) " w
= (Ep, [Vylog (D(y,&1))] +Ep, [Vylog (1 — D(y,G(z,&)))) " w,

where the last equality follows from Lemma C.2. Analogously, by applying Lemma C.2 to
Ep, [Vylog (D(y,&1))] and Ep, [V, 1og (1 — D(y, G(x,&2)))], we can derive that f(z,y) is twice
continuously differentiable with respect to y and (see Remark 3.2)

dy f (2, y)(w) = w' V; f (2, y)w
=w' (Ep, [Vy1og(D(y.&1))] +Ep, [Vilog (1 — D(y, G(z,&)))]) w.

The proof is complete. u
By directly using Proposition 4.2, we can apply Theorems 3.11 and 3.17 to problem (4.1).

Proposition 4.3. Let (&,9) be a local minimaz point of problem (4.1).

(i) Suppose the assumptions of Proposition 4.2 hold with (z,y) = (&,9). Then the first-
order necessary optimality conditions (3.2a)-(3.2b) hold at (&,9) with f7(&,9;v) and
dy f(Z,9)(w) being given by (4.2a) and (4.4a). If, in addition, f is Clarke reqular in
a neighborhood of (Z,7), then the second-order necessary optimality conditions (3.3a)-
(3.3b) hold at (&, §) with f3°(Z, §;v) and &2 f(2,§)(w) being given by (4.2b) and (4.4b).

(ii) If o(-) is twice continuously differentiable, then the first-order and second-order nec-
essary optimality conditions (3.11a)-(3.11b) and (3.12a)-(3.12b) hold at (Z, ).

In Appendix D, we discuss the sample average approximation of the first-order and second-
order stationary points of problem (4.1).

5. Conclusions. Many nonconvex-nonconcave min-max problems in dada sciences do not
have saddle points. In this paper, we provide sufficient conditions for the existence of global
and local minimax points of constrained nonsmooth nonconvex-nonconcave min-max problem
(1.1). Moreover, we give the first-order and second-order optimality conditions of local mini-
max points of problem (1.1), and use these conditions to define the first-order and second-order
stationary points of (1.1). The relationships between saddle points, local saddle points, global
minimax points, local minimax points, stationary points are summarized in Figure 1. Several
examples are employed to illustrate our theoretical results. To demonstrate applications of
these optimality conditions, we propose a method to verify the optimality conditions at any
given point of generative adversarial network (4.1).

Appendix A. Example.
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Ezample A.1. Let X = [—1,1] and Y = [—1, 1]. We consider

3
i m 9 3, 13 5
min ax z,y) = —|x 2 B .
re[—l,l]ye[—1,1]f( v) ] +5| " [yl” = 1yl

Taking 7(8) = 2(v/0)3, for any |z| < & and |y| < § with sufficiently small § € (0,1), we have

3 2 (3\*
el Sl bl = ol = = el + 2 () (VD™

where :I:%(\/H)?’ is the maximum of the above maximization problem. This implies that
(0,0) is a local minimax point. Obviously, f(z,y) is not differentiable at (0,0). In what
follows, we examine the necessary optimality conditions in Theorem 3.11. Since 7x(0) = R
and 7y (0) = R, we have for any v € Tx(0) that

5
_ = f(0,y) < f(0,0) < max
ly[” = £(0,y) < £(0,0) L .

_/t9 119
£2(0,0: ) = limsup —2 T F I

0,
2'—0,t,0 t

which implies that f2(0,0;v) = f.(0,0;v), i.e., the Clarke regularity holds.
Similarly, we have for any w € Ty (0) that

no_ . "5

d, £(0,0)(w) = Timinf 0. 00) = F(0,0) _ 1y g —

w’ —w,t}0 t w’ —w,t}0 t

=0.

Next consider the second-order optimality conditions. Note that 73 (0) = R and for any
fixed ¢/, we have

A, £(0,4')(v) = liming 2E0Y) = (0.9

v —=wv,tl0 t
—t9 1)+ 283 )P )P = P+ )
— timinf TSR - T+ T
v —=v,t)0 t

for any v, which implies that {v : d; f(0,y")(v) = 0} = R. Thus, for any 6 > 0
Tx(0) N {v:d,f(0,9)(v) =0,Vy € B(0,6)NY} =R.
Notice that

£2°(0,0:) = limsup L& F 30+ 10,0) = (@' +0v,0) = (2l + t0,0) + f(=', 0)

N 2/ =0 ot

t10,610

— Jimsup — |2/ + 0v + to|” + |2’ + 6v|” + |o’ + to]” — |2/]° >0
z/ =0 ot
110,510

for any v € R. Similarly, we have 72(0) N {w : dy, f(0,0)(w) = 0} =R and
0,tw') — £(0,0) — td, £(0,0)(w’ — [tw']
d2£(0,0)(w) = liminf 10 tuwr) = ’1) oF OO ing |1w "y

w’ —w,t}0 §t2 w’ —w,t}0 §t2
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for any w € R.

Appendix B. The polyhedral case.

If both X and Y are polyhedral, we can replace cl{w : 3§ > 0,w € T'{(2,v),Vy' € B(¢9,9)}
and cll'$(#,9) in Theorem 3.17 by cl{w: 36 > 0,w € T'1(&,y"),Vy € B(g,0)} and Ta(z, ),
respectively (see Lemma 3.16). Specially, we consider that X and Y are defined as follows:

(B.1) X={zeR": Az <b}and Y = {y e R™: Cy < d},

where A € RP*™ b € RP, C € R?*™ and d € RY.
The following proposition establishes the relationship between tangent/normal cones and
algebra systems when X and Y are defined in (B.1).

Proposition B.1 ([15]). Let X andY be defined in (B.1). Then we have

T (z) = {/\ cR": —ATA>0, Vic AX(x)} Ty (y) = {u ER™: —Cp>0,Vje Ay(y)}

p q
NX(x):{—ZaiAi:aeN’Ri(b—Am)},Ny(y): —ZﬂjCj:ﬂENRi(d—Cy) ,

i=1 j=1

where A; is the ith row vector of matriz A and Cj is the jth row vector of matriz C respectively
fori=1,--- ,pandj=1,---,q, and Ax(x) and Ay (y) are active sets of X at x and Y at
y, respectively.

Theorem B.2. Let the tuple (Z,9) € X XY be a local minimax point of problem (1.1) with
X and Y being defined in (B.1). Then there exist multipliers o € RP and B € RY such that

(B.2) {W (#,9) = S0y 0idi =0, =V, f(#.5) — Xy 5;C; =0,

o€ NRi (b— Az), pe NR?# (d—C7).
If, moreover, f is twice continuously differentiable, we have, for any § > 0, that

<v, Vgxf(f,gj)@ >0 for all
(B.3) veE{NETx(2):30 >0, ATV, f(&,y) =0 fory €B(g,0)},
<w,V§yf(i,y)w> <0 for allw € {u €eTy(9): MTVyf(fU,;Q) = 0} )

Proof. We know from (3.11) of Theorem 3.17 that the following first-order optimality
necessary condition holds: 0 € V,f(Z,9) + Nx(&) and 0 € =V, f(&,9) + Ny (9). This
together with the specific reformulations of Nx(z) and Ny (y) in Proposition B.1, we obtain
(B.2) directly.

Next, we focus on (B.3). Analogously, we know from (3.12) of Theorem 3.17 that

(B.4) (v, V2,f(2,§)v) >0 forallvecl{v:36>0,0€T{(&,y),Vy €B(H0)},
' (w, V2, f(2,§)w) <0 for all w € cl'3(%,7)
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holds. Since X and Y are polyhedral, we know from Lemma 3.16 that I'{(x,y) = cll'{(z,y) =
I'(z,y) and I'§(z,y) = cll'9(x, y) = T'a(x,y). Thus, (B.4) can be equivalently rewritten as

(B.5) (v,V2,f(&,9)v) > 0forallv e cl{v:36 > 0,0 € I'1(&,v),Vy € B(4,6)},
' (w, V2, f(&,§)w) <0 for all w € T'y(&,7).

Note that I'i (z,y) = {v € Tx () : vLV,f(x,y)} and T'a(z,y) = {w € Ty (y) : wLVyf(z,y)}.
This, together with (B.5) and the reformulations of 7x(z) and 7y (y) in Proposition B.1,
verifies (B.3). [ |

We call (B.2) the first-order KKT system of problem (1.1) and (B.2)-(B.3) the second-order
KKT system of problem (1.1).

Appendix C. Four lemmas.  Consider the minimization problem
1 i
(C.1) min g(z),

where X C R” is a compact and convex set and g : X — R is continuous, and its a sequence
of perturbation problems

(C2) min g (@),

where g : X — R are continuous for k£ € N.

Lemma C.1. Letv*, §* and vy, S;; denote the optimal values and the optimal solution sets
of problems (C.1) and (C.2), respectively. Assume sup,cy |gr(z) —g(x)] — 0 as k — oo.
Then (i) v*, v are finite and S*, S} are nonempty; (i) SUP,es7 d(z,8*) = 0 as k — oo.

Proof. (i) It follows from that X" is a compact and convex set and g, g are continuous.
(ii) We give the proof by contradiction. Assume that there exists an ¢y > 0 such that
SUD e 5 d(z,8") > €, where {S} };>1 is a subsequence of {Sj}x>1. Thus, we can select
l > >

a sequence {xy, };>1 with zy, € Sp, such that d(xy,,8*) > ¢, VI € N. Due to the bounded-
ness of feasible set X', we know that the sequence {z,};>1 is bounded, and without loss of
generality, we assume that x,, — ¥ as [ — oo.

vp, — 9(Z) = g, (z,) — 9(T) = Gr, (2ky) — 9(T8)) + 9(T8)) — 9(T).
Since lim sup;_, v,’;l = limy_. o v;;l = v*, we have
o — g(%) = limsup (v, — g(2)) > liminf (G (4,) — g(w,)) + liminf (g(zx,) — (7))
l—00 l—o0 l—o0

Note that
lim inf (g, (zx,) — 9(zx,))| < sup |Gk, () — g(xz)] = 0 and liminf g(zy,) — g(z) > 0,
l—00 zeX l—o0

which implies that v* — g(Z) > 0 and thus z € §*. This contradicts with ¢ < d(zy,,S*) —
d(z,S*) = 0. Therefore, SUD, sy d(z,8*) = 0 as k — oc. [ ]
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Lemma C.2 ([33, Theorem 7.57]). Let U C R™ be an open set, X be a nonempty compact
subset of U and F : U x 2 — R be a random function. Suppose that: (i) {F(z,§)}zex
is dominated by an integrable function; (ii) there exists an integrable function C(§) such
that |F(2',€) — F(z,8)| < C(&) ||2' — || for all 2’,x € U and a.e. & € E; (iii) for every
x € X the function F(-,§) is continuously differentiable at x w.p.1. Then (a) the expectation
function f(x) is finite valued and continuously differentiable on X, and (b) for all x € X the
corresponding derivatives can be taken inside the integral, i.e., V f(x) = E[V,F(z,£)].

Lemma C.3. Suppose that g is twice differentiable at & € X. Let I'°(z) := {w € Tp(Z) :
wlVg(z)} and I'(z) :=={w € Tx(Z) : wLlVg(Z)}. ThenI°(Z) and I'(Z) are convex cones and
(i) If T is a local minimum point of (C.1), then

(C.3) 0€ Vyg(z)+ Nxy(z) and <w,V2g(:Z")w> >0 for all w € cll'°(Z).

(i) If the conditions in (C.3) hold by replacing clI'°(Z) by T'(Z) and “>7 by “>” for w # 0,
then T is a local minimum point of (C.1).

Proof. (i) For any w € I'°(z) with ||w| = 1, there exists a sequence {ty}r>1 with ¢ | 0 as
k — oo such that 0 < g(Z+tyw) — g(2) = t,Vg(z) Tw+ % wTV2 9(Z)w+13 ||w|* o(1). Dividing
t2 in both sides gives w' V2g(z)w > 0, since Vg(z) "w = 0. Hence (C.3) holds.

(ii) We assume by contradiction that Z is not a local minimum point. Then there exists
a sequence {r¥};>; C X with ¥ — 7 as k — oo such that g(x ) < g(z). Let t; = ||z* — z|

and w; = H”“’kﬁ o € 7#(®@)- Then g(a*) = g(2) + V(@) Twi + T V2g(@)w + 8 |[wi]* o(1).

Without loss of generality, we assume that w; — w as | — co. Then w € chO( ) CT'(2).

If there exists a subsequence {kl}l>1 such that Vg(z)Tw; = 0, then 1w, VZg(z)w;, > 0
and @ V2g(z)w > 0, which implies g(z*) > g(z). This leads to a contradlctlon

If there exists a subsequence {k;};>1 such that Vg(a?)Twl > 0, then we have g(z*) > ¢(z)
if Vg(z)'w > 0, and w' VZg(z)w > 0 if Vg(z)'w = 0 (i.e., w € I'(Z)), which implies
g(2*) > g(Z). This also leads to a contradiction. [ ]

Lemma C.4. Suppose that g is twice semidifferentiable at T € X and X is a nonempty,
closed and convex set. If dg(z)(v) > 0 for allv € Tx(Z) and 0 # v € Ty (z) N{w : dg(z)(w) =
0} implies that d2g(Z)(v) > 0, then T is a local minimum point of problem (C.1).

Proof. Let g := g+ dx. Consider the unconstrained minimization problem mingegn g(z),
which is equivalent to constrained minimization problem (C.1). By applying [32, Theorem
13.24] to the unconstrained minimization problem, we complete the proof. |

Appendix D. The sample average approximation. We discuss the sample average ap-
proximation (SAA) of a first-order and a second-order stationary points of problem (4.1).

To this end, we assume that o (-) is twice continuously differentiable. Let X = [a,b] and
Y =c,d] Wherea beR" ¢, dERm a < b, and ¢ < d with n = (s 4 1)(s1 + s2) and m = s;.

Denote {fj *, and {§2 ', the independent identically distributed (iid) samples of &;
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and &9, respectively. We consider the following min-max problem

N
. 1 1
. ::7 1 —_—
by T fey) NZ“<°g(1+exp<yTa>>

1
*los <1 1t exp(yT (Wao (Wigh + br) + b2))> ) '

Use the existing automatic differentiation technique, such as back-propagation, we can
compute V. fn(z,9), Vyfn(z,y), V2, fn(z,y), szfN(x,y). Moreover, we have

[0, 00), if v, = q;

Tx(x) =Tx(x) =qveR" : v; € ¢ (—00,00), ifa; <z <b;p,
(—O0,0], if ZT; :bi

[0, 00), if y; =¢;

TY(Z/) = TY(y) =qweR™: wj € (—O0,00), if Gy < Yj < d]

and

Fi<$7y) = Fl([l?,y> = {U S TX(x) : UJ_vfo(.%',y)},
5(z,y) = a(w,y) = {w € Ty (y) : wlV,fn(z,y)}.

By Theorem 3.17, if (&, 9) is a local minimax point of problem (D.1), then (&, ) must satisfy
the first-order and second-order optimality conditions:

(Vofn(E,9)); >0, if 2; = a3 (Vyfn(2,9)); <0, ify; =cy;

(Vefn(2,9))i =0, ifa; <z <b;; and  (Vy,fn(2,9)); =0, ifc; <y; <dj;

(Vafn(,9)); <0, if z; =b; (Vyfn(2,9)); 20, ify; =d;
fori=1,...,n,5=1,...,m, and

<v, Vifo(ﬁr,g))v> >0 forall v e {v:36 > 0,0 € T1(,1/), Yy € B(5,0)},

<w, szfzv(i'7@)w> <0 for all w € T'a(2,9).

The following proposition tells that the above procedures can ensure an exponential rate
of convergence with respect to sample size V.

Proposition D.1. Let o(-) be twice continuously differentiable. If (xn,yn) is a first-order
(second-order) stationary point of problem (D.1) with iid samples {&] é\le and {& j‘V:1 of &
and & respectively, then (xn,yn) converges to a first-order (second-order) stationary point of

problem (4.1) exponentially with respect to N.
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Proof. Denote

= (S0, g = (e (=T v>)
h(z) <Vyf(aj,y) ’ H{(z) SUPweW (z,y) <w Vyyf x,y)w

)
. F ~ SUPyey(z me x y
e (2) = ( Vafn(z,y) ) L Hn() = eV ,y)< N
—Vny(':va) SquEW(a:,y) <’UJ vyny x y
IBS

where z = (z7,y") 7, V(z,9) := B(0,1) N Ussocl {o: 36 > 0,0 € TS(x,y'), Yy €
W(z,y) :==B(0,1) Ncll(z, y).

According to the twice continuous differentiability of f (see Proposition 4.2) and the
boundedness of Z; and Zy, we have hy(z) — h(z) and Hy(z) — H(z) exponentially fast
uniformly in any compact subset of Z C Z := X x Y ([33, Theorem 7.73]). That is, for any
given € > 0, there exist C' = C(e) and 8 = [(e), such that

0)} and

Prob {Sup HBN(Z) - h(z)H > 6} < Ce ™% and Prob {sup Hy(z) — H(z)‘ > e} < Ce NP,
2€Z z€EZ

Without loss of generality, we assume that zy = (x%, y]T,)T € Z. Denote the following general
growth functions:

P1(7) == inf{d(0, h(2) + Nz(2)): z € Z,d(2,851) > 7},
Yo (1) :=nf{|[(H(2))+]| : z € Z, d(z,852) > 7},

where &1 and Sy are the sets satisfying (3.11a)-(3.11b) and (3.12a)-(3.12b), respectively, and
“d” denotes the distance from a point to a set. Let the related functions Wy(t) := 7 (t) +
t and Wo(t) 1= ¥y () + t, where 1; !(t) := sup{r : (1) < n} for i = 1,2, which satisfy
U;(t) > 0ast0fori=1,2.

Then, by a conventional discussion (see e.g. [5]), we have

d(zn,S1) < ¥, (sup
ZEZ

hy(z) — h(z)H> and d(zy,S2) < Uy (sup Hy(z) — H(z)D .

z2€Z
Thus, we have Prob {d(zx,S1) > ¥;(e)} < Ce ™8 and Prob {d(zn,S2) > Wa(e)} < Ce VA,
which shows that zy converges to a first-order stationary point in S (or a first-order stationary
point in Sy) exponentially with respect to N. |
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