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Abstract. This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine5
learning and games. We first provide sufficient conditions for the existence of global minimax points6
and local minimax points. Next, we establish the first-order and second-order optimality conditions7
for local minimax points by using directional derivatives. These conditions reduce to smooth min-8
max problems with Fréchet derivatives. We apply our theoretical results to generative adversarial9
networks (GANs) in which two neural networks contest with each other in a game. Examples are10
used to illustrate applications of the new theory for training GANs.11
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1. Introduction. Consider the following min-max problem15

(1.1) min
x∈X

max
y∈Y

f(x, y),16

where X ⊆ Rn and Y ⊆ Rm are nonempty, closed and convex sets, f : Rn × Rm → R is a
locally Lipschitz continuous function. Define an envelope function

φ(x) := max
y∈Y

f(x, y).

In this paper, we assume that φ(x) is finite-valued for any x ∈ X. We say problem (1.1) is17

nonconvex-nonconcave if for a fixed x ∈ X, f(x, ·) is not concave, and for a fixed y ∈ Y , f(·, y)18

is not convex.19

The min-max problem (1.1) has many applications in machine learning and games [20,20

30, 35], for instance, the popular generative adversarial networks (GANs) in machine learning21

[2, 9, 16, 17, 26]. Let D : Rm × Rs1 → (0, 1) be a parameterized discriminator, G : Rn ×22

Rs2 → Rs1 be a parameterized generator and ξi be a si-valued random vector with probability23

distribution Pi and support Ξi ⊆ Rsi for i = 1, 2. Then the plain vanilla GAN model can be24

formulated as25

(1.2) min
x∈X

max
y∈Y

EP1

[
log
(
D(y, ξ1)

)]
+ EP2

[
log
(
1−D

(
y,G(x, ξ2)

))]
,26
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2 J. JIANG AND X. CHEN

where x and y are the parameters to control D and G with ranges X and Y , respectively.
Here EPi [·] denotes the expected value with probability distribution Pi over Ξi for i = 1, 2.
We assume that the expected values are finite for any fixed x ∈ X and y ∈ Y . Since the range
of D is (0, 1), for any fixed x,

φ(x) = max
y∈Y

EP1

[
log
(
D(y, ξ1)

)]
+ EP2

[
log
(
1−D

(
y,G(x, ξ2)

))]
is real-valued. The functions D and G are usually defined by deep neural networks (see section27

4 for a specific example). It is noteworthy that unconstrained min-max problems for training28

GANs are widely used, while constrained min-max problems are also used for improved GANs,29

Wasserstein GANs and some games. One can refer to [2, 3, 19] for more details.30

Since the pioneering work [29] by Von Neumann in 1928, convex-concave min-max prob-31

lems have been investigated extensively, based on the concept of saddle points (see e.g.32

[6, 28, 35, 36] and the references therein). In recent years, driving by important applica-33

tions, nonconvex-nonconcave min-max problems have attracted considerable attention [21,34

22, 24, 31]. However, it is well-known that a nonconvex-nonconcave min-max problem may35

not have a saddle point. How to properly define its local optimal points and optimality condi-36

tions has been of great concern. In [1, 12, 25], the concept of local saddle points was studied,37

but it is pointed out in [21] that the concept of local saddle points is not suitable for most38

applications of min-max optimization in machine learning. A nonconvex-nonconcave min-max39

problem may not have a local saddle point (see Example 2.7 in this paper). In [21], the au-40

thors argued that a local solution cannot be determined just based on the function value in41

an arbitrary small neighborhood of a given point. For that reason, they proposed the concept42

of local minimax points of unconstrained smooth nonconvex-nonconcave min-max problems43

and studied the first-order and second-order optimality conditions.44

Optimality conditions for minimization problems have been extensively studied [7, 32].45

Moreover, the study of optimality conditions for simultaneous games has a long history, whose46

solutions are commonly described as the Nash equilibrium. According to the definition of Nash47

equilibrium, the optimality conditions are the combination of each player’s optimality condi-48

tion when the rivals’ decisions are fixed. Therefore, optimality conditions for simultaneous49

games can be viewed as an extension of those for minimization problems. For more details, one50

can refer to [4, 7, 14, 27, 32]. However, optimality and stationarity of nonsmooth nonconvex-51

nonconcave min-max problems are not well understood. Necessary optimality conditions for52

unconstrained weakly-convex–concave min-max problems and their application in machine53

learning were studied in [23, 31]. In [21], from the viewpoint of sequential games, the local54

minimax points and the first-order and second-order optimality conditions for unconstrained55

smooth nonconvex-nonconcave min-max problems were defined. Based on the concept of the56

local minimax points proposed in [21], necessary and sufficient optimality conditions for the57

local minimax points of constrained smooth min-max problems were studied in [11]. It is58

worth noting that the min-max problem can be viewed as a specific bi-level optimization59

problem. The general practice to solve a bi-level optimization problem is to replace the lower60

level optimization by its first-order optimality conditions, so that the bi-level optimization61

problem becomes a mathematical programming with equilibrium constraints (MPEC) and its62

optimality conditions are derived based on the MPEC formulation [13]. However, optimality63
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conditions for global/local minimax points of nonsmooth bi-level problems where the upper64

level problem is nonconvex and the lower level problem is nonconcave have not been studied65

yet.66

The main contributions of this paper can be summarized as follows.67

• We define the first-order and second-order optimality conditions of local minimax68

points of constrained min-max problem (1.1) by using directional derivatives. Our op-69

timality conditions extend the work [21] for unconstrained smooth min-max problems70

to constrained nonsmooth min-max problems. These conditions reduce to smooth71

min-max problems with Fréchet derivatives. Moreover, we rigorously describe the72

relationships between saddle points, local saddle points, global minimax points, local73

minimax points and stationary points defined by these first-order and second-order op-74

timality conditions. The relationships among these points is illustrated by interesting75

examples and summarized in Figure 1.76

• We establish new mathematical optimization theory for the GAN model with both77

smooth and nonsmooth activation functions. In particular, we give new properties78

of global minimax points, local minimax points and stationary points of problem79

(1.2) under some specific settings. Examples with the sample average approximation80

approach show that our results are helpful and efficient for training GANs.81

The reminder of the paper is organized as follows. In section 2, we give some notations and82

preliminaries. In section 3, we study the first-order and second-order optimality conditions of83

nonsmooth and smooth min-max problems, respectively. In section 4, we apply our results84

to GANs and use examples to show the effectiveness of our results. Finally, we make some85

concluding remarks in section 5.86

2. Notations and preliminaries. In this paper, N denotes the natural numbers. Rn
+ de-87

notes the nonnegative part of Rn. ∥·∥ denotes the Euclidean norm. cl(Ω), int(Ω) and bd(Ω)88

denote the closure, the interior and the boundary of set Ω, respectively. o(|t|) denotes the89

infinitesimal of a higher order than |t| as t→ 0. O(|t|) denotes the same order as |t| as t→ 0.90

B(x, r) denotes the closed ball centred at x with radius r > 0. Denote (·)+ := max{0, ·} the91

ReLU activation function. The indicator function of a set Ω is denoted by δΩ, i.e., δΩ(x) = 092

if x ∈ Ω and δΩ(x) = ∞ otherwise. The extended-valued functions are functions that are93

allowed to be extended-real-valued, i.e., to take values in R ∪ {±∞}.94

Let Ω ⊆ Rn be a closed and convex set. The tangent cone [32, Definition 6.1] to Ω at x ∈ Ω,95

denoted by TΩ(x), is defined as TΩ(x) =
{
w : ∃ xk Ω→ x, tk ↓ 0 such that limk→∞

xk−x
tk

= w
}
.96

The normal cone [32, Definition 6.3] to Ω at x ∈ Ω, denoted by NΩ(x), is

NΩ(x) := {y ∈ Rn : ⟨y, ω − x⟩ ≤ 0,∀ω ∈ Ω}.

It also knows from [32, Proposition 6.5] that NΩ(x) = {v : ⟨v, ω⟩ ≤ 0, for ∀ω ∈ TΩ(x)}.97

Definition 2.1. We say that (x̂, ŷ) ∈ X × Y is a saddle point of problem (1.1), if98

(2.1) f(x̂, y) ≤ f(x̂, ŷ) ≤ f(x, ŷ)99

holds for any (x, y) ∈ X × Y .100
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4 J. JIANG AND X. CHEN

Definition 2.2. We say that (x̂, ŷ) ∈ X×Y is a local saddle point of problem (1.1), if there101

exists a δ > 0 such that, for any (x, y) ∈ X ×Y satisfying ∥x− x̂∥ ≤ δ and ∥y − ŷ∥ ≤ δ, (2.1)102

holds.103

In the convex-concave setting, saddle points are usually used to describe the optimality of104

min-max problems. However, one significant drawback of considering (local) saddle points of105

nonconvex-nonconcave problems is that such points might not exist [21, Proposition 6]. Also,106

(local) saddle points correspond to simultaneous game, but many applications (such as GANs107

and adversarial training) correspond to sequential games. In view of this, we consider in what108

follows global and local minimax points proposed in [21], which are from the viewpoint of109

sequential games.110

Definition 2.3. We say that (x̂, ŷ) ∈ X × Y is a global minimax point of problem (1.1), if

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈Y

f(x, y′)

holds for any (x, y) ∈ X × Y .111

Definition 2.4. We say that (x̂, ŷ) ∈ X × Y is a local minimax point of problem (1.1), if
there exist a δ0 > 0 and a function τ : R+ → R+ satisfying τ(δ) → 0 as δ → 0, such that for
any δ ∈ (0, δ0] and any (x, y) ∈ X × Y satisfying ∥x− x̂∥ ≤ δ and ∥y − ŷ∥ ≤ δ, we have

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈{y∈Y :∥y−ŷ∥≤τ(δ)}

f(x, y′).

Remark 2.5. It is noteworthy that the function τ in Definition 2.4 can be further restricted112

to be monotone or continuous without changing Definition 2.4 [21, Remark 15]. Hereafter, we113

always assume that τ is monotone and continuous.114

Global or local minimax points are motivated by many practical applications and the115

probable nonconvexity-nonconcavity of the min-max problem. Obviously, a saddle point is a116

global minimax point and a local saddle point is a local minimax point. However, problem117

(1.1) may not have a local saddle point. The following proposition gives some sufficient118

conditions for the existence of global (local) minimax points. Note that the existence of a119

global (local) minimax point does not imply the existence of a local saddle point.120

Proposition 2.6. (i) If Φu := {x ∈ X : φ(x) ≤ u} is nonempty and bounded for some121

scalar u and {y ∈ Y : f(x, y) ≥ lx} is bounded for every x ∈ Φu and some scalar lx,122

then problem (1.1) has at least a global minimax point.123

(ii) ([21, Lemma 16]) (x∗, y∗) ∈ X × Y is a local minimax point if and only if y∗ is a124

local maximum of f(x∗, ·) and there exists a δ0 > 0 such that x∗ is a local minimum125

of φδ(x) := maxy′∈{y∈Y :∥y−y∗∥≤δ} f(x, y
′) for any δ ∈ (0, δ0].126

Proof. (i) According to the continuity of f(x, y), φ is lower semicontinuous. We know127

from [32, Theorem 1.9] that argminx∈X φ(x) ⊆ Φu is nonempty and compact. Let x∗ ∈128

argminx∈X φ(x) and consider the set argmaxy∈Y f(x
∗, y). Since {y ∈ Y : f(x∗, y) ≥ lx∗} is129

bounded, we know from the continuity of f(x∗, ·) that the maximum can be achieved. Let130

y∗ ∈ argmaxy∈Y f(x
∗, y). It is easy to check that (x∗, y∗) is a global minimax point.131
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Specifically, if both X and Y are bounded, then all conditions in (i) of Proposition 2.6132

hold. Thus problem (1.1) has a global minimax point. However, a local minimax point may133

not exist even X and Y are bounded (see Example 3.24). Also, a global minimax point may134

not be a local minimax point (see Example 3.24). The following example tells that the global135

and local minimax points exist but (local) saddle points do not.136

Example 2.7 ([21, Figure 1]). Let n = m = 1 and X = Y = [−1, 1]. Consider f(x, y) =
−x2 + 5xy − y2. Note that

φ(x) = max
y∈[−1,1]

(−x2 + 5xy − y2) =


−x2 − 5x− 1, x ∈

[
−1,−2

5

]
;

21
4 x

2, x ∈
[
−2

5 ,
2
5

]
;

−x2 + 5x− 1, x ∈
[
2
5 , 1
]
.

It is not difficult to examine that minx∈[−1,1] φ(x) = 0 when x = 0. In this case, y = 0.

Therefore, (0, 0) is a global minimax point. Moreover, let δ0 =
2
5 and τ(δ) = 5

2δ in Definition
2.4. Then for any δ ≤ δ0, (x, y) ∈ [−1, 1]× [−1, 1] satisfying |x| ≤ δ and |y| ≤ δ, we have

max
y′∈{y∈Y :|y|≤ 5

2
δ}
f(x, y′) =

21

4
x2

when y = 5
2x. Thus, we obtain

−y2 = f(0, y) ≤ f(0, 0) = 0 ≤ max
y′∈{y∈Y :|y|≤ 5

2
δ}
f(x, y′) =

21

4
x2,

which implies that (0, 0) is also a local minimax point.137

Note that the solutions of maxy∈[−δ,δ]minx∈[−δ,δ] f(x, y) are (δ, 0) and (−δ, 0) for any δ ∈138

(0, 1]. Thus, we have139

(2.2) max
y∈[−δ,δ]

min
x∈[−δ,δ]

f(x, y) = −δ2 ̸= 0 = min
x∈[−δ,δ]

max
y∈[−δ,δ]

f(x, y),140

which implies that (0, 0) is neither a saddle point (i.e., (2.2) holds with δ = 1, see Definition141

2.1) nor a local saddle point (i.e., (2.2) holds with a sufficiently small δ, see Definition 2.2).142

Example 2.7 gives a nonconvex-nonconcave min-max problem that has global and local143

minimax points, but does not have a local saddle point. Thus, global and local minimax144

points defined in Definitions 2.3 and 2.4 respectively are good supplements of (local) saddle145

points, especially in the nonconvex-nonconcave setting.146

3. Optimality and stationarity. In this section, we first discuss the first-order and second-147

order optimality conditions when f in problem (1.1) is nonsmooth. The smooth case is148

considered as a special case of the nonsmooth ones when the directional derivatives can be149

represented by Fréchet derivatives. Our results extend the study of necessary optimality150

conditions of unconstrained smooth min-max problems in [21]. In particular, in the nonsmooth151

case, our results extend [21] from unconstrained smooth ones to constrained nonsmooth ones152

and in the smooth case, our results extend [21] from unconstrained ones to constrained ones.153

We also illustrate these theoretical results by three examples.154

To proceed further, we give the description of tangents to convex sets.155
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6 J. JIANG AND X. CHEN

Lemma 3.1 ([32, Theorem 6.9]). If Ω ⊆ Rn is convex and x̄ ∈ Ω, then

TΩ(x̄) = cl{w : ∃λ > 0 with x̄+ λw ∈ Ω}, int (TΩ(x̄)) = {w : ∃λ > 0 with x̄+ λw ∈ int(Ω)}.

Denote

T ◦
Ω (x̄) := {w : ∃λ > 0 with x̄+ λw ∈ Ω}.

It is not difficult to verify that TΩ(x̄), int(TΩ(x̄)) and T ◦
Ω (x̄) are convex cones if Ω is convex.156

Moreover, we have the following relationship int (TΩ(x̄)) ⊆ T ◦
Ω (x̄) ⊆ TΩ(x̄). If Ω is polyhedral,157

then T ◦
Ω (x̄) = TΩ(x̄).158

3.1. Nonsmooth case. In this subsection, we consider problem (1.1) when f is not dif-159

ferentiable. For this purpose, we introduce some definitions for nonsmooth analysis.160

Let g : Rn → R. The (first-order) subderivative dg(x)(v) at x ∈ Rn for v ∈ Rn is defined
as [32, Definition 8.1]

dg(x)(v) := lim inf
v′→v,t↓0

g(x+ tv′)− g(x)

t
.

The function g is semidifferentiable at x for v [32, Definition 7.20] if the (possibly infinite)
limit

lim
v′→v,t↓0

g(x+ tv′)− g(x)

t

exists. Further, if the above limit exists for every v ∈ Rn, we say that g is semidifferentiable161

at x. It is easy to see that if g is Lipschitz continuous in a neighborhood of x, then this limit162

is finite.163

There are two types of second-order subderivatives [32, Definition 13.3]. The second-order
subderivative at x ∈ Rn for w and v is

d2g(x|v)(w) := lim inf
w′→w,t↓0

g(x+ tw′)− g(x)− t ⟨v, w′⟩
1
2 t

2
.

The second-order subderivative at x ∈ Rn for w (without mention of v) is

d2g(x)(w) := lim inf
w′→w,t↓0

g(x+ tw′)− g(x)− tdg(x)(w′)
1
2 t

2
.

We say that g is twice semidifferentiable at x if it is semidifferentiable at x and the
(possibly infinite) limit

lim
w′→w,t↓0

g(x+ tw′)− g(x)− tdg(x)(w′)
1
2 t

2

exists for any w ∈ Rn.164

The one-side directional derivative g′(x; v) at x ∈ Rn along the direction v ∈ Rn is defined
as

g′(x; v) := lim
t↓0

g(x+ tv)− g(x)

t
.

This manuscript is for review purposes only.
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The function g is directionally differentiable at x if g′(x; v) exists for all directions v ∈ Rn.165

If g is locally Lipschitz continuous near x, then semidifferentiability at x is equivalent to166

directional differentiability at x.167

The second-order directional derivative of g at x ∈ Rn along the direction v ∈ Rn is defined
as [32, Chapter 13.B]

g(2)(x; v) := lim
t↓0

g(x+ tv)− g(x)− tg′(x; v)
1
2 t

2
.

Obviously, if g is semidifferentiable at x, then dg(x)(v) = g′(x; v); if g is twice semidiffer-168

entiable at x, then d2g(x)(w) = g(2)(x;w).169

As a generalization of classical directional derivatives, the (Clarke) generalized directional
derivative of g at x ∈ Rn along the direction v ∈ Rn is defined as [7, Section 2.1]

g◦(x; v) := lim sup
x′→x,t↓0

g(x′ + tv)− g(x′)

t
.

We say that g is Clarke regular at x [7, Definition 2.3.4] if g′(x; v) exists and g◦(x; v) = g′(x; v)
for all v. By using the generalized directional derivative, we can define the (Clarke) generalized
subdifferential as

∂g(x) := {z ∈ Rn : ⟨z, v⟩ ≤ g◦(x; v) ∀v ∈ Rn}.

In turn, we know from [7, page 10] that170

(3.1) g◦(x; v) = max{⟨ζ, v⟩ : ζ ∈ ∂g(x)}.171

The generalized second-order directional derivative of g at x ∈ Rn along the direction
(u, v) ∈ Rn × Rn is defined as ([8, Definition 1.1] and [32, Theorem 13.52])

g◦◦(x;u, v) := lim sup
x′→x
t↓0,δ↓0

g(x′ + δu+ tv)− g(x′ + δu)− g(x′ + tv) + g(x′)

δt
.

Especially, when u = v, we write g◦◦(x; v, v) as g◦◦(x; v) for simplicity.172

Remark 3.2. When f is continuously differentiable at (x̂, ŷ), f ◦
x(x̂, ŷ; v) = dxf(x̂, ŷ)(v) =173

∇xf(x̂, ŷ)
⊤v and f ◦

y (x̂, ŷ;w) = dyf(x̂, ŷ)(w) = ∇yf(x̂, ŷ)
⊤w ([32, Exercise 8.20]). Moreover, if174

f is twice continuously differentiable at (x̂, ŷ), we know from [32, Example 13.8, Proposition175

13.56] that f ◦◦
x (x̂, ŷ; v) = d2xf(x̂, ŷ)(v) = v⊤∇2

xf(x̂, ŷ)v and f ◦◦
y (x̂, ŷ;w) = d2yf(x̂, ŷ)(w) =176

w⊤∇2
yf(x̂, ŷ)w.177

Example 3.3. Consider a two-layer neural network with the ReLU activation function as
follows:

F (W, b) := ρ(W2(W1ξ + b1)+ + b2)

for a fixed ξ ∈ Rs, where W1 ∈ Rs1×s, b1 ∈ Rs1 , W2 ∈ Rs2×s1 , b2 ∈ Rs2 , ρ : Rs2 → R is a178

continuously differentiable function, W = (W1,W2) and b = (b1, b2). Obviously, F is locally179
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8 J. JIANG AND X. CHEN

Lipschitz continuous. For fixed W = (W 1,W 2) and b̄ = (b̄1, b̄2), we consider180

F ′(W, b;W, b̄) = lim
t↓0

F (W + tW, b+ tb̄)− F (W, b)

t

= lim
t↓0

ρ((W2 + tW 2)((W1 + tW 1)ξ + b1 + tb1)+ + b2 + tb2)− ρ(W2(W1ξ + b1)+ + b2)

t

181

and

lim
t↓0

(W2 + tW 2)((W1 + tW 1)ξ + b1 + tb1)+ + b2 + tb2 − (W2(W1ξ + b1)+ + b2)

t

= lim
t↓0

W2

(
((W1 + tW 1)ξ + b1 + tb1)+ − (W1ξ + b1)+

)
+ t
(
W 2((W1 + tW 1)ξ + b1 + tb1)+ + b2

)
t

=W2

(
lim
t↓0

((W1 + tW 1)ξ + b1 + tb1)+ − (W1ξ + b1)+
t

)
+W 2(W1ξ + b1)+ + b2.

For i = 1, · · · , s1, denote W
i
1 and W i

1 the ith row vectors of W 1 and W1, and b̄
i
1 and bi1 the

ith components of b̄1 and b1, respectively. Then, for i = 1, · · · , s1 and sufficiently small t > 0,
we have

((W i
1 + tW

i
1)

⊤ξ + bi1 + tb
i
1)+ − ((W i

1)
⊤ξ + bi1)+

=


t(W

i
1)

⊤ξ + tb
i
1, if (W i

1)
⊤ξ + bi1 > 0;

0, if (W i
1)

⊤ξ + bi1 < 0;

t(W
i
1)

⊤ξ + tb
i
1, if (W i

1)
⊤ξ + bi1 = 0 and (W

i
1)

⊤ξ + b̄i1 > 0;

0, if (W i
1)

⊤ξ + bi1 = 0 and (W
i
1)

⊤ξ + b̄i1 ≤ 0.

Hence we obtain

lim
t↓0

((W i
1 + tW

i
1)

⊤ξ + bi1 + tb
i
1)+ − ((W i

1)
⊤ξ + bi1)+

t

=

{
(W

i
1)

⊤ξ + b̄i1, if (W i
1)

⊤ξ + bi1 > 0 or (W i
1)

⊤ξ + bi1 = 0 and (W
i
1)

⊤ξ + b̄i1 > 0;

0, if (W i
1)

⊤ξ + bi1 < 0 or (W i
1)

⊤ξ + bi1 = 0 and (W
i
1)

⊤ξ + b̄i1 ≤ 0.

Thus, we have that the following limit

Υ :=W2

(
lim
t↓0

((W1 + tW 1)ξ + b1 + tb1)+ − (W1ξ + b1)+
t

)
+W 2(W1ξ + b1)+ + b2

exists. Therefore, we have that F is semidifferentiable based on the locally Lipschitz continuity.182

If, moreover, ρ is twice continuously differentiable, we have

d2F (W, b)(W, b̄) = lim inf
t↓0

W
′→W,b̄′→b̄

F (W + tW
′
, b+ tb̄′)− F (W, b)− tdF (W, b)(W

′
, b̄′)

1
2 t

2

= Υ⊤∇2ρ(W2(W1ξ + b1)+ + b2)Υ,

which implies that F is twice semidifferentiable.183
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The following lemma tells the necessary optimality conditions for an unconstrained mini-184

mization problem by using subderivatives.185

Lemma 3.4 ([32, Theorems 10.1 & 13.24]). Let g : Rn → (−∞,+∞] be a proper extended-186

valued function. If x̄ is a local minimum of g over Rn, then dg(x̄)(v) ≥ 0 and d2g(x̄|0)(v) ≥ 0187

for any v ∈ Rn.188

The following lemma shows that we can replace d2g(x̄|0)(v) ≥ 0 by d2g(x̄)(v) ≥ 0 under189

certain mild conditions.190

Lemma 3.5. Let g : Rn → (−∞,+∞] be twice semidifferentiable at x̄. If dg(x̄)(v) = 0,191

then d2g(x̄|0)(v) = d2g(x̄)(v).192

Proof. Let dg(x̄)(v) = 0. Note that193

d2g(x̄)(v) = lim inf
v′→v,t↓0

g(x̄+ tv′)− g(x̄)− tdg(x̄)(v′)
1
2 t

2
= lim

v′→v,t↓0

g(x̄+ tv′)− g(x̄)− tdg(x̄)(v′)
1
2 t

2

= lim
t↓0

g(x̄+ tv)− g(x̄)− tdg(x̄)(v)
1
2 t

2
= lim

t↓0

g(x̄+ tv)− g(x̄)
1
2 t

2
= d2g(x|0)(v),

194

where the second equality follows from the twice semidifferentiability of g at x̄ and the third195

equality follows from the existence of the limit.196

Lemma 3.6 ([32, Theorem 8.2]). For the indicator function δX of a set X ⊆ Rn and any197

point x ∈ X , one has dδX (x)(v) = δTX (x)(v) for any v ∈ Rn.198

A function g : Rn → R is called positively homogeneous of degree p > 0 if g(λw) = λpg(w)199

for all λ > 0 and w ∈ Rn (see [32, Definition 13.4]).200

The following lemma shows the expansion of a function via subderivatives.201

Lemma 3.7 ([32, Theorem 7.21 & Exercise 13.7]). Let g : Rn → R. Then202

(i) g is semidifferentiable at x̄ if and only if

g(x) = g(x̄) + dg(x̄)(x− x̄) + o(∥x− x̄∥),

where dg(x̄)(·) is a finite, continuous, positively homogeneous function.203

(ii) Suppose that g is semidifferentiable at x̄. Then g is twice semidifferentiable at x̄ if and
only if

g(x) = g(x̄) + dg(x̄)(x− x̄) +
1

2
d2g(x̄)(x− x̄) + o(∥x− x̄∥2),

where d2g(x̄)(·) is a finite, continuous, positively homogeneous of degree 2 function.204

The following lemma gives the first-order and second-order optimality conditions for min-205

imizing a semidifferentiable function, which extends a sub-result of [10, Proposition 2.3] from206

a polyhedral set to a general convex and closed set.207

Lemma 3.8. Let X ⊆ Rn be a closed and convex set, g : Rn → R be semidifferentiable at208

x̄ ∈ X , and x̄ be a local minimum point of g over X . Then dg(x̄)(v) ≥ 0 for all v ∈ TX (x̄).209

Moreover, if g is twice semidifferentiable at x̄, then d2g(x̄)(v) ≥ 0 for all v ∈ T ◦
X (x̄) ∩ {v :210

dg(x̄)(v) = 0}.211
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Proof. Since x̄ is a local minimum point of g over X , we know from Lemma 3.4 that212

dḡ(x̄)(v) ≥ 0 and d2ḡ(x̄|0)(v) ≥ 0 for any v ∈ Rn, where ḡ = g + δX . From Lemma 3.6, we213

have for all v ∈ TX (x̄) that214

0 ≤ dḡ(x̄)(v) = lim inf
v′→v,t↓0

g(x̄+ tv′)− g(x̄) + δX (x̄+ tv′)− δX (x̄)

t

= lim inf
v′→v,t↓0

g(x̄+ tv′)− g(x̄)

t
= dg(x̄)(v),

215

where the second equality follows from the observation that δX (x̄) = 0 due to x̄ ∈ X and v′ is216

selected such that δX (x̄ + tv′) = 0 (see Lemma 3.1) for sufficient small t to achieve the limit217

inferior.218

Based on the above results, for v ∈ T ◦
X (x̄) ⊆ TX (x̄), dg(x̄)(v) = 0 if and only if dḡ(x̄)(v) =219

0. Thus, T ◦
X (x̄) ∩ {v : dg(x̄)(v) = 0} = T ◦

X (x̄) ∩ {v : dḡ(x̄)(v) = 0}.220

We know from Lemma 3.5 that for v ∈ T ◦
X (x̄)∩{v : dg(x̄)(v) = 0}, d2ḡ(x̄|0)(v) = d2ḡ(x̄)(v).221

Therefore, for v ∈ T ◦
X (x̄) ∩ {v : dg(x̄)(v) = 0}, we have222

0 ≤ d2ḡ(x̄)(v)
(a)
= lim inf

v′→v,t↓0

g(x̄+ tv′) + δX (x̄+ tv′)− g(x̄)− δX (x̄)− tdḡ(x̄)(v′)
1
2 t

2

(b)

≤ lim inf
t↓0

g(x̄+ tv) + δX (x̄+ tv)− g(x̄)− δX (x̄)− tdḡ(x̄)(v)
1
2 t

2

(c)
= lim

t↓0

g(x̄+ tv)− g(x̄)− tdg(x̄)(v)
1
2 t

2

(d)
= d2g(x̄)(v),

223

where (a) follows from the definition of the second-order subderivative d2ḡ(x̄)(v), (b) follows224

from the definition of limit inferior (see [32, Definition 1.5]), (c) follows from x̄ ∈ X and x̄+tv ∈225

X for sufficiently small t due to v ∈ T ◦
X (x̄) and (d) follows from the twice semidifferentiability226

of g at x̄.227

The following lemma gives a description of the generalized second-order directional deriv-228

ative by using directional derivatives.229

Lemma 3.9 ([8, Proposition 1.3]). Let g : Rn → R be a continuous function that admits
a directional derivative at every point near x. Then g◦◦(x;u, v) is the generalized directional
derivative of g′(·, v) at x along direction u, that is

g◦◦(x;u, v) = lim sup
x′→x
t↓0

g′(x′ + tu; v)− g′(x′; v)

t
.

Remark 3.10. Note that

g◦◦(x; v) ≥ lim
t↓0

g(x+ tv + tv)− g(x+ tv)− g(x+ tv) + g(x)

t2
= g(2)(x; v).

Recall that g : Rn → R is twice subregular at x [8, Definition 3.1] if the limit

lim
t↓0,δ↓0

g(x+ δu+ tv)− g(x+ δu)− g(x+ tv) + g(x)

δt
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exists and the above limit equals to g◦◦(x;u, v). Thus, we know that g◦◦(x; v) = g(2)(x; v) if g230

is twice subregular at x.231

Now we are ready to give the main results of this subsection.232

Theorem 3.11. Let the tuple (x̂, ŷ) ∈ X × Y be a local minimax point of problem (1.1).233

(i) If f is semidifferentiable at (x̂, ŷ), then234

f ◦
x(x̂, ŷ; v) ≥ 0 for all v ∈ TX(x̂),(3.2a)235

dyf(x̂, ŷ)(w) ≤ 0 for all w ∈ TY (ŷ),(3.2b)236237

where f ◦
x(x̂, ŷ; v) denotes the generalized directional derivative of f with respect to x238

at x̂ along the direction v for fixed ŷ.239

(ii) Assume, further, that f is twice semidifferentiable at (x̂, ŷ) and f is Clarke regular in240

a neighborhood of (x̂, ŷ). Then241

f ◦◦
x (x̂, ŷ; v) ≥ 0 for all v ∈ T ◦

X(x̂) ∩ {v : ∃δ > 0, dxf(x̂, y
′)(v) = 0,∀y′ ∈ B(ŷ, δ) ∩ Y },(3.3a)242

d2yf(x̂, ŷ)(w) ≤ 0 for all w ∈ T ◦
Y (ŷ) ∩ {w : dyf(x̂, ŷ)(w) = 0},(3.3b)243244

where f ◦◦
x (x̂, ŷ; v) denotes the generalized second-order directional derivative of f with respect245

to x at x̂ along the direction (v, v) for fixed ŷ.246

Proof. (3.2b) and (3.3b) directly follow from Lemma 3.8. Therefore, we only focus on247

(3.2a) and (3.3a), respectively.248

(i) Since (x̂, ŷ) is a local minimax point, there exist a δ0 > 0 and a function τ : R+ → R+249

satisfying τ(δ) → 0 as δ → 0, such that for any δ ∈ (0, δ0] and (x, y) ∈ X × Y satisfying250

∥x− x̂∥ ≤ δ and ∥y − ŷ∥ ≤ δ, we have251

(3.4) f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈{y∈Y :∥y−ŷ∥≤τ(δ)}

f(x, y′).252

For any v ∈ TX(x̂), according to the convexity of X, there exist {vk}k≥1 with vk → v as253

k → ∞ and {tk}k≥1 with tk ↓ 0 as k → ∞, such that xk := x̂ + tkv
k ∈ X (see Lemma 3.1).254

Let δk =
∥∥xk − x̂

∥∥ and ỹk be defined by255

(3.5) ỹk ∈ argmax
y′∈{y∈Y :∥y−ŷ∥≤τ(δk)}

f(xk, y′).256

Obviously, δk → 0 and
∥∥ỹk − ŷ

∥∥→ 0 as k → ∞. According to the second inequality of (3.4),257

we have (for sufficiently large k) that258

(3.6)
0 ≤ f(xk, ỹk)− f(x̂, ŷ) = f(xk, ỹk)− f(x̂, ỹk) + f(x̂, ỹk)− f(x̂, ŷ)

≤ f(xk, ỹk)− f(x̂, ỹk).
259

Note from the mean-value theorem [7, Theorem 2.3.7] that there exists an x̃k lying in the
segment between xk and x̂ such that

f(xk, ỹk)− f(x̂, ỹk) ∈
〈
∂f(x̃k, ỹk),

(
tkv

k

0

)〉
.
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It indicates that there exists an element contained in

〈
∂f(x̃k, ỹk),

(
tkv

k

0

)〉
such that it is260

not less than 0. Thus, by dividing tk in both sides and letting k → ∞, due to the upper261

semicontinuity of ∂f(·, ·) (see [7, Proposition 2.1.5]), we obtain262

0 ≤ sup
ζ∈∂f(x̂,ŷ)

〈
ζ,

(
v
0

)〉
(a)
= f ◦(x̂, ŷ; v, 0) = f ◦

x(x̂, ŷ; v),263

where (a) follows from (3.1) and f ◦
x(x̂, ŷ; v) denotes the Clarke generalized directional deriva-264

tive of f with respect to x at x̂ along the direction v for fixed ŷ.265

(ii) Let v ∈ T ◦
X(x̂) ∩ {v : ∃δ > 0,dxf(x̂, y

′)(v) = 0,∀y′ ∈ B(ŷ, δ) ∩ Y }. Then there exists266

a sequence {tk}k≥1 with tk ↓ 0, such that xk := x̂ + tkv ∈ X. Let δk =
∥∥xk − x̂

∥∥, and ỹk be267

defined in (3.5).268

From the mean-value theorem, there is ζk ∈ (0, tk) such that269

f(x̂+ tkv, ỹ
k)− f(x̂, ỹk) ∈ ∂f(x̂+ ζkv, ỹ

k)

(
tkv
0

)
.270

Similar to (3.6), we have f(x̂+ tkv, ỹ
k)− f(x̂, ỹk) ≥ 0. Thus, we have271

(3.7) f ◦(x̂+ ζkv, ỹ
k; v, 0) = sup

θ∈∂f(x̂+ζkv,ỹk)

〈
θ,

(
v
0

)〉
≥ 0.272

Then, according to the Clarke regularity of f near (x̂, ŷ), we have from (3.7) that273

0
(b)

≤ lim sup
k→∞

f ◦(x̂+ ζkv, ỹ
k; v, 0)

ζk

(c)
= lim sup

k→∞

f ′(x̂+ ζkv, ỹ
k; v, 0)

ζk

(d)
= lim sup

k→∞

f ′(x̂+ ζkv, ỹ
k; v, 0)− f ′(x̂, ỹk; v, 0)

ζk
≤ lim sup

x′→x̂,y′→ŷ
t↓0

f ′(x′ + tv, y′; v, 0)− f ′(x̂, y′; v, 0)

t

(e)
= f ◦◦(x̂, ŷ; v, 0) = f ◦◦

x (x̂, ŷ; v),

274

where (b) follows from (3.7), (c) follows from the Clarke regularity of f near (x̂, ŷ), (d) follows275

from f ′(x̂, ỹk; v, 0) = 0 for sufficiently large k, (e) follows from Lemma 3.9 and f ◦◦
x (x̂, ŷ; v)276

denotes the generalized second-order directional derivative of f with respect to x at x̂ along277

the direction (v, v) for fixed ŷ.278

We illustrate Theorem 3.11 by Example A.1 in Appendix A.279

Remark 3.12. We know from (3.1) that for any v, f ◦
x(x̂, ŷ; v) = maxz∈∂xf(x̂,ŷ) ⟨z, v⟩. Thus,280

(3.2a) can be equivalently reformulated as maxz∈∂xf(x̂,ŷ) ⟨z, v⟩ ≥ 0, ∀v ∈ TX(x̂), which, based281

on the definition of normal cone, is equivalent to 0 ∈ ∂xf(x̂, ŷ) +NX(x̂).282

Generally, (3.2b) implies the Clarke stationary condition 0 ∈ −∂yf(x̂, ŷ) + NY (ŷ), but283

not vice versa. Moreover, by using the (generalized) directional derivatives, we can establish284

the second-order necessary optimality conditions for the nonsmooth case. Therefore, the285

(generalized) directional derivatives are employed in Theorem 3.11.286
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Remark 3.13. It is noteworthy that the necessary optimality conditions (3.2a)-(3.2b) and287

(3.3a)-(3.3b) with respect to x and y are not symmetric. Generally, (3.2a) and (3.3a) are288

weaker than289

(3.8) dxf(x̂, ŷ; v) ≥ 0 for all v ∈ TX(x̂)290

and291

(3.9) d2xf(x̂, ŷ; v) ≥ 0 for all v ∈ T ◦
X(x̂) ∩ {v : dxf(x̂, ŷ)(v) = 0},292

respectively, because f ◦
x(x̂, ŷ; v) ≥ dxf(x̂, ŷ; v), f

◦◦
x (x̂, ŷ; v) ≥ d2xf(x̂, ŷ; v) (Remark 3.10) and

T ◦
X(x̂) ∩ {v : ∃δ > 0, dxf(x̂, y

′)(v) = 0,∀y′ ∈ B(ŷ, δ) ∩ Y } ⊆ T ◦
X(x̂) ∩ {v : dxf(x̂, ŷ)(v) = 0}.

The main reason is that a local minimax point may not be a local saddle point. If we replace293

(3.2a) and (3.3a) by (3.8) and (3.9) respectively, the necessary optimality conditions for local294

saddle points are derived. Indeed, if (x̂, ŷ) ∈ X × Y is a local saddle point of problem (1.1),295

then x̂ is a local minimum of minx∈X f(x, ŷ) and ŷ is a local maximum of maxy∈Y f(x̂, y) by296

Definition 2.2. Hence by Lemma 3.8, we obtain that (3.8) and (3.9) are necessary optimality297

conditions for local saddle points of problem (1.1).298

If, in addition, f is Clarke regular at (x̂, ŷ), then

f ◦
x(x̂, ŷ; v)

(a)
= f ◦(x̂, ŷ; v, 0)

(b)
= f ′(x̂, ŷ; v, 0)

(c)
= df(x̂, ŷ)(v, 0)

(d)
= dxf(x̂, ŷ)(v),

where (a) follows from the definition of f ◦
x, (b) follows from the Clarke regularity, (c) follows299

from [10, Section 2.1] and (d) follows from the definition of dxf . Thus, (3.2a) can be replaced300

by (3.8).301

If, in addition, f is twice subregular at (x̂, ŷ), then

f ◦◦(x̂, ŷ; v, 0)
(e)
= d2f(x̂, ŷ)(v, 0)

(f)
= d2xf(x̂, ŷ)(v),

where (e) follows from [10, Section 2.1] and (f) follows from the definition of d2xf . Thus (3.3a)
can be replaced by

d2xf(x̂, ŷ)(v) ≥ 0 for all v ∈ T ◦
X(x̂) ∩ {v : ∃δ > 0,dxf(x̂, y

′)(v) = 0, ∀y′ ∈ B(ŷ, δ) ∩ Y }.

Remark 3.14. Suppose that f is twice semidifferentiable, Clarke regular and twice sub-302

regular. Then we have f ◦
x(x̂, ŷ; v) = dxf(x̂, ŷ)(v) and f ◦◦

x (x̂, ŷ; v) = d2xf(x̂, ŷ)(v). Based on303

Lemma C.4 and (3.3), we can have304

(3.10)
f ◦◦
x (x̂, ŷ; v) > 0 for all 0 ̸= v ∈ TX(x̂) ∩ {v : dxf(x̂, ŷ)(v) = 0},
d2yf(x̂, ŷ)(w) > 0 for all 0 ̸= w ∈ TY (ŷ) ∩ {w : dyf(x̂, ŷ)(w) = 0},

305

with (3.2) as a second-order sufficient condition for a local saddle point. Since a local saddle306

point is a local minimax point, (3.10) together with (3.2) is also a sufficient condition for a307

local minimax point.308

Based on Theorem 3.11, we define the first-order and second-order d-stationary points of309

min-max problems.310

Definition 3.15. We call that (x̂, ŷ) ∈ X × Y is a first-order d-stationary point of problem311

(1.1) if it satisfies (3.2a)-(3.2b). If (x̂, ŷ) also satisfies (3.3a)-(3.3b), we call it a second-order312

d-stationary point of problem (1.1).313
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3.2. Smooth case. In this subsection, we consider the necessary optimality conditions of314

problem (1.1) when f is (twice) continuously differentiable. For any (x, y) ∈ X × Y , denote315

Γ◦
1(x, y) = {v ∈ T ◦

X(x) : v⊥∇xf(x, y)}, Γ1(x, y) = {v ∈ TX(x) : v⊥∇xf(x, y)},316

Γ◦
2(x, y) = {w ∈ T ◦

Y (y) : w⊥∇yf(x, y)}, Γ2(x, y) = {w ∈ TY (y) : w⊥∇yf(x, y)}.317318

It is noteworthy that cl(Γ◦
1(x, y)) ̸= Γ1(x, y) and cl(Γ◦

2(x, y)) ̸= Γ2(x, y) generally even319

if we have cl(T ◦
X(x)) = TX(x) and cl(T ◦

Y (y)) = TY (y). We summarize their relationships as320

follows.321

Lemma 3.16. Let (x, y) ∈ X×Y . Then Γ◦
1(x, y), Γ1(x, y), Γ

◦
2(x, y) and Γ2(x, y) are convex322

cones, and we have clΓ◦
1(x, y) ⊆ Γ1(x, y) and clΓ◦

2(x, y) ⊆ Γ2(x, y). Moreover, if X and Y are323

polyhedral, then Γ◦
1(x, y) = clΓ◦

1(x, y) = Γ1(x, y) and Γ◦
2(x, y) = clΓ◦

2(x, y) = Γ2(x, y).324

Proof. Since X and Y are closed and convex, we know from Lemma 3.1 that T ◦
X(x), and

T ◦
Y (y) are convex cones, TX(x) and TY (y) are closed convex cones, and

clT ◦
X(x̄) ⊆ TX(x̄) and clT ◦

Y (ȳ) ⊆ TY (ȳ).

Thus, we obtain that Γ◦
1(x, y), Γ1(x, y), Γ

◦
2(x, y) and Γ2(x, y) are convex cones. Moreover, we325

have326

clΓ◦
1(x, y) = cl{v ∈ T ◦

X(x) : v⊥∇xf(x, y)} ⊆ {v ∈ clT ◦
X(x) : v⊥∇xf(x, y)}

⊆ {v ∈ TX(x) : v⊥∇xf(x, y)} = Γ1(x, y).
327

Similarly, we can verify clΓ◦
2(x, y) ⊆ Γ2(x, y).328

If, further, X and Y are polyhedral, we have T ◦
X(x̄) = TX(x̄) and T ◦

Y (ȳ) = TY (ȳ). Thus,329

clΓ◦
1(x, y) ⊆ Γ1(x, y) = {v ∈ TX(x) : v⊥∇xf(x, y)}

= {v ∈ T ◦
X(x) : v⊥∇xf(x, y)} = Γ◦

1(x, y),
330

which implies that Γ◦
1(x, y) = clΓ◦

1(x, y) = Γ1(x, y). Similarly, we can verify Γ◦
2(x, y) =331

clΓ◦
2(x, y) = Γ2(x, y).332

Theorem 3.17. Let f be continuously differentiable and the tuple (x̂, ŷ) ∈ X × Y be a local333

minimax point of problem (1.1).334

(i) Then it holds that335

0 ∈ ∇xf(x̂, ŷ) +NX(x̂),(3.11a)336

0 ∈ −∇yf(x̂, ŷ) +NY (ŷ).(3.11b)337338

(ii) Assume, further, that f is twice continuously differentiable. Then339 〈
v,∇2

xxf(x̂, ŷ)v
〉
≥ 0 for all v ∈ cl

{
v̄ : ∃δ > 0, v̄ ∈ Γ◦

1(x̂, y
′),∀y′ ∈ B(ŷ, δ)

}
,(3.12a)340 〈

w,∇2
yyf(x̂, ŷ)w

〉
≤ 0 for all w ∈ clΓ◦

2(x̂, ŷ).(3.12b)341342

Proof. (i) The proof is similar to Theorem 3.11. Here we give a simple proof of (3.11a)343

and (3.12a) for completeness. For any xk
X→ x̂ as k → ∞, denote δk =

∥∥xk − x̂
∥∥ and ỹk344

This manuscript is for review purposes only.



OPTIMALITY CONDITIONS FOR NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS
15

is defined in (3.5). Obviously, δk → 0 and
∥∥ỹk − ŷ

∥∥ → 0 as k → ∞. From the continuous345

differentiability of f , we have346

0 ≤ f(xk, ỹk)− f(x̂, ỹk) = ∇f(x̄k, ỹk)⊤
(
xk − x̂
ỹk − ỹk

)
= ∇xf(x̂, ŷ)

⊤(xk − x̂) + o
(∥∥∥xk − x̂

∥∥∥) ,347

where x̄k is some point lying in the segment between x̂ and xk. Thus, we obtain

−∇xf(x̂, ŷ)
⊤(xk − x̂) ≤ o

(∥∥∥xk − x̂
∥∥∥) .

We know from [32, Definition 6.3] that −∇xf(x̂, ŷ) ∈ NX(x̂), which verifies (3.11a).348

(ii) We only need to prove that (3.12a) holds with v ∈ Γ◦
1(x̂, y

′) for all y′ ∈ B(ŷ, δ) and349

some δ > 0. According to the definition of T ◦
X(x̂), there exists a sequence {tk}k≥1 with tk ↓ 0350

as k → ∞, such that xk := x̂+ tkv ∈ X. Let δk = tk ∥v∥, and ỹk is denoted in (3.5). Similarly,351

we have that352

0 ≤ f(xk, ỹk)− f(x̂, ỹk)
(a)
= ∇xf(x̂, ỹ

k)⊤(xk − x̂) +
1

2
(xk − x̂)⊤∇2

xxf(x̃
k, ỹk)(xk − x̂)

(b)
= ∇xf(x̂, ỹ

k)⊤(xk − x̂) +
1

2
(xk − x̂)⊤∇2

xxf(x̂, ŷ)(x
k − x̂) + o

(∥∥∥xk − x̂
∥∥∥2) ,353

where (a) follows from Taylor’s theorem for multivariate functions with Lagrange’s remainder,354

and x̃k is some point lying in the segment between x̂ and xk; (b) follows from the twice355

continuous differentiability of f and x̃k → x̂ as k → ∞. Thus, we obtain356

tk∇xf(x̂, ỹ
k)⊤v + t2k

1

2
v⊤∇2

xxf(x̂, ŷ)v + ∥v∥2 o(t2k) ≥ 0.357

Since ∇xf(x̂, ỹ
k)⊤v = 0 for sufficiently large k, dividing by t2k in both sides and letting k → ∞,358

we complete the proof.359

Remark 3.18. The asymmetry between (3.12a) and (3.12b) mainly arises from the asym-360

metry between x and y in a local minimax point. Conversely, if the conditions in (ii) of361

Theorem 3.17 hold except that cl {w : ∃δ > 0, w ∈ Γ◦
1(x̂, y

′), ∀y′ ∈ B(ŷ, δ)} and clΓ◦
2(x̂, ŷ) are362

replaced by Γ1(x̂, ŷ) and Γ2(x̂, ŷ), respectively, and the inequality is strict when v ̸= 0 and363

w ̸= 0, then (x̂, ŷ) is a local saddle point. In that case, (3.12) together with (3.11) are the364

so-called second-order sufficient condition for a local saddle point. This fact can be easily de-365

rived by using the sufficient optimality condition for minimization problems (see [32, Example366

13.25]) and the definition of local saddle points (see Definition 2.2). Specifically, by invoking367

Lemma C.3 (ii), these conditions imply that ŷ is a local maximum of maxy∈Y f(x̂, y) for fixed368

x̂, and x̂ is a local minimum of minx∈X f(x, ŷ) for fixed ŷ. Hence (x̂, ŷ) is a local saddle point.369

Corollary 3.19. Let f be twice continuously differentiable. If, further, for local minimax370

point (x̂, ŷ), there exists an τ such that τ(δ) = o(δ) as δ ↓ 0, then (3.12a) can be replaced by371 〈
v,∇2

xxf(x̂, ŷ)v
〉
≥ 0 for all v ∈ clΓ◦

1(x̂, ŷ).372
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Proof. Let 0 ̸= v ∈ Γ◦
1(x̂, ŷ). According to the definition of T ◦

X(x̂), there exists a sequence373

{tk}k≥1 with tk ↓ 0 as k → ∞, such that xk := x̂ + tkv ∈ X. Let δk :=
∥∥xk − x̂

∥∥, and ỹk be374

denoted in (3.5). Since τ(δ) = o(δ) as δ ↓ 0, we have
∥∥ỹk − ŷ

∥∥ = o
(∥∥xk − x̂

∥∥) for sufficiently375

large k. We know from the twice continuous differentiability of f that376

f(xk, ỹk) = f(x̂, ŷ) +∇xf(x̂, ŷ)
⊤(xk − x̂) +∇yf(x̂, ŷ)

⊤(ỹk − ŷ)

+
1

2
(xk − x̂)⊤∇2

xxf(x̂, ŷ)(x
k − x̂) + (xk − x̂)⊤∇2

xyf(x̂, ŷ)(ỹ
k − ŷ)

+
1

2
(ỹk − ŷ)⊤∇2

yyf(x̂, ŷ)(ỹ
k − ŷ) + o

(∥∥∥xk − x̂
∥∥∥2 + ∥∥∥ỹk − ŷ

∥∥∥2) ,
f(x̂, ỹk) = f(x̂, ŷ) +∇yf(x̂, ŷ)

⊤(ỹk − ŷ) +
1

2
(ỹk − ŷ)⊤∇2

yyf(x̂, ŷ)(ỹ
k − ŷ)

+ o

(∥∥∥ỹk − ŷ
∥∥∥2) .

377

Using tk∇xf(x̂, ŷ)
⊤v = ∇xf(x̂, ŷ)

⊤(xk − x̂) = 0 for v ∈ Γ◦
1(x̂, ŷ), we have378

0 ≤ f(xk, ỹk)− f(x̂, ỹk)

=
1

2
(xk − x̂)⊤∇2

xxf(x̂, ŷ)(x
k − x̂) + (xk − x̂)⊤∇2

xyf(x̂, ŷ)(ỹ
k − ŷ)

+ o

(∥∥∥xk − x̂
∥∥∥2 + ∥∥∥ỹk − ŷ

∥∥∥2)− o

(∥∥∥ỹk − ŷ
∥∥∥2)

(a)
=

1

2
(xk − x̂)⊤∇2

xxf(x̂, ŷ)(x
k − x̂) + (xk − x̂)⊤∇2

xyf(x̂, ŷ)(ỹ
k − ŷ) + o

(∥∥∥xk − x̂
∥∥∥2)

(b)
= t2k

1

2
v⊤∇2

xxf(x̂, ŷ)v + o(t2k),

379

where (a) follows from the fact that
∥∥ỹk − ŷ

∥∥ = o
(∥∥xk − x̂

∥∥) for sufficiently large k and (b)
follows from the fact that∣∣∣(xk − x̂)⊤∇2

xyf(x̂, ŷ)(ỹ
k − ŷ)

∣∣∣ ≤ ∥∥∥xk − x̂
∥∥∥∥∥∇2

xyf(x̂, ŷ)
∥∥∥∥∥ỹk − ŷ

∥∥∥ = o(t2k).

Finally, dividing by t2k in both sides and letting tk → 0, we complete the proof.380

Remark 3.20. In Corollary 3.19, the asymmetry of optimality conditions between on x381

and on y has been removed. The main reason lies in that we restrict the scope of the local382

minimax points by requiring τ(δ) = o(δ) as δ ↓ 0 in Definition 2.4.383

The following example illustrates cl {w : w ∈ Γ◦
1(x̂, y

′), ∀y′ ∈ B(ŷ, δ)} for some δ > 0.384

Example 3.21. Let n = m = 1, X = Y = [−1, 1]. Consider385

min
x∈[−1,1]

max
y∈[−1,1]

f(x, y) := −x4 + 4x2y2 − y4.386
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We have387

φ(x) = max
y∈[−1,1]

(−x4 + 4x2y2 − y4) =

3x4, x ∈
[
−

√
2
2 ,

√
2
2

]
(y∗ = ±

√
2x);

−x4 + 4x2 − 1, [−1, 1]
∖ [

−
√
2
2 ,

√
2
2

]
(y∗ = 1),

388

which is not a convex function over [−1, 1]. Moreover, it can be examined that (0, 0) is a

global minimax point. In fact, it is also a local minimax point. Let τ(δ) = 2δ2 and δ0 =
√
2
2 .

Then, for any δ ∈ (0, δ0] and any (x, y) ∈ [−1, 1]2 satisfying |x| ≤ δ and |y| ≤ δ, we have

−y4 = f(0, y) ≤ f(0, 0) ≤ max
y′∈{y∈Y :|y|≤τ(δ)}

f(x, y′) = 3x4.

Therefore, for any δ ∈ (0, 1],389

cl
{
w : w ∈ Γ◦

1(0, y
′), ∀y′ ∈ B(0, δ)

}
= cl

 ⋂
y′∈B(0,δ)

{w1 ∈ T ◦
[−1,1](0) : w1⊥∇xf(0, y

′)}

 = R.390

Similarly, we have clΓ◦
2(0, 0) =

{
w2 ∈ T ◦

[−1,1](0) : w2⊥∇yf(0, 0)
}
= R.391

In this case, the second-order optimality condition (3.12) means ∇2
xxf(0, 0) ≥ 0 and392

∇2
yyf(0, 0) ≤ 0.393

In Theorem 3.17, the first-order and second-order optimality necessary conditions are394

given in a sense of geometry. In particular, for the case that X and Y are polyhedral, we395

derive the corresponding Karush-Kuhn-Tucker (KKT) systems in Appendix B.396

Definition 3.22. We call that (x̂, ŷ) ∈ X × Y is a first-order stationary point of problem397

(1.1) if it satisfies (3.11a)-(3.11b). Moreover, if (x̂, ŷ) also satisfies (3.12a)-(3.12b), we call it398

a second-order stationary point of problem (1.1).399

The existence results of the first-order stationary points can be obtained by using existing400

results in [15, Proposition 2.2.3, Corollary 2.2.5]. Let F (x, y) =

(
∇xf(x, y)
−∇yf(x, y)

)
.401

(i) If there exist a bounded open set Z ⊆ X × Y and a point (x̄, ȳ) ∈ (X × Y ) ∩ Z such
that 〈

F (x, y),

(
x− x̄
y − ȳ

)〉
≥ 0, ∀(x, y) ∈ (X × Y ) ∩ bd(Z),

then problem (1.1) has at least a first-order stationary point.402

(ii) Specially, if X and Y are bounded, the first-order stationary point set of problem (1.1)403

is nonempty.404

We know from [21, Proposition 21] that a global minimax point can be neither a local405

minimax point nor a stationary point. However, some global minimax points can be the406

first-order stationary points.407

The following proposition claims that under mild conditions a class of global minimax408

points are first-order stationary points.409

This manuscript is for review purposes only.



18 J. JIANG AND X. CHEN

Proposition 3.23. Let f be continuously differentiable over X × Y , and (x̂, ŷ) be a global410

minimax point of (1.1) satisfying411

ŷ ∈ lim sup
x→x̂

(
argmax

y′∈Y
f(x, y′)

)
,412

where “ lim sup” denotes outer limit ([32, Definition 4.1]), then (x̂, ŷ) is a first-order stationary413

point.414

Proof. Since (x̂, ŷ) is a global minimax point, we have for any (x, y) ∈ X × Y that415

(3.13) f(x̂, y)
(a)

≤ f(x̂, ŷ)
(b)

≤ max
y′∈Y

f(x, y′).416

The inequality (a) of (3.13) implies (3.11b). In the sequel, we only consider (3.11a) through
inequality (b) of (3.13). Since

ŷ ∈ lim sup
x→x̂

(
argmax

y′∈Y
f(x, y′)

)
,

without loss of generality, we know from the definition of outer limit that there exist a sequence417

{xk} and ỹk ∈ argmaxy′∈Y f(x
k, y′) such that ỹk → ŷ as k → ∞. By a similar procedure to418

the proof for (i) of Theorem 3.17, we have419

0 ≤ ∇xf(x̂, ỹ
k)⊤(xk − x̂) + o

(∥∥∥xk − x̂
∥∥∥)

= ∇xf(x̂, ŷ)
⊤(xk − x̂) + (∇xf(x̂, ỹ

k)−∇xf(x̂, ŷ))
⊤(xk − x̂) + o

(∥∥∥xk − x̂
∥∥∥)

= ∇xf(x̂, ŷ)
⊤(xk − x̂) + o

(∥∥∥xk − x̂
∥∥∥) ,

420

which implies that −∇xf(x̂, ŷ) ∈ NX(x̂).421

In general, a global minimax point can be neither a local minimax point nor a stationary422

point [21, Proposition 21]. Moreover, a first-order stationary point may not be a local minimax423

point. We use the following example to show this assertion.424

Example 3.24 ([21, Figure 2]). Let n = m = 1, X = [−1, 1] and Y = [−5, 5]. Consider425

the following minimax problem426

(3.14) min
x∈[−1,1]

max
y∈[−5,5]

f(x, y) := xy − cos(y).427

By direct calculation, we have

φ(x) = max
y∈[−5,5]

(xy − cos(y)) =

{
x · (π − arcsin(−x))− cos(π − arcsin(−x)), x ∈ [0, 1];

x · (−π − arcsin(−x))− cos(−π − arcsin(−x)), x ∈ [−1, 0],

where the optima is achieved when y = π−arcsin(−x) and y = −π−arcsin(−x), respectively.428

It can observe from the definition of φ(x) that x = 0 is the minimum. In this case, (0,−π)429
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and (0, π) are two global minimax points. However, they both fail to satisfy (3.11a)-(3.11b),430

that is,431 {
0 ∈ y +N[−1,1](x),

0 ∈ x+ sin(y) +N[−5,5](y),
432

which has a unique solution (0, 0). Thus, neither (0,−π) nor (0, π) is a first-order stationary433

point, which implies from Theorem 3.17 that they cannot be local minimax points either.434

Therefore, a global minimax point can be neither a local minimax point nor a first-order435

stationary point.436

Next, we show that even (0, 0) is not a local minimax point. For any y satisfying 0 < |y| ≤ δ437

with any sufficiently small δ > 0, we have − cos(y) = f(0, y) > f(0, 0) = −1, which, according438

to the definition of local minimax points in Definition 2.4, concludes that (0, 0) is not a local439

minimax point. Therefore, problem (3.14) here does not have a local minimax point even440

both X and Y are bounded.441

Sometimes we can find that a global minimax point may be a stationary point (Example442

2.7). In the following proposition, we conclude some sufficient conditions such that a global443

minimax point is a local minimax point.444

Proposition 3.25. Let (x̂, ŷ) be a global minimax point and f be Lipschitz continuous over445

X × Y . Assume that for each x in a neighborhood of x̂, maxy′∈Y f(x, y
′) has a unique and446

uniformly bounded solution. Then (x̂, ŷ) is a local minimax point.447

Proof. Since maxy′∈Y f(x, y
′) has a unique solution for all x in a neighborhood of x̂, we

use ȳ(x) to denote this unique solution. Consider

max
y′∈Y

g(y′) := f(x̂, y′) and max
y′∈Y

g̃(y′) := f(x, y′).

Note that f(x̂, ·) is continuous and ȳ(x) is uniformly bounded for x in a neighborhood of448

x̂. Then, by using Lemma C.1, we know that ∥ȳ(x)− ŷ∥ → 0 as x → x̂, which implies449

that there exists a δ0 > 0 such that for any x ∈ X satisfying ∥x− x̂∥ ≤ δ ≤ δ0, τ(δ) → 0450

where τ(δ) := sup{x∈X:∥x−x̂∥≤δ} ∥ȳ(x)− ŷ∥. As (x̂, ŷ) is a global minimax point, we have for451

any x ∈ X and y ∈ Y that f(x̂, y) ≤ f(x̂, ŷ) ≤ maxy′∈Y f(x, y
′). This indicates that for x452

satisfying ∥x− x̂∥ ≤ δ(≤ δ0) and y satisfying ∥y − ŷ∥ ≤ τ(δ), we have453

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈Y

f(x, y′) = f(x, ȳ(x)) = max
y′∈{y∈Y :∥y−ŷ∥≤τ(δ)}

f(x, y′).454

Thus, (x̂, ŷ) is a local minimax point based on Definition 2.4.455

Obviously, when f(x, ·) is strictly concave for all x in a neighborhood of x̂, the condition456

for the uniqueness of the maximization problem holds.457

To end this section, we summarize relationships between saddle points, local saddle points,458

global minimax points, local minimax points and first-order and second-order stationary points459

in Figure 1.460
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second-order
stationary
point

first-order
stationary
point

global
minimax
point

local
minimax
point

local
saddle
point

saddle point

Figure 1. Venn diagram for saddle points, minimax points and stationary points:
a saddle point ⇒ a local saddle point (Definitions 2.1 & 2.2),
a global (local) minimax point ⇏ a local saddle point (Example 2.7),
a local saddle point ⇒ a local minimax point (Definitions 2.2 & 2.4),
a local minimax point ⇒ a first-order or second-order stationary point (Theorems 3.11 & 3.17),
a first-order stationary point ⇏ a local minimax point (Example 3.24),
a second-order stationary point ⇒ a first-order stationary point (Definition 3.22).

4. Generative adversarial networks. In this section, we consider the first-order and second461

-order optimality conditions of the GAN using nonsmooth activation functions, which can be462

formulated as nonsmooth nonconvex-nonconcave min-max problem (1.1).463

The GAN is one of the most popular generative models in machine learning. It is comprised464

of two ingredients: the generator, which creates samples that are intended to follow the same465

distribution as the training data, and the discriminator, which examines samples to determine466

whether they are real or fake. For more motivations and advantages of GANs, one can refer467

to [17]. Recently, Wang gave a mathematical introduction to GANs in [34].468

The plain vanilla GAN model can be formulated as (1.2), where D and G are given by469

feedforward neural networks with parameters x and y, respectively. The activation function470

is a function from R to R that is used to compute the hidden layer values and introduce471

the nonlinear property. There are several commonly-used activation functions, such as ReLU472

σ(z) = max{0, z}, the logistic sigmoid σ(z) = 1/(1+exp(−z)), the softplus activation function473

σ(z) = ln(1 + exp(z)), etc.474

We give an intuition for D and G which are consist of linear models with activation475

functions in the following example.476

Example 4.1. Consider that the discriminator D is a single-layer network with a logistic477

sigmoid activation function [18] and the generator G is a two-layer network with an activation478

function σ as follows G(x, ξ2) := W2σ(W1ξ2 + b1) + b2 and D(y, ξ1) := 1
1+exp(y⊤ξ1)

, where479

x = (vec(W1)
⊤, vec(W2)

⊤, b⊤1 , b
⊤
2 )

⊤ and vec(·) denotes the columnwise vectorization operator480

of matrices, W1 ∈ Rs×s2 , b1 ∈ Rs, W2 ∈ Rs1×s, b2 ∈ Rs1 and σ : Rs → Rs. Here, σ is a481

separable vector activation function that aggregates the individual neuron activations.482
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In this case, the GAN model (1.2) can be explicitly written as483

(4.1)

min
x∈X

max
y∈Y

f(x, y) =

(
EP1

[
log

(
1

1 + exp(y⊤ξ1)

)]

+ EP2

[
log

(
1− 1

1 + exp(y⊤(W2σ(W1ξ2 + b1) + b2))

)])
.

484

If X and Y are compact and σ is continuous, by Proposition 2.6, problem (4.1) has a global485

minimax point.486

Obviously, if D(·, ξ1) and G(·, ξ2) are smooth (i.e. σ is smooth), the necessary optimality487

conditions in Theorem 3.17 hold. Next, we focus on the nonsmooth case with the ReLU488

activation function.489

Proposition 4.2. Let f be defined in (4.1) with σ(·) = (·)+. Assume that support sets Ξ1490

and Ξ2 are bounded. Then the following statements hold.491

(i) f is locally Lipschitz continuous and twice semidifferentiable in X × Y .492

(ii) If, in addition, f is Clarke regular and twice subregular at (x, y), we have493

f ◦
x(x, y; v) = EP2

[
∇ρy (W2(W1ξ2 + b1)+ + b2)

⊤Υ(v, ξ2)
]
,(4.2a)494

f ◦◦
x (x, y; v) = EP2

[
Υ(v, ξ2)

⊤∇2ρy(W2(W1ξ2 + b1)+ + b2)Υ(v, ξ2)
]
,(4.2b)495

496

where v =
(
vec(W 1)

⊤, vec(W 2)
⊤, b

⊤
1 , b

⊤
2

)
∈ Rn, ρy(·) := log

(
1− 1

1+exp(y⊤(·))

)
and497

(4.3)
Υ(v, ξ2) :=W2

(
lim
t↓0

((W1 + tW 1)ξ2 + b1 + tb1)+ − (W1ξ + b1)+
t

)
+W 2(W1ξ2 + b1)+ + b2,

498

and499

dyf(x, y)(w) = (EP1 [∇y log (D(y, ξ1))] + EP2 [∇y log (1−D(y,G(x, ξ2)))])
⊤w,

(4.4a)

500

d2yf(x, y)(w) = w⊤ (EP1

[
∇2

y log (D(y, ξ1))
]
+ EP2

[
∇2

y log (1−D(y,G(x, ξ2)))
])
w,

(4.4b)

501502

where w ∈ Rm.503

Proof. (i) Let ρ1(y) = EP1 [log (D(y, ξ1))] , ρ2(x, y) = EP2 [log (1−D(y,G(x, ξ2)))] . Since504

for any fixed ξ2 ∈ Ξ2, G(x, ξ2) and log
(
1− 1

1+exp(y⊤G(x,ξ2))

)
are locally Lipschitz continuous505

in X × Y , the local Lipschitz continuity of f(x, y) = ρ1(y) + ρ2(x, y) follows the continuous506

differentiability of log and exp functions. Moreover, the twice semidifferentiability follows507

directly from Example 3.3.508

(ii) Since ρy(·) is twice continuously differentiable, we have

f ◦
x(x, y; v)

(a)
= f ′x(x, y; v)

(b)
= EP2

[
∇ρy (W2(W1ξ2 + b1)+ + b2)

⊤Υ(v, ξ2)
]
,
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where (a) follows from the Clarke regularity, (b) follows from Fatou-Lebesgue theorem and
Example 3.3 and Υ(v, ξ2) is defined in (4.3). Again, by twice subregularity, we have

f ◦◦
x (x, y; v) = f (2)x (x, y; v) = EP2

[
Υ(v, ξ2)

⊤∇2ρy(W2(W1ξ2 + b1)+ + b2)Υ(v, ξ2)
]
.

Note that, for given x, ξ1 and ξ2, D(y, ξ1) andD(y,G(x, ξ2)) are continuously differentiable509

with respect to y. By Lemma C.2 and the boundedness of Ξ1 and Ξ2, we know that f(x, y)510

is continuously differentiable with respect to y. Moreover, we have (see Remark 3.2)511

dyf(x, y)(w) = ∇yf(x, y)
⊤w = (∇yρ1(y) +∇yρ2(x, y))

⊤w512

= (EP1 [∇y log (D(y, ξ1))] + EP2 [∇y log (1−D(y,G(x, ξ2)))])
⊤w,513514

where the last equality follows from Lemma C.2. Analogously, by applying Lemma C.2 to515

EP1 [∇y log (D(y, ξ1))] and EP2 [∇y log (1−D(y,G(x, ξ2)))], we can derive that f(x, y) is twice516

continuously differentiable with respect to y and (see Remark 3.2)517

d2yf(x, y)(w) = w⊤∇2
yf(x, y)w

= w⊤ (EP1

[
∇2

y log (D(y, ξ1))
]
+ EP2

[
∇2

y log (1−D(y,G(x, ξ2)))
])
w.

518

The proof is complete.519

By directly using Proposition 4.2, we can apply Theorems 3.11 and 3.17 to problem (4.1).520

Proposition 4.3. Let (x̂, ŷ) be a local minimax point of problem (4.1).521

(i) Suppose the assumptions of Proposition 4.2 hold with (x, y) = (x̂, ŷ). Then the first-522

order necessary optimality conditions (3.2a)-(3.2b) hold at (x̂, ŷ) with f ◦
x(x̂, ŷ; v) and523

dyf(x̂, ŷ)(w) being given by (4.2a) and (4.4a). If, in addition, f is Clarke regular in524

a neighborhood of (x̂, ŷ), then the second-order necessary optimality conditions (3.3a)-525

(3.3b) hold at (x̂, ŷ) with f ◦◦
x (x̂, ŷ; v) and d2yf(x̂, ŷ)(w) being given by (4.2b) and (4.4b).526

(ii) If σ(·) is twice continuously differentiable, then the first-order and second-order nec-527

essary optimality conditions (3.11a)-(3.11b) and (3.12a)-(3.12b) hold at (x̂, ŷ).528

In Appendix D, we discuss the sample average approximation of the first-order and second-529

order stationary points of problem (4.1).530

5. Conclusions. Many nonconvex-nonconcave min-max problems in dada sciences do not531

have saddle points. In this paper, we provide sufficient conditions for the existence of global532

and local minimax points of constrained nonsmooth nonconvex-nonconcave min-max problem533

(1.1). Moreover, we give the first-order and second-order optimality conditions of local mini-534

max points of problem (1.1), and use these conditions to define the first-order and second-order535

stationary points of (1.1). The relationships between saddle points, local saddle points, global536

minimax points, local minimax points, stationary points are summarized in Figure 1. Several537

examples are employed to illustrate our theoretical results. To demonstrate applications of538

these optimality conditions, we propose a method to verify the optimality conditions at any539

given point of generative adversarial network (4.1).540

Appendix A. Example.541
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Example A.1. Let X = [−1, 1] and Y = [−1, 1]. We consider

min
x∈[−1,1]

max
y∈[−1,1]

f(x, y) := − |x|9 + 3

5
|x|3 |y|3 − |y|5 .

Taking τ(δ) = 3
5(
√
δ)3, for any |x| ≤ δ and |y| ≤ δ with sufficiently small δ ∈ (0, 1), we have542

− |y|5 = f(0, y) ≤ f(0, 0) ≤ max
y∈[−τ(δ),τ(δ)]

− |x|9 + 3

5
|x|3 |y|3 − |y|5 = − |x|9 + 2

5

(
3

5

)4

(
√

|x|)15,543

where ±3
5(
√

|x|)3 is the maximum of the above maximization problem. This implies that544

(0, 0) is a local minimax point. Obviously, f(x, y) is not differentiable at (0, 0). In what545

follows, we examine the necessary optimality conditions in Theorem 3.11. Since TX(0) = R546

and TY (0) = R, we have for any v ∈ TX(0) that547

f ◦
x(0, 0; v) = lim sup

x′→0,t↓0

− |x′ + tv|9 + |x′|9

t
= 0,548

which implies that f ◦
x(0, 0; v) = f ′x(0, 0; v), i.e., the Clarke regularity holds.549

Similarly, we have for any w ∈ TY (0) that550

dyf(0, 0)(w) = lim inf
w′→w,t↓0

f(0, tw′)− f(0, 0)

t
= lim inf

w′→w,t↓0

− |tw′|5

t
= 0.551

Next consider the second-order optimality conditions. Note that T ◦
X(0) = R and for any552

fixed y′, we have553

dxf(0, y
′)(v) = lim inf

v′→v,t↓0

f(tv′, y′)− f(0, y′)

t

= lim inf
v′→v,t↓0

−t9 |v′|9 + 3
5 t

3 |v′|3 |y′|3 − |y′|5 + |y′|5

t
= 0

554

for any v, which implies that {v : dxf(0, y
′)(v) = 0} = R. Thus, for any δ > 0

T ◦
X(0) ∩ {v : dxf(0, y

′)(v) = 0, ∀y′ ∈ B(0, δ) ∩ Y } = R.

Notice that555

f ◦◦
x (0, 0; v) = lim sup

x′→0
t↓0,δ↓0

f(x′ + δv + tv, 0)− f(x′ + δv, 0)− f(x′ + tv, 0) + f(x′, 0)

δt

= lim sup
x′→0
t↓0,δ↓0

− |x′ + δv + tv|9 + |x′ + δv|9 + |x′ + tv|9 − |x′|9

δt
≥ 0

556

for any v ∈ R. Similarly, we have T ◦
Y (0) ∩ {w : dyf(0, 0)(w) = 0} = R and557

d2yf(0, 0)(w) = lim inf
w′→w,t↓0

f(0, tw′)− f(0, 0)− tdyf(0, 0)(w
′)

1
2 t

2
= lim inf

w′→w,t↓0

− |tw′|5
1
2 t

2
= 0558
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for any w ∈ R.559

Appendix B. The polyhedral case.560

If both X and Y are polyhedral, we can replace cl {w : ∃δ > 0, w ∈ Γ◦
1(x̂, y

′),∀y′ ∈ B(ŷ, δ)}561

and clΓ◦
2(x̂, ŷ) in Theorem 3.17 by cl {w : ∃δ > 0, w ∈ Γ1(x̂, y

′),∀y′ ∈ B(ŷ, δ)} and Γ2(x̂, ŷ),562

respectively (see Lemma 3.16). Specially, we consider that X and Y are defined as follows:563

(B.1) X = {x ∈ Rn : Ax ≤ b} and Y = {y ∈ Rm : Cy ≤ d},564

where A ∈ Rp×n, b ∈ Rp, C ∈ Rq×m and d ∈ Rq.565

The following proposition establishes the relationship between tangent/normal cones and566

algebra systems when X and Y are defined in (B.1).567

Proposition B.1 ([15]). Let X and Y be defined in (B.1). Then we have568

TX(x) =
{
λ ∈ Rn : −A⊤

i λ ≥ 0, ∀i ∈ AX(x)
}
, TY (y) =

{
µ ∈ Rm : −C⊤

j µ ≥ 0, ∀j ∈ AY (y)
}

NX(x) =

{
−

p∑
i=1

αiAi : α ∈ NRp
+
(b−Ax)

}
, NY (y) =

−
q∑

j=1

βjCj : β ∈ NRq
+
(d− Cy)

 ,
569

where Ai is the ith row vector of matrix A and Cj is the jth row vector of matrix C respectively570

for i = 1, · · · , p and j = 1, · · · , q, and AX(x) and AY (y) are active sets of X at x and Y at571

y, respectively.572

Theorem B.2. Let the tuple (x̂, ŷ) ∈ X × Y be a local minimax point of problem (1.1) with573

X and Y being defined in (B.1). Then there exist multipliers α ∈ Rp and β ∈ Rq such that574

(B.2)

{
∇xf(x̂, ŷ)−

∑p
i=1 αiAi = 0, −∇yf(x̂, ŷ)−

∑q
j=1 βjCj = 0,

α ∈ NRp
+
(b−Ax̂), β ∈ NRq

+
(d− Cŷ).

575

If, moreover, f is twice continuously differentiable, we have, for any δ > 0, that576

(B.3)


〈
v,∇2

xxf(x̂, ŷ)v
〉
≥ 0 for all

v ∈
{
λ ∈ TX(x̂) : ∃δ > 0, λ⊤∇xf(x̂, y

′) = 0 for y′ ∈ B(ŷ, δ)
}
,〈

w,∇2
yyf(x̂, ŷ)w

〉
≤ 0 for all w ∈

{
µ ∈ TY (ŷ) : µ⊤∇yf(x̂, ŷ) = 0

}
.

577

Proof. We know from (3.11) of Theorem 3.17 that the following first-order optimality578

necessary condition holds: 0 ∈ ∇xf(x̂, ŷ) + NX(x̂) and 0 ∈ −∇yf(x̂, ŷ) + NY (ŷ). This579

together with the specific reformulations of NX(x) and NY (y) in Proposition B.1, we obtain580

(B.2) directly.581

Next, we focus on (B.3). Analogously, we know from (3.12) of Theorem 3.17 that582

(B.4)

{〈
v,∇2

xxf(x̂, ŷ)v
〉
≥ 0 for all v ∈ cl {v̄ : ∃δ > 0, v̄ ∈ Γ◦

1(x̂, y
′), ∀y′ ∈ B(ŷ, δ)} ,〈

w,∇2
yyf(x̂, ŷ)w

〉
≤ 0 for all w ∈ clΓ◦

2(x̂, ŷ)
583
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holds. Since X and Y are polyhedral, we know from Lemma 3.16 that Γ◦
1(x, y) = clΓ◦

1(x, y) =584

Γ1(x, y) and Γ◦
2(x, y) = clΓ◦

2(x, y) = Γ2(x, y). Thus, (B.4) can be equivalently rewritten as585

(B.5)

{〈
v,∇2

xxf(x̂, ŷ)v
〉
≥ 0 for all v ∈ cl {v̄ : ∃δ > 0, v̄ ∈ Γ1(x̂, y

′), ∀y′ ∈ B(ŷ, δ)} ,〈
w,∇2

yyf(x̂, ŷ)w
〉
≤ 0 for all w ∈ Γ2(x̂, ŷ).

586

Note that Γ1(x, y) = {v ∈ TX(x) : v⊥∇xf(x, y)} and Γ2(x, y) = {w ∈ TY (y) : w⊥∇yf(x, y)}.587

This, together with (B.5) and the reformulations of TX(x) and TY (y) in Proposition B.1,588

verifies (B.3).589

We call (B.2) the first-order KKT system of problem (1.1) and (B.2)-(B.3) the second-order590

KKT system of problem (1.1).591

Appendix C. Four lemmas. Consider the minimization problem592

(C.1) min
x∈X

g(x),593

where X ⊆ Rn is a compact and convex set and g : X → R is continuous, and its a sequence594

of perturbation problems595

(C.2) min
x∈X

g̃k(x),596

where g̃k : X → R are continuous for k ∈ N.597

Lemma C.1. Let v∗, S∗ and v∗k, S∗
k denote the optimal values and the optimal solution sets598

of problems (C.1) and (C.2), respectively. Assume supx∈X |g̃k(x)− g(x)| → 0 as k → ∞.599

Then (i) v∗, v∗k are finite and S∗, S∗
k are nonempty; (ii) supx∈S∗

k
d(x,S∗) → 0 as k → ∞.600

Proof. (i) It follows from that X is a compact and convex set and g, g̃k are continuous.
(ii) We give the proof by contradiction. Assume that there exists an ϵ0 > 0 such that
supx∈S∗

kl

d(x,S∗) ≥ ϵ0, where {S∗
kl
}l≥1 is a subsequence of {S∗

k}k≥1. Thus, we can select

a sequence {xkl}l≥1 with xkl ∈ S∗
kl

such that d(xkl ,S∗) ≥ ϵ0
2 , ∀l ∈ N. Due to the bounded-

ness of feasible set X , we know that the sequence {xkl}l≥1 is bounded, and without loss of
generality, we assume that xkl → x̄ as l → ∞.

v∗kl − g(x̄) = g̃kl(xkl)− g(x̄) = g̃kl(xkl)− g(xkl) + g(xkl)− g(x̄).

Since lim supl→∞ v∗kl = liml→∞ v∗kl = v∗, we have601

v∗ − g(x̄) = lim sup
l→∞

(
v∗kl − g(x̄)

)
≥ lim inf

l→∞
(g̃kl(xkl)− g(xkl)) + lim inf

l→∞
(g(xkl)− g(x̄)) .602

Note that∣∣∣∣lim inf
l→∞

(g̃kl(xkl)− g(xkl))

∣∣∣∣ ≤ sup
x∈X

|g̃kl(x)− g(x)| → 0 and lim inf
l→∞

g(xkl)− g(x̄) ≥ 0,

which implies that v∗ − g(x̄) ≥ 0 and thus x̄ ∈ S∗. This contradicts with ϵ0
2 ≤ d(xkl ,S∗) →603

d(x̄,S∗) = 0. Therefore, supx∈S∗
k
d(x,S∗) → 0 as k → ∞.604
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Lemma C.2 ([33, Theorem 7.57]). Let U ⊆ Rn be an open set, X be a nonempty compact605

subset of U and F : U × Ξ → R be a random function. Suppose that: (i) {F (x, ξ)}x∈X606

is dominated by an integrable function; (ii) there exists an integrable function C(ξ) such607

that |F (x′, ξ)− F (x, ξ)| ≤ C(ξ) ∥x′ − x∥ for all x′, x ∈ U and a.e. ξ ∈ Ξ; (iii) for every608

x ∈ X the function F (·, ξ) is continuously differentiable at x w.p.1. Then (a) the expectation609

function f(x) is finite valued and continuously differentiable on X, and (b) for all x ∈ X the610

corresponding derivatives can be taken inside the integral, i.e., ∇f(x) = E[∇xF (x, ξ)].611

Lemma C.3. Suppose that g is twice differentiable at x̄ ∈ X . Let Γ◦(x̄) := {w ∈ T ◦
X (x̄) :612

w⊥∇g(x̄)} and Γ(x̄) := {w ∈ TX (x̄) : w⊥∇g(x̄)}. Then Γ◦(x̄) and Γ(x̄) are convex cones and613

(i) If x̄ is a local minimum point of (C.1), then614

(C.3) 0 ∈ ∇g(x̄) +NX (x̄) and
〈
w,∇2g(x̄)w

〉
≥ 0 for all w ∈ clΓ◦(x̄).615

(ii) If the conditions in (C.3) hold by replacing clΓ◦(x̄) by Γ(x̄) and “≥” by “>” for w ̸= 0,616

then x̄ is a local minimum point of (C.1).617

Proof. (i) For any w ∈ Γ◦(x̄) with ∥w∥ = 1, there exists a sequence {tk}k≥1 with tk ↓ 0 as618

k → ∞ such that 0 ≤ g(x̄+tkw)−g(x̄) = tk∇g(x̄)⊤w+
t2k
2 w

⊤∇2g(x̄)w+t2k ∥w∥
2 o(1). Dividing619

t2k in both sides gives w⊤∇2g(x̄)w ≥ 0, since ∇g(x̄)⊤w = 0. Hence (C.3) holds.620

(ii) We assume by contradiction that x̄ is not a local minimum point. Then there exists621

a sequence {xk}k≥1 ⊆ X with xk → x̄ as k → ∞ such that g(xk) < g(x̄). Let tl =
∥∥xkl − x̄

∥∥622

and wl =
xkl−x̄

∥xkl−x̄∥ ∈ T ◦
X (x̄). Then g(x

k) = g(x̄)+ tl∇g(x̄)⊤wl +
t2l
2 w

⊤
l ∇2g(x̄)wl + t2l ∥wl∥2 o(1).623

Without loss of generality, we assume that wl → w̄ as l → ∞. Then w̄ ∈ clΓ◦(x̄) ⊆ Γ(x̄).624

If there exists a subsequence {kl}l≥1 such that ∇g(x̄)⊤wl = 0, then 1
2w

⊤
l ∇2g(x̄)wl > 0625

and w̄⊤∇2g(x̄)w̄ > 0, which implies g(xk) ≥ g(x̄). This leads to a contradiction.626

If there exists a subsequence {kl}l≥1 such that ∇g(x̄)⊤wl > 0, then we have g(xk) ≥ g(x̄)627

if ∇g(x̄)⊤w̄ > 0, and w̄⊤∇2g(x̄)w̄ > 0 if ∇g(x̄)⊤w̄ = 0 (i.e., w̄ ∈ Γ(x̄)), which implies628

g(xk) ≥ g(x̄). This also leads to a contradiction.629

Lemma C.4. Suppose that g is twice semidifferentiable at x̄ ∈ X and X is a nonempty,630

closed and convex set. If dg(x̄)(v) ≥ 0 for all v ∈ TX (x̄) and 0 ̸= v ∈ TX (x̄)∩{w : dg(x̄)(w) =631

0} implies that d2g(x̄)(v) > 0, then x̄ is a local minimum point of problem (C.1).632

Proof. Let ḡ := g+ δX . Consider the unconstrained minimization problem minx∈Rn ḡ(x),633

which is equivalent to constrained minimization problem (C.1). By applying [32, Theorem634

13.24] to the unconstrained minimization problem, we complete the proof.635

Appendix D. The sample average approximation. We discuss the sample average ap-636

proximation (SAA) of a first-order and a second-order stationary points of problem (4.1).637

To this end, we assume that σ(·) is twice continuously differentiable. Let X = [a, b] and638

Y = [c, d] where a, b ∈ Rn, c, d ∈ Rm, a < b, and c < d with n = (s+ 1)(s1 + s2) and m = s1.639

Denote {ξj1}Nj=1 and {ξj2}Nj=1 the independent identically distributed (iid) samples of ξ1640
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and ξ2, respectively. We consider the following min-max problem641

(D.1)

min
x∈X

max
y∈Y

f̂N (x, y) :=
1

N

N∑
i=1

(
log

(
1

1 + exp(y⊤ξi1)

)

+ log

(
1− 1

1 + exp(y⊤(W2σ(W1ξi2 + b1) + b2))

))
.

642

Use the existing automatic differentiation technique, such as back-propagation, we can643

compute ∇xf̂N (x, y), ∇yf̂N (x, y), ∇2
xxf̂N (x, y), ∇2

yyf̂N (x, y). Moreover, we have644

TX(x) = T ◦
X(x) =

v ∈ Rn : vi ∈


[0,∞), if xi = ai

(−∞,∞), if ai < xi < bi

(−∞, 0], if xi = bi

 ,645

646

TY (y) = T ◦
Y (y) =

w ∈ Rm : wj ∈


[0,∞), if yj = cj

(−∞,∞), if cj < yj < dj

(−∞, 0], if yj = dj

647

and648

Γ◦
1(x, y) = Γ1(x, y) = {v ∈ TX(x) : v⊥∇xf̂N (x, y)},

Γ◦
2(x, y) = Γ2(x, y) = {w ∈ TY (y) : w⊥∇yf̂N (x, y)}.

649

By Theorem 3.17, if (x̂, ŷ) is a local minimax point of problem (D.1), then (x̂, ŷ) must satisfy
the first-order and second-order optimality conditions:

(∇xf̂N (x̂, ŷ))i ≥ 0, if xi = ai;

(∇xf̂N (x̂, ŷ))i = 0, if ai < xi < bi;

(∇xf̂N (x̂, ŷ))i ≤ 0, if xi = bi

and


(∇yf̂N (x̂, ŷ))j ≤ 0, if yj = cj ;

(∇yf̂N (x̂, ŷ))j = 0, if cj < yj < dj ;

(∇yf̂N (x̂, ŷ))j ≥ 0, if yj = dj

for i = 1, . . . , n, j = 1, . . . ,m, and〈
v,∇2

xxf̂N (x̂, ŷ)v
〉
≥ 0 for all v ∈

{
v̄ : ∃δ > 0, v̄ ∈ Γ1(x̂, y

′),∀y′ ∈ B(ŷ, δ)
}
,〈

w,∇2
yyf̂N (x̂, ŷ)w

〉
≤ 0 for all w ∈ Γ2(x̂, ŷ).

The following proposition tells that the above procedures can ensure an exponential rate650

of convergence with respect to sample size N .651

Proposition D.1. Let σ(·) be twice continuously differentiable. If (xN , yN ) is a first-order652

(second-order) stationary point of problem (D.1) with iid samples {ξj1}Nj=1 and {ξj2}Nj=1 of ξ1653

and ξ2 respectively, then (xN , yN ) converges to a first-order (second-order) stationary point of654

problem (4.1) exponentially with respect to N .655
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Proof. Denote656

h(z) =

(
∇xf(x, y)
−∇yf(x, y)

)
, H(z) =

(
supv∈V(x,y)

〈
v,−∇2

xxf(x, y)v
〉

supw∈W(x,y)

〈
w,∇2

yyf(x, y)w
〉) ,

ĥN (z) =

(
∇xf̂N (x, y)

−∇yf̂N (x, y)

)
, ĤN (z) =

supv∈V(x,y)

〈
v,−∇2

xxf̂N (x, y)v
〉

supw∈W(x,y)

〈
w,∇2

yyf̂N (x, y)w
〉 ,

657

where z = (x⊤, y⊤)⊤, V(x, y) := B(0, 1) ∩ ∪δ>0cl {v̄ : ∃δ > 0, v̄ ∈ Γ◦
1(x, y

′), ∀y′ ∈ B(y, δ)} and658

W(x, y) := B(0, 1) ∩ clΓ◦
2(x, y).659

According to the twice continuous differentiability of f (see Proposition 4.2) and the660

boundedness of Ξ1 and Ξ2, we have ĥN (z) → h(z) and ĤN (z) → H(z) exponentially fast661

uniformly in any compact subset of Z ⊆ Z := X × Y ([33, Theorem 7.73]). That is, for any662

given ϵ > 0, there exist C = C(ϵ) and β = β(ϵ), such that663

Prob

{
sup
z∈Z

∥∥∥ĥN (z)− h(z)
∥∥∥ ≥ ϵ

}
≤ Ce−Nβ and Prob

{
sup
z∈Z

∣∣∣ĤN (z)−H(z)
∣∣∣ ≥ ϵ

}
≤ Ce−Nβ.664

Without loss of generality, we assume that zN = (x⊤N , y
⊤
N )⊤ ∈ Z. Denote the following general665

growth functions:666

ψ1(τ) := inf{d(0, h(z) +NZ(z)) : z ∈ Z, d(z,S1) ≥ τ},
ψ2(τ) := inf{∥(H(z))+∥ : z ∈ Z, d(z,S2) ≥ τ},

667

where S1 and S2 are the sets satisfying (3.11a)-(3.11b) and (3.12a)-(3.12b), respectively, and668

“d” denotes the distance from a point to a set. Let the related functions Ψ1(t) := ψ−1
1 (t) +669

t and Ψ2(t) := ψ−1
2 (t) + t, where ψ−1

i (t) := sup{τ : ψi(τ) ≤ η} for i = 1, 2, which satisfy670

Ψi(t) → 0 as t ↓ 0 for i = 1, 2.671

Then, by a conventional discussion (see e.g. [5]), we have672

d(zN ,S1) ≤ Ψ1

(
sup
z∈Z

∥∥∥ĥN (z)− h(z)
∥∥∥) and d(zN ,S2) ≤ Ψ2

(
sup
z∈Z

∣∣∣ĤN (z)−H(z)
∣∣∣) .673

Thus, we have Prob {d(zN ,S1) ≥ Ψ1(ϵ)} ≤ Ce−Nβ and Prob {d(zN ,S2) ≥ Ψ2(ϵ)} ≤ Ce−Nβ,674

which shows that zN converges to a first-order stationary point in S1 (or a first-order stationary675

point in S2) exponentially with respect to N .676
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