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Abstract

The leaky ReLU network with a group sparse regularization term has been widely used
in the recent years. However, training such network yields a nonsmooth nonconvex op-
timization problem and there exists a lack of approaches to compute a stationary point
deterministically. In this paper, we first resolve the multi-layer composite term in the orig-
inal optimization problem by introducing auxiliary variables and additional constraints. We
show the new model has a nonempty and bounded solution set and its feasible set satisfies
the Mangasarian-Fromovitz constraint qualification. Moreover, we show the relationship
between the new model and the original problem. Remarkably, we propose an inexact aug-
mented Lagrangian algorithm for solving the new model, and show the convergence of the
algorithm to a KKT point. Numerical experiments demonstrate that our algorithm is more
efficient for training sparse leaky ReLU neural networks than some well-known algorithms.

Keywords: sparse neural network, leaky ReLU, group sparsity, penalty method, inexact
augmented Lagrangian method

1. Introduction

In this paper, we focus on the parameter estimation problem of the leaky ReLU net-
work (Maas et al., 2013) with the l2,1 regularizer, which pursues the group sparsity. The
problem can be formulated as

min
w,b

1

N

N∑
n=1

∥σ(WLσ(· · ·σ(W1xn + b1) + · · · ) + bL)− yn∥2 +R1(w). (1)

Here {xn ∈ RN0}Nn=1 and {yn ∈ RNL}Nn=1 are the given input and output data, respectively,
σ stands for the component-wise activation function, variables Wℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ

represent the weight matrices and the bias vectors for all ℓ ∈ [L], respectively, ∥ · ∥ refers to
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the l2 norm, and R1 : RÑ → R is the sparse regularizer of w. For convenience, we set

w =
(
vec(W1)

⊤, . . . , vec(WL)
⊤
)⊤

∈ RÑ , b =
(
b⊤1 , . . . , b

⊤
L

)⊤
∈ RN ,

where vec(Wℓ) ∈ RNℓ−1Nℓ is the column-wise vectorization of Wℓ, Ñ :=
∑L

ℓ=1NℓNℓ−1

N :=
∑L

ℓ=1Nℓ, and [L] denotes {1, 2, . . . , L}. In this paper, we set σ as the leaky ReLU
activation function and R1 as the group lasso regularizer, i.e.,

σ(z) = max{z, αz}, R1(w) := λw

L∑
ℓ=1

∥Wℓ∥2,1 = λw

L∑
ℓ=1

Nℓ−1∑
j=1

∥(Wℓ)·,j∥,

where λw > 0, 0 < α < 1, (Wℓ)·,j stands for the j-th column of Wℓ, and max{z, αz} =
(max{z1, αz1}, . . . ,max{zK , αzK})⊤ for any z ∈ RK .

It is worth noting that the activation functions ReLU and the leaky ReLU get more and
more popular in recent applications, as they can alleviate the overfitting phenomenon and
pursue the model (neuron) sparsity, e.g., almost half of the neurons in the ReLU network
are zero (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011; Maas et al., 2013;
Dahl et al., 2013; He et al., 2015; Agarap, 2018). Moreover, the performance of the leaky
ReLU network is reported to be slightly better than that of the ReLU network (Maas et al.,
2013; Pedamonti, 2018). As we will show in Theorem 8, the leaky ReLU network with a
regularization term has a nonempty and bounded solution set, while the ReLU network
with a regularization term does not have the property (see a counterexample given by Liu
et al. (2022)). For simplicity, we focus on the leaky ReLU network in this paper. Our new
model, algorithm and theoretical analysis can be generalized to the ReLU network easily
(see Remark 15).

In training a deep neural network (DNN, e.g., the leaky ReLU network), regularization
techniques play an important role in reducing the generalization error (also called the test
error) (Goodfellow et al., 2016). The l2 regularizer (i.e., ∥ · ∥2, also called the weight
decay) has been widely used for training the DNN (Goodfellow et al., 2016). Recently,
sparse regularizers, such as the lasso regularizer (Goodfellow et al., 2016) and the group
sparse regularizer (Zhou et al., 2010; Wen et al., 2016; Feng and Simon, 2017; Yoon and
Hwang, 2017; Scardapane et al., 2017), are superior to the l2 regularizer in pursuing the
parameter sparsity and lead to theoretical improvement in efficiency (Hoefler et al., 2021).
Moreover, Wen et al. (2016) show that by using the gradient descent methods, less training
time is required by DNN with a group sparse regularizer compared with that required by
DNN with a lasso regularizer. The group sparse regularizer also appears in convolution
neural network (Bui et al., 2021) and other machine learning problems (Meier et al., 2008;
Jenatton et al., 2011; Simon et al., 2013), etc. Hence, we focus on training the leaky ReLU
network with the l2,1 regularizer for pursuing the group sparsity.

The stochastic gradient descent based methods, including the stochastic gradient descent
methods (SGD), are widely used in training DNN including the leaky ReLU network with
group sparsity, while they neglect the fact that the subdifferentials of the objective function
at those nondifferentiable points are not available (Abadi et al., 2016; Paszke et al., 2019).
Instead, they calculate the “gradient” via the “chain rule” brutally no matter the “chain
rule” applies or not (Telgarsky, 2020; Bolte and Pauwels, 2021)). Therefore, gradient descent
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based approaches can not deterministically yield Clarke stationary points (see Definition 1)
and may encounter numerical troubles in extreme cases. Recently, Davis et al. (2020) prove
that the stochastic subgradient (SSGD) method for training the nonsmooth network can
obtain Clarke stationary points for the leaky ReLU network with probability 1. However,
they have not explained how to calculate a subgradient practically. Moreover, even though
a Clarke stationary point is obtained, it may be far away from any local minimizer (see
Example 1).

Carreira-Perpiñán and Wang (2012, 2014) proposed a new methodology that introduces
auxiliary variables and constraints to resolve the multi-layer nonsmoothness in neural net-
works. By using quadratic penalties to enforce equality constraints, their method enables
efficient training of deep networks and allows distributed computing. This methodology has
been adopted for training deep neural networks in (Taylor et al., 2016; Lau et al., 2018; Zeng
et al., 2019; Evens et al., 2021). However, it is important to note that such approach may
not always guarantee finding stationary points of the original problem (1). To address this
issue, Cui et al. (2020) propose an l1 penalty method, which yields a directional stationary
point theoretically, for training the DNN with piecewise activation functions and an l2 reg-
ularizer. Liu et al. (2022) propose a smoothing method that finds a Clarke stationary point
for the two-layer ReLU network. To the best of our knowledge, algorithms with guaranteed
global convergence to KKT points for a nonsmooth deep neural network with group sparsity
have not been developed yet.

1.1 Motivation

In this paper, we aim to explore efficient approaches for solving problem (1) with guaran-
teed convergence. Hence, we pay our attention to the methods which introduce auxiliary
variables and constraints to resolve the multi-layer nonsmoothness. To peel the complicated
composite objective of (1) like bamboo shoot, we first introduce the following variables,

v :=
(
v⊤1,1, v

⊤
2,1, . . . , v

⊤
1,L, v

⊤
2,L, . . . , v

⊤
N,L

)⊤
∈ Rm, (2)

where m := NN , vn,ℓ := σ(Wℓσ(· · ·σ(W1xn + b)+ + · · · ) + bℓ), vn,0 := xn for all ℓ ∈ [L]
and n ∈ [N ]. Specifically, Liu et al. (2022) introduce a linearly constrained model for
training a two-layer ReLU network with a regularization term. For solving the sparse
leaky ReLU network with more than two layers, we introduce in this paper a regularization
term R2(v) : Rm 7→ R by

R2(v) := λv∥v∥2,
and a new group of variables

u =
(
u⊤1,1, u

⊤
2,1, . . . , u

⊤
1,L, u

⊤
2,L, . . . , u

⊤
N,L

)⊤
∈ Rm, (3)

where λv > 0, un,ℓ = Wℓvn,ℓ−1+bℓ for all n ∈ [N ] and ℓ ∈ [L]. Then, we derive the following
model

min
w,b,v,u

Ō(w, v) :=
1

N

N∑
n=1

∥vn,L − yn∥2 +R1(w) +R2(v)

s.t. σ(un,ℓ)− vn,ℓ = 0, un,ℓ − (Wℓvn,ℓ−1 + bℓ) = 0,

n ∈ [N ], ℓ ∈ [L].

(P)
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The regularization teams R1 and R2 lead to the level boundedness of the objective function
Ō. Moreover, R1 imposes column-wise sparsity of the weight matrices Wℓ for all ℓ ∈ [L].

By defining the linear operator Ψ(v) : Rm 7→ Rm×Ñ and the matrix A ∈ Rm×N as

Ψ(v) =


X⊤ ⊗ IN1 . . . . . . 0

0 V ⊤
1 ⊗ IN2 . . . 0

0 . . . . . . 0
0 . . . . . . V ⊤

L−1 ⊗ INL

 and

A =


eN ⊗ IN1 . . . . . . 0

0 eN ⊗ IN2 . . . 0
0 . . . . . . 0
0 . . . . . . eN ⊗ INL

 ,

respectively, where X := (x1, x2, . . . , xn), Vℓ := (v1,ℓ, v2,ℓ, . . . , vN,ℓ) ∈ RNℓ×N for all ℓ ∈ [L],
⊗ represents the Kronecker product and eK ∈ RK denotes the all-ones vector for K ∈ N+,
the constraint set of problem (P) can be simply written as

v − σ(u) = 0, u = Ψ(v)w +Ab.

Due to the nonsmoothness of σ(u), problem (P) does not satisfy a standard constraint
qualification for mathematical programming. We consider to have v ≥ σ(u) as a constraint
and add a penalty term β⊤(v − σ(u)) in the objective function, where

β = (β1e
⊤
NN1

, . . . , βLe
⊤
NNL

)⊤ ∈ Rm

with constants βℓ > 0 for all ℓ ∈ [L]. Note that the inequality v ≥ σ(u) is equivalent to
the inequalities v − u ≥ 0 and v − αu ≥ 0, we then present the partial l1 penalty model for
problem (P) as follows

min
w,b,v,u

O(w, v, u) = Ō(w, v) + β⊤(v − σ(u))

s.t. v − u ≥ 0, v − αu ≥ 0, u = Ψ(v)w +Ab.
(PP)

For brevity, we denote the feasible sets of problems (P) and (PP) by Ω1 and Ω2, respectively.

It is worth noting that problem (PP) is a nonsmooth nonconvex mathematical pro-
gramming, where the second term β⊤(v − σ(u)) is nonsmooth, R1 is a convex nonsmooth
regularizer, the inequality constraints are linear, the equality constraints are nonconvex
bilinear. Hence, both the objective function and the feasible region of problem (PP) are
much more complicated than the optimization problem for two-layer network proposed by
Liu et al. (2022), which is a linearly constrained programming. Hence, the approaches
therein can not be straightforwardly extended to solve problem (PP).

1.2 Contributions

We consider a regularized minimization model (P) with auxiliary variables and nonsmooth
constraints for training the leaky ReLU network with group sparsity. We investigate its
partial l1 penalty model (PP) and establish the relationships between these two models
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with respect to global minimizers, local minimizers, and stationary points under some mild
conditions. Moreover, we show that the solution set of problem (PP) is bounded and any
feasible point of problem (PP) satisfies the Mangasarian-Fromovitz constraint qualification.
Based on these results, we theoretically verify the equivalence between the KKT points and
the limiting stationary points of (PP), and further prove that any KKT point of (PP) is an
MPCC W-stationary point of problem (P).

By exploiting the structure of problem (PP), we propose an inexact augmented La-
grangian method, whose subproblem at each iteration is solved by an alternating minimiza-
tion method (IALAM). Different from the existing inexact augmented Lagrangian methods
for nonsmooth nonconvex optimization problems (Lu and Zhang, 2012; Chen et al., 2017),
we design a new rule for updating the Lagrangian penalty parameter. We also prove that
any iterate sequence generated by IALAM has accumulation points, any of which is a lim-
iting stationary point (or equivalently KKT point) of problem (PP) without assuming the
existence of accumulation points. Moreover, any limiting stationary point of problem (PP)
is a Clarke stationary point of problem (PP).

The numerical experiments demonstrate that IALAM, equipped with prefixed algo-
rithm parameters, outperforms the popular SGD-based methods (e.g., Adam, Adadelda,
and vanilla SGD) and ProxSGD in solving problems arisen from both synthetic and MNIST
data sets. More specifically, compared with SGD-based methods, IALAM achieves lower
training error and test error, and obtains sparser solutions.

By applying IALAM to training both the ReLU and the leaky ReLU networks under the
same settings, we find that the leaky ReLU network with a small positive α (e.g., α = 0.01)
often leads to slightly better performance than that of the ReLU network, which verifies
the observations of Maas et al. (2013); Pedamonti (2018).

1.3 Organizations

The rest of this paper is organized as follows. In Section 2, we introduce some notations,
preliminary definitions, lemmas, and results. The relationships between the models (P)
and (PP) are illustrated in Section 3. In Section 4, we propose an augmented Lagrangian
method with the alternating minimization for solving problem (PP) and establish the global
convergence of the algorithm. In Section 5, we illustrate the performance of our proposed
algorithm through extensive numerical experiments. Concluding remarks are drawn in the
last section.

2. Notations and Preliminaries

In this section, we introduce some notations, preliminary definitions, examples, and lemmas.
The m×m identity matrix is denoted by Im. We use N+ to represent the set of positive

integers. Given a point z ∈ Rm and ϵ > 0,Bϵ(z) denotes a closed ball centered at z with
radius ϵ, (sign(z))i denotes the sign function of zi, and diag(z) denotes the diagonal matrix
whose diagonal vector is z. dist(z∗,Ω) = minz∈Ω ∥z − z∗∥ represents the distance from a
point z∗ to a nonempty closed set Ω. We use int(Ω), co(Ω) to represent the interior and
convex hull of Ω, respectively. The indicator function of a set Ω is denoted by δΩ. The
Hadamard product is denoted by ◦. We let ∇(z1,z2)f(z) = ∇z1f(z)×∇z2f(z) for a smooth
function f with respect to z = (z1, z2).
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LetH be a symmetric positive definite matrix, Ω ⊆ Rm be a convex set, and ProjHΩ (z∗) =
argmin {∥z − z∗∥H : z ∈ Ω} be the orthogonal projection of a vector z∗ ∈ Rm onto Ω
(Facchinei and Pang, 2003). If H is the identity matrix, we will use ProjΩ (z∗) instead. The
proximal mapping Proxf (·) of a proper closed convex function f is defined as Proxf (z

∗) =
argminz∈Rn

{
1
2∥z − z∗∥2 + f(z)

}
.

2.1 Subdifferentials and Stationarity

Let f : Ω → R be a locally Lipschitz continuous and directionally differentiable function
defined on an open set Ω ⊆ Rn. The directional derivative of f at z along the direction d is
defined as

f ′(z; d) = lim
t↓0

f(z + td)− f(z)

t
.

It is worth mentioning that any piecewise smooth and Lipschitz continuous function is
directionally differentiable (Mifflin, 1977).

Let z̄ ∈ Ω be given. The Clarke subdifferential (Clarke, 1990) of f at z̄ is defined by

∂cf (z̄) = co
{
lim
z→z̄

∇f(z) : f is smooth at z
}
.

According to (Rockafellar and Wets, 1998, Definition 8.3), the limiting subdifferential of f
at z̄ is defined by ∂f(z̄) :={

v : ∃zk f→ z̄, vk → v such that lim inf
z→zk

f(z)− f
(
zk
)
−
〈
vk, z − zk

〉
∥z − zk∥

≥ 0, ∀k

}
,

where zk
f→ z̄ means that zk → z̄ and f

(
zk
)
→ f(z̄). If f is convex, then ∂f coincides with

∂cf . If f is furthermore smooth, it holds that ∂f(z) = ∂cf(z) = {∇f(z)}. In general, one
has co(∂f(z̄)) = ∂cf(z̄).

For z ∈ Rn, we have

∂∥z∥ = ∂c∥z∥ =

{
z

∥z∥ , if ∥z∥ ≠ 0,

{r : r ∈ Rn, ∥r∥ ≤ 1} , if ∥z∥ = 0.

Let TΩ(z̄) =
{
d : d = limz∈Ω,z→z̄,t↓0

z−z̄
t

}
be the tangent cone of a set Ω at z̄ ∈ Ω and

NΩ(z) be the limiting normal cone at z ∈ Ω. If Ω is a convex set, then NΩ(z) coincides
with the classical (Clarke) normal cone in the convex analysis, where the Clarke normal
cone N c

Ω(z) is defined by N c
Ω(z) = clcoNΩ(z).

Definition 1 Let Z be a closed set in Ω. We call z̄ ∈ Z a d(irectional)-stationary point
of minz∈Z f(z) if f ′(z̄; d) ≥ 0 for all d ∈ TZ(z̄). We say that a point z̄ ∈ Z is a limiting
stationary point, a C(larke)-stationary point of minz∈Z f(z) if 0 ∈ ∂f(z̄) + NZ(z̄), 0 ∈
∂cf(z̄) +N c

Z(z̄), respectively.

Based on Definition 1, we have the following relationships

local minimizer ⇒ d-stationary ⇒ limiting stationary ⇒ C-stationary. (4)
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Furthermore, 0 ∈ ∂cf(z̄) +N c
Z(z̄) implies

f◦(z̄; d) := lim sup
z→z̄,t↓0

f(z + td)− f(z)

t
≥ 0, for all d ∈ TZ(z̄).

If a certain constraint qualification condition (see Subsection 2.2) holds at z̄ ∈ Z, then
z̄ being a limiting stationary point is a necessary condition for z̄ to be a local minimizer of
f (see an example given by Chen et al. (2017)).

In general, a C-stationary point is not a good candidate for a local minimizer. We end
this subsection with an example on the DNN to illustrate that a C-stationary point may
not be a limiting stationary point, which further may not be a local minimizer.

Example 1 Consider

min
w1∈R,w2∈R,b1∈R,b2∈R

((w2σ (w1 + b1) + b2) + 1)2 + ((w2σ (2w1 + b1) + b2)− 1)2 . (5)

Let f(w1, w2, b1, b2) be the objective function of (5), w∗
2 = 1, b∗1 = 0, w∗

1 = 0, b∗2 = 0, we
have

∂cf(w∗
1, w

∗
2, b

∗
1, b

∗
2) =

{
(t, 0, s, 0)T : t ∈ [2α− 4, 2− 4α], s ∈ [−2 + 2α, 2− 2α]

}
,

∂ (f(w∗
1, w

∗
2, b

∗
1, b

∗
2))

=
{
(−2α, 0, 0, 0)⊤, (2α− 4, 0, 2α− 2, 0)⊤, (2− 4α, 0, 2− 2α, 0)⊤, (−2, 0, 0, 0)⊤

}
,

f(w∗
1 + ϵ, w∗

2, b
∗
1, b

∗
2) = 5ϵ2 − 2ϵ+ 2 < 2 = f(w∗

1, w
∗
2, b

∗
1, b

∗
2) for some small positive number ϵ.

For some 0 < α < 1
2 , (w

∗
1, w

∗
2, b

∗
1, b

∗
2) is a C-stationary point of (5), but it is neither a local

minimizer nor a limiting stationary point of (5). Moreover, one can see that (1, 2,−1,−1)
is a global minimizer of (5), at which the function value is 0.

2.2 Necessary Optimality Conditions.

In this subsection, we provide first order necessary optimality conditions for local minimizers
of problems (P) and (PP), respectively. Let

C(v, u) :=
(

u− v
αu− v

)
. (6)

Definition 2 We say that (w∗, b∗, v∗, u∗) is a KKT point of problem (PP) if there exist
vectors µ ∈ R2m

+ and ξ ∈ Rm such that

0 = ∇wŌ(w∗, v∗) − Ψ(v∗)⊤ξ, 0 = A⊤ξ, (7)

0 = ∇vŌ(w∗, v∗) + β +∇vµ
⊤C(v∗, u∗)−∇vξ

⊤Ψ(v∗)w∗, (8)

0 ∈ ∂u(−β⊤σ(u∗)) +∇uµ
⊤C(v∗, u∗) + ξ, (9)

C(v∗, u∗) ≤ 0, µ⊤C(v∗, u∗) = 0, u∗ −Ψ(v∗)w∗ −Ab∗ = 0. (10)
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Since v − σ(u) = 0 can be written as the following complementarity problem

v − u ≥ 0, (v − u)(v − αu) = 0, v − αu ≥ 0,

we can define the Mathematical Programming with Complementarity Constraints (MPCC)
W(eakly)-stationary point (Scheel and Scholtes, 2000; Guo and Chen, 2021) of problem (P)
as follows.

Definition 3 We say that (w∗, b∗, v∗, u∗) ∈ Ω1 is an MPCC W-stationary point of problem
(P) if there exist vectors µ1 ∈ Rm, µ2 ∈ Rm and ξ ∈ Rm such that

0 = ∇wŌ(w∗, v∗) − Ψ(v∗)⊤ξ, 0 = A⊤ξ, (11)

0 = ∇vŌ(w∗, v∗)− µ1 − µ2 −∇vξ
⊤Ψ(v∗)w∗, (12)

0 = µ1 + αµ2 + ξ, (13)(
µ1
)⊤

(v∗ − u∗) = 0,
(
µ2
)⊤

(v∗ − αu∗) = 0. (14)

We say (w∗, b∗, v∗, u∗) ∈ Ω1 is an MPCC C(larke)-stationary point of problem (P), if it is
an MPCC W-stationary point of problem (P) and µ1

iµ
2
i ≥ 0 for u∗i = v∗i = 0.

Mangasarian-Fromovitz Constraint Qualification (MFCQ) (Mangasarian, 1994) and Lin-
ear Independence Constraint Qualification (LICQ) (Dimitri, 1997) are constraint qualifica-
tions that are widely used in mathematical programming to characterize the behavior of
constraints at a particular point. Both of them are necessary conditions for optimality in
constrained optimization problems. MFCQ is often considered more practical and widely
used in optimization algorithms because it is less restrictive than LICQ. Notice that LICQ
does not hold for problem (PP), as it requires all the gradients of the constraints to be
linearly independent. Therefore, MFCQ is more appropriate in our cases.

To ensure that a local minimizer of problem (PP) is a KKT point, the following Lemma
shows that the feasible set of problem (PP) satisfies the MFCQ.

Lemma 4 The MFCQ holds at (w∗, b∗, v∗, u∗) ∈ Ω2 for problem (PP), i.e., there exist no
nonzero vectors ξ ∈ Rm, µ ∈ R2m

+ such that µ⊤C(v∗, u∗) = 0 and

0 = Ψ(v∗)⊤ξ, 0 = A⊤ξ, (15)

0 = ∇vµ
⊤C(v∗, u∗)−∇vξ

⊤Ψ(v∗)w∗, (16)

0 = ∇uµ
⊤C(v∗, u∗) + ξ. (17)

Proof We prove that the linear system (15)–(17) only has a zero solution.
Let µ = ((µ1

1,1)
⊤, (µ1

2,1)
⊤, . . . , (µ1

1,L)
⊤, . . . , (µ1

N,L)
⊤, (µ2

1,1)
⊤, . . . , (µ2

N,L)
⊤)⊤ and ξ =

(ξ⊤1,1, ξ
⊤
2,1, . . . , ξ

⊤
N,1, ξ

⊤
1,2, . . . , ξ

⊤
N,L)

⊤, where µ1
n,ℓ, µ

2
n,ℓ ∈ RNℓ

+ , ξn,ℓ ∈ RNℓ for all n ∈ [N ] and
ℓ ∈ [L]. Notice that u∗ = Ψ(v∗)w∗ +Ab∗ is equivalent to u∗n,ℓ − (W ∗

ℓ v
∗
n,ℓ−1 + b∗ℓ ) = 0 for all

n ∈ [N ] and ℓ ∈ [L], the equalities (16) and (17) yield

0 = ∇v

(
N∑

n=1

L∑
ℓ=1

(
µ1
n,ℓ

)⊤
v∗n,ℓ +

(
µ2
n,ℓ

)⊤
v∗n,ℓ + ξ⊤n,ℓW

∗
ℓ v

∗
n,ℓ−1

)
, (18)
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0 = ∇u

(
N∑

n=1

L∑
ℓ=1

(
µ1
n,ℓ

)⊤
u∗n,ℓ + α

(
µ2
n,ℓ

)⊤
u∗n,ℓ + ξ⊤n,ℓu

∗
n,ℓ

)
. (19)

We first consider the coefficient with respect to v∗n,L in (18) for all n ∈ [N ], which yields

0 = −(µ1
n,L + µ2

n,L). Together with the inequalities µ1
n,L ≥ 0 and µ2

n,L ≥ 0, we obtain that

µ1
n,L = µ2

n,L = 0 for all n ∈ [N ]. We then consider the coefficient with respect to u∗n,L in

(19) for all n ∈ [N ], which implies that 0 = µ1
n,L + αµ2

n,L + ξn,L. Hence, we have ξn,L = 0

for all n ∈ [N ]. Substituting ξn,L = µ1
n,L = µ2

n,L = 0 for all n ∈ [N ] into (18) and (19), we
obtain that

0 = ∇v

(
N∑

n=1

L−1∑
ℓ=1

(
µ1
n,ℓ

)⊤
v∗n,ℓ +

(
µ2
n,ℓ

)⊤
v∗n,ℓ + ξ⊤n,ℓW

∗
ℓ v

∗
n,ℓ−1

)
,

0 = ∇u

(
N∑

n=1

L−1∑
ℓ=1

(
µ1
n,ℓ

)⊤
u∗n,ℓ + α

(
µ2
n,ℓ

)⊤
u∗n,ℓ + ξ⊤n,ℓu

∗
n,ℓ

)
.

Then, we obtain that ξn,ℓ = µ1
n,ℓ = µ2

n,ℓ = 0 for all n ∈ [N ] and ℓ ∈ [L] by mathematical
induction. This completes the proof.

Under MFCQ, we can obtain the following equivalence between the limiting stationary
points and KKT points of problem (PP).

Theorem 5 (w∗, b∗, v∗, u∗) is a limiting stationary point of problem (PP) if and only if
(w∗, b∗, v∗, u∗) is a KKT point of problem (PP).

Proof Since the MFCQ holds at (w∗, b∗, v∗, u∗) ∈ Ω2 for problem (PP), then (Rockafellar
and Wets, 1998, Theorem 6.14) yields that NΩ2(w

∗, b∗, v∗, u∗) equals to{
∇
(
µ⊤C(v∗, u∗) + ξ⊤(u∗ −Ψ(v∗)w∗ −Ab∗)

)
: µ⊤C(v∗, u∗) = 0, µ ∈ R2m

+ , ξ ∈ Rm
}
.

If (w∗, b∗, v∗, u∗) is a limiting stationary point of problem (PP), then there exist vectors
µ1, µ2 ∈ Rm

+ and ξ ∈ Rm such that [(µ1)⊤, (µ2)⊤]C(v∗, u∗) = 0 and

0 ∈ ∂O(w∗, v∗, u∗) +∇
((

µ1
)⊤

(u∗ − v∗) +
(
µ2
)⊤

(αu∗ − v∗) + ξ⊤(u∗ −Ψ(v∗)w∗)
)
,

0 = A⊤ξ.
(20)

Recall the definition of O, the relationships (7)–(10) hold with µ = [(µ1)⊤, (µ2)⊤]⊤. Hence
(w∗, b∗, v∗, u∗) is a KKT point of problem (PP).

Conversely, if (w∗, b∗, v∗, u∗) is a KKT point of problem (PP), then there exist vectors
µ ∈ R2m

+ and ξ ∈ Rm such that (7)–(10) hold. Let µ = [(µ1)⊤, (µ2)⊤]⊤ with µ1, µ2 ∈ Rm
+ .

Since the MFCQ holds at (w∗, b∗, v∗, u∗) ∈ Ω2 for problem (PP), we then obtain (20) by
the expression of NΩ2(w

∗, b∗, v∗, u∗). This completes the proof.

Since there are nonsmooth constraints in problem (P), then MFCQ does not hold for
problem (P). To ensure that a local minimizer of problem (P) is also an MPCC C-stationary

9
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point, the following lemma shows that the feasible set of problem (P) satisfies the No
Nonzero Abnormal Multiplier Constraint Qualification (NNAMCQ) (Ye and Zhang, 2013).
It is worth noting that the MPCC linear independent CQ (Scheel and Scholtes, 2000; Guo
and Chen, 2021) does not hold for problem (P).

Lemma 6 The NNAMCQ holds at (w∗, b∗, v∗, u∗) ∈ Ω1 for problem (P), i.e., there exist
no nonzero vectors µ ∈ Rm, ξ ∈ Rm such that

0 ∈ ∂(v,u)µ
⊤(σ(u∗)− v∗) +∇(v,u)ξ

⊤(u∗ −Ψ(v∗)w∗), 0 = Ψ(v∗)⊤ξ, 0 = A⊤ξ. (21)

Proof We prove that there exist no nonzero vectors ξ ∈ Rm, µ ∈ Rm such that

0 = −µ+∇vξ
⊤(u∗ −Ψ(v∗)w∗ −Ab∗), (22)

0 ∈ ∂uµ
⊤σ(u∗) + ξ, (23)

since it implies that there is no nonzero vectors µ ∈ Rm, ξ ∈ Rm satisfying (21).
Notice that u∗ = Ψ(v∗)w∗ + Ab∗ is equivalent to u∗n,ℓ − (W ∗

ℓ v
∗
n,ℓ−1 + b∗ℓ ) = 0 for all

n ∈ [N ] and ℓ ∈ [L], the equality (22) yields

0 = −µ+∇v

(
N∑

n=1

L∑
ℓ=1

ξ⊤n,ℓW
∗
ℓ v

∗
n,ℓ−1

)
. (24)

We first consider the coefficient with respect to v∗n,L in (24) for all n ∈ [N ], which yields
0 = −µn,L. We then consider the coefficient with respect to u∗n,L in (23) for all n ∈ [N ],
which implies 0 ∈ µn,L[α, 1] + ξn,L. Hence, we have ξn,L = 0 for all n ∈ [N ]. Substituting
ξn,L = µn,L = 0 for all n ∈ [N ] into (24), we obtain that

0 = −µ+∇v

(
N∑

n=1

L−1∑
ℓ=1

ξ⊤n,ℓW
∗
ℓ v

∗
n,ℓ−1

)
.

Then, we can derive ξn,ℓ = µn,ℓ = 0 for all n ∈ [N ] and ℓ ∈ [L] by mathematical induction.
This completes the proof.

We end this section with a lemma illustrating that the MPCC C-stationary point of
problem (P) are necessary to be a local minimizer of problem (P).

Lemma 7 If (w∗, b∗, v∗, u∗) is a local minimizer of problem (P), then (w∗, b∗, v∗, u∗) is also
an MPCC C-stationary point of problem (P).

Proof Since (w∗, b∗, v∗, u∗) is a local minimizer of problem (P), Lemma 6 yields that there
exist vectors µ ∈ Rm and ξ ∈ Rm satisfying

0 ∈ ∂
(
µ⊤(σ(u∗)− v∗)

)
+∇(v,u)

(
Ō(w∗, v∗) + ξ⊤(u∗ −Ψ(v∗)w∗)

)
,

0 = ∇wŌ(w∗, v∗) + Ψ(v∗)⊤ξ, 0 = A⊤ξ.
(25)

Notice that µ⊤σ(u∗) is the only nonsmooth term in (25). We now analyze the following
three cases for all i ∈ [m].

10
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Case (i): if u∗i > 0, we have v∗i = u∗i and ∂µiσ(u
∗
i ) = {µi}. Let µ1

i = µi and µ2
i = 0,

then µ1
i (v

∗
i − u∗i ) = 0 and µ2

i (v
∗
i − αu∗i ) = 0.

Case (ii): if u∗i < 0, we have v∗i = αu∗i and ∂µiσ(u
∗
i ) = {αµi}. Let µ1

i = 0 and µ2
i = µi,

then µ1
i (v

∗
i − u∗i ) = 0 and µ2

i (v
∗
i − αu∗i ) = 0.

Case (iii): if u∗i = 0, we have v∗i = 0 and

∂µiσ(u
∗
i ) ⊂ [α, 1]µi =

{
µ1
i + αµ2

i : µ
1
i = tiµi, µ

2
i = (1− ti)µi, ti ∈ [0, 1]

}
.

In this case, we have µ1
i (v

∗
i − u∗i ) = 0, µ2

i (v
∗
i − αu∗i ) = 0 and µ1

iµ
2
i ≥ 0.

Combining the above three cases, it holds that

∂µ⊤σ(u∗) ⊂
{
µ1 + αµ2 : µ1 = t ◦ µ, µ2 = (em − t) ◦ µ,

(
µ1
)⊤

(v∗ − u∗) = 0,
(
µ2
)⊤

(v∗ − αu∗) = 0, t ∈ Rm
+ , t ≤ em

}
.

(26)

Together with the inclusion 0 ∈ ∂µ⊤σ(u∗) + ξ, we have

0 ∈
{
µ1 + αµ2 + ξ : µ1 = t ◦ µ, µ2 = (em − t) ◦ µ,

(
µ1
)⊤

(v∗ − u∗) = 0,
(
µ2
)⊤

(v∗ − αu∗) = 0, t ∈ Rm
+ , t ≤ em

}
.

Hence there exist µ̄1 and µ̄2 such that

0 = µ̄1 + αµ̄2 + ξ,
(
µ̄1
)⊤

(v∗ − u∗) = 0,
(
µ̄2
)⊤

(v∗ − αu∗) = 0, (27)

µ̄1 = t ◦ µ, µ̄2 = (em − t) ◦ µ, µ̄1 ◦ µ̄2 ≥ 0, t ∈ Rm
+ , t ≤ em. (28)

Combining (25), (27), (28) and σ(u∗)− v∗ = 0, we obtain (11)–(14), and µ̄1 ◦ µ̄2 ≥ 0 with
µ̄1, µ̄2 instead of µ1, µ2, respectively. This completes the proof.

3. Model Analysis

In this section, we aim to theoretically investigate the relationship between problems (P)
and (PP).

3.1 The Existence and Boundedness of the Solution Set

In this subsection, we show that the solution set of problem (PP) is not empty and bounded.
First, we define a level set Ωθ of the objective function of problem (PP) by

Ωθ = {(w, b, v, u) ∈ Ω2 : O(w, v, u) ≤ θ} with θ >
1

N
∥Y ∥2F , (29)

where Y = (y1, y2, . . . , yN ) is the label matrix. Clearly 0 ∈ Ωθ. For all (w, b, v, u) ∈ Ωθ, it
holds that R1(w) = λw

∑L
ℓ=1 ∥Wℓ∥2,1 ≤ θ and R2(v) = λv∥v∥2 ≤ θ, which further implies

that ∥w∥ and ∥v∥ are bounded. For brevity, we let θw := θ
λw

√
N +N0, θv :=

√
θ
λv

be the

upper bounds of ∥w∥ and ∥v∥ over the set Ωθ, respectively.

11
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Theorem 8 The set Ωθ is bounded. Furthermore, the solution set of problem (PP) is not
empty and bounded.

Proof Since (w, b, v, u) ∈ Ω2, it holds that bℓ ≤ vn,ℓ −Wℓvn,ℓ−1 for all ℓ ∈ [L] and n ∈ [N ].
Together with the fact that θw, θv being the upper bounds of ∥w∥ and ∥v∥ over the set Ωθ,
respectively, we obtain that ∥b+∥∞ is bounded.

Since O(w, v, u) ≤ θ, R1(w), R2(v) are nonnegative, then for all n ∈ [N ], ℓ ∈ [L],
j ∈ [Nℓ], it holds that

(vn,ℓ)j − σ(bℓ,j +Wℓ,jvn,ℓ−1) ≤
θ

βℓ
,

which further implies that either (vn,ℓ)j − θ
βℓ

≤ bℓ,j +Wℓ,jvn,ℓ−1 or (vn,ℓ)j − θ
βℓ

≤ α(bℓ,j +

Wℓ,jvn,ℓ−1). By (w, b, v, u) ∈ Ωθ, the definition of θw and θv, we have 1
α((vn,ℓ)j −

θ
βℓ
) −

Wℓ,jvn,ℓ−1 > − 1
α(θv +

θ
βℓ
) − Nθvθw and (vn,ℓ)j − θ

βℓ
−Wℓ,jvn,ℓ−1 > −θv − θ

βℓ
− Nθvθw for

all ℓ ∈ [L] and n ∈ [N ]. Since 0 < α < 1, it holds that

bℓ,j ≥ min

{
1

α

(
(vn,ℓ)j −

θ

βℓ

)
−Wℓ,jvn,ℓ−1, (vn,ℓ)j −

θ

βℓ
−Wℓ,jvn,ℓ−1

}
> − 1

α

(
θv +

θ

βℓ

)
−Nθvθw.

(30)

It follows from the boundedness of ∥b+∥∞ that ∥b∥ is also bounded. Hence ∥u∥ =
∥Ψ(v)w+Ab∥ is bounded, too. These facts imply that Ωθ is a bounded set. Together with
the inclusion 0 ∈ Ωθ and the continuity of the objective function of problem (PP), we obtain
that the solution set of problem (PP) is nonempty and bounded.

3.2 Exact Penalization

In this subsection, we consider problem (PP) with penalty parameter β satisfying

βℓ > LLŌ max{θw, 1}L + 2
L∑

j=ℓ+1

βjθw max{θw, 1}j−ℓ−1 for all ℓ ∈ [L], (31)

and reveal the relationship between problems (PP) and (P), where LŌ is the Lipschitz
constant of the function Ō over Ωθ. We first present a lemma, which shows that any
limiting stationary point of problem (PP) is in the feasible set Ω1 of problem (P).

Lemma 9 Let the penalty parameter β satisfy (31). If (w∗, b∗, v∗, u∗) ∈ {(w, b, v, u) ∈
Ω2 :O(w, v, u) < θ} is a limiting stationary point of problem (PP), then (w∗, b∗, v∗, u∗) is
in the feasible set Ω1 of problem (P).

Proof If (w∗, b∗, v∗, u∗) is a limiting stationary point of problem (PP), then (w∗, b∗, v∗, u∗)
is a C-stationary point of problem (PP), which implies that

O◦(w∗, v∗, u∗; dw, dv, du) ≥ 0, for all (dw, dv, du, db) ∈ TΩ2(w
∗, b∗, v∗, u∗). (32)

12
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We then prove v∗n,ℓ = σ(u∗n,ℓ) for all n ∈ [N ] and ℓ = L,L − 1, . . . , 1 by mathematical
induction.

Assume on contradiction that (w∗, b∗, v∗, u∗) /∈ Ω1. When ℓ equals L, let IL := {n :
v∗n,L ≥ σ(u∗n,L), v

∗
n,L ̸= σ(u∗n,L)}. Without loss of generality, we assume that IL is not an

empty set. We set

dv =
(
(dv)

⊤
1,1 , (dv)

⊤
2,1 , . . . , (dv)

⊤
N,1 , . . . , (dv)

⊤
1,L , (dv)

⊤
2,L . . . , (dv)

⊤
N,L

)⊤
for all n ∈ [N ], ℓ ∈ [L], (dv)n,ℓ ∈ RNℓ and

(dv)n,ℓ =

{
0, if ℓ < L or n ̸∈ IL,
σ(u∗n,ℓ)− v∗n,ℓ, if ℓ = L and n ∈ IL.

Clearly dv ≤ 0 and (w∗, b∗, v∗ + tdv, u
∗) ∈ Ω2 for all 0 ≤ t < 1. Hence (0, 0, dv, 0) ∈

TΩ2(w
∗, b∗, v∗, u∗).

Since O(w∗, v∗, u∗) < θ and O is locally Lipschitz continuous, there exists ϵ̄ ∈ (0, 1]
such that O(w, v, u) < θ for all (w, v, u) ∈ Bϵ̄(w

∗, v∗, u∗). Furthermore, for any (w, v, u) ∈
Bϵ̄(w

∗, v∗, u∗), there exists t̄ ∈ (0, 1] such that O(w, v + tdv, u) < θ for all 0 < t < t̄.

Together with the inequalities dv ≤ 0 and Ō(w, v+ tdv) < O(w, v+ tdv, u) < θ, it holds
that

1

t
(O(w, v + tdv, u)−O(w, v, u))

=
1

t

(
Ō(w, v + tdv) + β⊤(v + tdv − σ(u))− Ō(w, v)− β⊤(v − σ(u))

)
=
1

t

(
Ō(w, v + tdv)− Ō(w, v)

)
+ β⊤dv ≤ (LŌ − βL)

∑
n∈IL

∥∥v∗n,L − σ(u∗n,L)
∥∥
1
.

(33)

Hence we derive

O◦(w∗, v∗, u∗; 0, dv, 0) ≤ lim sup
(w,v,u)→(w∗,v∗,u∗),t↓0

(LŌ − βL)
∑
n∈IL

∥∥v∗n,L − σ(u∗n,L)
∥∥
1
< 0.

This leads to a contradiction. Hence, it holds that v∗n,L = σ(u∗n,L) for all n ∈ [N ].

Then, we suppose that v∗n,ℓ = σ(u∗n,ℓ) for all n ∈ [N ] and ℓ = L,L − 1, . . . , ℓ̄ + 1. Let
Iℓ̄ := {n : v∗

n,ℓ̄
≥ σ(u∗

n,ℓ̄
), v∗

n,ℓ̄
̸= σ(u∗

n,ℓ̄
)}. Without loss of generality, we suppose that Iℓ̄ is

not an empty set. Then for all n ∈ [N ] and ℓ ∈ [L], we set
ṽϵn,ℓ = v∗n,ℓ, ũϵn,ℓ = u∗n,ℓ, if ℓ < ℓ̄ or ℓ = ℓ̄, n ̸∈ Iℓ̄,
ṽϵn,ℓ = ϵσ(u∗n,ℓ) + (1− ϵ)v∗n,ℓ, ũϵn,ℓ = u∗n,ℓ, if ℓ = ℓ̄ and n ∈ Iℓ̄,
ṽϵn,ℓ = σ(ũϵn,ℓ), ũϵn,ℓ = w∗

ℓ ṽ
ϵ
n,ℓ−1 + b∗ℓ , if ℓ > ℓ̄.

(34)

Clearly (w∗, b∗, ṽϵ, ũϵ) ∈ Ω2, limϵ↓0(ṽ
ϵ − v∗)/ϵ and limϵ↓0(ũ

ϵ − u∗)/ϵ exist. Let

dv = lim
ϵk↓0

d(k)v , d(k)v =
ṽϵk − v∗

ϵk
, du = lim

ϵk↓0
d(k)u , d(k)u =

ũϵk − u∗

ϵk
, (35)

13
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then we have (0, 0, dv, du) ∈ TΩ2(w
∗, b∗, v∗, u∗). Besides, it follows from (35), the Lipschitz

continuity and directional differentiability of O that

lim sup
(w,v,u)→(w∗,v∗,u∗),t↓0

1

t
(O(w, v + tdv, u+ tdu)−O(w, v, u))

= lim sup
(w,v,u)→(w∗,v∗,u∗),ϵk↓0

1

ϵk
(O (w, v + ϵkdv, u+ ϵkdu)−O(w, v, u))

= lim sup
(w,v,u)→(w∗,v∗,u∗),ϵk↓0

1

ϵk

(
O
(
w, v + ϵkd

(k)
v , u+ ϵkd

(k)
u

)
−O(w, v, u)

)
(36)

− 1

ϵk

(
O
(
w, v + ϵkd

(k)
v , u+ ϵkd

(k)
u

)
−O(w, v + ϵkdv, u+ ϵkdu)

)
= lim sup

(w,v,u)→(w∗,v∗,u∗),ϵk↓0

1

ϵk

(
O
(
w, v + ϵkd

(k)
v , u+ ϵkd

(k)
u

)
−O(w, v, u)

)
.

Since O(w∗, v∗, u∗) < θ and O is locally Lipschitz continuous, there exists ϵ̄ ∈ (0, 1]
such that O(w, v, u) < θ for all (w, v, u) ∈ Bϵ̄(w

∗, v∗, u∗). Furthermore, for any (w, v, u) ∈
Bϵ̄(w

∗, v∗, u∗), there exists t̄ ∈ (0, 1] such that O(w, v + tdv, u + tdu) < θ for all 0 < t < t̄.

Together with the equalities (35), there exists ϵ̃ ∈ (0, 1] such thatO(w, v+ϵd
(k)
v , u+ϵd

(k)
u ) < θ

for all k ∈ N and 0 < ϵ < ϵ̃. Without loss of generality, we assume that ϵk < ϵ̃ for all k ∈ N.
Recall the definition of θw, du, dv and v∗n,ℓ = σ(W ∗

ℓ v
∗
n,ℓ−1+ b∗ℓ ) for all ℓ > ℓ̄ and n ∈ [N ],

we obtain that ∥(d(k)v )n,ℓ∥1 ≤ θw∥(d(k)v )n,ℓ−1∥1 and ∥(d(k)u )n,ℓ∥1 ≤ θw∥(d(k)v )n,ℓ−1∥1 for all
k ∈ N, ℓ > ℓ̄ and n ∈ [N ]. Hence for all k ∈ N, we have

max
{∥∥∥d(k)v

∥∥∥
1
,
∥∥∥d(k)u

∥∥∥
1

}
≤ Lmax {θw, 1}L

N∑
n=1

∥∥∥∥(d(k)v

)
n,ℓ̄

∥∥∥∥
1

= Lmax{θw, 1}L
∑
n∈Iℓ̄

∥∥∥v∗n,ℓ̄ − σ
(
u∗n,ℓ̄

)∥∥∥
1
,

(37)

where the last equality comes from the definition (35). We also obtain that

N∑
n=1

L∑
ℓ=1

βℓe
⊤
Nℓ

(
d(k)v

)
n,ℓ

− 1

ϵk

N∑
n=1

L∑
ℓ=1

βℓe
⊤
Nℓ

(
σ

(
un,ℓ + ϵk

(
d(k)u

)
n,ℓ

)
− σ(un,ℓ)

)

=− βℓ̄
∑
n∈Iℓ̄

∥∥∥v∗n,ℓ̄ − σ
(
u∗n,ℓ̄

)∥∥∥
1
+

L∑
ℓ=ℓ̄+1

N∑
n=1

βℓ

∥∥∥∥(d(k)v

)
n,ℓ

∥∥∥∥
1

− 1

ϵk

N∑
n=1

L∑
ℓ=ℓ̄+1

βℓe
⊤
Nℓ

(
σ

(
un,ℓ + ϵk

(
d(k)u

)
n,ℓ

)
− σ(un,ℓ)

)

≤− βℓ̄
∑
n∈Iℓ̄

∥∥∥v∗n,ℓ̄ − σ
(
u∗n,ℓ̄

)∥∥∥
1
+

L∑
ℓ=ℓ̄+1

N∑
n=1

βℓ

(∥∥∥∥(d(k)v

)
n,ℓ

∥∥∥∥
1

+

∥∥∥∥(d(k)u

)
n,ℓ

∥∥∥∥
1

)

≤

2

L∑
j=ℓ̄+1

βjθw max{θw, 1}j−ℓ̄−1 − βℓ̄

∑
n∈Iℓ̄

∥∥∥v∗n,ℓ̄ − σ
(
u∗n,ℓ̄

)∥∥∥
1
,

(38)
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where the first equality comes from −e⊤Nℓ̄
(d

(k)
v )n,ℓ̄ =

∑
n∈Iℓ̄

∥v∗
n,ℓ̄

− σ(u∗
n,ℓ̄

)∥1, (d(k)u )n,ℓ̄ = 0

and (d
(k)
v )n,ℓ = (d

(k)
u )n,ℓ = 0 for all 1 ≤ ℓ < ℓ̄ and n ∈ [N ] by definition (35), and the last

inequality yields from ∥(d(k)v )n,ℓ∥1 ≤ θw∥(d(k)v )n,ℓ−1∥1 and ∥(d(k)u )n,ℓ∥1 ≤ θw∥(d(k)v )n,ℓ−1∥1 for
all k ∈ N, ℓ > ℓ̄ and n ∈ [N ].

It then holds that

1

ϵk

(
O
(
w, v + ϵkd

(k)
v , u+ ϵkd

(k)
u

)
−O(w, v, u)

)
=

1

ϵk

(
Ō
(
w, v + ϵkd

(k)
v

)
− Ō(w, v)

)
+

N∑
n=1

L∑
ℓ=1

βℓe
⊤
Nℓ

(
d(k)v

)
n,ℓ

− 1

ϵk

N∑
n=1

L∑
ℓ=1

βℓe
⊤
Nℓ

(
σ

(
un,ℓ + ϵk

(
d(k)u

)
n,ℓ

)
− σ(un,ℓ)

)

≤

LLŌ max{θw, 1}L + 2
L∑

j=ℓ̄+1

βjθw max{θw, 1}j−ℓ̄−1 − βℓ̄

∑
n∈Iℓ̄

∥∥∥v∗n,ℓ̄ − σ
(
u∗n,ℓ̄

)∥∥∥
1
< 0,

where the equality comes from the definitions (35), and the first inequality yields from the
inequalities (37), (38) and Ō(w, v) < O(w, v, u) < θ.

Together with the relationships (32) and (36), there is a contradiction. We then conclude
that v∗

n,ℓ̄
= σ(u∗

n,ℓ̄
) for all n ∈ [N ]. The proof is completed by mathematical induction.

We next present the main theorem illustrating the fact that problems (PP) and (P)
sharing the same global and local minimizers.

Theorem 10 Let the penalty parameter β satisfy (31). Then the following statements hold.

(a) (w∗, b∗, v∗, u∗) is a global minimizer of problem (PP) if and only if (w∗, b∗, v∗, u∗) is
a global minimizer of problem (P).

(b) If (w∗, b∗, v∗, u∗) ∈ {(w, b, v, u) ∈ Ω2 : O(w, v, u) < θ} is a local minimizer of prob-
lem (PP), then (w∗, b∗, v∗, u∗) is also a local minimizer of problem (P).

(c) (w∗, b∗, v∗, u∗) ∈ {(w, b, v, u) ∈ Ω1 : O(w, v, u) < θ} is a local minimizer of prob-
lem (P) if and only if (w∗, b∗, v∗, u∗) is a local minimizer of problem (PP).

Proof (a) If (w∗, b∗, v∗, u∗) is a global minimizer of problem (PP), we obtain that Ō(w∗, v∗) <
θ by Ō(0, 0) = 1

N ∥Y ∥2F < θ. Lemma 4 yields that (w∗, b∗, v∗, u∗) is a limiting stationary
point of problem (PP). From Lemma 9, we have (w∗, b∗, v∗, u∗) ∈ Ω1. Together with the
inclusion Ω1 ⊂ Ω2, we know that (w∗, b∗, v∗, u∗) ∈ Ω1 must be a global minimizer of problem
(P).

Conversely, suppose that (w̄, b̄, v̄, ū) is a global minimizer of problem (PP). From what
we have proved, it holds that Ō(w̄, v̄) < θ, (w̄, b̄, v̄, ū) ∈ Ω1 and

min
(w,b,v,u)∈Ω2

O(w, v, u) = O(w̄, v̄, ū) = Ō(w̄, v̄) = min
(w,b,v,u)∈Ω1

Ō(w, v). (39)
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Since (w∗, b∗, v∗, u∗) ∈ Ω1 is a global minimizer of problem (P), we have

min
(w,b,v,u)∈Ω1

Ō(w, v) = Ō(w∗, v∗) = O(w∗, v∗, u∗). (40)

Together with the facts (39) and (w∗, b∗, v∗, u∗) ∈ Ω1 ⊂ Ω2, we have (w∗, b∗, v∗, u∗) is a
global minimizer of problem (PP).

(b) Lemma 4 yields that (w∗, b∗, v∗, u∗) is a limiting stationary point of problem (PP).
From Lemma 9, it holds that (w∗, b∗, v∗, u∗) ∈ Ω1. Together with the inclusion Ω1 ⊂ Ω2,
(w∗, b∗, v∗, u∗) ∈ Ω1 must be a local minimizer of problem (P).

(c) By using a similar method as that in the proof of (a) and (b), we complete the
statement (c).

Remark 11 Recall the definition of Ω1 and Ω2, it holds that Ω1 ⊊ Ω2. Hence the set
{(w, b, v, u) ∈ Ω2 : O(w, v, u) < θ} is distinct from the set {(w, b, v, u) ∈ Ω1 : O(w, v, u) < θ}.
Therefore, the inclusion (b) is proper.

Since R1 and R2 are directionally differentiable, we can show that if (w̄, b̄, v̄, ū) ∈
{(w, b, v, u) ∈ Ω2 : O(w, b, v, u) < θ} is a d-stationary point of problem (PP), then (w̄, b̄, v̄, ū)
is also a d-stationary point of problem (P) by using Lemma 9 and ideas from (Cui et al.,
2020, Theorem 2.1) and (Liu et al., 2022, Theorem 2.5). However, computing a d-stationary
point is difficult, we will consider a limiting stationary point of problem (PP), and show
that it is an MPCC W-stationary point of problem (P).

Theorem 12 Let the penalty parameter β satisfy (31). If (w∗, b∗, v∗, u∗) ∈ {(w, b, v, u) ∈
Ω2 : O(w, v, u) < θ} is a limiting stationary point of problem (PP), then (w∗, b∗, v∗, u∗) is
an MPCC W-stationary point of problem (P).

Proof Since it holds that O(w∗, v∗, u∗) < θ, Lemma 9 yields that (w∗, b∗, v∗, u∗) ∈ Ω1.
From Theorem 5 and (w∗, b∗, v∗, u∗) being a limiting stationary point of problem (PP),

there exist vectors µ ∈ R2m
+ and ξ ∈ Rm such that (7)– (10) hold.

Let µ = [
(
µ1
)⊤

,
(
µ2
)⊤

]⊤ with µ1, µ2 ∈ Rm
+ . Recall the definition of C, it holds that

∇vµ
⊤C(v∗, u∗) = −

(
µ1 + µ2

)
, ∇uµ

⊤C(v∗, u∗) = µ1 + αµ2. (41)

Then, we obtain from (8)–(10) that

0 = ∇vŌ(w∗, v∗) + β −
(
µ1 + µ2

)
+∇vξ

⊤(u∗ −Ψ(v∗)w∗),

0 ∈ ∂u(−β⊤σ(u∗)) + µ1 + αµ2 + ξ,(
µ1
)⊤

(u∗ − v∗) = 0,
(
µ2
)⊤

(αu∗ − v∗) = 0, µ1 ≥ 0, µ2 ≥ 0.

(42)

Now, we prove that there exist µ̄1 and µ̄2 such that

0 = µ̄1 + αµ̄2 + ξ, µ̄1 + µ̄2 = µ1 + µ2 − β,
(
µ̄1
)⊤

(v∗ − u∗) = 0,
(
µ̄2
)⊤

(v∗ − αu∗) = 0
(43)
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by analyzing the following cases for all i ∈ [m].
Case (i): if u∗i < 0, the relation (42) together with the definition of σ yield v∗i = αu∗i ,

µ1
i = 0 and

∂(−(β)iσ(u
∗
i )) + µ1

i + αµ2
i =

{
µ1
i + α

(
µ2
i − (β)i

)}
,

where (β)i denotes the i-th element of β. In this case, we have µ1
i (v

∗
i − u∗i ) = 0 and

(µ2
i − (β)i)(v

∗
i − αu∗i ) = 0. Let µ̄1

i = µ1
i = 0, µ̄2

i = µ2
i − (β)i.

Case (ii): if u∗i > 0, the relation (42) together with the definition of σ yield v∗i = u∗i ,
µ2
i = 0 and

∂(−(β)iσ(u
∗
i )) + µ1

i + αµ2
i =

{(
µ1
i − (β)i

)
+ αµ2

i

}
.

In this case, we have (µ1
i −(β)i)(v

∗
i −u∗i ) = 0 and µ2

i (v
∗
i −αu∗i ) = 0. Let µ̄1

i = µ1
i −(β)i, µ̄

2
i =

µ2
i = 0.
Case (iii): if u∗i = 0, we have v∗i = σ(u∗i ) = 0 and

∂(−(β)iσ(u
∗
i )) + µ1

i + αµ2
i =

{(
µ1
i − (β)i

)
+ αµ2

i , µ
1
i + α

(
µ2
i − (β)i

)}
. (44)

In this case, we have v∗i − u∗i = 0, v∗i − αu∗i = 0. It then holds that either 0 = (µ1
i −

(β)i) + αµ2
i + ξ or 0 = µ1

i + α(µ2
i − (β)i) + ξ by (42). If 0 = µ1

i + α(µ2
i − (β)i) + ξ, let

µ̄1
i = µ1

i ≥ 0, µ̄2
i = µ2

i − (β)i. Otherwise, let µ̄2
i = µ2

i ≥ 0, µ̄1
i = µ1

i − (β)i.
Combining the above three cases, we obtain (43). Recall the relation (42), we then de-

rive (11)– (14) with µ̄1, µ̄2 instead of µ1 and µ2, respectively. The proof is then completed.

Remark 13 Notice that the conditions (31) for the penalty parameter β are recursively
define from L to 1. This coincides the intuition that the inner layer should have larger
penalty parameter than the outer one to avoid error accumulation.

Remark 14 By simple calculation, we have

µ̄1
i µ̄

2
i =

{
µ1
i

(
µ2
i − (β)i

)
or µ2

i

(
µ1
i − (β)i

)
, if u∗i = 0,

0, if u∗i ̸= 0.

If µ1
i = µ2

i = 0 for all i ∈ {i : u∗i = 0}, then (w∗, b∗, v∗, u∗) is an MPCC C-stationary point
of problem (P).

Remark 15 Our theoretical results can also be extended to ReLU network with α = 0.
Notice that the solution set of problem (PP) with α = 0 is unbounded (see a counterexample
given by Liu et al. (2022)), we introduce a constrained set Ωb, and minimize the objective
function of problem (PP) over Ω2 ∩ {(w, b, v, u) : b ∈ Ωb}, where

Ωb :=
{
b : b ≥ −eNNθwθv

}
.

We call the resulted problem (PPb). By using a similar method as that in the proof of
Theorems 8 and 10, we can prove that the solution set of problem (PPb) is nonempty and
bounded; the global (local) minimizer of problem (PPb) is a global (local) minimizer of
problem (P). However, a limiting stationary point of problem (PPb) may not be a MPCC
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W-stationary point of (P) with α = 0. Specifically, if (w∗, b∗, v∗, u∗) is a limiting stationary
point of problem (PPb), then (11)–(14) hold with 0 ≤ A⊤ξ instead of 0 = A⊤ξ.

Furthermore, our numerical algorithm for solving problem (PP), which will be proposed
in Section 4, can also be applied to solve problem (PPb).

We end this section by summarizing our results for the relationship of problems (P) and
(PP) in the following diagram, where the function value at the related points is less than θ.

(PP) : global (local) minimizer limiting stationary point ⇔ KKT point

⇓⇑ conditions in Remark 13 ⇓ ⇓
(P) : global (local) minimizer MPCC C-stationary point MPCC W-stationary point

4. An Inexact Augmented Lagrangian Method with the Alternating
Minimization (IALAM)

Problem (PP) is to minimize a nonsmooth nonconvex function subject to linear and bi-
linear constraints. By exploring the structure of problem (PP), we propose a variation of
the inexact augmented Lagrangian (IALM) framework in Subsection 4.1. Then, we present
an alternating minimization algorithm to solve the augmented Lagrangian subproblem in
Subsection 4.2. Combining these two parts, we call our new algorithm IALAM. In Subsec-
tions 4.3 and 4.4, we prove that any iterate sequence generated by IALAM has at least one
accumulation point and any accumulation point is a KKT point of problem (PP), which is
a MPCC W-stationary point of problem (P) according to Theorem 12.

4.1 The Algorithm Framework

By penalizing the equality constraint of problem (PP), we can obtain its augmented La-
grangian (AL) function as follows

Lρ(w, b, v, u; ξ) :=O(w, v, u) + ⟨ξ, u−Ψ(v)w −Ab⟩+ ρ

2
∥u−Ψ(v)w −Ab∥2 , (45)

where ρ > 0 is the penalty parameter and

ξ :=
(
ξ⊤1,1, ξ

⊤
2,1, . . . , ξ

⊤
N,1, ξ

⊤
1,2, . . . , ξ

⊤
N,L

)⊤
is the Lagrangian multiplier associate with u = Ψ(v)w −Ab, ξn,ℓ ∈ RNℓ for all n ∈ [N ] and
ℓ ∈ [L]. Recall the definition of Ψ(v) and A, it holds that

⟨ξ, u−Ψ(v)w −Ab⟩ =
L∑

ℓ=1

N∑
n=1

⟨ξn,ℓ, un,ℓ −Wℓvn,ℓ−1 − bℓ⟩ .

In the framework of any augmented Lagrangian based approach, it requires to solve the
following subproblem with the dual variables fixed at each iteration to update the prime
variables

min
(w,b,v,u)∈Ω3

Lρ(w, b, v, u; ξ), (46)
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where

Ω3 := {(w, b, v, u) : w ∈ RÑ , b ∈ RN , C(v, u) ≤ 0}

and C(v, u) is defined in (6). We denote (w(k), b(k), v(k), u(k), ξ(k)) as the k-th iterate tuple.
At the k-th iteration, we inexactly solve (46) with ρ = ρ(k−1) and ξ = ξ(k−1) to obtain an
approximate solution (w(k), b(k), v(k), u(k)) ∈ Ω3 satisfying the following two conditions,

Lρ(k−1)

(
w(k), b(k), v(k), u(k); ξ(k−1)

)
< θ, (47)

and

dist
(
0, ∂Lρ(k−1)

(
w(k), b(k), v(k), u(k); ξ(k−1)

)
+NΩ3

(
w(k), b(k), v(k), u(k)

))
≤ ϵk. (48)

We describe the IALM framework with inexact criteria (47) and (48) in Algorithm 1.
The definitions of θ and Ωθ can be found in Subsection 3.1.

Algorithm 1 The inexact augmented Lagrangian method for solving problem (PP)

Input: initial point (w(0), b(0), v(0), u(0)) ∈ Ωθ, parameters ρ(0) > 0, η1, η2, η4 ∈ (0, 1),
η3 > 0, ξ(0) ∈ Rm, γ ∈ N+, and ϵ0 > 0. Set k := 1.
while the stop criterion is not met do

Step 1: Solve (46) with ρ = ρ(k−1) and ξ = ξ(k−1) and obtain (w(k), b(k), v(k), u(k)) ∈
Ω3 satisfying (47) and (48).

Step 2: Update the Lagrangian multipliers by

ξ(k) = ξ(k−1) + ρ(k−1)
(
u(k) −Ψ(v(k))w(k) −Ab(k)

)
. (49)

Step 3: If k ≤ γ, set ρ(k) = ρ(k−1) and ϵk = ϵk−1. Else if k > γ, and∥∥∥u(k) −Ψ(v(k))w(k) −Ab(k)
∥∥∥ ≤ η1 max

t=k−γ,...,k−1

∥∥∥u(t) −Ψ(v(t))w(t) −Ab(t)
∥∥∥ , (50)

then set ρ(k) = ρ(k−1) and ϵk =
√
η1ϵk−1. Otherwise, set

ρ(k) = max

{
ρ(k−1)/η2,

∥∥∥ξ(k)∥∥∥1+η3
}

and ϵk = η4ϵk−1. (51)

Set k := k + 1.
end while
Output: (w(k), b(k), v(k), u(k)).

4.2 The Alternating Minimization Algorithm

Subproblem (46) is to minimize a nonsmooth nonconvex function subject to linear con-
straints. We utilize its block structure and propose an alternating minimization algorithm.
Before we present the detailed algorithm framework, we introduce how to choose an initial
point and update the two blocks. We assume to be at the k-th iteration of Algorithm 1.
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Initialization. Let (w
(k)
init, b

(k)
init, v

(k)
init, u

(k)
init) be the initial point of the Algorithm 2, which

is updated recursively as follows

(
w

(k)
init, b

(k)
init, v

(k)
init, u

(k)
init

)
=



(
w

(k−1)
init , b

(k−1)
init , v

(k−1)
init , u

(k−1)
init

)
, if k > 1 and

Lρ(k−1)

(
w(k−1), b(k−1), v̄, ū; ξ(k−1)

)
≥ θ,(

w(k−1), b(k−1), v̄, ū
)
, otherwise,

(52)

where v̄n,0 = xn, ūn,ℓ = W
(k−1)
ℓ v̄n,ℓ−1 + b

(k−1)
ℓ , and v̄n,ℓ = σ (ūn,ℓ) for all n ∈ [N ] and

ℓ ∈ [L]. Clearly, (w
(k)
init, b

(k)
init, v

(k)
init, u

(k)
init) is a feasible point of problem (PP) for all k ∈ N+ by

its definition.
The notations (w(k,ȷ), b(k,ȷ), v(k,ȷ), u(k,ȷ)) stands for the ȷ-th iterate of the alternating

minimization algorithm and the k-th iterate of Algorithm 1. For brevity, we drop the
superscript (k − 1) (and (k)) and abuse the notations ρ, ξ, w(ȷ), b(ȷ), v(ȷ), u(ȷ) to denote
ρ(k−1), ξ(k−1), w(k,ȷ), b(k,ȷ), v(k,ȷ), u(k,ȷ), respectively. We assume to be at the j-th iterate
of the alternating minimization algorithm.

Update of the (w, b) block. Once (v, u) block is fixed at (v(j), u(j)). We compute
(w(ȷ+1), b(ȷ+1)) by solving the following convex problem minw,b Lρ(w, b, v

(ȷ), u(ȷ); ξ), i.e.,

min
w,b

R1(w) +
〈
ξ, u(ȷ) −Ψ

(
v(ȷ)
)
w −Ab

〉
+

ρ

2

∥∥∥u(ȷ) −Ψ
(
v(ȷ)
)
w −Ab

∥∥∥2 . (53)

This can be solved by some existing methods, for example, the proximal gradient method.
Update of the (v, u) block: After obtaining (w(ȷ+1), b(ȷ+1)), we calculate (u(ȷ+1), v(ȷ+1))

in the following way. We define an proximal term P(u, v;u(ȷ), v(ȷ), τ (ȷ)) by

P
(
u, v;u(ȷ), v(ȷ), τ (ȷ)

)
:=

1

2

N∑
n=1

L∑
ℓ=2

∥∥∥∥∥
(
vn,ℓ−1

un,ℓ

)
−

(
v
(ȷ)
n,ℓ−1

u
(ȷ)
n,ℓ

)∥∥∥∥∥
2

S
(ȷ)
ℓ

+
τ1
2

N∑
n=1

∥∥∥un,1 − u
(ȷ)
n,1

∥∥∥2 ,
(54)

where τ1 > 0 is a given parameter, τ (ȷ) := (τ
(ȷ)
2 , . . . , τ

(ȷ)
L )⊤ ∈ RL−1, τ

(ȷ)
ℓ and matrix S

(ȷ)
ℓ are

defined by

τ
(ȷ)
ℓ := ρ

∥∥∥[−W
(ȷ+1)
ℓ INℓ

]∥∥∥2 + τ1, (55)

S
(ȷ)
ℓ := τ

(ȷ)
ℓ INℓ+Nℓ−1

− ρ
[
−W

(ȷ+1)
ℓ INℓ

]⊤ [
−W

(ȷ+1)
ℓ INℓ

]
, (56)

respectively for all ℓ = 2, 3, . . . , L. Clearly, S
(ȷ)
ℓ ⪰ τ1INℓ+Nℓ−1

is a symmetric positive definite

matrix, since ∥[−W
(ȷ+1)
ℓ INℓ

]∥2 is the maximal eigenvalue of [−W
(ȷ+1)
ℓ INℓ

]⊤[−W
(ȷ+1)
ℓ INℓ

]
for any ℓ = 2, 3, . . . , L. Then, we arrive at a linearly constrained problem

argmin
v,u

Lρ

(
w(ȷ+1), b(ȷ+1), v, u; ξ

)
+ P

(
u, v;u(ȷ), v(ȷ), τ (ȷ)

)
s.t. v ≥ u, v ≥ αu.

(57)

We can calculate its unique solution (v(ȷ+1), u(ȷ+1)) in the following way.
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Notice that

ρ

2

∥∥∥u−Ψ(v)w(ȷ+1) −Ab(ȷ+1)
∥∥∥2 + P

(
u, v;u(ȷ), v(ȷ), τ (ȷ)

)
=
1

2

N∑
n=1

L∑
ℓ=2

ρ
∥∥∥un,ℓ − (W (ȷ+1)

ℓ vn,ℓ−1 + b
(ȷ+1)
ℓ

)∥∥∥2 + ∥∥∥∥∥
(
vn,ℓ−1

un,ℓ

)
−

(
v
(ȷ)
n,ℓ−1

u
(ȷ)
n,ℓ

)∥∥∥∥∥
2

S
(ȷ)
ℓ


+

ρ

2

N∑
n=1

∥∥∥un,1 − (W (ȷ+1)
1 xn + b

(ȷ+1)
1

)∥∥∥2 + τ1
2

N∑
n=1

∥∥∥un,1 − u
(ȷ)
n,1

∥∥∥2 ,
where

N∑
n=1

L∑
ℓ=2

ρ
∥∥∥un,ℓ − (W (ȷ+1)

ℓ vn,ℓ−1 + b
(ȷ+1)
ℓ

)∥∥∥2 + ∥∥∥∥∥
(
vn,ℓ−1

un,ℓ

)
−

(
v
(ȷ)
n,ℓ−1

u
(ȷ)
n,ℓ

)∥∥∥∥∥
2

S
(ȷ)
ℓ


=

N∑
n=1

L∑
ℓ=2

(
ρ
∥∥∥u(ȷ)n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

)∥∥∥2 + ∥∥∥∥∥
(
vn,ℓ−1

un,ℓ

)
−

(
v
(ȷ)
n,ℓ−1

u
(ȷ)
n,ℓ

)∥∥∥∥∥
2

S
(ȷ)
ℓ

+ 2ρ
(
u
(ȷ)
n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

))⊤ [
−W

(ȷ+1)
ℓ INℓ

](vn,ℓ−1 − v
(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

)

+ ρ

(
vn,ℓ−1 − v

(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

)⊤ [
(W

(ȷ+1)
ℓ )⊤W

(ȷ+1)
ℓ −(W

(ȷ+1)
ℓ )⊤

−W
(ȷ+1)
ℓ INℓ

](
vn,ℓ−1 − v

(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

))

=
N∑

n=1

L∑
ℓ=2

(
ρ
∥∥∥u(ȷ)n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

)∥∥∥2 + τ
(ȷ)
ℓ

(
vn,ℓ−1 − v

(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

)⊤(
vn,ℓ−1 − v

(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

)

+ 2ρ
(
u
(ȷ)
n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

))⊤ [
−W

(ȷ+1)
ℓ INℓ

](vn,ℓ−1 − v
(ȷ)
n,ℓ−1

un,ℓ − u
(ȷ)
n,ℓ

))
.

Then, the objective function of problem (57) can be simplified as

1

N

N∑
n=1

∥vn,L − yn∥2 + λv∥v∥2 + β⊤(v − σ(u)) +

L∑
ℓ=1

N∑
n=1

〈
ξn,ℓ, un,ℓ −W

(ȷ+1)
ℓ vn,ℓ−1

〉
+
1

2

N∑
n=1

L∑
ℓ=2

(
τ
(ȷ)
ℓ

∥∥∥un,ℓ − u
(ȷ)
n,ℓ

∥∥∥2 + 2ρ
(
u
(ȷ)
n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

))⊤ (
un,ℓ − u

(ȷ)
n,ℓ

)
+τ

(ȷ)
ℓ

∥∥∥vn,ℓ−1 − v
(ȷ)
n,ℓ−1

∥∥∥2 − 2ρ
(
u
(ȷ)
n,ℓ −

(
W

(ȷ+1)
ℓ v

(ȷ)
n,ℓ−1 + b

(ȷ+1)
ℓ

))⊤
W

(ȷ+1)
ℓ

(
vn,ℓ−1 − v

(ȷ)
n,ℓ−1

))

+
ρ

2

N∑
n=1

(∥∥∥un,1 − (W (ȷ+1)
1 xn + b

(ȷ+1)
1

)∥∥∥2)+
τ1
2

N∑
n=1

∥∥∥un,1 − u
(ȷ)
n,1

∥∥∥2 . (58)
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Hence, subproblem (57) can be separated into m independent subproblems of the fol-
lowing structure

min
r,s∈R

r −max{s, αs}+ d1
2

(
r − d3

d1

)2

+
d2
2

(
s− d4

d2

)2

s.t. r ≥ s, r ≥ αs,

(59)

where the constants d1, d2 > 0 and d3, d4 ∈ R are dependent on the parameters of problem
(57).

Restricting problem (59) to {(r, s) : s ≥ 0}, we obtain minr≥s,s≥0 r − s + d1(r −
d3/d1)

2/2 + d2(s− d4/d2)
2/2 and its closed-form solution (Facchinei and Pang, 2003, page

81)

(r∗1, s∗1) := Proj
diag(d1,d2)
{(r, s):r≥s, s≥0}

(
d3 − 1

d1
,
d4 + 1

d2

)
. (60)

On the other hand, restricting problem (59) to {(r, s) : s ≤ 0}, we obtain minr≥αs, s≤0 r −
αs+ d1(r − d3/d1)

2/2 + d2(s− d4/d2)
2/2 and its closed-form solution

(r∗2, s∗2) = Proj
diag(d1,d2)
{(r, s):r≥αs, s≤0}

(
d3 − 1

d1
,
d4 + α

d2

)
. (61)

By comparing the objective function values at (r∗1, s∗1) and (r∗2, s∗2), we obtain the unique
solution of (59).

We next present the framework of the alternating minimization method for solving (46)
as follows

Algorithm 2 An alternating minimization method for solving (46)

Input: matrix A, the vector ξ, the parameters ρ > 0 and τ1 > 0. Initialize
(w(ȷ), b(ȷ), v(ȷ), u(ȷ)) by (52). Set ȷ = 0.
Step 1: Update (w(ȷ+1), b(ȷ+1)) by solving problem (53).
Step 2: Update (u(ȷ+1), v(ȷ+1)) by solving problem (57).
Step 3: Set ȷ := ȷ+ 1. If the stop criterion is not met, return to Step 1.
Output: (w(ȷ), b(ȷ), v(ȷ), u(ȷ)).

Remark 16 The reasons why we divide subproblem (46) into (w, b) and (v, u) blocks are
two-fold. Firstly, w, b are the vectorization of weight matrices and bias vectors, respectively,
meanwhile v, u are the auxiliary variables. Secondly, subproblem (46) restricted to both of
these two blocks are easy to solve. More precisely, the (w, b) subproblem is strongly convex
and has one unique solution, meanwhile the (v, u) subproblem has a closed-form unique
solution.

4.3 Convergence Analysis of Algorithm 1

In this subsection, we establish the convergence of Algorithm 1. The proof is given in
Appendix A.

Theorem 17 Let {(w(k), b(k), v(k), u(k))} be the sequence generated by Algorithm 1 with
η3 > 1. Then the following statements hold.
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(a) lim infk→∞ ∥u(k)−Ψ(v(k))w(k)−Ab(k)∥ = 0 and the sequence {(w(k), b(k), v(k), u(k))}
has at least one accumulation point.

(b) lim infk→∞ dist((w(k), b(k), v(k), u(k)),Z∗) = 0, where Z∗ is the set of KKT points of
problem (PP).

(c) If in addition that γ = 1, then limk→∞ ∥u(k)−Ψ(v(k))w(k)−Ab(k)∥ = 0. Furthermore,
any accumulation point (w∗, b∗, v∗, u∗) of {(w(k), b(k), v(k), u(k))} is a KKT point of problem
(PP).

4.4 Convergence Analysis of Algorithm 2

In this subsection, we prove the global convergence of Algorithm 2 for solving subproblem
(46) and show that the condition (47) always hold. The proof is given in Appendix B.

Theorem 18 Let {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} be the sequence generated by Algorithm 2. Then
we have the following statements.

(a) It holds that

Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ+1), u(ȷ+1); ξ

)
− Lρ

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ

)
≤− λw

2

∥∥∥w(ȷ+1) − w(ȷ)
∥∥∥2 − τ1

2

∥∥∥u(ȷ+1) − u(ȷ)
∥∥∥2 − τ1

2

N∑
n=1

L−1∑
ℓ=1

∥∥∥v(ȷ+1)
n,ℓ − v

(ȷ)
n,ℓ

∥∥∥2 . (62)

(b) The sequence {Lρ(w
(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ)} is convergent.

(c) The sequence {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} is bounded.

(d) It holds that

lim
ȷ→∞

∥∥∥w(ȷ+1) − w(ȷ)
∥∥∥2 + ∥∥∥b(ȷ+1) − b(ȷ)

∥∥∥2 + ∥∥∥v(ȷ+1) − v(ȷ)
∥∥∥2 + ∥∥∥u(ȷ+1) − u(ȷ)

∥∥∥2 = 0. (63)

(e) The sequence {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} has at least one accumulation point, and any
accumulation point (w∗, b∗, v∗, u∗) of {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} is a KKT point of (46).

Remark 19 The statement (a) of Theorem 18 shows that Algorithm 2 yields a monotonic
nonincreasing function value sequence {Lρ

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ

)
} for fixed ρ and ξ. Together

with the selected initial guess, we can conclude that condition (47) always holds. Meanwhile,
the statement (e) of Theorem 18 guarantees an inexact stationarity condition (48) can hold
by certain iterate. Therefore, the inner iteration, Algorithm 2, is qualified to be Step 1 of
the outer iteration, namely, Algorithm 1.

5. Numerical Experiments

In this section, we evaluate the numerical performance of IALAM for training the sparse
leaky ReLU network with group sparsity through comparing with some state-of-the-art
SGD-based approaches. All the numerical experiments are conducted under MATLAB
R2018b with windows 7 on a desktop with 3.4 GHz Inter Core i7-6700 CPU and 16 GB
RAM.
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5.1 Implementation Details

Algorithm parameters. For our IALAM, we set η1 = 0.99, η2 = 5
6 , η3 = 0.01, η4 = 2

3 ,

ϵ0 = 0.1, ρ(0) = 1/N , ξ(0) = 0, and γ = 2L. It is worthy of mentioning that although η3 =
0.01 does not satisfy the requirement in Theorem 18 to guarantee the global convergence
of Algorithm 1, this choice always yields better performance than η3 > 1 in practice. In
the inner iteration, subproblem (53) is solved by the proximal gradient method (Dai and
Fletcher, 2005). We set the initial proximal parameter in subproblem (57) as τ1 = 1

10N ,

and update τ
(ȷ)
ℓ , for all ȷ = 2, 3, . . . , L, by formulation (54).

Stopping criterion and initial guess. Except for otherwise mentioned, we terminate

our algorithm whenever ϵk < 10−6 or ρ(k) > 103ρ(0). For all ℓ ∈ [L], the variables W
(0)
ℓ

are randomly generated by W
(0)
ℓ = randn(Nℓ, Nℓ − 1)/N , where randn(n, p) stands for an

n × p randomly generated matrix under the standard Gaussian distribution. Let b(0) = 0,

v
(0)
n,0 = xn, u

(0)
n,ℓ = W

(0)
ℓ v

(0)
n,ℓ−1 and v

(0)
n,ℓ = σ(u

(0)
n,ℓ) for all n ∈ [N ] and ℓ ∈ [L].

Algorithms in Comparison. For comparison, we choose a few state-of-the-art SGD-
based approaches, including the Adam (Kingma and Ba, 2014), the Adamax (Kingma and
Ba, 2014), the Adadelata (Zeiler, 2012), the Adagrad (Duchi et al., 2011), the Adagrad-
Decay (Duchi et al., 2011), and the Vanilla SGD (Cramir, 1946) with batch-size (Vanilla
SGD (batch)). The MATLAB codes of these SGD-based approaches are downloaded from
the SGD Library (Kasai, 2018). We also include ProxSGD (Yang et al., 2019). These
approaches directly solve the unconstrained model, i.e., problem (1), neglecting the nons-
moothness. All of these algorithms are run under their defaulting settings. The batch-size
of these methods is set to ⌈

√
N⌉. We terminate these methods whenever the epoch (i.e.,

“Iteration×batch-size/N”) reaches 1000 unless otherwise stated.
Model parameters (hyperparameters).
We introduce the model parameters of problem (PP) in the tests unless otherwise state-

ment, which include α = 0.01, λw = 1
N λv = 1

100N , and β = 1
N em. Specifically, results

with various values of constant α and vector β are shown in Figures 2 and 6, and Table 3,
respectively.

Test problems. The number of test samplings Ntest is set to be ⌈N/5⌉.
There are three classes of test problems. The first class of test problems are generated

randomly. We construct the training data sets and test data sets with a similar way as that
proposed by Cui et al. (2020), i.e.,

yn = σ(WLσ(· · ·σ(W1xn + b1) + b2 · · ·) + bL) + ỹn,

for all n ∈ [N + Ntest], where xn ∼ N (ζ,ΣT
0 Σ0), ỹn = ϵyrandn(1, 1). Here, the parameter

ϵy = 0.05 is to control the noise level, ζ = randn(N0, 1), and Σ0 = randn(N0, 1).
The second class of test problems is the classification problem on the MNIST (LeCun,

1998) data set, consisting of 10-classes handwritten digits with the size 28 × 28, namely,
N0 = 784. In practice, we randomly pick up data entries from each class of MNIST under
uniform distribution. The dataset consists of 60,000 training images and 10,000 test images.
Since there are ten classes in the MNIST, we take NL = 10.

The third class of test problems is the classification problem on the fashion MNIST
(Han et al., 2017) data set, consisting of 10-classes images with the size 28 × 28, namely,
N0 = 784. Each image is labeled with a corresponding class label, ranging from 0 to 9,
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which indicates the type of clothing item in the image (e.g., T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). In practice, we randomly pick up
data entries from each class of fashion MNIST under uniform distribution. The dataset
consists of 60,000 training images and 10,000 test images. Since there are ten classes in the
fashion MNIST, we take NL = 10.

Output evaluation. Finally, we introduce how to evaluate the performance of various
approaches. We record the measurements including the training error, the test error, the
first feasibility violation, the second feasibility violation, and the KKT violation, which are
denoted by

TrainErr =
1

N

N∑
n=1

∥σ(WLσ(· · ·σ(W1xn + b1) + b2 · · ·) + bL)− yn∥2 ,

TestErr =
1

N

N+Ntest∑
n=N+1

∥σ(WLσ(· · ·σ(W1xn + b1) + b2 · · ·) + bL)− yn∥2 ,

FeasVi1 =
1

N

N∑
n=1

L∑
ℓ=1

∥vn,ℓ − σ(un,ℓ)∥2 , FeasVi2 =
1

N

N∑
n=1

L∑
ℓ=1

∥un,ℓ − (Wℓvn,ℓ−1 + bℓ)∥2 ,

and

KKTVi = dist(0, ∂Lρ(k−1)(w(k), b(k), v(k), u(k); ξ(k−1))+NΩ3(w
(k), b(k), v(k), u(k)))+

1

2
FeasVi2,

respectively, and the average feasibility violation FeasVi=(FeasVi1+FeasVi2)/N . Time is
the CPU time in (minutes: seconds). For the classification task, we also record the classifi-
cation accuracy for the training data, “Accuracy”, and test data, “TestAcc”, respectively.

5.2 Numerical Performance of IALAM

In this subsection, we investigate the numerical performance of IALAM in solving problems
with both randomly generated data sets and MNIST.

5.2.1 Solving Problems with Different Layers

We test IALAM in solving problem (PP) with different layers. Figure 1 shows the perfor-
mance of IALAM in solving problem with synthetic data set, where we set N = 500, L = 4,
N0 = 5, N1 = 4, N2 = 4, N3 = 3 and N4 = 1. We can learn from Figure 1 that (i) the
training error and the test error decrease in the same order; (ii) the feasibility violations
and KKT violation reduce oscillatorily to zero.

Next, we demonstrate the numerical behavior of IALAM in solving problems with the
MNIST data set, where N = 60000, Ntest = 10000 and the number of hidden layers up to
four (averaged over 100 simulations). We can learn from Table 1 and Table 2 that IALAM
works well in dealing with classification data set MNIST with different layers.
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Figure 1: Algorithm performance of IALAM on the synthetic data set.

Table 1: Numerical Results of IALAM with up to four layers.

N1 N2 N3 Iter Time FeasVi1 FeasVi2 TrainErr Accuracy TestAcc

500 – – 138 47:06 2.00e-5 9.95e-9 (3.98±0.24)e-2 0.981±0.002 0.974±0.002
200 100 – 152 21:58 6.97e-5 4.06e-5 (3.35±0.41)e-2 0.980±0.004 0.976±0.004
500 200 – 125 21:33 1.07e-4 1.97e-5 (1.94±0.62)e-2 0.989±0.003 0.983±0.003
100 100 100 109 6:37 1.19e-4 7.49e-5 (5.23±0.86)e-2 0.947±0.006 0.943±0.005
200 400 200 112 20:10 8.68e-5 5.66e-5 (4.42±1.27)e-2 0.960±0.010 0.959±0.008
800 400 200 95 31:39 9.82e-5 3.74e-5 (5.21±1.31)e-2 0.960±0.012 0.958±0.008

Table 2: Numerical Results of IALAM with up to four layers among 100 times.

N1 N2 N3 N1 N2 N3 N1 N2 N3

800 400 200 500 200 – 500 – –

FeasVi1 [7.89e-7, 8.78e-4] [1.67e-6, 3.09e-4] [7.32e-7, 1.25e-4]
FeasVi2 [1.06e-8, 4.29e-4] [3.86e-9, 1.05e-4] [7.75e-9, 1.87e-8]
FeasVi [6.67e-10, 9.33e-7] [1.20e-9, 9.42e-5] [5.30e-10, 8.90e-8]
TrainErr [1.94e-2, 6.63e-2] [1.10e-2, 3.97e-2] [3.60e-2, 4.61e-2]
Accuracy [0.946, 0.986] [0.980, 0.996] [0.976, 0.985]
TestAcc [0.943, 0.982] [0.978, 0.990] [0.969, 0.979]

5.2.2 Investigating the Model Parameters in Sparse leaky ReLU Network

In this subsection, we first study the numerical performance of IALAM in solving problem
(PP) with various leaky ReLU parameters α. Our test is based on the MNIST data set with
N = 60000 and Ntest = 10000 and a fixed initialization point. We can learn from Figure
2 that (i) IALAM can be extended to training the ReLU network, i.e. α = 0; (ii) a small
positive α often leads to better performance than α = 0, but further increasing of α yields
worse and worse performance.

Then, we study the numerical performance of IALAM in solving problem (PP) with
different penalty parameters β := β̄em, β̄ > 0 and a fixed initialization point. Our test
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Figure 2: Comparisons among IALAM with N = 60000, different networks, α and (a)–(c):
N1 = 500, L = 2; (d)–(f): N1 = 200, N2 = 100, L = 3; (g)–(i): N1 = 100, N2 = 100,
N3 = 100, L = 4.
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is also based on the MNIST data set with N = 60000 and Ntest = 10000. We can learn
from Table 3 that (a) the bigger β̄ always leads to slower convergence; (b) β̄ = 1

N performs
the best among {1/N, 1/10N, 10/N, 100/N}. Hence, we choose 1

N em as the default value of
penalty parameter β in IALAM.

Table 3: Comparisons among IALAM with vector β = β̄em.

N1 N2 N3 β̄ Iter FeasVi1 FeasVi2 FeasVi TrainErr Accuracy TestAcc

500 – – 1/10N 121 7.64e-6 1.51e-11 1.50e-8 3.66e-3 0.975 0.970
500 – – 1/N 147 6.02e-9 8.89e-9 2.92e-11 3.88e-3 0.981 0.974
500 – – 10/N 168 9.05e-9 4.80e-14 1.77e-11 3.71e-3 0.977 0.969
500 – – 100/N 155 1.21e-8 0 2.37e-11 3.91e-3 0.975 0.967

200 100 – 1/10N 113 7.38e-5 6.52e-5 4.48e-7 3.43e-2 0.970 0.961
200 100 – 1/N 146 6.97e-5 4.06e-5 3.56e-7 2.76e-2 0.984 0.969
200 100 – 10/N 133 4.21e-6 5.99e-11 1.36e-8 2.98e-2 0.980 0.968
200 100 – 100/N 149 6.66e-6 1.61e-12 2.15e-8 2.80e-2 0.981 0.969

100 100 100 1/10N 88 9.53e-4 4.53e-4 4.54e-6 1.95e-1 0.772 0.776
100 100 100 1/N 135 1.73e-4 7.39e-5 7.96e-7 4.04e-2 0.959 0.955
100 100 100 10/N 87 3.94e-5 0 1.27e-7 6.63e-2 0.935 0.927
100 100 100 100/N 99 9.10e-6 0 2.94e-8 6.60e-2 0.934 0.932

5.3 Comparisons with the State-of-the-art Approaches

In this subsection, we compare IALAM with the existing SGD-based approaches including
ProxSGD in solving problem (P) through different ways.

5.3.1 Testing on Synthetic Data Sets

The synthetic data sets are generated with N = 500, N0 = 5 and NL = 1. We compare
our IALAM with vanilla SGD, Adam, Adammax, AdaGrad, AdaGradDecay and Adadelta.
We depict the “TrainErr” and the “TestErr” with the x-axis varying on CPU time. We
can learn from Figure 3 that (i) IALAM converges faster than the other approaches; (ii)
IALAM can always reach comparable TrainErr and TestErr with the other approaches.

5.3.2 Testing on MNIST Data Set

Now we consider the test on MNIST data set. We first investigate how the “TrainErr” and
“Accuracy” with the x-axis varying on “Iteration×batch-size/N”, which is equivalent to
“iteration” for IALAM and “epoch” for the SGD-based approaches. We also display the
“Column Sparsity Ratio” with the x-axis varying on “Tolerance”. Here, let (W1, . . . ,WL)
be the derived weight matrix of solver s, we denote tsℓ,j = ||(Wℓ)·,j ||2 for all ℓ ∈ [L] and
j ∈ [Nℓ−1] and for a given tolerance ω, the “Column Sparsity Ratio” rsω of solver s is defined
by

rsω :=

L∑
ℓ=1

Nℓ−1∑
j=1

δ(tsℓ,j ≤ ω)

/
L−1∑
ℓ=0

Nℓ ,

where δ(Γ) = 1 if the statement “Γ” is true, otherwise δ(Γ) = 0.
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(b) L = 3, N1 = N2 = 5
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(c) L = 4, N1 = 4, N2 = N3 = 3
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Figure 3: Comparisons among IALAM and SGD-based approaches on the synthetic data
set.

We can conclude from Figures 4–5 that (i) IALAM can find sparser solution than the
SGD-based approaches; (ii) IALAM can yield comparable TrainErr and Accuracy with other
approaches, if not better; (iii) ProxSGD can find as sparse solutions as those of IALAM but
much worse behavior on “TrainErr” and “Accuracy”.

Finally, we select 720 test problems based on MNIST data set with different network
parameter combinations {(L = 2, N1 = 20), (L = 2, N1 = 50), (L = 3, N1 = 20, N2 =
10), (L = 3, N1 = 50, N2 = 20), (L = 4, N1 = 10, N2 = 10, N3 = 10), (L = 4, N1 = 40, N2 =
20, N3 = 10)}, α ∈ {0, 0.01, 0.05, 0.1}, λw = i/10N , i ∈ {1, 2, . . . , 10}, N ∈ {100, 500, 2000}.
We investigate the performance profiles (Dolan and Moré, 2002) of Vanilla SGD, Adam,
Adamdelta and our IALAM through three measurements “TrainErr”, and “TestErr”.We
terminate Valinna SGD, Adadelta and Adam whenever the epoch reaches 100. We describe
how to plot the performance profiles. For problem p and solver s, we use tsp to represent
the output meansurement (“TrainErr” or “TestErr”). Performance ratio is defined as rsp :=
tsp/mins

{
tsp
}
. If solver s fails to solve problem p, the ratio rsp is set to 10000. Finally, the

overall performance of solver s is defined by

πs(ω) :=

720∑
p=1

δ(rsp ≤ ω)

/
720.

Clearly, the closer πs is to 1, the better performance the solver s has. The performance
profiles with respect to “TrainErr” and “TestErr” are given in Figure 6. We can conclude
that IALAM outperforms the others with respect to both “TrainErr” and “TestErr”. It is
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Figure 4: Comparisons among IALAM and SGD-based approaches on MNIST with (a)–
(c): N = 100, N1 = 5, L = 2; (d)–(f): N = 500, N1 = 50, N2 = 20, L = 3; (g)–(i):
N = 1000, N1 = 100, N2 = 50, L = 3; (j)–(l) N = 5000, N1 = 200, N2 = 100, L = 3.
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Figure 5: Comparisons among IALAM and SGD-based approaches on MNIST with N =
60000, N1 = 200, N2 = 100, L = 3.

worth noting that we use the same batch-size for Valinna SGD, Adadelta, and Adam, and
stop them whenever the the number of epochs reaches 100.
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Figure 6: Performance profile for IALAM, Valinna SGD, Adadelta and Adam on TrainErr
and TestErr.

5.3.3 Testing on fashion MNIST Data Set

Last but not least, we consider the test on fashion MNIST data set. We investigate the
“TrainErr” and “Accuracy” with the x-axis varying on “Iteration×batch-size/N” for Vanilla
SGD, Adam, Adamdelta and our IALAM. We also display the “Column Sparsity Ratio”
with the x-axis varying on “Tolerance”. We can conclude from Figure 7 that (i) IALAM
can find sparser solutions than the chosen SGD-based approaches; (ii) IALAM can yield
better TrainErr and Accuracy than other approaches.
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Figure 7: Comparisons among IALAM and SGD-based approaches on fashion MNIST with
(a)–(c): N = 100, N1 = 10, L = 2; (d)–(f) N = 1000, N1 = 100, N2 = 50, L = 3; (g)–(i)
N = 5000, N1 = 200, N2 = 100, L = 3; (j)–(l) N = 60000, N1 = 500, N2 = 200, L = 3.
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6. Conclusion

We focus on the regularized minimization model (P) for training leaky ReLU with group
sparsity. We first present an l1-norm penalty model (named PP) for problem (P) and then
theoretically demonstrate that these two models share the same global minimizers, local
minimizers and limiting stationary points under mild conditions. In addition, we prove
that problem (PP) has a nonempty and bounded solution set and its feasible set satisfies
the MFCQ, under which the KKT point of (PP) is also an MPCC W-stationary point of
problem (P). We propose an inexact augmented Lagrangian algorithm with the alternating
minimization (IALAM) to solve problem (PP). The global convergence to the KKT point
has been established. Comprehensive numerical experiments have illustrated the efficiency
of IALAM as well as its ability to seek sparse solution.
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A. Proof to Theorem 17

Proof (a) Case (i): the sequence {ρ(k)} is bounded. In this case, the formula (51) can be
called at most finite times. That is for some k0 > γ, it holds that ρ(k) = ρ(k0) and∥∥∥u(k) −Ψ

(
v(k)

)
w(k) −Ab(k)

∥∥∥ ≤ η1 max
t=k−γ,...,k−1

∥∥∥u(t) −Ψ
(
v(t)
)
w(t) −Ab(t)

∥∥∥ . (64)

for all k > k0. By simple calculation, it then follows that for all k > k0,

max
t=k,k+1,...,k+γ−1

∥∥∥u(t) −Ψ
(
v(t)
)
w(t) −Ab(t)

∥∥∥ ≤ η1 max
t=k−γ,...,k−1

∥∥∥u(t) −Ψ
(
v(t)
)
w(t) −Ab(t)

∥∥∥ ,
(65)

and hence limk→∞maxt=k−γ,...,k−1 ∥u(t) −Ψ(v(t))w(t) −Ab(t)∥ = 0. This yields

lim inf
k→∞

∥∥∥u(k) −Ψ
(
v(k)

)
w(k) −Ab(k)

∥∥∥ = lim
k→∞

∥∥∥u(k) −Ψ
(
v(k)

)
w(k) −Ab(k)

∥∥∥ = 0. (66)

We next show that for all k > k0,∥∥∥ξ(k)∥∥∥ ≤
∥∥∥ξ(k0)∥∥∥+ ρ(k0)

k−k0∑
i=1

∥∥∥u(k0+i) −Ψ
(
v(k0+i)

)
w(k0+i) −Ab(k0+i)

∥∥∥ . (67)

In view of ρ(k) = ρ(k0) for all k > k0 and the updating rule (49) of ξ(k) that∥∥∥ξ(k0+i)
∥∥∥ ≤

∥∥∥ξ(k0+i−1)
∥∥∥+ ρ(k0)

∥∥∥u(k0+i) −Ψ
(
v(k0+i)

)
w(k0+i) −Ab(k0+i)

∥∥∥
for all i ∈ N+. Summing up the above inequalities for all i ∈ N+ yields (67).

Combining inequalities (64), (65) with (67), we obtain that

∥∥∥ξ(k)∥∥∥ ≤
∥∥∥ξ(k0)∥∥∥+ ρ(k0)

k−k0∑
i=1

η
⌈i/γ⌉
1 max

t=k0−γ+1,...,k0

∥∥∥u(t) −Ψ
(
v(t)
)
w(t) −Ab(t)

∥∥∥
≤
∥∥∥ξ(k0)∥∥∥+ γη1ρ

(k0)

1− η1
max

t=k0−γ+1,...,k0

∥∥∥u(t) −Ψ
(
v(t)
)
w(t) −Ab(t)

∥∥∥ .
Hence {ξ(k)} is bounded.

Furthermore, we obtain by the inequality (47) and the definition of Lρ that for all k ∈ K,

O
(
w(k+1), v(k+1), u(k+1)

)
+

ρ(k)

2

∥∥∥∥∥ξ(k)ρ(k)
+ u(k+1) −Ψ

(
v(k+1)

)
w(k+1) −Ab(k+1)

∥∥∥∥∥
2

≤θ +

∥∥ξ(k)∥∥2
2ρ(k)

.

(68)

It follows the inclusion
{(

w(k+1), b(k+1), v(k+1), u(k+1)
)}

⊆ Ω3 and the definition of O
that

{
O
(
w(k+1), v(k+1), u(k+1)

)}
is not less than 0. Using this, {ξ(k)} being bounded, ρ(k) =

ρ(k0) for all k > k0 and the relation (68) yield that
{
O
(
w(k+1), v(k+1), u(k+1)

)}
is bounded.

Using a similar method as that in the proof of Theorem 8, we obtain that the sequence
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{(w(k), b(k), v(k), u(k))} is bounded. Hence, the sequence {(w(k), b(k), v(k), u(k))} has at least
one accumulation point.

Case (ii): the sequence {ρ(k)} is unbounded. In this case, the set

K :=

{
k : ρ(k) = max

{
ρ(k−1)/η2,

∥∥∥ξ(k)∥∥∥1+η3
}}

(69)

is infinite. Together with the inclusion η2 ∈ (0, 1), it follows that
{
ρ(k)

}
→ ∞ as k → ∞, k ∈

K. For all k ∈ K, we have ∥ξ(k)∥1+η3 ≤ ρ(k), which further yields
∥ξ(k)∥
ρ(k)

≤ (ρ(k))−η3/(1+η3).

Together with the fact
{
ρ(k)

}
→ ∞ as k → ∞, k ∈ K, we derive

lim
k→∞,k∈K

∥∥ξ(k)∥∥
ρ(k)

= 0. (70)

Similarly, we have
∥ξ(k)∥2

ρ(k)
≤ (ρ(k))(1−η3)/(1+η3) and

lim
k→∞,k∈K

∥∥ξ(k)∥∥2
ρ(k)

= 0 (71)

by η3 > 1 and
{
ρ(k)

}
→ ∞ as k → ∞, k ∈ K.

Similarly, we obtain (68) with k ∈ N+ replaced by k ∈ K. Dividing both sides of the
above inequality by ρ(k)/2, we obtain that for all k ∈ K,∥∥∥∥∥ξ(k)ρ(k)

+ u(k+1) −Ψ
(
v(k+1)

)
w(k+1) −Ab(k+1)

∥∥∥∥∥
2

≤ 2

ρ(k)

(
θ −O

(
w(k+1), v(k+1), u(k+1)

))
+

∥∥ξ(k)∥∥2
(ρ(k))2

.

(72)

Using this, the relation (70),
{
O
(
w(k+1), v(k+1), u(k+1)

)}
is not less than 0, and

{
ρ(k)

}
→ ∞

as k → ∞ and k ∈ K, we then derive that

lim
k→∞,k∈K

∥∥∥∥∥ξ(k)ρ(k)
+ u(k+1) −Ψ

(
v(k+1)

)
w(k+1) −Ab(k+1)

∥∥∥∥∥ = 0, (73)

which together with (70) yield

lim inf
k→∞

∥∥∥u(k) −Ψ
(
v(k)

)
w(k) −Ab(k)

∥∥∥
= lim

k→∞,k∈K

∥∥∥u(k+1) −Ψ
(
v(k+1)

)
w(k+1) −Ab(k+1)

∥∥∥ = 0.
(74)

Combining the relations (68), (71), ρ(k) > 0 with the sequence
{
O
(
w(k+1), v(k+1), u(k+1)

)}
being not less than 0, there exists k̄ > 0 such that O

(
w(k+1), v(k+1), u(k+1)

)
< 2θ for all

k > k̄, k ∈ K. Using similar arguments as those in the proof of Theorem 8, we ob-
tain that the set Ω2θ = {(w, b, v, u) ∈ Ω2 : O(w, v, u) ≤ 2θ} is bounded. Hence the sequence
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{
(
w(k+1), b(k+1), v(k+1), u(k+1)

)
}k∈K is bounded. Moreover, the sequence {(w(k+1), b(k+1), v(k+1),

u(k+1))}k∈K has at least one accumulation point.
Combining the above two cases, the proof is completed.
(b) Let (w∗, b∗, v∗, u∗) be an accumulation point of {(w(k+1), b(k+1), v(k+1), u(k+1))}k∈K,

where K is defined in (69). By what we have proved in the statement (a), the closedness of
Ω2, we obtain that the point (w∗, b∗, v∗, u∗) belongs to the feasible set of problem (PP).

Since (w∗, b∗, v∗, u∗) is an accumulation point of
{(

w(k+1), b(k+1), v(k+1), u(k+1)
)}

k∈K,

there exists a subsequence
{
(w(jk), b(jk), v(jk), u(jk))

}
of
{(

w(k+1), b(k+1), v(k+1), u(k+1)
)}

k∈K
such that

lim
k→∞

(
w(jk), b(jk), v(jk), u(jk)

)
= (w∗, b∗, v∗, u∗).

Using similar arguments as those in the proof of Lemma 4 and the fact Ω3 := {(w, b, v, u) :
w ∈ RÑ , b ∈ RN , C(v, u) ≤ 0}, we obtain that the MFCQ holds at any feasible point
(w, b, v, u) for problem (46). Together with (Rockafellar and Wets, 1998, Theorem 6.14),
we obtain that NΩ3(w, b, v, u) = {∇(v,u)(µ

⊤C(v, u)) : µ⊤C(v, u) = 0, µ ∈ R2m
+ }. Together

with the inequality (48), and the definition of Lρ(w, b, v, u; ξ), there exist µ
(jk) ≥ 0 and ζ(jk)

satisfying (µ(jk))⊤C(v(jk), u(jk)) = 0, ∥ζ(jk)∥ ≤ ϵjk such that

ζ(jk) ∈ ∂(w,b,v,u)O
(
w(jk), v(jk), u(jk)

)
+∇

((
ξ(jk−1)

)⊤ (
u(jk) −Ψ

(
v(jk)

)
w(jk) −Ab(jk)

)
+
ρ(jk−1)

2

∥∥∥u(jk) −Ψ
(
v(jk)

)
w(jk) −A(jk)b(jk)

∥∥∥2 + (µ(jk)
)⊤

C
(
v(jk), u(jk)

))
.

(75)
In view of ξ(jk) = ξ(jk−1) + ρ(jk−1)

(
u(jk) −Ψ(v(jk))w(jk) −Ab(jk)

)
and ∇z

1
2∥z∥

2 = z∇zz for
z ∈ Rm, we then obtain that

ζ(jk) ∈∂(w,b,v,u)O
(
w(jk), v(jk), u(jk)

)
+∇

((
ξ(jk)

)⊤ (
u(jk) −Ψ

(
v(jk)

)
w(jk) −Ab(jk)

)
+
(
µ(jk)

)⊤
C
(
v(jk), u(jk)

))
.
(76)

It holds from the update rule in Algorithm 1 that ϵk ≤ max{√η1, η4}ϵk−1 for all k > γ.
Together with the relationship 0 < η1, η4 < 1, we derive limk→∞ ϵk = 0. It then follows that
ζ(jk) → 0 as k → ∞.

Let rk := max
{
∥ξ(jk)∥∞, ∥µ(jk)∥∞

}
. Suppose that {rk} is unbounded. Without loss of

generality, we assume that as k → ∞, it holds that

ξ(jk)

rk
→ ξ∗, and

µ(jk)

rk
→ µ∗. (77)

It then holds that max{∥ξ∗∥∞, ∥µ∗∥∞} = 1 and µ∗ ≥ 0, since µ(jk) ≥ 0 for all k ≥ 0.
Dividing by rk and taking the limit k → ∞ on the both sides of (76), we obtain

0 = ∇(w,b,v,u)

(
(ξ∗)⊤(u∗ −Ψ(v∗)w∗ −Ab∗) + (µ∗)⊤C(v∗, u∗)

)
.

This together with Lemma 4 and the equality max{∥ξ∗∥∞, ∥µ∗∥∞} = 1 lead to a contradic-
tion. {rk} is hence bounded. Without loss of generality, we assume that as k → ∞,

ξ(jk) → ξ∗, and µ(jk) → µ∗.
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Since µ(jk) ≥ 0 for all k ≥ 0, we have µ∗ ≥ 0.
Taking the limit k → ∞ on both sides of (76), we obtain that

0 ∈ ∂(w,b,v,u)

(
O(w∗, v∗, u∗) + (ξ∗)⊤(u∗ −Ψ(v∗)w∗ −Ab∗) + (µ∗)⊤C(v∗, u∗)

)
,

which together with the inequality µ∗ ≥ 0 yield that (w∗, b∗, v∗, u∗) is a KKT point of
problem (PP). Hence lim infk→∞ dist((w(k), b(k), v(k), u(k)),Z∗) = 0 by the definition of
(w∗, b∗, v∗, u∗), which completes the statement (b).

(c) Case (i): the set K defined in (69) is finite. By what we have proved in the state-
ment (a), we have limk→∞

∥∥u(k) −Ψ
(
v(k)

)
w(k) −Ab(k)

∥∥ = 0 in this case. Using a similar
method as that in the proof of statement (b), any accumulation point (w∗, b∗, v∗, u∗) of
{(w(k), b(k), v(k), u(k))} is a KKT point of problem (PP).

Case (ii): the set K defined in (69) is infinite.
For any given k ∈ N+, let tk be the largest element in K satisfying tk ≤ k. We then

show that ∥∥ξ(k)∥∥
ρ(k)

≤
∥∥ξ(tk)∥∥
ρ(tk)

+

k−tk∑
i=1

∥∥∥u(tk+i) −Ψ
(
v(tk+i)

)
w(tk+i) −Ab(tk+i)

∥∥∥ . (78)

Clearly, the inequality (78) holds when k = tk. We now suppose k > tk. In view of the fact
that ρ(tk+i) = ρ(tk) for all 0 < i ≤ k − tk and the updating rule (49) of ξ(k), we have∥∥ξ(tk+i)

∥∥
ρ(tk+i)

=

∥∥ξ(tk+i)
∥∥

ρ(tk+i−1)
≤

∥∥∥∥∥ξ(tk+i−1)

ρ(tk+i−1)

∥∥∥∥∥+ ∥∥∥u(tk+i) −Ψ
(
v(tk+i)

)
w(tk+i) −Ab(tk+i)

∥∥∥
for all i ∈ [k − tk]. Summing up the above inequalities for all i ∈ [k − tk] yields (78).

For all i ∈ [k − tk], we obtain from γ = 1, (50) and the definition of tk that∥∥∥u(tk+i) −Ψ
(
v(tk+i)

)
w(tk+i) −Ab(tk+i)

∥∥∥
≤η1

∥∥∥u(tk+i−1) −Ψ
(
v(tk+i−1)

)
w(tk+i−1) −Ab(tk+i−1)

∥∥∥ . (79)

Together with the inequality (78), we derive∥∥ξ(k)∥∥
ρ(k)

≤
∥∥ξ(tk)∥∥
ρ(tk)

+

k−tk∑
i=1

ηi−1
∥∥∥u(tk+1) −Ψ

(
v(tk+1)

)
w(tk+1) −Ab(tk+1)

∥∥∥
≤
∥∥ξ(tk)∥∥
ρ(tk)

+
1

1− η1

∥∥∥u(tk+1) −Ψ
(
v(tk+1)

)
w(tk+1) −Ab(tk+1)

∥∥∥ .
(80)

Together with the equalities (70), (74), tk ∈ K and K being infinite, we can conclude
that

lim
k→∞

∥∥ξ(k)∥∥
ρ(k)

= 0. (81)

Similarly, we obtain (72) with k ∈ K replaced by k ∈ N+. This together with the fact
(81) and the lower boundedness of O

(
w(k+1), v(k+1), u(k+1)

)
imply that

lim
k→∞

∥∥∥u(k) −Ψ
(
v(k)

)
w(k) −Ab(k)

∥∥∥ = lim
k→∞

∥∥∥u(k+1) −Ψ
(
v(k+1)

)
w(k+1) −Ab(k+1)

∥∥∥ = 0.
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Using a similar method as that in the proof of statement (b), any accumulation point
(w∗, b∗, v∗, u∗) of {(w(k), b(k), v(k), u(k))} is a KKT point of problem (PP).

This proof is then completed by summarizing the above two cases.

B. Proof to Theorem 18

Proof (a) Since we have S
(ȷ)
ℓ ⪰ τ1INℓ+Nℓ−1

for all ℓ = 2, 3, . . . , L, we obtain that

P
(
u(ȷ+1), v(ȷ+1);u(ȷ), v(ȷ), τ (ȷ)

)
=
1

2

N∑
n=1

L∑
ℓ=2

∥∥∥∥∥
(
v
(ȷ+1)
n,ℓ−1

u
(ȷ+1)
n,ℓ

)
−

(
v
(ȷ)
n,ℓ−1

u
(ȷ)
n,ℓ

)∥∥∥∥∥
2

S
(ȷ)
ℓ

+
τ1
2

N∑
n=1

∥∥∥u(ȷ+1)
n,1 − u

(ȷ)
n,1

∥∥∥2

≥τ1
2

∥∥∥u(ȷ+1) − u(ȷ)
∥∥∥2 + τ1

2

N∑
n=1

L−1∑
ℓ=1

∥∥∥v(ȷ+1)
n,ℓ − v

(ȷ)
n,ℓ

∥∥∥2 .
Together with the fact that (u(ȷ+1), v(ȷ+1)) being the global minimizer of (57), we obtain

Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ+1), u(ȷ+1); ξ

)
− Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ), u(ȷ); ξ

)
≤− τ1

2

∥∥∥u(ȷ+1) − u(ȷ)
∥∥∥2 − τ1

2

N∑
n=1

L−1∑
ℓ=1

∥∥∥v(ȷ+1)
n,ℓ − v

(ȷ)
n,ℓ

∥∥∥2 . (82)

Since R1 is λw-strongly convex with respect to w (Beck, 2017), we derive from the
definition of Lρ and the updating rule (53) that

Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ), u(ȷ); ξ

)
− Lρ

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ

)
≤ −λw

2

∥∥∥w(ȷ+1) − w(ȷ)
∥∥∥2 ,

which together with the inequality (82) complete the statement (a).

(b) The statement (a) together with the inequality Lρ(w
(k)
init, b

(k)
init, v

(k)
init, u

(k)
init; ξ) ≤ θ and

the definition of Lρ, we obtain that

− 1

2ρ
∥ξ∥2 ≤ Lρ

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ

)
≤ θ, for all ȷ ∈ N. (83)

Then, the non-increasing sequence {Lρ

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ); ξ

)
} is bounded and hence con-

vergent.

(c) Recall the definition of Lρ and (83), we obtain that λw∥w∥2,1+λv∥v∥2 ≤ 1
2ρ∥ξ∥

2+θ,

then the sequence {(w(ȷ), v(ȷ))} is bounded. Together with the definition of Lρ and (83), it
holds that {(b(ȷ))} is bounded. Since O is not less than 0, (83) also yields that

ρ

2

∥∥∥∥ξρ + u(ȷ) −Ψ(v(ȷ))w(ȷ) −Ab(ȷ)
∥∥∥∥2 ≤ θ +

1

2ρ
∥ξ∥2

41



Liu, Liu and Chen

for all ȷ ∈ N+, which together with the boundedness of {(w(ȷ), b(ȷ), v(ȷ))} imply that {u(ȷ)}
is bounded. Hence, the sequence {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} is bounded, which completes the
statement (c).

(d) From the statements (a), (b), (c), and τ1 > 0, we obtain that

lim
ȷ→∞

∥∥∥w(ȷ+1) − w(ȷ)
∥∥∥2 = 0, lim

ȷ→∞

∥∥∥u(ȷ+1) − u(ȷ)
∥∥∥2 = 0, lim

ȷ→∞

N∑
n=1

L−1∑
ℓ=1

∥∥∥v(ȷ+1)
n,ℓ − v

(ȷ)
n,ℓ

∥∥∥2 = 0. (84)

From the updating rule of the (w, b), we obtain from the KKT condition of (53) and
the definition of A,Ψ that for all ℓ ∈ [L], it holds that

b
(ȷ+1)
ℓ =

1

N

N∑
n=1

(
ξn,ℓ
ρ

+ u
(ȷ)
n,ℓ −Wℓv

(ȷ)
n,ℓ−1

)
.

This together with the statement (c) and (84) imply that

lim
ȷ→∞

∥∥∥b(ȷ+1) − b(ȷ)
∥∥∥2 = 0. (85)

From the updating rule of the (v, u), (60) and (61), we obtain that v
(ȷ+1)
n,L has a closed-

form associated with ξn,L, ρ, τ
(ȷ)
L , u

(ȷ)
n,L, W

(ȷ+1)
L , v

(ȷ)
n,L−1, and b

(ȷ+1)
L for all n ∈ [N ]. Together

with the facts (55) and (84), it holds that

lim
ȷ→∞

N∑
n=1

∥∥∥v(ȷ+1)
n,L − v

(ȷ)
n,L

∥∥∥2 = 0.

Using this and relations (84), (85), we complete the statement (d).
(e) The statement (c) yields that the sequence {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} has at least one

accumulation point. Let J be a index set of {(w(ȷ), b(ȷ), v(ȷ), u(ȷ))} such that

lim
ȷ→∞,ȷ∈J

(
w(ȷ), b(ȷ), v(ȷ), u(ȷ)

)
= (w∗, b∗, v∗, u∗).

From the first-order optimality conditions for the updating schemes in Steps 1-2 of Algo-
rithm 2 and the constraint set C being separable with respect to (v, u) block and (w, b)
block, there exists µ(ȷ) ∈ R2m

+ such that

0 ∈ ∂(w,b)Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ), u(ȷ); ξ

)
0 ∈ ∂(v,u)Lρ

(
w(ȷ+1), b(ȷ+1), v(ȷ+1), u(ȷ+1); ξ

)
+∇(v,u)

(
P
(
u(ȷ+1), v(ȷ+1);u(ȷ), v(ȷ), τ (ȷ)

)
+
(
µ(ȷ)
)⊤

C
(
v(ȷ+1), u(ȷ+1)

))
(
µ(ȷ)
)⊤

C
(
v(ȷ+1), u(ȷ+1)

)
= 0.

(86)

Let rȷ := ∥µ(ȷ)∥∞. Suppose that {rȷ} is unbounded. Without loss of generality, we

assume that as ȷ → ∞, ȷ ∈ J , it holds that µ(ȷ)

rȷ
→ µ̄∗. It then follows the fact µ(ȷ) ≥ 0 for

all ȷ ∈ N that ∥µ̄∗∥∞ = 1 and µ̄∗ ≥ 0.
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Dividing by rȷ and taking the limit ȷ → ∞, ȷ ∈ J on both sides of (86), we obtain
0 = ∇(v,u)(µ

∗)⊤C(v∗, u∗) which results from the locally Lipschitz continuity of Lρ, C,P,∇C
and the statements (a)–(d). Together with the equality ∥µ̄∗∥∞ = 1 and Lemma 4, it leads
to contradiction. Thus, {rȷ} is bounded as desired. Without loss of generality, we assume
that as ȷ → ∞, ȷ ∈ J , it holds that

µ(ȷ) → µ̄∗. (87)

Similarly, we can obtain that µ̄∗ ≥ 0, since µ(ȷ) ≥ 0 for all ȷ ∈ N.
Again, taking the limit ȷ → ∞, ȷ ∈ J on both sides of (86), we finally arrive at

(µ̄∗)⊤C(v∗, u∗) = 0 and

0 ∈ ∂(w,b)Lρ(w
∗, b∗, v∗, u∗; ξ), 0 ∈ ∂(v,u)

(
Lρ(w

∗, b∗, v∗, u∗; ξ) + (µ̄∗)⊤C(v∗, u∗)
)
.

This completes the proof.
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