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Abstract. This paper proposes a convex majorant approach for training sparse neural networks4
by bilevel optimization where the upper level problem minimizes a smooth nonconvex function while5
the lower level problem minimizes a smooth nonconvex function with a nonsmooth convex group6
sparse regularizer over a box set for fixed sparse regularization hyperparameters. The convex ma-7
jorant function approximates the objective function of the lower level problem. We establish the8
relationship between the original bilevel optimization and the bilevel optimization with the convex9
majorant approach regarding global and local minimizers. Moreover, we use a smoothing function10
to approximate the convex majorant function, and derive the convergence of global minimizers to11
those of the corresponding nonsmooth bilevel problems with smoothing parameter converging to12
zero. A smoothing implicit function method is proposed to solve the smooth approximate bilevel13
optimization problem. Some numerical experiments including the tests on the data from machine14
learning repository show that the convex majorant approach performs better than the widely used15
Grid Search method, Random Search method and Bayesian optimization method.16
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1. Introduction. In this paper, we consider bilevel optimization for tuning hy-20

perparameters of L-layer sparse feed-forward neural networks with L being a positive21

integer. We divide the given data {(Xi, Y i) ∈ Rn×Rm, i = 1, · · · , N} into a training22

set {(Xi, Y i) ∈ Rn×Rm, i = 1, · · · , Ntr} and a validation set {(Xi, Y i) ∈ Rn×Rm, i =23

Ntr + 1, · · · , N}, where N = Ntr + Nva. Let W` ∈ Rn`×n`−1 , b` ∈ Rn` , α` ∈ Rn`−124

for ` = 1, · · · , L, where n0 = n and nL = m. The bilevel optimization involves the25

following functions:26

F (u) =
1

Nva

N∑
i=Ntr+1

‖WLσ(· · ·σ(W1X
i + b1) · · · ) + bL − Y i‖2,

H(u) =
1

Ntr

Ntr∑
i=1

‖WLσ(· · ·σ(W1X
i + b1) · · · ) + bL − Y i‖2,

Q(w;λ) =

L∑
`=1

n`−1∑
j=1

α`j‖(W`)·j‖,

27

where w = ((W1)>·1, · · · , (W1)>·n, · · · , (WL)>·nL−1
)> ∈ Rp, b = ((b1)>, · · · , (bL)>)> ∈28

Rs, u = (w>, b>)> ∈ Rq, λ = ((α1)>, · · · , (αL)>)> ∈ Rr with p =
L∑̀
=1

n`−1n`,29
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s =
L∑̀
=1

n`, r =
L∑̀
=1

n`−1, q = p + s, and σ : R → R is a twice continuously dif-30

ferentiable activation function. Here ‖ · ‖ denotes the Euclidean norm and σ(u) :=31

(σ(u1), · · · , σ(uq))
> for u ∈ Rq. The functions F and H are smooth nonconvex,32

while the function Q(·;λ) is nonsmooth convex for any fixed sparse regularization33

hyperparameter λ ≥ 0.34

We focus on the following bilevel optimization problem:35

(1.1) min
λ,u

F (u) s.t. λ ≥ 0, u ∈ S(λ),36

where S(λ) is the solution set of the lower level problem parameterized by λ:37

(1.2) min
u

H(u) +Q(w;λ) s.t. u ∈ Ω.38

Here Ω := [u, u] ⊆ Rq is a compact box set with u < u.39

The feed-forward neural network is an important kind of neural networks. Ac-40

cording to the universal approximation theorem [2, 11, 23, 37], a feed-forward neural41

network with a single hidden layer can approximate any continuous function to any42

desired accuracy as long as the activation function is not polynomial and there are43

sufficient hidden nodes. In many applications, the sparse neural networks have ad-44

vantages for saving storage cost and computation cost [14, 40, 42]. Moreover, sparse45

neural networks have simpler structures and fewer parameters compared to the fully46

connected feed-forward neural networks, which can avoid data overfitting problems47

[13, 40].48

The sparse regularization term Q(w;λ) in (1.2) helps training the neural network49

with weight matrices W`, ` = 1, · · · , L, that have few nonzero columns. This term is50

based on group sparse regularization which has been extensively employed in designing51

compact neural networks [14, 20, 38, 40, 42, 43]. Via this regularization technique,52

some columns of the weight matrices are forced to be zero simultaneously. Intuitively,53

this means that some connections of two neurons of two adjacent different levels are54

eliminated, which results in sparse neural networks (see [14, Figure 1] for an example).55

There is no doubt that the selection of hyperparamters is crucial in constructing56

the sparse neural networks (see [38, Fig. 4]). In most related papers, the hyper-57

parameters are set via the Grid Search method [14, 38], which may not yield an58

optimal selection in general. A lot of evidences show that the bilevel optimization59

model is efficient and promising for hyperparameter selection in machine learning60

[15, 18, 28, 34, 35]. Hence, in this paper we study the nonsmooth nonconvex bilevel61

optimization (1.1) for the selection of optimal hyperparameters.62

Since lower level problem (1.2) is nonsmooth and nonconvex, it is extremely chal-63

lenging to solve problem (1.1). One approach for bilevel optimization problems is to64

reformulate the bilevel optimization problem as a single level optimization problem65

with optimality conditions of the lower level optimization problem as constraints (see66

[12, Chapter 12]). However, it has been shown in [32, Example 1] and [33, Exam-67

ple 1.1] that when the lower level optimization problem is nonconvex, any optimal68

solution of the bilevel optimization problem may not even be a stationary point of69

the new single level optimization problem. Another method addressing nonconvex70

lower level problems is to use the value function, where the bilevel program is refor-71

mulated as a single level optimization problem via the value function, which can be72

solved via some existing algorithms for the nonconvex and nonsmooth optimization73

problems, see [24, 27, 41]. There are some other methods including the bounding74
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algorithm [33] and gradient method [29, 31]. Li and Yang [25] constructed a piecewise75

convex relaxation of the nonconvex lower level problem by adding a quadratic term.76

However, all of these works tend to be complicated and impractical for large-scale77

bilevel optimization problems. Moreover, the objective functions of the lower level78

problems in [24, 25, 27, 29, 31, 41] are assumed to be smooth, while problem (1.2)79

is nonsmooth. In [1, 34], the authors directly reformulated the bilevel optimization80

problems with nonsmooth and nonconvex lower level problems via optimality condi-81

tions of the lower level optimization problems, and employed smoothing methods to82

solve the resulting single level problems. In [30], the authors proposed a single-loop83

gradient-based algorithm by the Moreau envelope-based reformulation. However, as84

we have stated above, the equivalence between the original bilevel problem and the85

single level problem may fail due to the nonconvexity of the lower level problem.86

We construct the following strongly convex majorant function with fixed λ ∈87

Rr+, z ∈ Ω and γ > 0:88

G(u;λ, z) := H(z) +∇H(z)>(u− z) +
γ

2
‖u− z‖2 +Q(w;λ)89

for u ∈ Ω. Since H is twice continuously differentiable and Ω is a compact set, we
can choose γ such that ‖∇2H(·)‖ ≤ γ over Ω. The choice of γ guarantees that given
any fixed λ ∈ Rr+, z ∈ Ω,

G(u;λ, z) ≥ H(u) +Q(w;λ)

for u ∈ Ω. Now we consider the following problem:90

(1.3) min
λ,z,u

F (u) s.t. λ ≥ 0, z ∈ Ω, u = u(λ, z),91

where u(λ, z) is the unique solution of the following lower level problem:92

(1.4) min
u

G(u;λ, z) s.t. u ∈ Ω.93

The convex majorant approach (1.4) is based on the second order Taylor expansion,94

which is different from the piecewise convex relaxation in [25]. Note that although the95

objective function G(·;λ, z) of problem (1.4) is nonsmooth, it can have a smoothing96

function with the gradient consistency (see [7] for the definition). In particular, we97

propose a strongly convex smoothing function98

(1.5) Gµ(u;λ, z) := H(z) +∇H(z)>(u− z) +
γ

2
‖u− z‖2 +Qµ(w;λ)99

for u ∈ Ω, where µ > 0 is an arbitrarily small real number and100

(1.6) Qµ(w;λ) =

L∑
`=1

n`−1∑
j=1

α`j

√
‖(W`)·j‖2 + µ.101

For any fixed λ and z, we have102

(1.7)

lim
u→ũ,µ↓0

Gµ(u;λ, z) = G(ũ;λ, z) and conv

{
lim

u→ũ,µ↓0
∇Gµ(u;λ, z)

}
= ∂G(ũ;λ, z),103

where conv denotes the convex hull and ∂G(ũ;λ, z) is the Clarke subgradient of G at104

ũ [9].105
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The contributions of this paper are summarized as follows.106

(i) We propose a convex majorant approach (1.3) for problem (1.1) by replacing107

the objective function of the lower level problem (1.2) with a convex majorant func-108

tion G(·;λ, z). We then derive the equivalence between the global and local optimal109

solutions of problem (1.1) and problem (1.3) under the assumptions on feasibility.110

(ii) We use the smoothing function Gµ(·;λ, z) to define a smooth approximation111

problem of problem (1.3). We prove that any accumulation point of global optimal112

solutions of the smooth approximation problems is the global optimal solution of113

problem (1.3) as the smoothing parameter µ goes to zero.114

(iii) We propose a smoothing implicit function method to solve the smooth ap-115

proximate problem of problem (1.3), and derive the convergence of the method to a116

Clarke stationary point of the smooth approximate problem.117

This paper is organized as follows. In Section 2, we establish the relationship118

between problem (1.1) and problem (1.3) regarding global and local optimal solutions.119

We study the smooth approximation problem of problem (1.3) in Section 3. In Section120

4, we propose a smoothing implicit function method. Numerical results are presented121

in Section 5. Finally, concluding remarks are drawn in Section 6.122

Notation: Denote a closed ball in Rq with center u ∈ Rq and radius δ > 0 by123

B(u, δ). Let Iq be the identity matrix in Rq×q, and eq ∈ Rq be the vector with all124

elements equal to 1. Given function f : Rm → Rn, Jf(x) ∈ Rn×m denotes the125

Jacobian of f at x ∈ Rm. Let diag(v) ∈ Rq×q be the square matrix with elements of126

v ∈ Rq on the diagonal. Given a nonempty closed convex set S ⊂ Rq, NS(x) := {v :127

〈v, y − x〉 ≤ 0, ∀ y ∈ S} denotes the normal cone of S at x.128

2. Relationship between problems (1.1) and (1.3). In this section, we129

investigate the relationship between problem (1.1) and problem (1.3). We assume130

that the solution sets of problems (1.1) and (1.3) are nonempty. The following lemma131

indicates the relationship in regard to the feasibility. As for problem (1.1), (λ̃, ũ) is132

a feasible point of problem (1.1) if λ̃ ≥ 0, ũ ∈ Ω, and ũ solves lower level problem133

(1.2) globally for the fixed hyperparameter λ̃. The feasibility of problem (1.3) can be134

defined similarly.135

Lemma 2.1. If (λ̃, ũ) is a feasible point of problem (1.1), then (λ̃, ũ, ũ) is a feasible136

point of problem (1.3).137

Proof. It suffices to prove that G(ũ; λ̃, ũ) ≤ G(u; λ̃, ũ) for any u ∈ Ω. Note that138

G(ũ; λ̃, ũ) = H(ũ) +Q(w̃; λ̃) ≤ H(u) +Q(w; λ̃) ≤ G(u; λ̃, ũ),139

since ũ ∈ S(λ̃). The conclusion is obvious.140

From Lemma 2.1, the following two theorems give some properties of global and141

local optimal solutions of problem (1.3) related to problem (1.1).142

Theorem 2.2. Let (λ̃, z̃, ũ) be a global optimal solution of problem (1.3). Then143

the following statements hold.144

(i) F (ũ) ≤ F (u), for any feasible point u ∈ S(λ), λ ≥ 0 of problem (1.1).145

(ii) If (λ̃, ũ) is a feasible point for problem (1.1), then (λ̃, ũ) is a global optimal146

solution of (1.1).147

Proof. (i) According to Lemma 2.1, for any feasible point u ∈ S(λ), λ ≥ 0 of148

problem (1.1), (λ, u, u) is a feasible point of problem (1.3). Since (λ̃, z̃, ũ) is a global149

optimal solution of problem (1.3), we have F (ũ) ≤ F (u).150

(ii) Assume by contradiction that (λ̃, ũ) is not a global optimal solution of (1.1).151

Then there exists a feasible point (λ∗, u∗) of problem (1.1) such that F (u∗) < F (ũ).152

Due to Lemma 2.1, we know that (λ∗, u∗, u∗) is a feasible point of problem (1.3).153
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However, the fact that F (u∗) < F (ũ) contradicts the hypothesis that (λ̃, z̃, ũ) is a154

global optimal solution of (1.3).155

Theorem 2.3. Let (λ̃, ũ, ũ) be a local optimal solution of problem (1.3). If (λ̃, ũ)156

is a feasible point of problem (1.1), then (λ̃, ũ) is a local optimal solution of problem157

(1.1).158

Proof. Assume by contradiction that (λ̃, ũ) is not a local optimal solution of
problem (1.1). Then there exists a sequence of feasible points (λk, uk), k = 1, 2, · · · ,
of problem (1.1) satisfying that

lim
k→∞

(λk, uk) = (λ̃, ũ), and F (uk) < F (ũ), k = 1, 2, · · · .

Based on Lemma 2.1, we know that (λk, uk, uk), k = 1, 2, · · · , are feasible points of159

problem (1.3). Hence, for any neighborhood of (λ̃, ũ, ũ), we can find some (λk, uk, uk)160

in this neighborhood such that F (uk) < F (ũ), which incurs a contradiction with the161

hypothesis that (λ̃, ũ, ũ) is a local optimal solution of problem (1.3). Thus we have162

proved that (λ̃, ũ) is a local optimal solution of problem (1.1).163

Now we give a property of global optimal solutions of problem (1.1) related to164

problem (1.3).165

Theorem 2.4. Let (λ̃, ũ) be a global (or local) optimal solution of (1.1). Then166

(λ̃, ũ, ũ) is a global (or local) optimal solution of (1.3) on S1 := {(λ, u, u) : u ∈167

S(λ), λ ≥ 0}.168

Proof. We first prove the conclusion corresponding to the global optimal solution.169

Due to Lemma 2.1, it is obvious that (λ̃, ũ, ũ) is a feasible point of problem (1.3).170

According to the definition of S1, (λ∗, u∗) is a feasible point of problem (1.1) when171

(λ∗, u∗, u∗) ∈ S1. Then we have F (u∗) ≥ F (ũ) since (λ̃, ũ) is a global optimal solution172

of problem (1.1), which indicates that (λ̃, ũ, ũ) is a global optimal solution of problem173

(1.3) on S1. The conclusion corresponding to the local optimal solution can be proved174

like the proof for Theorem 2.3, which is omitted here.175

In the following, we investigate properties of the solution function u(·, ·) of prob-176

lem (1.4).177

Proposition 2.5. The solution function u : Rr+×Ω→ Rq is Lipschitz continuous178

with Lipschitz constant κ := max{2,
√
r
γ }, i.e., for any (λ1, z1), (λ2, z2) ∈ Rr+ × Ω,179

(2.1) ‖u(λ1, z1)− u(λ2, z2)‖ ≤ κ(‖z1 − z2‖+ ‖λ1 − λ2‖).180

Proof. Given (λ1, z1), (λ2, z2) ∈ Rr+ × Ω, denote u1 := u(λ1, z1) and u2 :=
u(λ2, z2). According to the first order optimality condition, we have〈

∇H(zi) + γ(ui − zi) + ξi, z − ui
〉
≥ 0, ∀ z ∈ Ω, i = 1, 2,

where ξ1 = ((ζ1)>, 0>)> ∈ Rq with ζ1 ∈ ∂Q(w1;λ1) and ξ2 = ((ζ2)>, 0>)> ∈ Rq181

with ζ2 ∈ ∂Q(w2;λ2). By setting z = u2 and z = u1 in the above two inequalities182

respectively and combining them, we have183 〈
∇H(z1)−∇H(z2) + γ(u1 − u2)− γ(z1 − z2) + ξ1 − ξ2, u2 − u1

〉
≥ 0,184

which is equivalent to185 〈
∇H(z1)−∇H(z2)− γ(z1 − z2) + ξ1 − ξ2, u2 − u1

〉
≥ γ‖u1 − u2‖2.186
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We analyze the three terms on the left hand one by one. Since H is twice continuously187

differentiable and ‖∇2H(z)‖ ≤ γ over compact Ω, we have188

(2.2)

〈
∇H(z1)−∇H(z2), u2 − u1

〉
≤ ‖∇H(z1)−∇H(z2)‖‖u1 − u2‖
≤ γ‖z1 − z2‖‖u1 − u2‖.

189

In addition, we also have190

(2.3)
〈
−γ(z1 − z2), u2 − u1

〉
≤ γ‖z1 − z2‖‖u1 − u2‖.191

Now we turn to the third term. Let wi = ((W i
1)>·1, · · · , (W i

1)>·n, · · · , (W i
L)>·nL−1

)> and192

λi = (((α1)i)>, · · · , ((αL)i)>)>, i = 1, 2. It is not difficult to see that193 〈
ξ1 − ξ2, u2 − u1

〉
=
〈
ζ1 − ζ2, w2 − w1

〉
=

L∑
`=1

n`−1∑
j=1

〈
(α`j)

1ζ1
`,j − (α`j)

2ζ2
`,j , (W

2
` )·j − (W 1

` )·j
〉
,

194

where ζi`,j ∈ ∂‖ · ‖((W i
` )·j), i = 1, 2. We can consider each item of the third term195

separately. For 1 ≤ j ≤ n`−1, we have196

(2.4)

〈
(α`j)

1ζ1
`,j − (α`j)

2ζ2
`,j , (W

2
` )·j − (W 1

` )·j
〉

=
〈
(α`j)

1ζ1
`,j − (α`j)

1ζ2
`,j + (α`j)

1ζ2
`,j − (α`j)

2ζ2
`,j , (W

2
` )·j − (W 1

` )·j
〉

=(α`j)
1
〈
ζ1
`,j − ζ2

`,j , (W
2
` )·j − (W 1

` )·j
〉

+
〈
((α`j)

1 − (α`j)
2)ζ2

`,j , (W
2
` )·j − (W 1

` )·j
〉

≤|(α`j)1 − (α`j)
2|‖ζ2

`,j‖‖(W 2
` )·j − (W 1

` )·j‖
≤|(α`j)1 − (α`j)

2|‖u1 − u2‖,

197

where the first inequality is from the convexity of the Euclidean norm and the second198

inequality is from the fact that ‖ζ2
`,j‖ ≤ 1. Combining (2.2), (2.3) and (2.4), we have199

(2.5)
‖u1 − u2‖ ≤ 2‖z1 − z2‖+

1

γ

L∑
`=1

n`−1∑
j=1

|(α`j)1 − (α`j)
2|

≤ κ(‖z1 − z2‖+ ‖λ1 − λ2‖),

200

where κ := max{2,
√
r
γ }. Hence (2.1) holds.201

3. Smooth approximation of problem (1.3). The nonsmoothness of (1.3)202

comes from the group sparse regularization term Q in the objective function of its203

lower level problem (1.4). In this paper, we use the smoothing function Qµ in (1.6)204

and Gµ in (1.5) as smoothing functions of Q and G, respectively, where µ > 0 is the205

smoothing parameter. Properties of the continuity and differentiability of smoothing206

function Qµ can be directly derived from some existing literature (see for example207

[36]), and readily extended to Gµ.208

We consider the following smooth approximation of problem (1.3):209

(3.1) min
λ,z,u

F (u) s.t. λ ≥ 0, z ∈ Ω, u = uµ(λ, z),210

where uµ(λ, z) is the unique solution of the following lower level problem:211

(3.2) min
u

Gµ(u;λ, z) s.t. u ∈ Ω.212
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Obviously, u(λ, z) = uµ(λ, z) when µ = 0. Since for any fixed µ ≥ 0, λ ≥ 0213

and z ∈ Ω, Gµ(·;λ, z) is a strongly convex function and Ω is a convex compact set,214

uµ(·, ·) is the unique solution of (3.2). In the following, we investigate properties of215

the solution function uµ(·, ·) of problem (3.2) for µ > 0.216

Proposition 3.1. For any µ > 0, the solution function uµ : Rr+ × Ω → Rq is217

Lipschitz continuous with Lipschitz constant κ := max{2,
√
r
γ }, which is independent218

of µ, i.e., for any (λ1, z1), (λ2, z2) ∈ Rr+ × Ω,219

(3.3) ‖uµ(λ1, z1)− uµ(λ2, z2)‖ ≤ κ(‖z1 − z2‖+ ‖λ1 − λ2‖).220

Proof. The proof can be directly derived following the proof of Proposition 2.5
with

ζi`,j =
(W i

` )·j√
‖(W i

` )·j‖2 + µ
,

and ‖ζi`,j‖ ≤ 1.221

Proposition 3.2. For any (λ̃, z̃, µ̃) ∈ Rr+ × Ω× [0, 1], we have222

(3.4) lim
(λ,z,µ)→(λ̃,z̃,µ̃)

uµ(λ, z) = uµ̃(λ̃, z̃).223

Proof. Since Gµ(u;λ, z) is continuous with respect to (λ, z, µ) and Ω is a compact224

set, we know that for the lower level problem (3.2), the solution set mapping denoted225

by Ŝ : Rr+ ×Ω× [0, 1] ⇒ Ω with Ŝ(λ, z, µ) = {uµ(λ, z)} is upper semicontinuous with226

respect to (λ, z, µ) according to [5, Proposition 4.4]. Since for any λ ∈ Rr+, z ∈ Ω, µ ∈227

[0, 1], Ŝ(λ, z, µ) is singleton, by the definition of upper semicontinuous multifunction228

[5, Section 4.1], we obtain the continuity of uµ(λ, z).229

The following proposition is based on Proposition 3.2, and will be used in the230

proof of Theorem 3.4.231

Proposition 3.3. If (λµ, zµ, uµ) is a feasible point of (3.1), then any accumula-232

tion point of (λµ, zµ, uµ) when µ ↓ 0 is a feasible point of (1.3).233

Theorem 3.4. If (λµ, zµ, uµ) is a global optimal solution of problem (3.1), then234

any accumulation point of (λµ, zµ, uµ) when µ ↓ 0 is a global optimal solution of235

problem (1.3).236

Proof. Let (λ∗, z∗, u∗) be an accumulation point of (λµ, zµ, uµ) when µ ↓ 0. Ac-237

cording to Proposition 3.3, (λ∗, z∗, u∗) is a feasible point of (1.3). Assume that there238

exists a feasible point (λ̃, z̃, ũ) of problem (1.3) such that F (ũ) < F (u∗). Due to the239

continuity of F , there exist δ1, δ2 such that for all u1 ∈ B(ũ, δ1) and u2 ∈ B(u∗, δ2),240

we have F (u1) < F (u2). Notice that the solution uµ(λ̃, z̃) of lower level problem (3.2)241

converges to ũ when µ ↓ 0, where (λ̃, z̃) is fixed. Letting µ̃ be sufficiently small such242

that ũµ̃ := uµ̃(λ̃, z̃) ∈ B(ũ, δ1) and uµ̃ ∈ B(u∗, δ2), we have F (ũµ̃) < F (uµ̃), which243

obviously contradicts the global optimality of (λµ̃, zµ̃, uµ̃).244

4. Smoothing implicit function method for problem (3.1). According245

to Theorems 2.2 and 2.3, the global (or local) optimal solutions of problem (1.3)246

correspond to the global (or local) optimal solutions of (1.1) under some assumptions.247

Further, due to Theorem 3.4, any accumulation point of global optimal solutions248

of problem (3.1) is the global optimal solution of problem (1.3) as the smoothing249

parameter µ goes to zero. Thus we focus on solving problem (3.1) with sufficiently250

small µ hereafter. For the ease of statement, we let y = (λ>, z>)> and omit subscript251

µ.252
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Obviously, problem (3.1) can be equivalently transformed to253

(4.1) min
y,u

F (u) s.t. y ∈ Rr+ × Ω, Φ(y, u) = 0,254

where Φ(y, u) := u − ΠΩ(u − τ(∇H(z) + γ(u − z) +∇uQµ(w;λ))) with fixed τ > 0,255

and ΠΩ : Rq → Ω is the projection operator.256

By substituting unique solution u(y) (subscript µ is omitted for brevity) into257

objective function F , problem (3.1) can be equivalently transformed to258

(4.2) min
y

F̃ (y) s.t. y ∈ Rr+ × Ω,259

where F̃ (y) := F (u(y)).260

4.1. Smoothing approximation of problem (4.1). Since operator ΠΩ is not261

differentiable, we use the smoothing function proposed in [4] to approximate Φ, and262

consider263

(4.3) min
y,u

F (u) s.t. y ∈ Rr+ × Ω, Φν(y, u) = 0,264

where Φν is a smoothing function of Φ with smoothing parameter ν > 0. The detailed265

formulation of Φν can be found in Appendix.266

According to Lemma 7.3(iii) and implicit function theorem, there exists a unique267

solution denoted by uν(y) to Φν(y, u) = 0 for any fixed y ∈ Rr+ × Ω. Thus problem268

(4.3) can be equivalently transformed to269

(4.4) min
y

F̃ν(y) s.t. y ∈ Rr+ × Ω,270

where F̃ν(y) := F (uν(y)).271

Function Φν based on the smoothing function in [4] enjoys impressive properties,272

which are presented as follows. Accordingly, Φ(y, u) = 0 and Φν(y, u) = 0 can have273

the same solution for a positive smoothing parameter ν.274

Proposition 4.1. For any fixed y ∈ Rr+ × Ω, we have275

(4.5) ‖Φ(y, uν(y))− Φν(y, uν(y))‖ ≤
√
q

2
ν,276

for any ν ∈ (0, 1]. Moreover, for any fixed y ∈ Rr+ × Ω, there is ν̃ such that277

(4.6) uν(y) = u(y) and Φ(y, uν(y)) = Φν(y, uν(y)) = 0,278

for any ν ∈ (0, ν̃].279

Proof. From Lemma 7.3(i), we can obtain (4.5). Then we prove (4.6). Denote280

φ̄(ỹ, ũ) := ũ− τφ(ỹ, ũ) for any (ỹ, ũ) ∈ Rr+ × Ω× Ω, where φ is defined in Appendix.281

Given any fixed y ∈ Rr+ × Ω, let I1 := {i : ui > φ̄i(y, u(y))}, I2 := {i : ui ≤282

φ̄i(y, u(y)) ≤ ui}, I3 := {i : ui < φ̄i(y, u(y))}, ρ1 = min{3, ui − φ̄i(y, u(y)) : i ∈ I1},283

ρ2 = min{3, φ̄i(y, u(y))− ui : i ∈ I3}. Denote284

(4.7) ν̃ = min{(ρ1/3)2, (ρ2/3)2}.285

In order to prove (4.6), it suffices to show that286

(4.8) ψiν(φ̄i(y, u(y))) = Π[ui,ui]
(φ̄i(y, u(y)))287
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holds for ν ∈ (0, ν̃] and i = 1, · · · , q. Actually, it is obvious that (4.8) holds for i ∈ I2.288

Next, for i ∈ I1, since ν̃ ≤ (ρ1/3)2 ≤ 1, we have289

φ̄i(y, u(y)) ≤ ui − ρ1 ≤ ui − 3
√
ν̃ ≤ ui − ν − 2

√
ν,290

for ν ∈ (0, ν̃]. According to Lemma 7.1(ii), (4.8) holds for i ∈ I1. Similarly, we can291

prove that (4.8) holds for i ∈ I3. Therefore, (4.8) holds for ν ∈ (0, ν̃] and i = 1, · · · , q.292

Proposition 4.2. If (yν , uν) is a global optimal solution of problem (4.3), then293

any accumulation point of (yν , uν) when ν ↓ 0 is a global optimal solution of problem294

(4.1).295

Proof. Let (y∗, u∗) be an accumulation point of (yν , uν) when ν ↓ 0. For the ease296

of statement, we do not take the subsequence in the proof. Firstly, we prove that297

(y∗, u∗) is feasible for problem (4.1). Let y = yν in (4.5). Noting that Φν(yν , uν) = 0298

for ν > 0, we have299

(4.9) ‖Φ(yν , uν)‖ = ‖Φ(yν , uν)− Φν(yν , uν)‖ ≤
√
q

2
ν.300

Letting ν ↓ 0 in (4.9), we have Φ(y∗, u∗)=0, which implies that u∗ = u(y∗) and301

(y∗, u∗) is feasible for problem (4.1). Then we show that (y∗, u∗) is a global optimal302

solution of problem (4.1). We prove this by contradiction. Assume that there exists303

a feasible point (ỹ, ũ) of problem (4.1) such that F (ũ) < F (u∗). Since (yν , uν) is a304

global optimal solution of problem (4.3), we have F (uν(ỹ)) ≥ F (uν). Letting y = ỹ305

and ν ↓ 0 in (4.5), we can obtain that lim
ν↓0

uν(ỹ) = ũ, which implies that F (ũ) ≥ F (u∗).306

This contradicts the foregoing assumption. So we have proved the conclusion.307

If y is a local optimal solution of (4.2), then it satisfies 0 ∈ ∂F̃ (y) + NRr+×Ω(y).308

Via [9, Theorem 2.6.6], the above inclusion can be transformed to309

(4.10) 0 ∈ (∂u(y))>∇F (u(y)) +NRr+×Ω(y).310

Nevertheless, (4.10) involves the subdifferential of implicit function u(·), which is kind311

of elusive. So we introduce the concept of a weak Clarke stationary point for problem312

(4.2). Let u = u(y). We call y ∈ Rr+ × Ω a weak Clarke stationary point of (4.2) if313

there exist V1 ∈ ∂uΦ(y, u) and V2 ∈ ∂yΦ(y, u) such that (y, u) satisfies that314

(4.11) 0 ∈ (−(V1)−1V2)>∇F (u(y)) +NRr+×Ω(y).315

Remark 4.3. Here we give the explicit form of ∂Φ(y, u) for (y, u) ∈ Rr+ × Ω× Ω.316

Define317

D(y, u) :=

{
diag(a) : ai ∈

 {1}, if ui − τφi(y, u) ∈ (ui, ui),
{0}, if ui − τφi(y, u) /∈ [ui, ui],
[0, 1], otherwise,

i = 1, · · · , q

}
,318

where φ is defined in Appendix. Using the chain rule, we can derive that319

(4.12)
∂uΦ(y, u) = {(τγ − 1)D + Iq + τD∇2

uQµ(w;λ) : D ∈ D(y, u)},
∂yΦ(y, u) = {τDJy∇uQµ(w;λ) + τD(0,∇2H(z)− γIq) : D ∈ D(y, u)}.

320

Remark 4.4. Actually, SΦ := {−(V1)−1V2 : V1 ∈ ∂uΦ(y, u), V2 ∈ ∂yΦ(y, u)}321

is an approximation of ∂u(y) in (4.10). For example, when Φ is continuously dif-322

ferentiable near (y, u), we can show that SΦ = ∂u(y). In fact, using [9, Propo-323

sition 2.2.4], we know that in this case, ∂Φ(y, u) = {JΦ(y, u)}, which indicates324
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that V1 = JuΦ(y, u) and V2 = JyΦ(y, u). Further, via the implicit function theo-325

rem, we know u(·) is continuously differentiable near y and ∂u(y) = {Ju(y)}, where326

Ju(y) = −(JuΦ(y, u))−1JyΦ(y, u) = −(V1)−1V2.327

On the other hand, y ∈ Rr+ × Ω is said to be a stationary point of problem (4.4)328

if it satisfies329

(4.13) 0 ∈ ∇F̃ν(y) +NRr+×Ω(y).330

Then we have the following proposition.331

Proposition 4.5. If yν is a stationary point of problem (4.4), then any accumu-332

lation point of yν when ν ↓ 0 is a weak Clarke stationary point of problem (4.2).333

Proof. Using the implicit function theorem, we have334

(4.14) ∇F̃ν(y) = −(JyΦν(y, uν(y)))>(JuΦν(y, uν(y)))−>∇F (uν(y)).335

Combining (4.14) with Lemma 7.3(ii), we can obtain the conclusion.336

4.2. Smoothing implicit function method. Motivated by Propositions 4.1,337

4.2, and 4.5, problem (4.4) is a satisfying approximation of problem (4.2) for ν suffi-338

ciently small. In what follows, we will design a smoothing method where ν will even-339

tually be small enough. The framework of the smoothing implicit function method is340

exhibited in Algorithm 4.1.341

Algorithm 4.1 Smoothing implicit function method

Require: Choose parameters ν0 ∈ (0, 1], ν̄ ∈ (0, ν0], δ1 > 0, δ2 ∈ (0, 1), initial point
y0 ∈ Rr+ × Ω, stepsize θ > 0, tolerances ε̄, εk ∈ (0, 1) for k = 0, 1, 2, · · · , and
maximum number of iterations kmax.

1: for k = 0, 1, 2, · · · do
2: Find uk such that ‖Φνk(yk, uk)‖ ≤ εk.
3: Find qk such that ‖(JuΦνk(yk, uk))>qk −∇F (uk)‖ ≤ εk.
4: Compute pk = −(JyΦνk(yk, uk))>qk.
5: Let

yk+1 = ΠRr+×Ω(yk − θpk).

6: If
∥∥∥yk −ΠRr+×Ω(yk − θpk)

∥∥∥ ≥ δ1ν
k, set νk+1 = νk; otherwise, choose νk+1 =

max{ν̄, δ2νk}.
7: If ‖yk+1 − yk‖ ≤ ε̄ or k = kmax, terminate, and return yk and uk.
8: end for

Note that {νk} in Algorithm 4.1 is lower bounded by ν̄ due to step 6, which342

guarantees that stepsize θ satisfying the assumptions for the convergence of Algorithm343

4.1 can be found (see Proposition 4.7 and Lemma 4.9). There exists a trade-off in344

choosing ν̄. Actually, due to Propositions 4.2 and 4.5, ν̄ should approach 0 in terms345

of smoothing approximations, which, however, will lead to very small stepsize θ. In346

numerical experiments, ν̄ is tuned empirically from a set of given parameters.347

The following assumption is about the boundedness of {λk}.348

Assumption 4.6. Let {yk} be the sequence generated by Algorithm 4.1. Assume349

that {λk} is contained in a convex compact set U .350

Now we give some notations. Since F is twice continuously differentiable over351

Ω, F and ∇F are Lipschitz continuous over Ω with Lipschitz constants `F and LF352
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respectively. Similarly,∇Qµ is Lipschitz continuous over U×Ω with Lipschitz constant353

denoted by LQ. Note that uk in step 2 of Algorithm 4.1 may not be in Ω. Nevertheless,354

due to Lemma 7.3(vi) and the boundedness of {εk}, there exists constant C > 0 such355

that {uk} ⊂ Ω̄ := [u−Ceq, u+Ceq]. Since the analysis involving Ω can be extended356

to Ω̄, we will assume that uk ∈ Ω in this paper for simplicity.357

Using Lemma 7.3, we can prove the following proposition.358

Proposition 4.7. For ν ∈ [ν̄, 1], there exists L̃ > 0 not related to ν such that359

(4.15) ‖∇F̃ν(y1)−∇F̃ν(y2)‖ ≤ L̃
∥∥y1 − y2

∥∥360

for any y1, y2 ∈ U × Ω.361

Proof. The Lipschitz continuity of∇F̃ν is clear from (4.14) and Lemma 7.3(iv)(v).362

Since ν is lower bounded by ν̄ > 0, L̃ is not related to ν by Lemma 7.3(iv).363

The following lemma shows that pk approximates ∇F̃νk(yk) well.364

Lemma 4.8. Let Assumption 4.6 hold. Assume that τγ < 1, γ > LQ, and365
∞∑
k=0

εk <∞ in Algorithm 4.1. Then there exists k̄1 > 0 and M̃ > 0 such that366

(4.16) ‖∇F̃νk(yk)− pk‖ ≤ M̃εk,367

for k ≥ k̄1.368

Proof. From Algorithm 4.1, we know that ν̄ ≤ νk ≤ ν0 for k ≥ 0. Let369

Jku := JuΦνk(yk, uνk(yk)), J̃ku := JuΦνk(yk, uk),

Jky := JyΦνk(yk, uνk(yk)), J̃ky := JyΦνk(yk, uk),

fk := ∇F (uνk(yk)), f̃k := ∇F (uk).

370

Due to Lemma 7.3(iv), there exists upper bound M1 > 0 for the norms of the above371

terms. Since ν̄ ≤ νk ≤ ν0 for k ≥ 0, from Lemma 7.3(iv)(v), there exists upper bound372

M2 > 0 for {‖(Jku)−1‖}, {‖(J̃ku)−1‖}, {|`uνk |} and {|`y
νk
|} as well.373

Using Lemma 7.3(vi), we know that ‖uνk(yk) − uk‖ ≤ εk
τ(γ−LQ) . Let vk be the374

solution to (Jku)>vk = fk and ṽk be the solution to (J̃ku)>ṽk = f̃k. Obviously,375

max{‖vk‖, ‖ṽk‖} ≤ M1M2 for k ≥ 0. Now we investigate ‖vk − ṽk‖. Due to Lemma376

7.3(v), we have377

‖Jku − J̃ku‖ ≤
`uνkεk

τ(γ − LQ)
, ‖fk − f̃k‖ ≤ LF εk

τ(γ − LQ)
.378

Since
∞∑
k=0

εk <∞, there exists constants k̄1, c̄1 > 0 such that
`u
νk
εk‖(Jku)−>‖
τ(γ−LQ) ≤ c̄1 < 1,379

for k ≥ k̄1. Due to [19, Theorem 7.2], for k ≥ k̄1, we have380

‖vk − ṽk‖ ≤
εk

τ(γ−LQ)

1−
`u
νk
εk‖(Jku)−>‖
τ(γ−LQ)

(LF ‖(Jku)−>‖+ `uνk‖v
k‖‖(Jku)−>‖)

≤ εk
τ(γ − LQ)(1− c̄1)

(LF ‖(Jku)−>‖+ `uνk‖v
k‖‖(Jku)−>‖)

≤M3εk,

381

where M3 := LFM2+M1(M2)3

τ(γ−LQ)(1−c̄1) .382
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Then we investigate ‖qk − vk‖. Actually, for k ≥ k̄1,383

‖qk − vk‖ =‖qk − ṽk + ṽk − vk‖
≤‖qk − ṽk‖+ ‖vk − ṽk‖
≤‖(J̃ku)−>(J̃ku)>(qk − ṽk)‖+ ‖vk − ṽk‖
≤‖(J̃ku)−>‖‖(J̃ku)>qk − f̃k‖+ ‖vk − ṽk‖
≤(M2 +M3)εk,

384

where the last equality follows from the fact that ‖(J̃ku)>qk − f̃k‖ ≤ εk.385

Finally, for k ≥ k̄1, we have386

‖∇F̃νk(yk)− pk‖ =‖(Jky )>vk − ((J̃ky )>qk)‖
=‖(Jky )>vk − (J̃ky )>vk + (J̃ky )>vk − (J̃ky )>qk‖
≤‖(Jky )>vk − (J̃ky )>vk‖+ ‖(J̃ky )>vk − (J̃ky )>qk‖
≤‖Jky − J̃ky ‖‖vk‖+ ‖J̃ky ‖‖vk − qk‖

≤
`y
νk
εk‖vk‖

τ(γ − LQ)
+ ‖J̃ky ‖‖vk − qk‖

≤M̃εk,

387

where the last but one inequality follows from Lemma 7.3(iv), and the final estimate388

uses M̃ := M1(M2)2

τ(γ−LQ) +M1M2 +M1M3.389

Lemma 4.9. Let assumptions of Lemma 4.8 hold. Assume that θ ≤ 1
L̃

in Algo-390

rithm 4.1, where L̃ is defined in Proposition 4.7. Then there exists k̄2 > 0 such that391

νk = ν̄, for k ≥ k̄2.392

Proof. Denote set K := {k : νk+1 = max{ν̄, δ2νk}}. It suffices to prove that set393

K is infinite. We prove this by contradiction. Suppose that K is finite. Then there394

exist ν̂ > ν̄ and k0 > 0 such that for k ≥ k0,395

(4.17) νk = ν̂ and ‖yk+1 − yk‖ ≥ δ1ν̂.396

From (4.15), we know that F̃ν̂ satisfies that397

(4.18) F̃ν̂(ya) ≤ F̃ν̂(yb) +∇F̃ν̂(yb)
>(ya − yb) +

L̃

2
‖ya − yb‖2398

for any ya, yb ∈ U × Ω. Due to Lemma 7.2(ii), we have

‖ΠRr+×Ω(ya)−ΠRr+×Ω(yb)‖2 ≤ (ya − yb)>(ΠRr+×Ω(ya)−ΠRr+×Ω(yb)).

Letting ya = yk − θpk and yb = yk in the above inequality, we can obtain that399

(4.19) ‖yk+1 − yk‖2 ≤ −θ(pk)>(yk+1 − yk).400

Let k̄2 = max{k0, k̄1} with k̄1 defined in Lemma 4.8. Substituting yk+1, yk into (4.18),401
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for k ≥ k̄2, we have402

F̃ν̂(yk+1)

≤F̃ν̂(yk) +∇F̃ν̂(yk)>(yk+1 − yk) +
L̃

2
‖yk+1 − yk‖2

=F̃ν̂(yk) + (∇F̃ν̂(yk)− pk)>(yk+1 − yk) + (pk)>(yk+1 − yk) +
L̃

2
‖yk+1 − yk‖2

≤F̃ν̂(yk) + (∇F̃ν̂(yk)− pk)>(yk+1 − yk)− 1

θ
‖yk+1 − yk‖2 +

L̃

2
‖yk+1 − yk‖2

≤F̃ν̂(yk) + ‖∇F̃ν̂(yk)− pk‖‖yk+1 − yk‖ − L̃

2
‖yk+1 − yk‖2

≤F̃ν̂(yk) +Mεk − L̃

2
‖yk+1 − yk‖2,

403

where the second inequality holds from (4.19), the third inequality holds from the fact404

that θ ≤ 1
L̃

, the last inequality follows from Lemma 4.8 and the boundedness of {yk},405

and constant M > 0 is constructed based on M̃ . So we obtain that406

(4.20) ‖yk+1 − yk‖2 ≤ 2

L̃
(F̃ν̂(yk)− F̃ν̂(yk+1) +Mεk),407

for k ≥ k̄2. Summing (4.20) for k = k̄2, k̄2 + 1, · · · , we have408

∞∑
k=k̄2

‖yk+1 − yk‖2 ≤ 2

L̃

F̃ν̂(yk̄2) +M

∞∑
k=k̄2

εk

 .409

Since
∞∑
k=0

εk < ∞, we know that lim
k→∞

‖yk+1 − yk‖ = 0, which contradicts (4.17). So410

we have proved the conclusion.411

Theorem 4.10. Let assumptions of Lemma 4.9 hold. Let (ỹ, ũ) be an accumula-412

tion point of sequence {(yk, uk)} generated by Algorithm 4.1. Then ỹ satisfies that413

(4.21) 0 ∈ ∇F̃ν̄(ỹ) +NRr+×Ω(ỹ),414

where ∇F̃ν̄(ỹ) = (−(JuΦν̄(ỹ, ũ))−1JyΦν̄(ỹ, ũ))>∇F (uν̄(ỹ)).415

Proof. According to the proof of Lemma 4.9, we have416

(4.22) lim
k→∞

‖yk −ΠRr+×Ω(yk − θpk)‖ = 0.417

Via Lemmas 4.8 and 4.9, we have418

(4.23) ‖∇F̃ν̄(yk)− pk‖ ≤ M̃εk,419

for k ≥ k̄2 with k̄2 defined in Lemma 4.9. By virtue of (4.23), (4.22) can be trans-
formed to

‖ỹ −ΠRr+×Ω(ỹ − θ∇F̃ν̄(ỹ))‖ = 0,

which is equivalent to (4.21). The explicit form of ∇F̃ν̄(ỹ) follows from (4.14). To420

show that ũ = uν̄(ỹ), we utilize Lemma 7.3(vi) and obtain421

(4.24) ‖uk − uν̄(yk)‖ ≤ εk
τ(γ − LQ)

,422

for k ≥ k̄2. Letting k →∞ in both sides of (4.24), we have ũ = uν̄(ỹ).423
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5. Numerical experiments. In this section, we will conduct numerical exper-424

iments on the feed-forward neural network. The synthetic data and real-life datasets425

from UCI machine learning repository [26] will be tested respectively.426

Algorithm 4.1 will be compared with the Grid Search method, the Random Search427

method and the Bayesian optimization method, where Random Search method (see428

[18, 30]) and Bayesian optimization method (see [3, 39]) are also widely used for hy-429

perparameter optimization in machine learning. The Grid Search method is to solve430

(1.2) for every grid point respectively and determine the best hyperparameter accord-431

ing to the validation error [34]. The Random Search method is basically the same432

strategy, except that the grid points are chosen randomly. To use Grid Search method433

and Random Search method, we denote α`j = a0 for ` = 1, 2 and j = 1, · · · , n`−1, and434

choose a0 from some given set (see [34]). The Bayesian optimization method used in435

this paper is from [3]. In Grid Search method, Random Search method and Bayesian436

optimization method, problem (1.2) with fixed λ is solved via ADADELTA [44].437

5.1. Tests on synthetic data. The synthetic data are randomly generated in438

similar way as used in [10, Section 5.1]. We consider bilevel optimization for tun-439

ing hyperparameters of 2-layer sparse feed-forward neural networks. We first ran-440

domly generate Xi ∼ N (ζ,Σ0Σ>0 ) with ζ = randn(n, 1) and Σ0 = randn(n, 1).441

The activation function σ is the sigmoid function denoted by σ(t) = 1
1+e−t , t ∈ R.442

Truth values of W ∗1 , W ∗2 and b1,∗, b2,∗ are randomly generated as follows. Generate443

W̄1 ∈ Rn1×n and W̄2 ∈ R1×n1 from the uniform distribution U(−1, 1), and choose444

index sets J1 ⊆ {1, · · · , n} of size |J1| and J2 ⊆ {1, · · · , n1} of size |J2| randomly. Let445

(W̄1)·j = 0 for j ∈ J1 and (W̄2)·j = 0 for j ∈ J2. Denote W ∗1 = W̄1 and W ∗2 = W̄2,446

and generate b1,∗, b2,∗ from the uniform distribution U(−1, 1). Then we generate447

Yi = W ∗2 σ(W ∗1X
i + b1,∗) + b2,∗ + Ỹi, i = 1, · · · , N̄ ,448

where Ỹi ∼ 0.05N (0, 1) is the noise. The synthetic data are divided into three groups449

indexed by integers Ntr, Nva and Nte. Specifically, {(Xi, Y i) : i = 1, · · · , Ntr} is the450

training group, {(Xi, Y i) : i = Ntr + 1, · · · , Ntr + Nva} is the validation group, and451

{(Xi, Y i) : i = Ntr + Nva + 1, · · · , N̄} is the test group. We set u = 20 ∗ eq and452

u = −20 ∗ eq.453

Denote the calculated solutions by W1, W2, and b1, b2. The test error is denoted
as

TestErr :=
1

Nte

N̄∑
i=Ntr+Nva+1

‖W2σ(W1X
i + b1) + b2 − Y i‖2.

The validation error is denoted as

ValErr :=
1

Nva

Ntr+Nva∑
i=Ntr+1

‖W2σ(W1X
i + b1) + b2 − Y i‖2.

We denote by Z0 the number of zero columns of W1 and W2. Denote Zc the number454

of zero columns that W ∗1 ,W
∗
2 and W1,W2 have in common. Here the columns of W1455

and W2 are taken as zero vectors if their Euclidean norms are less than 10−3.456

In the experiments, we let Ntr = d0.6N̄e and Nva = d0.2N̄e. The remaining data457

are set to be the test group. We consider nine combinations of (N̄ , n, n1, |J1|, |J2|)458

presented in Table 1.459

In the implementation of Algorithm 4.1, we set ν0 = 1, δ1 = 100, δ2 = 0.9, and460

εk = 0.1
k2 (ε0 = 0.1). We let α`j = 10−4 for ` = 1, 2 and j = 1, · · · , n`−1, and take the461
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Table 1: Datatype

D1 D2 D3
(500,50,10,10,5) (1000,100,40,30,10) (2000,200,40,30,10)

D4 D5 D6
(3000,300,50,40,10) (5000,500,100,80,40) (5000,1000,100,100,50)

D7 D8 D9
(10000,1000,300,200,100) (10000,2000,400,300,100) (10000,3000,500,600,200)

solution of (1.2) calculated via the ADADELTA algorithm as z0. The quasi-Newton462

method in [6] is employed in step 2, and qk is obtained by the conjugate gradient463

method. We let ε̄ = 10−5 and kmax = 500.464

We set µ and ν̄ among {10−5, 10−6, 10−7, 10−8}, and employ the setting with the465

lowest validation error. In order to determine parameter γ, we use the Matlab built-in466

solver fmincon to solve the following problem:467

(5.1) max
z

‖∇2H(z)‖2F s.t. z ∈ Ω,468

where ‖ · ‖F denotes the Frobenius norm. Denote by γ̃ the positive square root of469

optimal value of problem (5.1). Similarly, we can evaluate LQ, where we set U :=470

[10−4, 104]r. Then we let γ = 2 max{γ̃, LQ}, and τ = 1
2γ . For each setting of µ and471

ν̄, it is difficult to calculate L̃ in practice, so we can not designate stepsize θ directly.472

Motivated by [17], we choose stepsize θ from {10−5, 10−4, 10−3, 10−2, 10−1, 1}, and473

accept the one with the lowest validation error.474

Some numerical results about datasets D2 and D3 are exhibited in Fig. 1, where475

we can find that Algorithm 4.1 performs better when µ and ν̄ are smaller, and the476

performances are insensitive to the setting of µ and ν̄ when µ and ν̄ are smaller than477

10−6. In the implementations, the mini-batch technique [22] is employed to accelerate478

the computing of Algrithm 4.1, which leads to the oscillations in Fig. 1.479

In the Grid Search method, we choose hyperparameter a0 from set {10−k : k =480

−4, · · · , 4}. In the Random Search method, let a0 = 10−ω, and generate ω 10 times481

from the uniform distribution U(−4, 4). For both methods, the hyperparameter with482

the smallest validation error will be accepted. In the Bayesian optimization method,483

for ` = 1, 2 and j = 1, · · · , n`−1, we denote α`j = 10−ω
`
j , and search over the trans-484

formed variable ω`j , where the search space of ω`j is defined as the uniform distribution485

U(−4, 4).486

For every type of data, 10 examples are randomly generated, and the average487

results are exhibited in Table 2 and Fig. 2. Here we can see that Algorithm 4.1488

performs best in regard to test error and validation error, and the gap widens with489

the increase of the scale of the data. All methods yield sparse neural networks, and490

the networks trained via Algorithm 4.1 are sparser when the size is larger. The491

above numerical experiments are conducted on 2-layer neural networks which can be492

very wide (see datatypes D8 and D9). However, considering the partially difficult493

computations in each iteration (solving a nonlinear system via quasi-Newton method494

and a linear system via conjugate gradient method), Algorithm 4.1 is more suitable495

for wide but not very deep neural networks.496

Denote StaErr =
∥∥∥y −ΠRr+×Ω(y − θp)

∥∥∥, where y, p are obtained from the last497

iteration. The numerical results are presented in Table 3, where “Iter” denotes the498
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Fig. 1: Comparison of Algorithm 4.1 with varying µ and ν̄
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Fig. 2: Numerical results for synthetic data

average number of outer iterations, and “Time” denotes the average CPU time in499

seconds.500

5.2. Tests on real-life data. Now we conduct the experiments on the real-501

life datasets. These datasets are downloaded from UCI machine learning repository502

[26], including Higher Education Students Performance Evaluation Dataset (Student),503

Facebook Comment Volume Dataset (Facebook), Insurance Company Benchmark504
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Table 2: Numerical results for synthetic data

Alg TestErr ValErr Z0 Zc

D1

Alg. 4.1 0.0026 0.0022 6.3 4.1
Grid Search 0.0034 0.0028 6.5 4.1

Random Search 0.0031 0.0027 6.4 4.4
bayesopt 0.0028 0.0027 6.2 4.4

D2

Alg. 4.1 0.0043 0.0033 16.7 9.9
Grid Search 0.0056 0.0043 16.9 10.3

Random Search 0.0053 0.0042 17.2 10.2
bayesopt 0.0051 0.0048 16.2 9.8

D3

Alg. 4.1 0.0056 0.0046 19.2 12.2
Grid Search 0.0091 0.0084 18.5 12.2

Random Search 0.0097 0.0088 18.4 12.5
bayesopt 0.0084 0.0081 18.7 11.8

D4

Alg. 4.1 0.0126 0.0109 22.6 14.5
Grid Search 0.0251 0.0205 21.5 13.7

Random Search 0.0248 0.0211 21.1 13.9
bayesopt 0.0178 0.0169 22.4 13.2

D5

Alg. 4.1 0.0178 0.0171 53.5 37.1
Grid Search 0.0312 0.0254 51.3 35.2

Random Search 0.0309 0.0241 51.4 36.7
bayesopt 0.0249 0.0218 52.4 35.3

D6

Alg. 4.1 0.0251 0.0214 71.2 48.2
Grid Search 0.0419 0.0368 57.8 42.4

Random Search 0.0417 0.0375 56.4 44.2
bayesopt 0.0361 0.0287 59.7 42.1

D7

Alg. 4.1 0.0366 0.0301 143.1 100.9
Grid Search 0.0532 0.0489 123.6 86.1

Random Search 0.0544 0.0497 124.1 86.7
bayesopt 0.0455 0.0375 123.3 88.7

D8

Alg. 4.1 0.0419 0.0346 189.4 132.8
Grid Search 0.0653 0.0584 162.7 114.1

Random Search 0.0666 0.0597 161.6 112.2
bayesopt 0.0588 0.0454 162.4 118.2

D9

Alg. 4.1 0.0488 0.0367 360.4 275.4
Grid Search 0.0762 0.0685 312.2 231.1

Random Search 0.0755 0.0672 321.2 233.2
bayesopt 0.0674 0.0593 321.7 237.4

Dataset (Insurance) and BlogFeedback Dataset (Blog).505

We use the min-max normalization technique to rescale the data to [0, 1]. The506

settings of the algorithms and evaluation criteria are same as those in the last sub-507

section. The numerical results are exhibited in Table 4 and Fig. 3. Here we can508

find that Algorithm 4.1 performs better than Grid Search method, Random Search509

method and Bayesian optimization method, especially in terms of Student dataset510

and Facebook dataset.511
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Table 3: Numerical results for synthetic data

D1 D2 D3 D4 D5
StaErr 2.234e-06 4.162e-06 3.462e-06 1.181e-06 4.842e-06

Iter 303.4 305.8 321.6 311.4 348.5
Time 10.1 35.4 60.5 99.7 255.2

D6 D7 D8 D9
StaErr 9.467e-06 5.233e-06 8.462e-06 4.238e-06

Iter 309.1 343.2 356.8 355.5
Time 469.5 787.1 1449.9 2926.3

Table 4: Numerical results for real-life data

Dataset (N̄ ,m, n1, n) Alg TestErr ValErr Z0

Student (145,1,10,31)

Alg. 4.1 0.0603 0.1319 17.9
Grid Search 0.0739 0.2008 15.4

Random Search 0.0789 0.2106 15.2
bayesopt 0.0751 0.1713 15.8

Facebook (40949,1,10,53)

Alg. 4.1 0.1134 0.1458 4.8
Grid Search 0.1233 0.2501 3.4

Random Search 0.1167 0.2447 3.6
bayesopt 0.1198 0.1514 4.9

Insurance (5822,1,20,85)

Alg. 4.1 0.2269 0.2163 20.7
Grid Search 0.2419 0.2383 22.7

Random Search 0.2329 0.2363 22.5
bayesopt 0.2355 0.2214 22.3

Blog (52397,1,50,280)

Alg. 4.1 0.0119 0.0217 33.4
Grid Search 0.0193 0.0292 33.9

Random Search 0.0201 0.0298 33.1
bayesopt 0.0165 0.0265 34.4

6. Conclusion. In the bilevel optimization problem (1.1) for tuning hyperpa-512

rameters of sparse neural networks, lower level problem (1.2) is nonconvex and non-513

smooth, which makes the problems computationally intractable. By using the struc-514

ture of the objective function in (1.2), a convex majorant approach with smooth ap-515

proximations is proposed in this paper. In particular, we introduce a convex majorant516

function G(·;λ, z) to approximate the objective function of the lower level problem517

(1.2), and establish the relationship between the original bilevel optimization (1.1)518

and the bilevel optimization (1.3) with G(·;λ, z) regarding global and local minimiz-519

ers. Then we use smoothing function Gµ(·;λ, z) to approximate G(·;λ, z), and derive520

the convergence of global minimizers to those of problem (1.3) with smoothing pa-521

rameter µ converging to zero. The approximate bilevel optimization problem (3.1)522

with Gµ(·;λ, z) is solved via the smoothing implicit function method. The numerical523

experiments including the tests on the data from machine learning repository indicate524

that the convex majorant approach performs better than the Grid Search method,525

the Random Search method and the Bayesian optimization method.526

527
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Fig. 3: Numerical results for real-life data
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7. APPENDIX. Note that the nonsmoothness of Φ is due to projection oper-
ator ΠΩ. For any u ∈ Rq, from [4, equation (1.6)], we have

ΠΩ(u) = max{u− u, 0}+ u−max{u− u, 0},

where “max” has to be understood in componentwise fashion. Hence, the core of624

the smoothing method is to introduce a surrogate smoothing function of max{·, 0}625
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with some nice properties. In [4, Section 3.2], a smoothing function of max{·, 0} is626

proposed as follows:627

(7.1) ϕν(t) =



0, if t ≤ 0,

t2

2ν
, if 0 < t ≤ ν,

1

4
(t− ν)2 + t− 1

2
ν, if ν < t ≤ ν +

√
ν,

− 1

4
(t− ν − 2

√
ν)2 + t, if ν +

√
ν < t ≤ ν + 2

√
ν,

t, if t > ν + 2
√
ν,

628

where ν > 0.629

Using ϕν , a smoothing function of the projection operator ΠΩ can be defined as630

follows:631

(7.2) Ψν(u) = (ψ1
ν(u1), · · · , ψ2

ν(u2), · · · , ψqν(uq))
>,632

where, for any t ∈ R,633

(7.3) ψiν(t) = ϕν(ui − t) + t− ϕν(t− ui), i = 1, 2, · · · , q.634

Denote φ(y, u) := ∇H(z) + γ(u− z) +∇uQµ(w;λ). Then the smoothing function of635

Φ can be defined as636

(7.4) Φν(y, u) = u−Ψν(u− τφ(y, u)).637

Then we present some properties of smoothing functions from [4, Proposition 3.4],638

which are used in this paper.639

Lemma 7.1. For any fixed ν ∈ (0, 1], functions ψiν in (7.2), i = 1, 2, · · · , q, are640

continuously differentiable and satisfy the following properties:641

(i) |ψiν(t)−Π[ui,ui]
(t)| ≤ 1

2ν, for any t ∈ R.642

(ii) ψiν(t) = Π[ui,ui]
(t) if t ≤ ui − ν − 2

√
ν or ui ≤ t ≤ ui or t ≥ ui + ν + 2

√
ν.643

(iii) |(ψiν)′(t)| ≤ 1, for any t ∈ R, where (ψiν)′(t) denotes the derivative of ψiν at644

t.645

(iv) |ψiν(t1)− ψiν(t2)| ≤ |t1 − t2|, for any t1, t2 ∈ R.646

(v) There exists constant Liν such that, for any t1, t2 ∈ R, |(ψiν)′(t1)−(ψiν)′(t2)| ≤647

Liν |t1 − t2|. Moreover, there exists M i > 0 such that Liν ≤ Mi

ν for ν ∈ (0, 1].648

Before introducing the properties of Φν , we give some basic properties of the649

projection operator, which can be found in [16, Theorem 1.5.5].650

Lemma 7.2. Let Γ ⊂ Rs be a nonempty closed convex set. Then we have the651

following conclusions.652

(i) For any xa, xb ∈ Rs, ‖ΠΓ(xa)−ΠΓ(xb)‖ ≤ ‖xa − xb‖.653

(ii) For any xa, xb ∈ Rs, (ΠΓ(xa)−ΠΓ(xb))
>(xa − xb) ≥ ‖ΠΓ(xa)−ΠΓ(xb)‖2.654

Lemma 7.3. For any ν ∈ (0, 1], Φν is continuously differentiable over Rr+×Ω×Ω,655

and satisfies the following porperties:656

(i) ‖Φν(ỹ, ũ)− Φ(ỹ, ũ)‖ ≤
√
q

2 ν, for any (ỹ, ũ) ∈ Rr+ × Ω× Ω.657

(ii) lim
(y,u)→(ỹ,ũ),ν↓0

dist(JΦν(y, u), ∂Φ(ỹ, ũ)) = 0, for any (ỹ, ũ) ∈ Rr+ × Ω × Ω,658

where dist denotes the distance.659

(iii) JuΦν(ỹ, ũ) is invertible, for any (ỹ, ũ) ∈ Rr+ × Ω× Ω.660
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(iv) There exist constants bu, by, b̃uν > 0 such that for any (ỹ, ũ) ∈ U × Ω× Ω,

‖JuΦν(ỹ, ũ)‖ ≤ bu, ‖JyΦν(ỹ, ũ)‖ ≤ by, ‖(JuΦν(ỹ, ũ))−1‖ ≤ b̃uν ,

where U is a compact set introduced in Assumption 4.6. Moreover, for any 0 < c̃ < 1,661

there exists b̃u > 0 such that ‖(JuΦν(ỹ, ũ))−1‖ ≤ b̃u for (ỹ, ũ) ∈ U × Ω × Ω and662

ν ∈ [c̃, 1].663

(v) JuΦν(·, ·), JyΦν(·, ·) and (JuΦν(·, ·))−1 are Lipschitz continuous over U ×Ω×664

Ω, i.e., there exist constants `uν , `
y
ν ,

˜̀u
ν such that for any (y1, u1), (y2, u2) ∈ U ×Ω×Ω,665

we have666

‖JuΦν(y1, u1)− JuΦν(y2, u2)‖ ≤ `uν‖(y1, u1)− (y2, u2)‖,
‖JyΦν(y1, u1)− JyΦν(y2, u2)‖ ≤ `yν‖(y1, u1)− (y2, u2)‖,

‖(JuΦν(y1, u1))−1 − (JuΦν(y2, u2))−1‖ ≤ ˜̀u
ν‖(y1, u1)− (y2, u2)‖.

667

Moreover, there exists M` > 0 such that `uν ≤ M`

ν and `yν ≤ M`

ν .668

(vi) Assume that τγ < 1 and γ > LQ, where LQ is the Lipschitz constant of ∇Qµ669

over U × Ω. Given any ν ∈ [0, 1] and ỹ ∈ U × Ω,670

‖Φν(ỹ, u1)− Φν(ỹ, u2)‖ ≥ τ(γ − LQ)‖u1 − u2‖671

for any u1, u2 ∈ Ω.672

Proof. The continuous differentiability of Φν is due to Lemma 7.1. Conclusion673

(i) is a simple consequence of Lemma 7.1(i), and conclusion (ii) is from the gradient674

consistency of smoothing functions.675

(iii) Given any ỹ ∈ Rr+×Ω, we have Juφ(ỹ, ũ) = γIq +∇2
uQµ(w̃; λ̃) for any ũ ∈ Ω.676

From [16, Proposition 2.3.2], φ(ỹ, ·) is strongly monotone over Ω. By virtue of a677

proof similar to that of [8, Proposition 4.2] and Lemma 7.1(iii), we can obtain the678

conclusion.679

(iv) From the compactness of U × Ω × Ω, we can find that JuΦν and JyΦν are680

bounded over U × Ω × Ω. Bounds bu and by are not related to ν because of Lemma681

7.1(iii). Now we prove the boundedness of (JuΦν(·, ·))−1. Let A = JuΦν(ỹ, ũ). Using682

[21, Example 5.6.6], we can prove that683

‖A−1‖ =
1

σq(A)
≤ (σ1(A))q−1

σ1(A) · · ·σq(A)
=
‖A‖q−1

|det(A)|
,684

where σk(A), k = 1, · · · , q, denotes the k-th largest singlular value of A. Since685

U×Ω×Ω is compact, there exists some (ŷ, û) ∈ U×Ω×Ω such that |det(JuΦν(ŷ, û))| ≤686

|det(JuΦν(ỹ, ũ))| for any (ỹ, ũ) ∈ U × Ω × Ω. Denote b̃uν := (bu)q−1

| det(JuΦν(ŷ,û))| . Noting687

that bu is the upper bound for ‖JuΦν(·, ·)‖, we have ‖(JuΦν(ỹ, ũ))−1‖ ≤ b̃uν for (ỹ, ũ) ∈688

U ×Ω×Ω. Then we prove the other conclusion. Let g(ỹ, ũ, ν) = |det(JuΦν(ỹ, ũ))| for689

(ỹ, ũ, ν) ∈ U ×Ω×Ω× [c̃, 1]. From the definition of ϕν(t) in (7.1), we know that g is690

continuous over compact set U×Ω×Ω×[c̃, 1]. So there exists (ŷ, û, ν̂) ∈ U×Ω×Ω×[c̃, 1]691

such that 0 < g(ŷ, û, ν̂) ≤ g(ỹ, ũ, ν) for any (ỹ, ũ, ν̃) ∈ U × Ω × Ω × [c̃, 1]. Denote692

b̃u := (bu)q−1

| det(JuΦν̂(ŷ,û))| . Then we have ‖(JuΦν(ỹ, ũ))−1‖ ≤ b̃u for (ỹ, ũ) ∈ U × Ω × Ω693

and ν ∈ [c̃, 1].694

(v) From Lemma 7.1(iii)(iv)(v) and the compactness of U × Ω × Ω, we can find695

that JuΦν and JyΦν are Lipschitz continuous over U × Ω× Ω, and constant M` > 0696
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is constructed from M i in Lemma 7.1(v). Thus it suffices to prove that (JuΦν(·, ·))−1697

is Lipschitz continuous over U × Ω× Ω. Let Jku = JuΦν(yk, uk), k = 1, 2. Actually,698

‖(J1
u)−1 − (J2

u)−1‖ =‖(J2
u)−1(J1

u − J2
u)(J1

u)−1‖
≤‖(J2

u)−1‖‖J1
u − J2

u‖‖(J1
u)−1‖

≤(b̃uν )2`uν‖(y1, u1)− (y2, u2)‖.
699

Letting ˜̀u
ν := (b̃uν )2`uν , we can prove the conclusion.700

(vi) We firstly show that the conclusion holds with ν = 0. Actually, from Φ0 = Φ,701

we have702

‖Φ(ỹ, u1)− Φ(ỹ, u2)‖
≥‖u1 − u2‖ − ‖ΠΩ(u1 − τφ(ỹ, u1))−ΠΩ(u2 − τφ(ỹ, u2))‖
≥‖u1 − u2‖ − ‖(u1 − τφ(ỹ, u1))− (u2 − τφ(ỹ, u2))‖
≥‖u1 − u2‖ − (1− τγ + τLQ)‖u1 − u2‖
=τ(γ − LQ)‖u1 − u2‖,

703

where the second inequality follows from Lemma 7.2(i). For the case that ν > 0, from704

Lemma 7.1(iii), note that ‖Ψν(ỹ, u1) − Ψν(ỹ, u2)‖ ≤ ‖u1 − u2‖ for any u1, u2 ∈ Rq.705

Hence, the conclusion for ν > 0 can be proved similarly.706
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