16

19

NN N
N o= O

NN NN
Tt e W

29

BILEVEL OPTIMIZATION WITH CONVEX MAJORANT
APPROACH FOR TRAINING SPARSE NEURAL NETWORKS

XINGBANG CUI* AND XIAOJUN CHEN'

Abstract. This paper proposes a convex majorant approach for training sparse neural networks
by bilevel optimization where the upper level problem minimizes a smooth nonconvex function while
the lower level problem minimizes a smooth nonconvex function with a nonsmooth convex group
sparse regularizer over a box set for fixed sparse regularization hyperparameters. The convex ma-
jorant function approximates the objective function of the lower level problem. We establish the
relationship between the original bilevel optimization and the bilevel optimization with the convex
majorant approach regarding global and local minimizers. Moreover, we use a smoothing function
to approximate the convex majorant function, and derive the convergence of global minimizers to
those of the corresponding nonsmooth bilevel problems with smoothing parameter converging to
zero. A smoothing implicit function method is proposed to solve the smooth approximate bilevel
optimization problem. Some numerical experiments including the tests on the data from machine
learning repository show that the convex majorant approach performs better than the widely used
Grid Search method, Random Search method and Bayesian optimization method.

Key words. Bilevel optimization, sparse regularization hyperparameter, convex majorant,
smoothing method

AMS subject classifications. 90C30, 90C33, 90C90

1. Introduction. In this paper, we consider bilevel optimization for tuning hy-
perparameters of L-layer sparse feed-forward neural networks with L being a positive
integer. We divide the given data {(X*,Y?) € R" x R™ i =1,---, N} into a training
set {(X4,Y") € R"xR™,i=1,---, Ny} and a validation set {(X*,Y?) € R*xR™,i =
Ny +1,--- N}, where N = Ny, 4+ Ny Let W, € ReXme-1 pf € R™ of € R™1
for £ =1,---, L, where ng = n and ny, = m. The bilevel optimization involves the
following functions:

N
Z HWLU("'U(W1Xi+bl)-..)+bL_YiHQ’
i=N¢p+1
1 _ |
H(u) = ﬁ Z ”WLU( : 'O'(Wle —|—b1) . ) _|_bL _ }/1”27
T =1

1

L ne—1

Qs \) =D > afll (W),

=1 j=1

where w = (W) -, (W), ,(W)T )T eRe, b= ((b)T,---,(b5)T)T €

‘nrp-—1

L
Rsa u = (wTvbT)T € qu A= ((al)Tv"' a(aL)T)T € R" with p = Zné—lnéa
=1

*School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China; Department
of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (cuixing-
bangsdu@126.com). The author is supported by Hong Kong Polytechnic University Post-doctoral
Fellowship.

TDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong
Kong (maxjchen@polyu.edu.hk). The author is supported by CAS-Croucher Funding Scheme for
Joint Laboratories “CAS AMSS-PolyU Joint Laboratory of Applied Mathematics”, Hong Kong Re-
search Council Grant PolyU15300123.

This manuscript is for review purposes only.


mailto:cuixingbangsdu@126.com
mailto:cuixingbangsdu@126.com
mailto:maxjchen@polyu.edu.hk

40

L L
s=>mnyr=>m_1,q9g=p+s and o : R — R is a twice continuously dif-

=1 =1
ferentiable activation function. Here || - || denotes the Euclidean norm and o(u) :=
(o(u1), - ,0(ug))" for u € R%. The functions F and H are smooth nonconvex,

while the function Q(-;A) is nonsmooth convex for any fixed sparse regularization
hyperparameter A > 0.
We focus on the following bilevel optimization problem:

(1.1) min  F(u) st. A>0, wueS\),

where S()\) is the solution set of the lower level problem parameterized by A:

(1.2) muin H(u) + Q(w; N) st. ue.

Here 2 := [u,u] C R? is a compact box set with u < @.

The feed-forward neural network is an important kind of neural networks. Ac-
cording to the universal approximation theorem [2, 11, 23, 37|, a feed-forward neural
network with a single hidden layer can approximate any continuous function to any
desired accuracy as long as the activation function is not polynomial and there are
sufficient hidden nodes. In many applications, the sparse neural networks have ad-
vantages for saving storage cost and computation cost [14, 40, 42]. Moreover, sparse
neural networks have simpler structures and fewer parameters compared to the fully
connected feed-forward neural networks, which can avoid data overfitting problems
[13, 40].

The sparse regularization term Q(wj; A) in (1.2) helps training the neural network
with weight matrices Wy, £ = 1,--- | L, that have few nonzero columns. This term is
based on group sparse regularization which has been extensively employed in designing
compact neural networks [14, 20, 38, 40, 42, 43]. Via this regularization technique,
some columns of the weight matrices are forced to be zero simultaneously. Intuitively,
this means that some connections of two neurons of two adjacent different levels are
eliminated, which results in sparse neural networks (see [14, Figure 1] for an example).

There is no doubt that the selection of hyperparamters is crucial in constructing
the sparse neural networks (see [38, Fig. 4]). In most related papers, the hyper-
parameters are set via the Grid Search method [14, 38], which may not yield an
optimal selection in general. A lot of evidences show that the bilevel optimization
model is efficient and promising for hyperparameter selection in machine learning
[15, 18, 28, 34, 35]. Hence, in this paper we study the nonsmooth nonconvex bilevel
optimization (1.1) for the selection of optimal hyperparameters.

Since lower level problem (1.2) is nonsmooth and nonconvex, it is extremely chal-
lenging to solve problem (1.1). One approach for bilevel optimization problems is to
reformulate the bilevel optimization problem as a single level optimization problem
with optimality conditions of the lower level optimization problem as constraints (see
[12, Chapter 12]). However, it has been shown in [32, Example 1] and [33, Exam-
ple 1.1] that when the lower level optimization problem is nonconvex, any optimal
solution of the bilevel optimization problem may not even be a stationary point of
the new single level optimization problem. Another method addressing nonconvex
lower level problems is to use the value function, where the bilevel program is refor-
mulated as a single level optimization problem via the value function, which can be
solved via some existing algorithms for the nonconvex and nonsmooth optimization
problems, see [24, 27, 41]. There are some other methods including the bounding

2
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algorithm [33] and gradient method [29, 31]. Li and Yang [25] constructed a piecewise
convex relaxation of the nonconvex lower level problem by adding a quadratic term.
However, all of these works tend to be complicated and impractical for large-scale
bilevel optimization problems. Moreover, the objective functions of the lower level
problems in [24, 25, 27, 29, 31, 41] are assumed to be smooth, while problem (1.2)
is nonsmooth. In [1, 34], the authors directly reformulated the bilevel optimization
problems with nonsmooth and nonconvex lower level problems via optimality condi-
tions of the lower level optimization problems, and employed smoothing methods to
solve the resulting single level problems. In [30], the authors proposed a single-loop
gradient-based algorithm by the Moreau envelope-based reformulation. However, as
we have stated above, the equivalence between the original bilevel problem and the
single level problem may fail due to the nonconvexity of the lower level problem.

We construct the following strongly convex majorant function with fixed A €
R%, z€ Qand v > 0:

Glus),2) i= H(2) + VH(2) (u = 2) + 2|lu— 2> + Quws \

for u € Q. Since H is twice continuously differentiable and 2 is a compact set, we
can choose 7 such that [|[V2H(-)|| < 7 over 2. The choice of v guarantees that given
any fixed A e R, z € Q,

G(u; A, z) > H(u) + Q(w; )
for u € 2. Now we consider the following problem:

(1.3) min  F(u) st. A>0, z€Q, u=u()z),

A, z,u
where u()\, z) is the unique solution of the following lower level problem:

(1.4) rrbin G(u; A, 2) st ue.

The convex majorant approach (1.4) is based on the second order Taylor expansion,
which is different from the piecewise convex relaxation in [25]. Note that although the
objective function G(+; A, z) of problem (1.4) is nonsmooth, it can have a smoothing
function with the gradient consistency (see [7] for the definition). In particular, we
propose a strongly convex smoothing function

(L5)  GulwA2) = H(2)+ VHE) (u=2)+ 2 llu— 2l + Qulw; )

for u € Q, where > 0 is an arbitrarily small real number and

L me—1
(1.6) QulwsX) =Y > alyJIl(We) 512 + g
=1 j=1
For any fixed A and z, we have
(1.7)
ui%rgt¢o Gu(u; A, z) = G(a; A, z) and  conv {ualgﬁw VG, (u; A, z)} = dG(u; A, 2),

where conv denotes the convex hull and 0G(@; A, z) is the Clarke subgradient of G at
@ [9].
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The contributions of this paper are summarized as follows.

(i) We propose a convex majorant approach (1.3) for problem (1.1) by replacing
the objective function of the lower level problem (1.2) with a convex majorant func-
tion G(+; A, z). We then derive the equivalence between the global and local optimal
solutions of problem (1.1) and problem (1.3) under the assumptions on feasibility.

(ii) We use the smoothing function G, (-; A, z) to define a smooth approximation
problem of problem (1.3). We prove that any accumulation point of global optimal
solutions of the smooth approximation problems is the global optimal solution of
problem (1.3) as the smoothing parameter u goes to zero.

(iii) We propose a smoothing implicit function method to solve the smooth ap-
proximate problem of problem (1.3), and derive the convergence of the method to a
Clarke stationary point of the smooth approximate problem.

This paper is organized as follows. In Section 2, we establish the relationship
between problem (1.1) and problem (1.3) regarding global and local optimal solutions.
We study the smooth approximation problem of problem (1.3) in Section 3. In Section
4, we propose a smoothing implicit function method. Numerical results are presented
in Section 5. Finally, concluding remarks are drawn in Section 6.

Notation: Denote a closed ball in R? with center u € R? and radius 6 > 0 by
B(u,6). Let I, be the identity matrix in R?*¢, and e, € R? be the vector with all
elements equal to 1. Given function f : R™ — R" Jf(z) € R™™ denotes the
Jacobian of f at x € R™. Let diag(v) € R?*? be the square matrix with elements of
v € R? on the diagonal. Given a nonempty closed convex set S C R?, Ng(x) := {v:
(v,y —x) <0, Vye S} denotes the normal cone of S at x.

2. Relationship between problems (1.1) and (1.3). In this section, we
investigate the relationship between problem (1.1) and problem (1.3). We assume
that the solution sets of problems (1.1) and (1.3) are nonempty. The following lemma
indicates the relationship in regard to the feasibility. As for problem (1.1), (A, @) is
a feasible point of problem (1.1) if A > 0, @ € Q, and @ solves lower level problem
(1.2) globally for the fixed hyperparameter A. The feasibility of problem (1.3) can be
defined similarly.

LEMMA 2.1. If (\, @) is a feasible point of problem (1.1), then (X, @i, @) is a feasible
point of problem (1.3). } .

Proof. Tt suffices to prove that G(u; \, @) < G(u; A\, @) for any u € Q. Note that

Gz N, i) = H(i) + Qi A) < H(u) + Q(w; A) < G(u A, 1),

since 4 € S(A). The conclusion is obvious. |

From Lemma 2.1, the following two theorems give some properties of global and
local optimal solutions of problem (1.3) related to problem (1.1).

THEOREM 2.2. Let (5\,2,&) be a global optimal solution of problem (1.3). Then
the following statements hold.

(i) F(u) < F(u), for any feasible point u € S(X\), A > 0 of problem (1.1).

(ii) If (A, @) is a feasible point for problem (1.1), then (\,u) is a global optimal
solution of (1.1).

Proof. (i) According to Lemma 2.1, for any feasible point u €
problem (1.1), (X, u,u) is a feasible point of problem (1.3). Since (X,
optimal solution of problem (1.3), we have F(a) < F(u).

(ii) Assume by contradiction that (A, @) is not a global optimal solution of (1.1).
Then there exists a feasible point (A*,u*) of problem (1.1) such that F(u*) < F(a).
Due to Lemma 2.1, we know that (A*,u*,u*) is a feasible point of problem (1.3).

4

S(A),A > 0 of
Z,u) is a global
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However, the fact that F(u*) < F(@) contradicts the hypothesis that (X, Z,4) is a
global optimal solution of (1.3). d

THEOREM 2.3. Let (N, 4, 4) be a local optimal solution of problem (1.3). If (X, )
is a feasible point of problem (1.1), then (X, @) is a local optimal solution of problem
(1.1).

Proof. Assume by contradiction that (X, ) is not a local optimal solution of
problem (1.1). Then there exists a sequence of feasible points (A*,u*), k =1,2,---,
of problem (1.1) satisfying that

lim (\*,w%) = (\, @), and F(u*) < F(a), k=1,2,---.

k—o0

Based on Lemma 2.1, we know that (A¥,u* u*), k = 1,2,---, are feasible points of
problem (1.3). Hence, for any neighborhood of (5\, @, 1), we can find some (AF, uF, u¥)
in this neighborhood such that F(u*) < F(%), which incurs a contradiction with the
hypothesis that (X, @, 1) is a local optimal solution of problem (1.3). Thus we have
proved that (A, @) is a local optimal solution of problem (1.1). d

Now we give a property of global optimal solutions of problem (1.1) related to
problem (1.3).

THEOREM 2.4. Let (X, @) be a global (or local) optimal solution of (1.1). Then
(A, @, @) s a global (or local) optimal solution of (1.3) on S1 = {(\u,u) : u €
S(A\),A >0},

Proof. We first prove the conclusion corresponding to the global optimal solution.
Due to Lemma 2.1, it is obvious that (5\,&,&) is a feasible point of problem (1.3).
According to the definition of Sy, (A\*,u*) is a feasible point of problem (1.1) when
(A*,u*, u*) € S1. Then we have F(u*) > F(a) since (), @) is a global optimal solution
of problem (1.1), which indicates that (\, @, @) is a global optimal solution of problem
(1.3) on S7. The conclusion corresponding to the local optimal solution can be proved
like the proof for Theorem 2.3, which is omitted here. O

In the following, we investigate properties of the solution function w(-,-) of prob-
lem (1.4).

PROPOSITION 2.5. The solution function u : Ry x {2 — R? is Lipschitz continuous

with Lipschitz constant k := max{2, %}, i.e., for any (A\',z1), (A%, 2%) € R%, x Q,

(2.1) lu(X!,21) — (W, 22| < s(ll2" = 22 + 1A =A%),

Proof. Given (A!,z1),(A?,2%) € R x Q, denote u' := u(A',z') and w? :=
u(A2, 2?). According to the first order optimality condition, we have

(VH() +~u' =2+ & 2—u')y>0,V2z€Q, i=1,2,
where ¢! = ((¢(1)7,07)7T € R with ¢! € 9Q(w*; A!) and €2 = ((¢3)T,07)T € R?
with (2 € 0Q(w?;\?). By setting z = u? and z = u! in the above two inequalities
respectively and combining them, we have
(VH(2") = VH(2?) + y(u' —u?) =q(z' = 2%) + € = ,u” —u') >0,

which is equivalent to

(VH(2') = VH(2?) = y(2' = 2) + € = €, u® —ul) > y]u’ — |,
5
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We analyze the three terms on the left hand one by one. Since H is twice continuously
differentiable and ||V2H (2)| < 7 over compact €2, we have

(VH(z') = VH(2*),u* —u') < | VH(z") — VH(Z?)||||u’ —u?||

(2.2) .

<qllet = 2t —u
In addition, we also have
(2.3) (=2 = 2%),u® —ul) <qllzt =22 Jut =P

Now we turn to the third term. Let w® = (W{)T,---, (WHI, -, (Wi)I and

A= (((aH))T, -+, ((@®))T)T, i =1,2. It is not difficult to see that

<§1 —52,71/2 _u1> — <C1 _ C27w2 _w1>
L mng—1

=D 0> (@) = (@) (WE) 5 — (W),

=1 j=1

T
‘nr— 1)

where ¢j ;€ 9| - [[(W}).;), i = 1,2. We can consider each item of the third term
separately. For 1 < j < ny_1, we have
(e Z’)lgélj_( D75 W) — (Wi)g)
< )¢, - ')1C122,j (a ) Cz; (a ﬁ)znga( ) - (W) )
(24) =(5) (¢ — By VD)5 — W) ) + (((af DG W)y — (Wi).g)
<[(aj)! = (a})” |HQ7]||H(W4) — (W) 4l
<[(a)" = ()|t =],

where the first inequality is from the convexity of the Euclidean norm and the second
inequality is from the fact that ||Cl?,j|| < 1. Combining (2.2), (2.3) and (2.4), we have

L ne—1

(25) lul —w?|| < 2ll2" = 22| + = ZZ o5)?|

Z 1 j=1
r(llzt = 22+ AT = A?])),

where k := max{2, %} Hence (2.1) holds. o

3. Smooth approximation of problem (1.3). The nonsmoothness of (1.3)
comes from the group sparse regularization term @ in the objective function of its
lower level problem (1.4). In this paper, we use the smoothing function @, in (1.6)
and G, in (1.5) as smoothing functions of @ and G, respectively, where p > 0 is the
smoothing parameter. Properties of the continuity and differentiability of smoothing
function @, can be directly derived from some existing literature (see for example
[36]), and readily extended to G,,.

We consider the following smooth approximation of problem (1.3):

(3.1) min  F(u) st. A>0, 2€Q, u=u,(A2),

A, Z,u
where u, (), z) is the unique solution of the following lower level problem:

(3.2) min = G, (u; A, 2) st. ue.
6
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Obviously, u(, z) = u, (A, 2z) when g = 0. Since for any fixed 4 > 0, A > 0
and z € Q, G,(-; A, 2) is a strongly convex function and Q is a convex compact set,
uy (-, -) is the unique solution of (3.2). In the following, we investigate properties of
the solution function (-, -) of problem (3.2) for p > 0.

PROPOSITION 3.1. For any p > 0, the solution function u, : R} x Q@ — RY is

Lipschitz continuous with Lipschitz constant k := max{2, g}, which is independent
of p, i.e., for any (A, 2'), (A%, 2%) e R, x Q,

(3-3) (A, 21) =, (A%, 22 < w(ll2h = 22 + AT =A%),

Proof. The proof can be directly derived following the proof of Proposition 2.5
with )
Ny,

W) 5117 + n
and 3,1l < 1. ~ 0
PROPOSITION 3.2. For any (X, Z, i) € R, x Q x [0, 1], we have

Cé,j =

(3.4) lim  w(\, 2) = ua(), 2).
Az = (3,2,0)

Proof. Since G, (u; A, z) is continuous with respect to (A, z, 1) and €2 is a compact
set, we know that for the lower level problem (3.2), the solution set mapping denoted
by S :R% x Q2 x [0,1] = Q with S(A, z, ) = {uu(A, 2)} is upper semicontinuous with
respect to (A, z, ) according to [5, Proposition 4.4]. Since for any A € R, 2 € Q, p €

[0, 1], S (A, z, p) is singleton, by the definition of upper semicontinuous multifunction
[5, Section 4.1], we obtain the continuity of u, (X, z). d

The following proposition is based on Proposition 3.2, and will be used in the
proof of Theorem 3.4.

PROPOSITION 3.3. If (A, 2y, uy) s a feasible point of (3.1), then any accumula-
tion point of (A, zu,u,) when pl 0 is a feasible point of (1.3).

THEOREM 3.4. If (Au, 24, u,) is a global optimal solution of problem (3.1), then
any accumulation point of (A, zu,u,) when p | 0 is a global optimal solution of
problem (1.3).

Proof. Let (A\*,2*,u*) be an accumulation point of (A, z,,u,) when p | 0. Ac-
cording to Proposition 3.3, (A\*, z*,u*) is a feasible point of (1.3). Assume that there
exists a feasible point (X, Z, ) of problem (1.3) such that F(@) < F(u*). Due to the
continuity of F', there exist 61,82 such that for all u! € B(@,d;) and u? € B(u*, d2),
we have F(u') < F(u?). Notice that the solution u,, (), 2) of lower level problem (3.2)
converges to « when p | 0, where (5\, Z) is fixed. Letting & be sufficiently small such
that @y = uz (X, 2) € B(4,601) and u; € B(u*,d2), we have F(4;) < F(ujz), which
obviously contradicts the global optimality of (Az, 2z, uj). d

4. Smoothing implicit function method for problem (3.1). According
to Theorems 2.2 and 2.3, the global (or local) optimal solutions of problem (1.3)
correspond to the global (or local) optimal solutions of (1.1) under some assumptions.
Further, due to Theorem 3.4, any accumulation point of global optimal solutions
of problem (3.1) is the global optimal solution of problem (1.3) as the smoothing
parameter 4 goes to zero. Thus we focus on solving problem (3.1) with sufficiently
small i hereafter. For the ease of statement, we let y = (AT, 2z7)T and omit subscript

.
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Obviously, problem (3.1) can be equivalently transformed to

(4.1) min  F(u) st.y e R xQ, ®(y,u) =0,
Yyou
where ®(y,u) = u —Ho(u — 7(VH(2) + v(u — 2) + V,Qu(w; X)) with fixed 7 > 0,
and Il : R? — Q) is the projection operator.
By substituting unique solution u(y) (subscript g is omitted for brevity) into
objective function F, problem (3.1) can be equivalently transformed to

(4.2) myin F(y) sty € R, xQ,

where F(y) := F(u(y)).

4.1. Smoothing approximation of problem (4.1). Since operator Ilg is not
differentiable, we use the smoothing function proposed in [4] to approximate ®, and
consider

(4.3) min  F(u) st.y e R xQ, &,(y,u) =0,

where @, is a smoothing function of ® with smoothing parameter v > 0. The detailed
formulation of ®, can be found in Appendix.

According to Lemma 7.3(iii) and implicit function theorem, there exists a unique
solution denoted by w,(y) to ®,(y,u) = 0 for any fixed y € R’, x Q. Thus problem
(4.3) can be equivalently transformed to

(4.4) min  F,(y) st.y e R xQ,
y

where F,(y) := F(u,(y)).

Function @, based on the smoothing function in [4] enjoys impressive properties,
which are presented as follows. Accordingly, ®(y,u) = 0 and ®,(y,u) = 0 can have
the same solution for a positive smoothing parameter v.

PROPOSITION 4.1. For any fized y € R’ x €, we have

(1.5 1905, 00 () — B0, )| <

for any v € (0,1]. Moreover, for any fived y € R', x €, there is U such that

(4.6) uy(y) = u(y) and ®(y, u,(y)) = Pu(y, un(y)) =0,

for any v € (0,7].

Proof. From Lemma 7.3(i), we can obtain (4.5). Then we prove (4.6). Denote
(g, a) := @ — 7¢(j, ) for any (§,1) € R} x Q x ©, where ¢ is defined in Appendix.
Given any fixed y € R} x Q, let Iy = {i : u; > ¢i(y,uy))}, Lo == {i : u; <
¢Z(y7u(y)) Sfﬂi}v I3 = {Z Sy < qbz(y,U(y))}, = min{gaﬂi - ¢2(y7u(y)) RS Il}v
p2 = min{3, ¢;(y, u(y)) —u; : i € I3}. Denote

(4.7) 7 =min{(p1/3)*, (p2/3)*}.

In order to prove (4.6), it suffices to show that

(4.8) Uy @iy, u(y))) = My, 7,0 (9i(y, u(y)))
8
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holds for v € (0,7] and ¢ = 1,--- ,¢q. Actually, it is obvious that (4.8) holds for i € I5.
Next, for i € I, since 7 < (p1/3)? < 1, we have

Gi(y,u(y)) <u; —p1 <wy —3V0 <wy —v— 2V,

for v € (0,7]. According to Lemma 7.1(ii), (4.8) holds for i € I;. Similarly, we can
prove that (4.8) holds for ¢ € I3. Therefore, (4.8) holds for v € (0,7] and i =1,--- ,¢.0

PROPOSITION 4.2. If (y,,u,) is a global optimal solution of problem (4.3), then
any accumulation point of (y,,u,) when v | 0 is a global optimal solution of problem

(4.1).

Proof. Let (y*,u*) be an accumulation point of (y,,u,) when v | 0. For the ease
of statement, we do not take the subsequence in the proof. Firstly, we prove that
(y*,u*) is feasible for problem (4.1). Let y = y,, in (4.5). Noting that ®,(y,,u,) =0
for v > 0, we have

(4.9) 1) | = 190 00) — o) < .

Letting v | 0 in (4.9), we have ®(y*,u*)=0, which implies that v* = wu(y*) and
(y*,u*) is feasible for problem (4.1). Then we show that (y*,u*) is a global optimal
solution of problem (4.1). We prove this by contradiction. Assume that there exists
a feasible point (7, @) of problem (4.1) such that F(4) < F(u*). Since (y,,u,) is a
global optimal solution of problem (4.3), we have F(u,(g)) > F(u,). Letting y = ¢
and v | 0in (4.5), we can obtain that 1;?(} u, (§) = @, which implies that F(@) > F(u*).

This contradicts the foregoing assumption. So we have proved the conclusion. O
If y is a local optimal solution of (4.2), then it satisfies 0 € OF(y) + Ny, xa(y)-
Via [9, Theorem 2.6.6], the above inclusion can be transformed to

(4.10) 0 € (Du(y)) " VF(u(y)) + Neg xa(y)-

Nevertheless, (4.10) involves the subdifferential of implicit function wu(-), which is kind
of elusive. So we introduce the concept of a weak Clarke stationary point for problem
(4.2). Let u = u(y). We call y € R%, x Q a weak Clarke stationary point of (4.2) if
there exist V7 € 0, 2(y,u) and V5 € 9,®(y,u) such that (y,u) satisfies that

(4.11) 0€ (—=(Vi)""Va) "VF(u(y)) + Ney xa(y).

Remark 4.3. Here we give the explicit form of 0®(y,u) for (y,u) € R, x Q x Q.

Define
S (yiaﬂi)v
¢[@zaa’b]7 ila"'vQ}v

where ¢ is defined in Appendix. Using the chain rule, we can derive that

2u®(y,u) = {(t7 — 1)D + I, + TDV2Q,(w; \) : D € D(y,u)},
Oy ®(y,u) = {TDJ,V,Qu(w; ) + 7D(0, VQH(z) —~I,): D € D(y,u)}.

{1}7 lf Uy _T¢i(y7u)
D(y,u) := {diag(a) ca; € {0}, if u; — 79 (y,u)
[0,1], otherwise,

(4.12)

Remark 4.4. Actually, Sp := {—(V1)"'Va : Vi € 0,®(y,u), Vo € 0,®(y,u)}
is an approximation of du(y) in (4.10). For example, when ® is continuously dif-
ferentiable near (y,u), we can show that S¢ = du(y). In fact, using [9, Propo-
sition 2.2.4], we know that in this case, 0®(y,u) = {J®(y,u)}, which indicates

9
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that V4 = J,®(y,u) and Vo = J,®(y,u). Further, via the implicit function theo-
rem, we know u(-) is continuously differentiable near y and du(y) = {Ju(y)}, where
July) = —(Ju®(y,w) "L, (y, u) = —(V1)"1Va.

On the other hand, y € R, x € is said to be a stationary point of problem (4.4)
if it satisfies

(4.13) 0 € VE,(y) + Nes xa(y)-

Then we have the following proposition.
PROPOSITION 4.5. Ify, is a stationary point of problem (4./), then any accumu-
lation point of y, when v | 0 is a weak Clarke stationary point of problem (/.2).
Proof. Using the implicit function theorem, we have

(4.14) VE(y) = —(Jy@u(y, us (9))) T (Ju®u (Y, w (1)) VE (us(y)).

Combining (4.14) with Lemma 7.3(ii), we can obtain the conclusion. ad

4.2. Smoothing implicit function method. Motivated by Propositions 4.1,
4.2, and 4.5, problem (4.4) is a satisfying approximation of problem (4.2) for v suffi-
ciently small. In what follows, we will design a smoothing method where v will even-
tually be small enough. The framework of the smoothing implicit function method is
exhibited in Algorithm 4.1.

Algorithm 4.1 Smoothing implicit function method

Require: Choose parameters v° € (0,1], 7 € (0,2°], §; > 0, 62 € (0,1), initial point
y? € R7 x €, stepsize § > 0, tolerances ¢, € (0,1) for k = 0,1,2,---, and
maximum number of iterations kyax.

1: for k=0,1,2,--- do
2:  Find u* such that ||®,«(y*, u)|| < e.
3. Find ¢* such that ||(J, @« (y*, u*)) T¢" — VE(uF)|| < e.
4. Compute p* = —(J, @, (y*, u)) T g~
5. Let
yk+1 — HRQXQ(yk _ opk)

If Hyk — g, xa(yF — 9pk)H > 0,0%, set vFt1 = vF; otherwise, choose vFt! =

@

max{7, Jov*}.
7. If [y — 4% < € or k = kpax, terminate, and return y* and u*.
8: end for

Note that {v*} in Algorithm 4.1 is lower bounded by 7 due to step 6, which
guarantees that stepsize 6 satisfying the assumptions for the convergence of Algorithm
4.1 can be found (see Proposition 4.7 and Lemma 4.9). There exists a trade-off in
choosing 7. Actually, due to Propositions 4.2 and 4.5, 7 should approach 0 in terms
of smoothing approximations, which, however, will lead to very small stepsize 6. In
numerical experiments, 7 is tuned empirically from a set of given parameters.

The following assumption is about the boundedness of {\*}.

ASSUMPTION 4.6. Let {y*} be the sequence generated by Algorithm 4.1. Assume
that {\¥} is contained in a conver compact set U.

Now we give some notations. Since F' is twice continuously differentiable over
Q, F and VF are Lipschitz continuous over {2 with Lipschitz constants {r and Lp

10
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respectively. Similarly, V@, is Lipschitz continuous over U x 2 with Lipschitz constant
denoted by Lg. Note that uy, in step 2 of Algorithm 4.1 may not be in Q. Nevertheless,
due to Lemma 7.3(vi) and the boundedness of {ey}, there exists constant C' > 0 such
that {ux} C Q:= [u— Ce,,u+ Ce,]. Since the analysis involving  can be extended
to Q, we will assume that u; € © in this paper for simplicity.

Using Lemma 7.3, we can prove the following proposition.

PROPOSITION 4.7. For v € [7,1], there exists L > 0 not related to v such that

(4.15) IVE,(y") = VEH)I < Ly — 2|

for any y',y% € U x Q.
Proof. The Lipschitz continuity of VF), is clear from (4.14) and Lemma 7.3(iv)(v).
Since v is lower bounded by 7 > 0, L is not related to v by Lemma 7.3(iv). O
The following lemma shows that p* approximates VF,«(y*) well.
LEMMA 4.8. Let Assumption 4.6 hold. Assume that 7y < 1, v > Lo, and

> efF < 00 in Algorithm 4.1. Then there exists k1 >0 and M > 0 such that
k=0

(4.16) IVE,«(y*) = p¥|| < Mey,
for k> k.
Proof. From Algorithm 4.1, we know that 7 < vk <0 for k> 0. Let

Jj: = Ju Py (ykauuk (yk))v quf = Ju Py (yk’uk)’
J; = Jyéyk(yk’uyk(yk)), jg]j qu)uk(ykvuk),
fk = VF(qu(yk))a f~k = VF(uk)

Due to Lemma 7.3(iv), there exists upper bound M; > 0 for the norms of the above
terms. Since # < v* <10 for k > 0, from Lemma 7.3(iv)(v), there exists upper bound
My > 0 for {[|(Z) 7 NI I €3]} and {[€).[} as well.

Using Lemma 7.3(vi), we know that |lu,x(y*) — u”| < ToTg) Let vF be the

solution to (J¥)Tv* = f* and ©* be the solution to (J*¥)ToF = f*. Obviously,
max{||v¥||, |5¥||} < My M, for k > 0. Now we investigate ||v¥ — @*|. Due to Lemma
7.3(v), we have

~ 0 €x N Lpeg
TE =I5l < =, IF* = F*l < =———-
I b= Ty W= 1)
. Xk . 7 Cpeall(IH T _ 2
Since Y €* < 0o, there exists constants ki, & > 0 such that Loy <c <1,
k=0 _
for k > k1. Due to [19, Theorem 7.2], for k > ki, we have
TG-Ia)
¥ = oM <T@ (L (5T + £ F 78T
Ry
€k k\—T w ),k E\—T
< —(Lpl||(J + L[0T (T
§M36k7
Ly Ma+M; (M)?

where M3 := TO—L) -

11
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Then we investigate ||¢* — v*||. Actually, for k > ki,

g™ — o¥|| =[lg" — 3% + o — o"||
<|lg* — ¥l + [jo* — |
<[NTE) TN T (@ = ")) + P = o)
<UD TN " = I+ [lo* — %))
<(My + Ms)ey,

where the last equality follows from the fact that (¥ Tk — fk|| < €.
Finally, for k£ > k1, we have

IVE,(y*) = p*Il =II(J) "v" = () ")
=I5 " = () Tk + (T To* = () T
<[ ToF = (T TR+ (T Tk = () Tl
<|[Jy = o™+ 1T 1" — ¥l
e |[o"]|
“7(v-Lq)

SMGk,

+ 1y lo* = |

where the last but one inequality follows from Lemma 7.3(iv), and the final estimate

uses M := %_ﬂ% + My My + M,y Ms. 0

LEMMA 4.9. Let assumptions of Lemma /.8 hold. Assume that 0 < % in Algo-
rithm 4.1, where L is defined in Proposition /.7. Then there exists ko > 0 such that
vk =0, for k> k.

Proof. Denote set K := {k : v**1 = max{p, d,0*}}. It suffices to prove that set
K is infinite. We prove this by contradiction. Suppose that K is finite. Then there
exist ¥ > v and kg > 0 such that for & > kg,

(4.17) v = and |lyFT — ¥ > 610

From (4.15), we know that F}, satisfies that

(415) Filya) < Fol) + VFoln) (s — ) + 5 0 —
for any yo,ys € U x Q. Due to Lemma 7.2(ii), we have

Mz <0 (Ya) — Mer xa(@e)1? < (ya — v6) T (Mry x0(Ya) — zr xa(w))-
Letting y, = y* — 6p* and y, = y* in the above inequality, we can obtain that
(4.19) Iyt =¥ I1? < —00") T (T = o).

Let ky = max{kq, k1 } with k; defined in Lemma 4.8. Substituting y**1, 4" into (4.18),
12
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for k > ko, we have

Fﬁ (yk—H)

<Foly) + VRN TG )+ S I P

=Fp (%) + (VE(") - ") T =5 + 0N T = b + %Hyk“ — ¥
<F(y*) + (VE(y") — ") T (" = oF) - %Ily’c+1 -y I? + %Hy’“+1 —y*|?
<Fp(y*) + IVE(y*) — p¥lllly* = %) - %Hyk+1 -y

i i
<Fp(yf) + Me® = Sy — o7,

where the second inequality holds from (4.19), the third inequality holds from the fact
that 6 < %, the last inequality follows from Lemma 4.8 and the boundedness of {y*},
and constant M > 0 is constructed based on M. So we obtain that

2 . -
(4.20) [y =y I1? < 2 (Fo(y") = Foy™*) + Meb),
for k > ko. Summing (4.20) for k = kg, ka + 1,---, we have

oo 2 _ _ oo
S =R < I Fy(y™)+M Y ).
k:EQ k:EQ

Since Y € < oo, we know that klim ly**1 — y*|| = 0, which contradicts (4.17). So
— 00

we have proved the conclusion. ]
THEOREM 4.10. Let assumptions of Lemma 4.9 hold. Let (,u) be an accumula-
tion point of sequence {(y*,u*)} generated by Algorithm j.1. Then § satisfies that

(4.21) 0 € VE5() + Ner xa(3),

where VFy(§) = (—(Ju®s(g,1) "1 T, @5 (7, 0) T VF(us (7).
Proof. According to the proof of Lemma 4.9, we have

(4.22) Jim 1y — Ty ca(y" — 09" = 0.
Via Lemmas 4.8 and 4.9, we have
(4.23) IVEs(y*) = p¥I| < Mey,

for k > ko with ky defined in Lemma 4.9. By virtue of (4.23), (4.22) can be trans-
formed to ~
19 — Mgy, xo(§ — OVEL(9))]| = 0,

which is equivalent to (4.21). The explicit form of VF,(§) follows from (4.14). To
show that 4 = uy(g), we utilize Lemma 7.3(vi) and obtain

4.24 b — up ()| < ——F——

(4.24) I ()l - Lq)

for k > ko. Letting k — oo in both sides of (4.24), we have @ = uy (7). 0
13
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5. Numerical experiments. In this section, we will conduct numerical exper-
iments on the feed-forward neural network. The synthetic data and real-life datasets
from UCI machine learning repository [26] will be tested respectively.

Algorithm 4.1 will be compared with the Grid Search method, the Random Search
method and the Bayesian optimization method, where Random Search method (see
[18, 30]) and Bayesian optimization method (see [3, 39]) are also widely used for hy-
perparameter optimization in machine learning. The Grid Search method is to solve
(1.2) for every grid point respectively and determine the best hyperparameter accord-
ing to the validation error [34]. The Random Search method is basically the same
strategy, except that the grid points are chosen randomly. To use Grid Search method
and Random Search method, we denote a? =qpfor{=1,2and j=1,--- ,my_1, and
choose ag from some given set (see [34]). The Bayesian optimization method used in
this paper is from [3]. In Grid Search method, Random Search method and Bayesian
optimization method, problem (1.2) with fixed A is solved via ADADELTA [44].

5.1. Tests on synthetic data. The synthetic data are randomly generated in
similar way as used in [10, Section 5.1]. We consider bilevel optimization for tun-
ing hyperparameters of 2-layer sparse feed-forward neural networks. We first ran-
domly generate X° ~ N((,%0%]) with ¢ = randn(n,1) and Xq = randn(n,1).
The activation function o is the sigmoid function denoted by o(t) = H%’ teR
Truth values of Wy, W5 and bY*,b%* are randomly generated as follows. Generate
Wy € R"*™ and Wy € RY™ from the uniform distribution #/(—1,1), and choose
index sets J1 C {1,--- ,n} of size |J1| and J5 C {1,--- ,n;} of size |J2| randomly. Let
(Wh).; =0 for j € J; and (Wa).; = 0 for j € Jo. Denote Wy = Wy and W5 = Wa,
and generate b>* b%* from the uniform distribution &(—1,1). Then we generate

Y, = Woo(WiX 4b5%) 46> +Y;, i=1,--- N,

where Y; ~ 0.05\ (0,1) is the noise. The synthetic data are divided into three groups
indexed by integers Ny, N, and Ny.. Specifically, {(X*, V) :i=1,---, Ny} is the
training group, {(X*,Y?%) :i = Ny + 1,--+ , Ng»o + Nyo ) is the validation group, and
{(X"Y?) : i = Ny + Nyg + 1, , N} is the test group. We set © = 20 * e, and
u = —20xeq,.

Denote the calculated solutions by Wi, Wa, and b', b2. The test error is denoted
as B
N
S Wao(WAX 40 + 07— Y72,
€ i=Nir+Nya+1

TestErr :=
t

The validation error is denoted as

Nir+Noya
> (Wao(WiX? + ')+ = V7%
1=Ny¢r+1

1
1Err :=
ValErr N

va

We denote by Zj the number of zero columns of W7 and W5. Denote Z, the number
of zero columns that W, W5 and Wy, Wy have in common. Here the columns of W3
and W, are taken as zero vectors if their Euclidean norms are less than 1073,

In the experiments, we let Ny, = [0.6N] and N,, = [0.2N]. The remaining data
are set to be the test group. We consider nine combinations of (N,n,ny,|Ji,|J2|)
presented in Table 1.

In the implementation of Algorithm 4.1, we set v° = 1, §; = 100, §; = 0.9, and
€ = %1 (0 = 0.1). We let af =10"*for/=1,2and j=1,--- ,n4_1, and take the
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Table 1: Datatype

D1 D2 D3
(500,50,10,10,5) (1000,100,40,30,10) (2000,200,40,30,10)
D4 D5 D6
(3000,300,50,40,10) (5000,500,100,80,40) (5000,1000,100,100,50)
D7 DS D9
(10000,1000,300,200,100) | (10000,2000,400,300,100) | (10000,3000,500,600,200)

solution of (1.2) calculated via the ADADELTA algorithm as z°. The quasi-Newton
method in [6] is employed in step 2, and ¢* is obtained by the conjugate gradient
method. We let € = 107° and kpax = 500.

We set 1 and 7 among {107°,107¢,10~7, 1078}, and employ the setting with the
lowest validation error. In order to determine parameter ~, we use the Matlab built-in
solver fmincon to solve the following problem:

(5.1) max |V2H(2)|% s.t. z € Q,

where || - || denotes the Frobenius norm. Denote by % the positive square root of
optimal value of problem (5.1). Similarly, we can evaluate L, where we set U :=
[107%4,10%]". Then we let v = 2max{9, Lo}, and 7 = % For each setting of p and
v, it is difficult to calculate L in practice, so we can not designate stepsize 6 directly.
Motivated by [17], we choose stepsize § from {107°,1074,1073,1072,1071,1}, and
accept the one with the lowest validation error.

Some numerical results about datasets D2 and D3 are exhibited in Fig. 1, where
we can find that Algorithm 4.1 performs better when y and 7 are smaller, and the
performances are insensitive to the setting of p and 7 when y and o are smaller than
107°. In the implementations, the mini-batch technique [22] is employed to accelerate
the computing of Algrithm 4.1, which leads to the oscillations in Fig. 1.

In the Grid Search method, we choose hyperparameter ag from set {107% : k =
—4,---,4}. In the Random Search method, let ag = 107%, and generate w 10 times
from the uniform distribution ¢ (—4,4). For both methods, the hyperparameter with
the smallest validation error will be accepted. In the Bayesian optimization method,
for { =1,2 and j =1,--- ,ng_1, we denote ocf = 10_“’5, and search over the trans-
formed variable wf, where the search space of wf is defined as the uniform distribution
U—4,4).

For every type of data, 10 examples are randomly generated, and the average
results are exhibited in Table 2 and Fig. 2. Here we can see that Algorithm 4.1
performs best in regard to test error and validation error, and the gap widens with
the increase of the scale of the data. All methods yield sparse neural networks, and
the networks trained via Algorithm 4.1 are sparser when the size is larger. The
above numerical experiments are conducted on 2-layer neural networks which can be
very wide (see datatypes D8 and D9). However, considering the partially difficult
computations in each iteration (solving a nonlinear system via quasi-Newton method
and a linear system via conjugate gradient method), Algorithm 4.1 is more suitable
for wide but not very deep neural networks.

Denote StaErr = Hy — HRQXQ(y — t‘)p)H, where y,p are obtained from the last
iteration. The numerical results are presented in Table 3, where “Iter” denotes the
15
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Fig. 2: Numerical results for synthetic data

average number of outer iterations, and “Time” denotes the average CPU time in
seconds.

5.2. Tests on real-life data. Now we conduct the experiments on the real-
life datasets. These datasets are downloaded from UCI machine learning repository
[26], including Higher Education Students Performance Evaluation Dataset (Student),
Facebook Comment Volume Dataset (Facebook), Insurance Company Benchmark
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Table 2: Numerical results for synthetic data

Alg TestErr | ValErr Zy Ze
Alg. 4.1 0.0026 | 0.0022 6.3 4.1
D1 Grid Search 0.0034 0.0028 6.5 4.1
Random Search | 0.0031 0.0027 6.4 4.4
bayesopt 0.0028 0.0027 6.2 4.4
Alg. 4.1 0.0043 | 0.0033 16.7 9.9
D9 Grid Search 0.0056 0.0043 16.9 10.3
Random Search | 0.0053 0.0042 17.2 10.2
bayesopt 0.0051 0.0048 16.2 9.8
Alg. 4.1 0.0056 | 0.0046 19.2 12.2
D3 Grid Search 0.0091 0.0084 18.5 12.2
Random Search | 0.0097 0.0088 18.4 12.5
bayesopt 0.0084 | 0.0081 18.7 11.8
Alg. 4.1 0.0126 | 0.0109 22.6 14.5
D4 Grid Search 0.0251 0.0205 21.5 13.7
Random Search | 0.0248 0.0211 21.1 13.9
bayesopt 0.0178 0.0169 22.4 13.2
Alg. 4.1 0.0178 | 0.0171 53.5 37.1
D5 Grid Search 0.0312 0.0254 51.3 35.2
Random Search | 0.0309 0.0241 51.4 36.7
bayesopt 0.0249 0.0218 52.4 35.3
Alg. 4.1 0.0251 | 0.0214 71.2 48.2
D6 Grid Search 0.0419 0.0368 57.8 42.4
Random Search | 0.0417 0.0375 56.4 44.2
bayesopt 0.0361 0.0287 59.7 42.1
Alg. 4.1 0.0366 | 0.0301 | 143.1 | 100.9
D7 Grid Search 0.0532 0.0489 | 123.6 86.1
Random Search | 0.0544 0.0497 | 124.1 86.7
bayesopt 0.0455 0.0375 | 123.3 88.7
Alg. 4.1 0.0419 | 0.0346 | 189.4 | 132.8
D8 Grid Search 0.0653 0.0584 | 162.7 | 114.1
Random Search | 0.0666 0.0597 | 161.6 | 112.2
bayesopt 0.0588 | 0.0454 | 162.4 | 118.2
Alg. 4.1 0.0488 | 0.0367 | 360.4 | 275.4
DY Grid Search 0.0762 0.0685 | 312.2 | 231.1
Random Search | 0.0755 0.0672 | 321.2 | 233.2
bayesopt 0.0674 0.0593 | 321.7 | 237.4

Dataset (Insurance) and BlogFeedback Dataset (Blog).

We use the min-max normalization technique to rescale the data to [0,1]. The
settings of the algorithms and evaluation criteria are same as those in the last sub-
section. The numerical results are exhibited in Table 4 and Fig. 3. Here we can
find that Algorithm 4.1 performs better than Grid Search method, Random Search
method and Bayesian optimization method, especially in terms of Student dataset
and Facebook dataset.
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Table 3: Numerical results for synthetic data

D1 D2 D3 D4 D5
StaErr | 2.234e-06 | 4.162e-06 | 3.462e-06 | 1.181e-06 | 4.842e-06
Iter 303.4 305.8 321.6 311.4 348.5
Time 10.1 354 60.5 99.7 255.2
D6 D7 D8 D9
StaErr | 9.467e-06 | 5.233e-06 | 8.462e-06 | 4.238e-06
Iter 309.1 343.2 356.8 355.5
Time 469.5 787.1 1449.9 2926.3

Table 4: Numerical results for real-life data

Dataset (N,m,ni,n) Alg TestErr | ValErr Z
Alg. 4.1 0.0603 | 0.1319 | 17.9
Grid Search 0.0739 | 0.2008 | 15.4
Random Search | 0.0789 0.2106 | 15.2
bayesopt 0.0751 0.1713 | 15.8
Alg. 4.1 0.1134 | 0.1458 4.8
Grid Search 0.1233 | 0.2501 3.4
Random Search | 0.1167 0.2447 3.6
bayesopt 0.1198 0.1514 | 4.9
Alg. 4.1 0.2269 | 0.2163 | 20.7
Grid Search 0.2419 | 0.2383 | 22.7
Random Search | 0.2329 0.2363 | 22.5
bayesopt 0.2355 | 0.2214 | 22.3
Alg. 4.1 0.0119 | 0.0217 | 334
Grid Search 0.0193 0.0292 | 33.9
Random Search | 0.0201 0.0298 | 33.1
bayesopt 0.0165 | 0.0265 | 34.4

Student (145,1,10,31)

Facebook | (40949,1,10,53)

Insurance | (5822,1,20,85)

Blog (52397,1,50,280)

6. Conclusion. In the bilevel optimization problem (1.1) for tuning hyperpa-
rameters of sparse neural networks, lower level problem (1.2) is nonconvex and non-
smooth, which makes the problems computationally intractable. By using the struc-
ture of the objective function in (1.2), a convex majorant approach with smooth ap-
proximations is proposed in this paper. In particular, we introduce a convex majorant
function G(+; A, z) to approximate the objective function of the lower level problem
(1.2), and establish the relationship between the original bilevel optimization (1.1)
and the bilevel optimization (1.3) with G(-; A, z) regarding global and local minimiz-
ers. Then we use smoothing function G, (+; A, z) to approximate G(-; A, z), and derive
the convergence of global minimizers to those of problem (1.3) with smoothing pa-
rameter p converging to zero. The approximate bilevel optimization problem (3.1)
with G, (-; A, 2) is solved via the smoothing implicit function method. The numerical
experiments including the tests on the data from machine learning repository indicate
that the convex majorant approach performs better than the Grid Search method,
the Random Search method and the Bayesian optimization method.
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Fig. 3: Numerical results for real-life data
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7. APPENDIX. Note that the nonsmoothness of ® is due to projection oper-
ator Ilg. For any u € R, from [4, equation (1.6)], we have

Mo (v) = max{u — u,0} + uv — max{u — u, 0},

where “max” has to be understood in componentwise fashion. Hence, the core of
the smoothing method is to introduce a surrogate smoothing function of max{-,0}
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with some nice properties. In [4, Section 3.2], a smoothing function of max{-,0} is
proposed as follows:

0, if t <0,
t2
—, ifo<t<uw,
2v
1 1
(7.1) eu(t) = Z(t—u)2+t—§u, ifv<t<v+o,
1
—Z(t—u—Zﬁ)2+t, ifv+v<t<v+2Vv,
t, if t > v+ 2,

where v > 0.
Using ¢,, a smoothing function of the projection operator Ilg can be defined as
follows:

(7.2) Uy (u) = (W (u), - W5 (uz), - i (ug)) T

where, for any ¢t € R,

(7.3) VL (t) = pu(u; — 1)+t — o (t =), i =1,2,--- ,q.

Denote ¢(y,u) := VH(2) + v(u — 2) + V,Qu(w; X). Then the smoothing function of
® can be defined as

(74) @u(ya u) =u- \I/u(u - T¢(ya u))

Then we present some properties of smoothing functions from [4, Proposition 3.4],
which are used in this paper.

LEMMA T7.1. For any fived v € (0,1], functions ¢ in (7.2), i = 1,2,--- ,q, are
continuously differentiable and satisfy the following properties:

(i) [ (t) = My, 7,1 ()] < 3v, for any t € R.

(i) Vi (t) =My, ) (t) if t <w; —v =2y oru; <t <T; ort > + v+ 2y/v.

(iii) |(¥1) (t)] < 1, for any t € R, where (1)) (t) denotes the derivative of V%, at

(iv) [ (tY) — L (2)| < |[tr — 2], for any t', 12 € R.

(v) There exists constant L!, such that, for any t*,t> € R, |(¢8)'(t) — () (t?)| <
Li|t* — 2|. Moreover, there exists M' > 0 such that L\, < - for v € (0,1].

Before introducing the properties of ®,, we give some basic properties of the
projection operator, which can be found in [16, Theorem 1.5.5].

LEMMA 7.2. Let ' C R® be a nonempty closed convex set. Then we have the
following conclusions.

(i) For any 24,z € R, |[Tp(za) — Tp (@) < [0 — 23]

(ii) For any .,y € R®, (p(x,) — Ur(2p)) " (24 — 25) > ||Ur(z4) — Or(zp)|)%

LEMMA 7.3. For anyv € (0,1], ®, is continuously differentiable over R7, x 2 xQ,
and satisfies the following porperties:

(i) 12.(5, @) — ®(§, @)[| < %v, for any (7,@) € R x @ x Q.

(i) lim dist(J @, (y,u),00(g, @) = 0, for any (y,4) € R x Q x Q,
(y7u)%(gaﬂ)7’/$0
where dist denotes the distance.

(iii) Ju @, (g, @) is invertible, for any (§,1) € R} x Q x Q.
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() There exist constants b*,bY,b% > 0 such that for any (§,4) € U x Q x €,
70 (G, @)l < b, (17, @0 (5, @) < 0%, [[(Ju®u(§. @)~ < by,

where U is a compact set introduced in Assumption 4.6. Moreover, for any 0 < ¢ < 1,
there exists b* > 0 such that ||(J,®,(7,a))" | < b* for (§,a) € U x Q x Q and
v e [él].

(v) Ju®,(,), Jy®,(-,-) and (J,®@,(-,))~* are Lipschitz continuous over U x € x
Q, i.e., there exist constants é}j,ﬁ;,fﬁ such that for any (y',ul), (y?,u?) € U x A x Q,
we have

1@y (y,u') = Ju®u (2, w?) || < Gl ul) = (2, w?)],
17y @0 (y,u) = Ty @y (%, u?) | < Iy ut) = (%, u?)l,
I(Tu®u (' u' )™ = (Ju®u (y?, w®) T < G ut) = (2, a?)])-

Moreover, there exists My > 0 such that £ < % and 0¥ < %

(vi) Assume that 7y < 1 and v > Lq, where Lg is the Lipschitz constant of VQ,,
over U x Q. Given any v € [0,1] and §j € U x ,

12, (5,u') = @u (G u?)|| = 7(y = Lg)||u' — ||

for any u', u? € Q.

Proof. The continuous differentiability of ®, is due to Lemma 7.1. Conclusion
(i) is a simple consequence of Lemma 7.1(i), and conclusion (ii) is from the gradient
consistency of smoothing functions. ~

(iii) Given any § € R, x Q, we have J,¢(3, @) = vIq+ V2Q,.(w; A) for any @ € €.
From [16, Proposition 2.3.2], ¢(g,-) is strongly monotone over 2. By virtue of a
proof similar to that of [8, Proposition 4.2] and Lemma 7.1(iii), we can obtain the
conclusion.

(iv) From the compactness of U x 2 x Q, we can find that J,®, and J,®, are
bounded over U x Q x Q. Bounds b* and bY are not related to v because of Lemma
7.1(iii). Now we prove the boundedness of (J,®,(-,-))"*. Let A = J,®,(7,4). Using
[21, Example 5.6.6], we can prove that

1 (01(A4))! |A]e~t

—1 _ =
A7 = 0q(A) = 01(A) - 0,(A) ~ [det(A)]’

where o1 (A), k = 1,---,q, denotes the k-th largest singlular value of A. Since
U xQx§)is compact, there exists some (g, ) € UxQx€ such that | det(J, @, (9,4))| <
- wyg—1
| det(J, D, (g, a))| for any (§,a) € U x Q x Q. Denote b¥ := W' Noting
that b* is the upper bound for || J,®, (-, )|, we have ||(J, @, (§,a@)) || < b for (§,a) €
U x Qx Q. Then we prove the other conclusion. Let g(g, @, v) = |det(J, P, (g, a))| for
(§,0,v) € U x Q xQx[¢1]. From the definition of ¢, () in (7.1), we know that g is
continuous over compact set UxQxQx[¢, 1]. So there exists (g, @, ) € UxQxQx|[é, 1]

such that 0 < g(g,4,7) < g(g,a,v) for any (g,a,7) € U x Q x Q x [¢,1]. Denote

puya—1 N > o
b = WW. Then we have [|(J,®,(7,a)) 7| < b* for (g,4) € U x Q x Q
and v € [¢,1].

(v) From Lemma 7.1(iii)(iv)(v) and the compactness of U x 2 x €2, we can find
that J,®, and J,®, are Lipschitz continuous over U x € x €, and constant M, > 0
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697 is constructed from M® in Lemma 7.1(v). Thus it suffices to prove that (J,®,(-,-))~!
698 is Lipschitz continuous over U x Q x Q. Let J¥ = J,®,(y*,u"), k = 1,2. Actually,

()™ = T~ =1 (o = T ) 7]
699 <) e = T2 )~
<Oyt ut) = (y*u?)|-
700 Letting £ := (b%)2¢%, we can prove the conclusion.
701 (vi) We firstly show that the conclusion holds with v = 0. Actually, from &y = ®,
702 we have
[®(g,u') — @7, u?)]|
>ut —w?|| = Mo (u' = 7¢(g,u')) — Mo (u® — 7¢(g,u))|
703 >t = | = [|(ut = 7(g,ut)) = (u? = TG, u?))|
>lut —w?|| = (1= 7y + 7Lg)|u' -’
=7(y — Lo)|u' —u?,

=

where the second inequality follows from Lemma 7.2(i). For the case that v > 0, from
Lemma 7.1(iii), note that ||, (g,u!) — ¥, (§,u?)|| < ||ul — u?| for any u',u? € RY.
06 Hence, the conclusion for v > 0 can be proved similarly. ]

9 =~
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