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NONCONVEX NONSMOOTH MULTICOMPOSITE OPTIMIZATION
AND ITS APPLICATIONS TO RECURRENT NEURAL NETWORKS

LINGZI JIN*, XIAO WANG', AND XIAOJUN CHEN?

Abstract. We consider a class of nonconvex nonsmooth multicomposite optimization prob-
lems where the objective function consists of a Tikhonov regularizer and a composition of multiple
nonconvex nonsmooth component functions. Such optimization problems arise from tangible appli-
cations in machine learning and beyond. To define and compute its first-order and second-order
d(irectional)-stationary points effectively, we first derive the closed-form expression of the tangent
cone for the feasible region of its constrained reformulation. Building on this, we establish its equiva-
lence with the corresponding constrained and £1-penalty reformulations in terms of global optimality
and d-stationarity. The equivalence offers indirect methods to attain the first-order and second-order
d-stationary points of the original problem in certain cases. We apply our results to the training
process of recurrent neural networks (RNNs).

Key words. Multicomposite optimization, tangent cone, first-order d-stationarity, second-order
d-stationarity, recurrent neural network

MSC codes. 49J52, 90B10, 90C26, 90C30

1. Introduction. In this paper, we consider the following unconstrained non-
convex nonsmooth optimization problem

p in W(0)+ A6
(P) min T(9) + All6]|°,
where A > 0, || | is the Euclidean norm, and the mapping ¥ : R" — R is defined by

\Il(e) = g(uly"' auL)
with uy = 9o(0) and ug := Yp_1(0,u1, -+ ,up—1), €=2,--,L,

for L + 1 continuous but possibly nonconvex nonsmooth component functions
Ypoq RPN RN =1 L and g:RM SR,

with Ny := 0 and Ny := Z§:1 Nj for all £ =1,...,L. Problem (P) covers a wide
range of applications in machine learning where @ refers to the network parameter, ¥
is the loss function and A||f]|? is the regularizer to guarantee the boundedness of the
solution set [21] and alleviate the overfitting [27] for (P).

In [9], Cui et al. present a novel deterministic algorithmic framework that enables
the computation of a d-stationary point of the empirical deep neural network training
problem formulated as a multicomposite optimization problem. The model (P) differs
from the model (2.1)-(2.2) of [9] in two aspects. The first difference is that we unify
parameters {0, ...,0r_1} (corresponding to {z1,..., 21} in [9]) as € since the process
of selecting 6,_1 from 6 can be achieved by ,_1, which facilitates the sharing of
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2 L. JIN, X. WANG, AND X. CHEN

parameters across layers simultaneously. Secondly, we explicitly articulate the infor-
mation transmission across multiple layers (i.e. dependence of ¥y—_1 on ug, ..., us—2),
which is widely used in network structure, such as RNN [13] and shortcut in Resnet.
In [9] it assumes that g only depends on wuy and v,_; only depends on (6, up_1).
Although ¥ in (P) can be reorganized into W(0) = g(-) o ¢r,—1(6,-) o - - - 0 9hg(6) with
some functions g, {1} coinciding the formulation (2.1)-(2.2) in [9] if neglecting the
first difference, it can be found that the required number of auxiliary variables un-
der this decomposition is much larger than Nz. We illustrate the differences by an
example of RNNs in Remark 4.1 with Figure 1. Thus, model (P) encompasses the
formulation (2.1)-(2.2) presented in [9].

Directly solving (P) by SGD-type methods (SGDs) is common in computer sci-
ence. However, the automatic differentiation (AD), the key of SGDs, based on chain
rules fails for the subdifferential of ¥ at a nondifferentiable point 6 [4]. To the best
of our knowledge, existing algorithms that directly solve unconstrained nonconvex
nonsmooth problem (P) with rigorous convergence analysis can be roughly separated
into two groups. One combines (S)GDs with smoothing techniques aiming at (approx-
imate) Clarke stationary points [7, 20, 31]. Another approach constructs advanced
AD algorithms based on chain rules for some generalized subdifferentials. The latter
further branches into two distinct paths. Along the first path Nesterov [23] utilizes the
chain rule of directional derivatives to define lexicographic differentiation and evalu-
ate lexicographic subdifferential [2, 18]. However, the nice properties of lexicographic
subdifferential [18, 23] seem to be mostly applied in sensitivity analysis and have not
helped to develop an algorithm converging to a stationary point defined by lexico-
graphic subdifferential or a d-stationary point. Moreover, it is mentioned in [3] that
the AD method based on lexicographic differentiation is incompatible with existing
AD frameworks. Therefore, Bolte and Pauwels [4] follow a path of conservative field,
which is a generalization of Clarke subdifferential. Further study establishes conver-
gence of SGDs in the sense of conservative field stationarity, which can be improved to
Clarke stationarity under certain conditions. More references can be referred to [28].
From the existing literature, directly solving (P) may only be able to find a Clarke
stationary point if there is no special structure, such as weak convexity [19] and weak
concavity [1].

However, in general, Clarke stationarity may be an overly lenient condition in
contrast with d-stationarity [11]. On the other hand, the d-stationary points of mul-
ticomposite optimization (P) are too complicated to calculate directly (Proposition
3.4). Therefore, a more practical approach is to reformulate (P) to derive a model
with easily computable d-stationary points, while establishing their relationship in
terms of d-stationarity. In [10, Section 9.4.2], the equivalence between (P) with L =1
and its /1-penalty form in d-stationarity is established under the premise of feasibility.
In [9], a one-sided relation is obtained for simplified (P) with L > 1 and its ¢;-penalty
form, which provides the algorithm for calculating d-stationary points of DNN train-
ing problem. More references that establish and utilize the relationship between the
simplified (P) and its different reformulations in other kinds of stationarity can be
referred to [22, 26, 27].

Apart from the above first-order optimality conditions, the second-order opti-
mality conditions for nonsmooth optimization problems have attracted widespread
interest since the 1970s [25, Chapter 13]. To avoid the concept of second-order tan-
gent cone, Cui et al. [8] use a kind of second-order subderivative [25, 13(7)] to establish
second-order conditions for minimizing twice semidifferentiable and locally Lipschitz
continuous functions with polyhedral constraints [8, Proposition 2.3], and apply the
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D-STATIONARITY OF NONSMOOTH MULTICOMPOSITE OPTIMIZATION 3

results on piecewise linear-quadratic programs. Jiang and Chen [16, Lemma 3.8] fur-
ther extend the second-order necessary condition to convexly constrained optimization
problems with twice semidifferentiable objective functions, and apply the results on
minimax problems by using generalized directional derivatives and subderivatives. For
(P) with L = 1 and twice semidifferentiable component functions, [10, Proposition
9.4.2] offers second-order conditions by the relation between the original problem and
its ¢1-penalty reformulation, and the structure of the reformulation. However, the
aforementioned second-order conditions are inapplicable to (P) with L > 1 even when
g and {t¢} are all twice semidifferentiable, since the composition of such functions
may not retain this property. More references that establish second-order optimal-
ity conditions by other generalized Hessians and generalized second-order directional
derivatives can be referred to commentary at the end of [25, Chapter 13].

1.1. Model reformulation. Motivated by [6, 9], we reformulate (P) as a con-
strained optimization problem. First we introduce auxiliary variables

(1.1)  wp:=(uj,...,u})" € Rm, {=1,...,L, and an empty placeholder ug,
to decompose the nested structure of ¥, obtaining the constrained form

(P0) mzin F(z) := g(u) + \||0]|?, subject to wug =r_1(0,up_1),£=1,...,L,

where for brevity we denote u :=uy, € RV L,
(1.2) z:=0",u")T €RY and N :=n+ Ny.

The nonconvex nonsmooth objective function and the nonsmooth equality con-
straints in (P0) pose significant challenges for both theoretical analysis and numer-
ical tractability. Therefore, (P0) will only be used as an intermediary. Denote
[L] :={1,...,L}. As the final reformulation, the ¢;-penalty form of (P0) with positive
penalty parameters {5, ¢ € [L]} is defined as:

L
(P1) min O(z) := F(z) + Zﬁe”ue — e—1(0,ue-1)]1-

z
(=1

We will analyze the properties of (P), (P0) and (P1) and establish the relationship
between them, which makes it realistic to attain second-order stationary points of
(P).

1.2. Contribution. The contributions of this paper lie in threefold.

Firstly, we obtain a full characterization of the tangent cone of the feasible re-
gion of (P0) under directional differentiability and local Lipschitz continuity of g and
{t¢—1,¢ € [L]} in Theorem 3.6. In general, it is challenging to express the tangent
cone of a nonconvex feasible region [10, p525 and Remark 9.2.1]. For the nonconvex
feasible region constructed by nonsmooth equality constraints in (P0), it can be ver-
ified that NNAMCQ (no nonzero abnormal multiplier constraint qualification) [29,
Remark 2] holds using the method similar to [22, Lemma 6]. Based on that, a subset
of its tangent cone can be expressed by a superset of its normal cone [25, Corollary
10.50] using the relations between tangent and normal cones [25, Theorems 6.26 and
6.28]. However, the closed-form of its tangent cone is still difficult to obtain solely
through constraint qualifications (CQs). In contrast, we provide a closed-form expres-
sion of the tangent cone of the feasible region of (P0) by directly utilizing the pull-out
structure of constraints.

This manuscript is for review purposes only.



129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156

157

4 L. JIN, X. WANG, AND X. CHEN

Secondly, we show the equivalence between (P), (P0) and (P1) regarding d-
stationary points and global minimizers, which generalizes the results in [9] and Chap-
ter 9 of [10]. As a consequence of the equivalence between (P) and (P1), the penalty
form (P1) with according algorithms [11, 30] offers an alternative way to solve the
original problem (P). Furthermore, we derive a unified second-order necessary con-
dition for nonconvex nonsmooth constrained minimization with twice directionally
differentiable objective functions, which extends the results in [8, 16]. Together with
the equivalence between (P), (P0) and (P1), the second-order optimality conditions
for (P0) and (P1) provide second-order necessary and sufficient criteria for (P), which
cover the ones proposed in [10, Proposition 9.4.2].

Thirdly, we apply our theoretical results to the minimization problem for train-
ing an Elman RNN with a single unidirectional hidden layer. The equivalence in
d-stationarity of (PO-RNN) and (P1-RNN) not only generalizes the result from Theo-
rem 2.1 of [9], but also provides the explicit thresholds for penalty parameters. More-
over, we observe that every d-stationary point of (PO-RNN) is also a second-order
d-stationary point for (P0-RNN) and the same result holds for (P1-RNN) under cer-
tain conditions, which makes their second-order d-stationary points computable by
the methods for DC programs [11].

1.3. Organization. The rest of this paper is organized as follows. In Section 2,
we introduce some basic definitions and preliminary properties of (P), (P0) and (P1).
The d-stationarity of (P), (P0), (P1) and the second-order d-stationarity of (P0),
(P1) are defined in Section 3. Based on the closed-form expression of the tangent
cone of the feasible region of (P0) in subsection 3.1, we establish the equivalence
between (P), (P0) and (P1) in terms of global optimality and d-stationarity under
certain conditions in subsection 3.2. And subsection 3.3 shows that second-order
d-stationarity of (P0) and (P1) provides second-order necessary conditions for (P).
Subsection 3.4 offers second-order sufficient conditions for strong local minimizers of
(P) through (P1). In Section 4, we apply the general theoretical results to RNNs.
Concluding remarks are given in Section 5.

1.4. Notation. In the following, we denote the set of integers and nonnegative
(positive) integers as Z and Z, (Z. ) respectively. For any m € Z,, we denote
[m] := {1,...,m}. The accumulative multiplication is presented by []. For any
sequence {a; > 0,7 € Zy} and any ji,j2 € Z4 with ji > ja, denote ;Q:jl a;j =0
and H;i’:jl a; == 1. For any vector sequence {u;,j € Zy} and any ji,j2 € Z4 with
Ji > j2, denote (uy,,...,u;,) as an empty placeholder. For any vector a and positive
integer 4, [a]; refers to the ith component of a. For any two sets A, B C R™, denote
A+B={a+b|ac Abec B}. Denote B(0;1) := {z € RY | ||z|| < 1}. For any set
F C R™, the indicator function is defined as 0x(x) = 0, if z € F, and 400, otherwise.
For any m € Z44,7 € R and any function f : R™ — R U {400}, the level set is
defined as lev<, f = {z € R™ | f(z) <~}

Denote the optimal solution sets of (P), (P0) and (P1) by

S :=argmin [¥(0) + \|0]|?], So:= argmin F(z), S;:= argmin O(z),
gcRn 2€F0 2€RN

respectively, where

(1.3) Fo:={z €RY | ug = ¢_1(8,ur_1), L € [L]}.

This manuscript is for review purposes only.
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2. Preliminaries. In this section, we present some preliminaries that are used
in subsequent sections. Let
L= 0", @), W) )T with uf =1 (0,60, .. ud ), 0=1,...,L,

@1 5 :=0(2%).

Then we have 2 € Fy # 0 and 4 = F(2"). Next, we prove that S,Sp and S; are
nonempty and compact under the continuity of g : RVt — R, and {¢p_; : R*HNe-1
RN¢ ¢ € [L]}. Noting the nonnegativity of g, we can obtain the following result by
the level-boundedness [25, Theorem 1.9] of (¥(-) + || - ||?) and (F + §7,).

LEMMA 2.1. The optimal solution sets S and Sy are nonempty and compact.

In fact, it can be naturally obtained that (P) is equivalent to (P0) in global opti-
mality. If 6 € S, then z := (HT,QL ., 1)) T € Sy where g = Pe1(0, U1, ... U 1)
for all £ € [L]; conversely, if z:= (07, a{,...,u.)" € Sp, then § € S.

LEMMA 2.2. The optimal solution set S is nonempty and compact.

Proof. Since © is proper and continuous, we only need to show its level bounded-
ness [25, Theorem 1.9]. For any v € Ry and any z € lev<,©, it follows from g(-) > 0
and || - || < || - [|1 that

(2.2) 161l < V/ A
(2.3) g = pe1(0,un, .. ue)|| < B, VE € (L.

Next, we will finish the proof in an inductive manner. For ¢ = 1, it follows from
(2.2)-(2.3) and the continuity of 1y on R™ that

[l < flus = %o(0)]l + o)l < A7 +max{vo(8) | |0]] < VyA~T} < +oc.

For any ¢ = 2,..., L, assume that uy,...,us_1 are bounded. Then it follows from
(2.2) and (2.3) that

lwell < llug —pe—1(0,ur, ..., ug—1)|| + [Ye—1(0,u1,. .., ue—1)||
< A8 Y1 (8, un, - up—r)|| < +oc.

Hence, w is bounded by induction. Together with (2.2) and arbitrariness of z, it
implies the boundedness of lev<,0O. 0

For the main analysis we need the following concepts of directional differentiability
and local Lipschitz continuity.

DEFINITION 2.3 ((twice) directional differentiability, Definition 1.1.3 and (4.10)
of [10]). Given an open subset O of R™ and a scalar-valued function f: O — R. The
directional derivative of f at a point x € O along a direction d € R™ is defined as
(2.4) f(x;d) :==lim flatrd) = f(x)’

740 T

if the limit exists. The function f is directionally differentiable at x, if the limit (2.4)
exists for all d € R™. The second-order directional derivative of f at a point x € O
along a direction d € R™ is defined as

0 v fl@tTd) — f(x) -1 (2;d)
(2.5) F@(z;d) = lim 2 ,

This manuscript is for review purposes only.



213
214

215
216

217

219

226
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if the limit and the one for (2.4) exist. The function f is twice directionally differen-
tiable at x, if the limits (2.4) and (2.5) exist for all d € R™.

For a vector-valued function f : O — R™ with component functions {f; : O —
R,i € [m]}, the directional derivative f'(x;d) is defined as

Flasd) = (fi(z;d), ..., fr,(x;d) 7,

if fi(x;d),i € [m] exist. Furthermore, z'ffi@)(x;d),i € [m] exist, then the second-order
directional derivative 3 (z;d) is defined as

FO(w;d) = (P (x3d), ..., fP ()T

Function f is (twice) directionally differentiable at x, if all of its component functions
are (twice) directionally differentiable at x.

DEFINITION 2.4 (local Lipschitz continuity). For any function f : O C R" —
R™, we say f is locally Lipschitz continuous near x € O, if there exists a neighborhood
X of x and K > 0 such that ||f(z1) — f(z2)| < K||z1 — x2|| for all x1,22 € X. And
we say f is locally Lipschitz continuous, if f is locally Lipschitz continuous near every
point in its domain O.

If f is directionally differentiable at x and locally Lipschitz continuous near x
with modulus K > 0, then it follows from Definitions 2.3 and 2.4 that for all d € R™,
flz+7d) — f(x) ‘ K|l

o T

< lim
T 710

(2.6 wmwmzhg — Klld] < .

Hence, for all d,d € R", | f'(x;d) — f'(z;d)| is well-defined and we can similarly
obtain that

(2.7) I (@3 d) = f'(w:d)|| < K||d — d||, Vd,d € R".

The remaining analysis will be based on the following assumptions about the
directional differentiability and local Lipschitz continuity.

ASSUMPTION 1. Functions g and {¢s—1,¢ € [L]} are directionally differentiable
on RNt and R"TNe=1 ¢ € [L] respectively. Functions g and {1b¢_1,¢ € [L]} are locally
Lipschitz continuous.

According to Lemma 2.2, lev<5© with 5 := ©(2?) defined in (2.1) is nonempty and
compact. Under Assumption 1, it follows from the compactness of lev<5© that there
exist K, > 0 and {K; > 0,¢ € [L — 1]} such that

(2.8) lg(u) — g(a)] < Kyllu—all,
(2.9) 1Ye—1(0,up—1) —hp—1(0,00-1)|| < Koi|lug—1 — 01|, £=2,...,L

for all (07, u”)", (07,a")" € (lev<5O + B(0;1)), where the positive real number
€ is sufficiently small. In (2.9), the two terms at the left-hand side are consistent in
the component 6, since the subsequent analysis only needs the Lipschitz continuity
moduli of {¢,,¢ € [L — 1]} in component u. Besides, it should be noted that K,
and {K,,¢ € [L — 1]} are non-increasing as {8¢,¢ € [L]} increase since functions
g, {0, € [L — 1]} and 4 = F(z°) are independent of penalty parameters and for
any z, O(z) is non-decreasing as {f¢, £ € [L]} increase. Furthermore, in Example 3.13
and Section 4 we will show how to estimate K, and {K,,¢ € [L — 1]} for specific
applications.

This manuscript is for review purposes only.
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D-STATIONARITY OF NONSMOOTH MULTICOMPOSITE OPTIMIZATION 7

Remark 2.5. In fact, 2° and 4 can be replaced by any feasible point of (P0) and
the value of © at that point. The replacement will not affect any theoretical results
in this paper. We choose 20 and 4 defined in (2.1) since 0 is usually not a good
candidate in data fitting. Thus, the requirement 2z € lev<y© can be regarded as a
mild condition.

For clarity, break the direction d € RY according to the blocks of variable z as
follows

d=(dj,d))T", where

2.10
(2.10) dy=((dy) ", ..., (dy,)") " with d,, € RY?, ¢ € [L].

Then under Assumption 1, it follows from (2.6)-(2.7) and (2.8)-(2.9) that for any
z € lev<50, and any d,d € RY with dy = dp,

|9/(U§du) - g/(UQJu” < Kngu - JuHa
(211) Hwé—l(ea Ue—1; d97du471) - ¢2—1(97 Ur—1; d9’ du271)||
< Kiqlldu,_, —du, .|, £=2,...,L,

where dy, , := ((dy,)",...,(dy, ,)")T for all £ € [L].

Apart from Assumption 1, the analysis concerning second-order necessary condi-
tions also requires the following assumption about the twice directional differentiabil-
ity.

ASSUMPTION 2. Functions g and {1¢—1,£ € [L]} are twice directionally differen-
tiable on RNt and R+ Ne-1 ¢ € [L] respectively.

We use the definitions of tangent cone [25, Definition 6.1] and radial cone [5].

DEFINITION 2.6 (tangent cone and radial cone). The tangent cone of a set F C
R™ at any point x € F is defined as

k _
T#(x) := {d € R™ | 32" — = with 2* € F and 7, | 0, such that ——

— d}.

Tk
The radial cone of a set F C R™ at any point x € F is defined as
Pr(x):={d € R™ | 31, | 0 such that x + 1,d € F}.

Then it can be observed that Pr(x) C Tr(x). When F is convex, Pr(x) coincides
with 72(z) used in [16], and it further equals to 7x(z) when F is polyhedral.

3. Optimality and stationarity. This section will establish the relationship
between (P), (P0) and (P1) in global optimality and (second-order) d-stationarity, and
discuss the byproducts regarding second-order sufficient conditions. The d-stationary
points are defined by the necessary tangent condition outlined at the end of [25, Chap-
ter 8.C] without proof. And the second-order d-stationarity extends the second-order
necessary condition in [16, Lemma 3.8] from a twice semidifferentiable objective func-
tion with convex constraints to a twice directionally differentiable objective function
with general constraints. We provide a detailed proof for the necessity of (second-
order) d-stationarity under the assumptions of the nonemptiness of solution sets,
twice directional differentiability and local Lipschitz continuity of objective functions
as follows.

This manuscript is for review purposes only.



288
289
290
291
292

293
294

295

296

297

310

311
312
313
314

8 L. JIN, X. WANG, AND X. CHEN

LEMMA 3.1. Assume that argming.r f(x) # 0 with f : R™ — R. Ifz € F is
a local minimizer of mingcr f(x), f is directionally differentiable at T and locally
Lipschitz continuous near T, then f'(Z;d) > 0 for any d € Tx(Z). Moreover, if f is
twice directionally differentiable at T, then f*)(z;d) > 0 for all d € Pr(z)N{d €
R™ | f/(z;d) = 0}.

Proof. Firstly, the local optimality implies that £ € F is a local minimizer of
(f + 67)(z) over R™. Hence it follows from [25, Theorem 10.1] that

L inf (f+oF)(@+7d) — (f +0F)(T)
r10,d'—d T

>0, vd € R™.

Then the remainder is to show that for any d € Tx(Z),

liminf  TOF)@+7d) - (f +67)(@)

< f(z;d).
710,d'—d T < fi(#d)

For any d € Tz(Z), it follows from the definition of tangent cone that there exist
¥ — z,2% € F and 7 | 0 such that d* := % — d as k — oo, which implies

T "N — f(z 7 "N _
liming 1 &+ 7d) = f(&) + 67 (z + 7d') — 35(2)
d’'—d, 710 -
T kY — f(z = kY 5
< liminf JE 7Y = f(2) + 07(@ + 7d”) — 07(7)
k— oo Tk
_ o e
~ liminf f(Z + md®) — f(Z)
k—o0 Tk

= f/(J_C, d)a

where the first equality uses # + 7,d* = 2¥ € F and # € F, the last equality comes
from

f(@+7d) - f(z)

1m
d'—d, 10 T
o e
oy JEET i@ L f@rd) - f@ e rd)
d’'—d,t]0 T d’'—d,7]0 T

= lim
7J0

by the fact that f is directionally differentiable at & and locally Lipschitz continuous
near .

For the second-order optimality condition, since z € F is a local minimizer of
mingerm (f + d7)(z), it follows from [25, Theorem 13.24 (a)] that for all d € R™,

0 < limint S HOP)@+7d) —(f +07)(T)
710,d'—d 72/2

)

which implies that for all d € Px(z) N {d € R™ | f'(z;d) = 0},
(f +67)(@ + 7d) — (f + 67)(7) f(@+md) — f(Z)

0 < liminf < liminf

710 72/2 k— 00 T2/2
_ opr=y I (5.
— liminf f(Z + 7d) ];(x) 7. f' (%5 d) _ f(z)(ff, d),
k— o0 Tk/z

This manuscript is for review purposes only.
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where the second inequality uses the definition of Pz (%), the first equality holds due
to f'(Z;d) = 0, and the last equality comes from the twice directional differentiability
of fat z and 7 | 0. ]

The first-order condition for convexly constrained optimization problems with
a semidifferentiable objective function is established in [16, Lemma 3.8]. Lemma 3.1
extends this condition to nonconvexly constrained optimization problems with a direc-
tionally differentiable objective function. Actually, the two first-order conditions are
completely identical in form since the directional derivative equals to the subderiva-
tive used in [16, Lemma 3.8] under directional differentiability and local Lipschitz
continuity. However, for the second-order condition, the nonconvexity of the feasi-
ble region and non-twice-semidifferentiability of the objective function entail us to
narrow the range of directions from 72(z) in [16] to Pr(z) and relax the nonnega-
tivity of second-order subderivatives to the nonnegativity of second-order directional
derivatives. Based on Lemma 3.1, we can define unified first-order and second-order
necessary conditions as follows.

DEFINITION 3.2 (second-order d-stationary point). For any f:R™ — R that is
directionally differentiable on R™ and locally Lipschitz continuous, and any F C R™
such that O # argmin,cr f(x), we call T € F a d(irectional)-stationary point of
minger f(x) if f'(Z;d) > 0 for all d € Tr(Z). And we further call T a second-order
d-stationary point of mingcx f(x) if f is also twice directionally differentiable at T

with f3)(z;d) > 0 for all d € Pr(z)N{d € R™ | f'(z;d) = 0}.

Ezample 3.3. To illustrate Definition 3.2, we consider min,cr f(z) with f(z) =
max{—1,z125} + 0.1]|z||? and F = [-1,1]2. This example has only three first-order
d-stationary points (0,0)",(—1,1)" and (1,—1)", while f is differentiable at the first
point, but not differentiable at the other two points. At z := (0,0)7, f'(%;d) =
Vf(z)"d =0 for all d € T(Z) = R?, whereas f®)(z;d) = 2d1dy + 0.2||d|> < 0 for
any d := (di,d2)" € {d € Pr(7) | f'(z;d) = 0} = R? with dy = —d; # 0. Hence
(0,0)T is not a second-order d-stationary point, and thus not a local minimizer.

In contrast, at 7 := (—1,1)T, f(z;d) = (d1 — d2) — 0.2(dy — d) > 0 for all
d € Tr(z) = {(d1,d2)" | di > 0,dy <0}, and fP(z;d) = 0> 0 for any d € {d €
Px(Z) | f'(#;d) =0} = {d € T#(z) | f'(z;d) =0} = {0}. Hence (—1,1)" is a second-
order d-stationary point. Similarly, we can verify that (1,—1)T is also a second-order
d-stationary point. From the boundedness of the feasible set F and the continuity of
the objective function f, the optimal solution set of this example is nonempty. Since
f((=1,1)") = f((1,=1)T), the two points are optimal solutions.

Since the local Lipschitz continuity of ¥, F' and © naturally holds under Assump-
tion 1, the corresponding d-stationary points can be defined once we have checked their
directional differentiability.

PrOPOSITION 3.4. Under Assumption 1, W is directionally differentiable on R™,
and the directional derivative of the objective function of (P) along any dg € R™ is

(3.1) g (ur,...up;dy,, ... dy,) + 270" dg,

where wp 1= —1(0,u1,...,u—1) for all € € [L], and dy, :=;_1(0,u1,. .., up—1;
do,du,,- - du, ) for all £ € [L]; F' and © are directionally differentiable on RY, and
for any direction d € RN defined in (2.10),

(3.2) F'(2;d) = ¢'(u;dy) + 200" dy,
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L
(33) O (z:d) =F'(zd) + Y Be| D ldu — t-1(0,ue-1;do, du, )]s
=1 ielf (z)
— D [duy = W10, 013 dp, du, )i

i€I’ (2)

+ Z Hduﬁ - ’(/}271(97“1671; d97dUg_1)]i| )

i€t (2)
where for all £ € [L],

I5(2) == {i € [Ne] | [ue — the—1(0,up-1))i > 0},
IE(Z) = {Z S [Ng] | [Ug — Zﬂe,l(e,Ug,l)]i < 0},
Ig(z) = [Ne]\ (I_l;_(z) U If(z)) .

Proof. Firstly, applying [10, Proposition 4.1.2] sequentially on 1 (-, 1%o(-)), ...,
Vi1, %o(-), ¥1(+,10(+)), - -+ ) and ¥ with directionally differentiable and locally Lip-
schitz continuous {¢¢_1,¢ € [L]} and g, we can obtain

\III(H;dQ) :g, (¢0(9), ¢1(07¢0(0))7'-~;
V005 do), 11 (0,40(0); do, (03 dp)), - - - )

which can be reorganized as (3.1) with {ug,d,,,¢ € [L]} defined as above. Then the
result about F' can be directly obtained from Assumption 1 and Definition 2.3. And
for O, it is sufficient to show the directional differentiability of each penalty term
according to Definition 2.3, which can be obtained by the directional differentiability
and local Lipschitz continuity of || - || and {1¢—1,¢ € [L]} [10, Proposition 4.1.2]. 0O

Together with the nonemptiness of optimal solution sets S, Sg and & and Defi-
nition 3.2, it implies that under Assumption 1,
oD := {0 € R"|[¥()+ A |*(;dg) > 0forall dy € R"} is the set of
d-stationary points of (P);
e Dy :={z€ RN |ze Fyand F'(z;d) > 0for alld € Tx,(2)} is the set of
d-stationary points of (P0); )
e D :={zc RN |O©/(z;d) >0 for all d € RV} is the set of d-stationary points
of (P1).
Although the d-stationary point of (P) can be defined as above, the complicated
nested structure in ¥’ makes it challenging to compute. Notably, through (P0), we
can express its d-stationarity more clearly and further establish (P)’s relationship with
(P1) in Sections 3.1 and 3.2, which facilitates computation.
And for the second-order necessary conditions of (P0) and (P1), the twice direc-
tional differentiability of F' and © can be verified under Assumptions 1 and 2.

PRrROPOSITION 3.5. Under Assumptions 1 and 2, F' and © are twice directionally
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106 differentiable on RY and for any direction d € RY defined in (2.10),

407 F® (z:d) =g (u; dy,) + 2)||dg]|?,
L

408 @(2)(2; d) :F(z)(z; d) + Zﬁe - Z [ 22_)1(97 w—1;dg, du, )l

=1 ie[i(z)UIéJr(z;d)
409 + Z [ é2_)1(9,u£—1;de,dul,1)]i

iert ()01, _ (s:d)
(2) 0 do.d )

410 + Z [ 471( y We—1; g, U.efl)]l ’
411 1€15,0(23)

112 where for all € € [L], I (2), I (z) and I{(z) are defined as in Proposition 3.4 and

13 I§ (zd) == {i € I{(2) | [du, — ¥)_1(0,0¢-15dp, du,_,)]; > O},

414 Ig _(zd) = {i € Ij(2) | [du, = ¥jp_1(0,ur-1;dg, du, )]s < 0},

48 Igo(z:d) = Ig(2)\ (I5 1 (:d) U I; _ (23 d)) -

417 Proof. The result about F' can be directly obtained from Assumptions 1, 2 and

418  Definition 2.3. And for O, it is sufficient to show the twice directional differentiability
419  of each penalty term according to Definition 2.3, which can be obtained by the twice
120  directional differentiability and local Lipschitz continuity of {¢¢_1,¢ € [L]} and the

121 max-structure of |- | (i.e. for any = € R, |z| = max{z, —z}) [10, Example 4.2.1]. O
122 Together with Proposition 3.4, it implies that under Assumptions 1 and 2,

123 e SDy:={z€ Dy | F?(z;d) >0 for all d € Pr,(z) satisfying F'(z;d) = 0} is
424 the set of second-order d-stationary points of (P0);

425 e SD;:={2€D; | 0@ (zd) >0 for all d € RN satisfying ©'(z;d) = 0} is the
426 set of second-order d-stationary points of (P1).

427 Although it seems immature to define the second-order d-stationary point of (P)
128 under Assumptions 1 and 2, we could next see how the sets SDg, SD; help to provide
429 second-order necessary conditions for (P).

130 3.1. Closed-form of Tr,. Here we give the closed-form of the tangent cone of
431 Fo in (1.3) based on directional derivatives of constraints of (P0), which plays an
432 important role in the following subsections.

433 THEOREM 3.6. Under Assumption 1, it holds that
134 Tro(2) = {d € RY | du, = ¢ 1(6,u-1:dp, du, ), € € [L]},

136 for any feasible point z € Fy.

437 Proof. We firstly prove the one-sided inclusion

438 T]:o (Z) - {d eRY | du, = ¢2—1(97 u—1;dp, duzf1)a€ € [L]}

110 According to Definition 2.6, for any d € Tx,(z), there exists a sequence {z* € Fo, k €
441 Z44+} converging to z and a sequence 7 | 0 such that d = limg_, z’:_;z. Denoting
12 dF = zk_z, we have zF = 2z 4+ 7,d* for all k and d* — d as k — oco. For £ = 1, it

Tk
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follows from the definition of v, 71 | 0, local Lipschitz continuity of ¢y and d — dp
that

k_ By
du, —P5(0;dp) = lim up —u1 Yo+ 7rdy) — Po(0)

k—o0 Tk Tk
[ 00000 = [ = 00(0)]
k—r 00 Tk

where the second equality uses 6% = 6 —&—delg, the last equality comes from 2*,z € Fp.
For{=2,...,L, it follows from the definition of ¢, _,, 7% | 0, local Lipschitz continuity
of 11 and (df,d~ ) — (dg,dy,_,) that

0> % up_q

dutz - 11[}2—1(0’ Ur—1; d@; dul,l)
uf —ug Y1 (0 + Thdg, W1 + Ty, ) — Pe-1(6,ue-1)

= lim
k—o00 Tk Tk

— lim [u? - wé—l(akv uéffl)] - [Ug - 712}5—1(07 uf—l)] -0
k—o0 Tk ’

where the second equality holds due to 2¥ = z + 7,d", the last equality comes from
k
z¥. 2z € Fo.
Next we deduce the reverse inclusion

Tro(2) 2{d € RY | du, = vf_1(6,ue-15dp, du, ), € € [L]}.
By Definition 2.6, it is equivalent to show, for any d € RY satisfying
(3'4) du, = ¢271(9,ué—1§ devduul)’ te [L]v

there exist sequences {7; | 0} and {d* — d} such that {z + 7.d*} C Fy. For any d
satisfying (3.4) and any decreasing sequence {7 | 0}, define

ky _
df = dy, df = Yol0 + mdy) wow), and
Tk
o1 (0 + midy, ey + midy, ) — o1 (0, 1e-1)

Tk

dﬁe: in the order of £ = 2,..., L,

for all k. We prove that d* — d and z¥F := (2 + 7d*) € Fy for all k. Firstly,
limy o0 d’g = dy. Then it follows from the definition of dﬁl, d]g =dy, 7 | 0 and the
directional differentiability of 1 that limg_, .o dﬁl = ¢,(0;dp) = dy,, where the last
equality holds due to (3.4). For any £ = 2,..., L, assume that d¥, — dy,_, has been
verified. Then it follows from the definition of d* , and local Lipschitz continuity of
1#471 that

lim d* = lim Ye-1(0 + Trdy, wg—1 + Trdu, ) — e-1(0,u—1)
k—o00 we

k—o00 Tk
= w2—1 (67 Uy—1; d@a dugfl) = duz7

where the second equality comes from 74 | 0 and directional differentiability of 1,_1,
the last equality holds due to (3.4). By induction and (2.10), we obtain that d* — d.
From 2* := (2 + 7xd*) and (1.2), (2.10), we first have

(3.5) 0% := 0 + 1pdl, and uf = up + 7d% V0 € [L).

ug?
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For ¢ = 1, (3.5) and the definition of d¥ imply that uf = w1+ (0%) =1 (0) = o (6%),
where the last equality follows from z € Fy. For £ =2,..., L, (3.5) and the definition
of dﬁ( imply that ui? = up + wg,l(ﬁk,uf_l) — Y10, up-1) = wg,l(Hk,u’g_l), where
the last equality follows from z € Fy. Combining the results for all £ € [L], we obtain
that zF € Fy for all k. 0

It is noteworthy that Theorem 3.6 provides the expression for 7z, (z), where Fo
is defined by nonsmooth constraints. In general, such an expression for the tan-
gent cone of the feasible region is only achievable for smooth constraints under the
Linear Independence Constraint Qualification (LICQ) [24, Lemma 12.2]. The one-
sided inclusion for Tz, (z) can only guarantee one-sided implication between (P0) and
(P1) [10, Theorem 9.2.1 and Remark 9.2.1], while the closed-form in Theorem 3.6
can guarantee the equivalence (see Theorem 3.9). If we use constraint qualifications
for nonsmooth constraints named NNAMCQ [22] and relations between tangent and
normal cones [25, Theorems 6.26 and 6.28], we can only obtain a subset of Tz, (z)
presented by {¢;_,,¢ € [L]}, which fails to imply the full characterization of Tx,(z)
in certain cases such as Trrvn (2) in Section 4. Noting that P, (z) C T, (z) for any
z € Fo, Theorem 3.6 also provides the expression of a superset of Pz, (z), which helps
to obtain its closed-form in certain cases (see Section 4).

3.2. Equivalence in optimality and d-stationarity. Here we show the equiv-
alence of (P), (P0) and (P1) in global optimality and d-stationarity. Firstly, (P) and
(P0) are equivalent in global optimality as we discussed after Lemma 2.1. Simi-
larly, according to Proposition 3.4 and Theorem 3.6, (P) and (P0) are equivalent in
d-stationarity when neglecting dimension lifting.

LEMMA 3.7. If0 € D, then z := (0", u{,...,u})" € Dy where wy := p_1(0,u1,
o ug_q) for all £ € [L]. Conversely, if z:= (07,u")T € Dy, then § € D.

Proof. For any 0 € D, it follows from z := (07, u{,...,u} )" with u, := 1,_1(0,
u,...,up—1) for all £ € [L] that z € Fy. Then for any d € Tx,(z), we have d,, =

Yy_1(0,u—_1;dp,dy,_,) for all £ € [L] by Theorem 3.6. Together with Proposition 3.4,
it implies that for any d € Tx,(z),

F'(z;d) = W' (0;dg) + 20" dy > 0,

where the inequality comes from 6 € D. On the other hand, if z := (7, u")" € Dy,
then z € Fo, i.e. ug:=p_1(0,u1,...,up—1) for all £ € [L]. Then for any dy € R", it

follows from Proposition 3.4 that under the setting of d := (dj , d;, cee dIL)T with
duy, =1 (0,u1,...,u—1;dg,dyy, ... dy, ,) for all £ € [L],

U (0;dg) + 200" dy = F'(z;d) > 0,
where the inequality uses d € Tz, (z) from Theorem 3.6 and z € Dy. d

To establish the equivalence between (P0) and (P1), inspired by Theorem 2.1 (a)
of [9], we first show that under proper setting of {8, > 0,¢ € [L]} restricted by K,
and {K; > 0,¢ € [L — 1]}, the d-stationary point of (P1) in lev<5© must be feasible
to (P0), where 7 is defined in (2.1).

LEMMA 3.8. Under Assumption 1, let z be a d-stationary point of (P1) with
O(z) <7 and {$; > 0,4 € [L]} satisfying

L
(3.6) Be> Ky [ (14 K1), for all £ € [L).
Jj=t+1
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Then z € Fy.

Proof. To show z € Fy, we are going to prove uy = ¥p—1(0,u1,...,up—1) in the
order of £ = L, ..., 1 separately.

To show ur, = r—1(6,u1,...,ur_1) by contradiction, we use I*(z), () and

IE(2) defined in Proposition 3.4. Suppose uz, # ¥r—1(0,u1,...,ur—1), then I_f(z) U
IE(2) #0. Let z:= (0,4 ,...,u; )" with

é = (9, ﬂl = ULy, e, aL—l =Uur-1,

ag :=r1(0,u1,...,ur_1) # ur,

and d:=2—2=1(0,...,0,d,,) # 0. Then it follows from Proposition 3.4 that

O'(z;d) = F'(usd) + B | Y [duli— D [dugdi+ Y ldu,lil
iell(2) ielt(z) i€lf (2)
(3.7) =g'(usdu) = Brlldu, [l
< (Kg - /BL)HduL”l <0,

where the two equalities use the definitions of d and I%(z),I%(2),I¥(z), the first
inequality holds due to (2.11) at d = 0 and ||-|| < ||-||1, and the last inequality follows
from (3.6) and d,, # 0. However, it contradicts ©’(z;d) > 0 for all d € RY. Hence
ur = wL_l(H,ul, ‘e ,uL_l).

For any ¢ = L —1,...,1, we next show uy = ty—_1(0,uy,...,up_1) using Iﬁ(z),
It () and I§(z) in Proposition 3.4. Suppose ug # ¥¢—1(0,u1, ..., ue—1), then I (z) U
I(2) #0. Let z:= (07,4 ,...,u, )" with

9_12 0, Uy = Uy -0y Up_1 := Up—1,

Uy :1/1g_1(0,u1,...,u(g_1) #Ug,

Upt1 = Ug41 +w2(9au17' oo 0,00, 0,00 — 'U/Z),

ap =up + ¥ _1(0,ur,...,uL—1;0,...,0,U —ug,..., Up—1 —UL_1),
and d:=2z—2=(0,...,0,d,,,...,dy,,) # 0. Then it can be checked that
(38) du“_l :w2(97u5;d97duz)7 ceey duL :1/)/[,71(9711L71;d0adu1,,1)-

Together with Proposition 3.4, it implies that

©'(2;d) = F'(u; du) + Be Z [du,)i — Z [du,]i + Z |[du,Jil

ieli(z) i€l (2) iEI[‘;(z)
= g'(u;dy) = Belldu, |1
(3.9) < Kglldull = Belldu |1,

where the two equalities use the definitions of d and I (z), I* (z), I§(z), the inequality
holds due to (2.11) at d = 0. Next we give an upper bound of ||d,|| by estimating
{du,,j € [L]}. Since dy, = 0,...,dy,_, = 0, we only need to analyze {d,,,j =
¢,...,L}. For j = ¢, it follows from the definitions of d,, and @, that

(3.10) ldu, || = llwe — Ye—1(0,u1, ..., ue—1)|| # 0.
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For j = ¢+ 1, it follows from (3.8) that
(3'11) Hduz+1 H = sz(a, uy; dy, duz)“ < Kf(”dm || oot ”due H) = KZHdug Hu

where the inequality holds due to (2.11) at d = 0,dy = 0, the last equality uses
dy, =0,...,dy, , =0. And for j > ¢ + 2, assume that

k—1
(3.12) ldi || < <Kk—1 H (1+Ki—1)> lldu, |l

i=0+1

forall k=¢+41,...,5 — 1. Then we can obtain that (3.12) also holds at k = j:

e, || = 1145 -1.(0, 015 dp, d, )|
(3.13) < Kja(lldu [+ 4 [ldu;_, [1)
= K1 (lldu, | + ldue o || + - -+ lldu; 1))

j—1
< (xj_l 11 (1+Ki_1)> I

i=0+1

where the first inequality holds due to (2.11) at d = 0, dy = 0, the second equality uses
dy, =0,...,dy,_, =0, and the second inequality uses (3.12) at k=/¢+1,...,5 — 1.
By induction and (3.11), it implies that (3.12) holds for all k = ¢+ 1,..., L. Plugging
these upper bounds for {||d,,||,j € [L]} into (3.9), we have

0'(2;d) < Kg(lldu, | + ldup s [+ -+ + lldu []) = Belldu, |

L-1
< (Kg <1+Kg+"'+KL1 11 (1+Ki1)> —Be) o

i=0+1

L
< (Kg I ¢+ Ki-) —ﬁe) lldu, |l

i=f+1
<0,

where the last inequality uses (3.6) and (3.10). However, it contradicts ©’(z;d) > 0
for all d € R, Hence, up = v¢_1(0,u1,...,us_1), which yields the result due to the
arbitrariness of ¢. d

In general, condition (3.6) can be satisfied under 8; = --- = 8 = (8 with suf-
ficiently large 8 > 0, since K, and {K,,¢ € [L — 1]} defined in (2.8) and (2.9) are
non-increasing when [ is increasing. For certain applications in machine learning,
such as training process of RNNs to be shown in Section 4, Lipschitz moduli K,
and {K,,¢ € [L — 1]} satisfying (2.11) on lev<;© are easy to estimate (see (4.5)-
(4.9)), which provides computable thresholds for {8y, ¢ € [L]}. Based on Lemma 3.8,
we could show the equivalence of (P0) and (P1) in terms of global optimality and
d-stationarity.

THEOREM 3.9. Under Assumption 1, set {8¢ > 0,¢ € [L]} satisfying (3.6). Then

(a) 50 = 81 5

(b) for any z € lev<s© with 7 defined in (2.1), z is a d-stationary point of (PO)

if and only if it is a d-stationary point of (P1).
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Proof. (a). For any z € Sy, it follows from Lemma 3.1 that ©'(z;d) > 0 for
all d € RV ie. zis a d-stationary point of (P1). Together with Lemma 3.8 and
O(z) < ©(2%) = 4 from the global optimality of z, it implies that z € Fy. Hence,
S1 C Fo. Since Sy # 0, we further have

& = argmin O(z) = argmin O(z) = argmin F(z) = Sp.
2ERN 2E€Fo 2€Fo

(b). We first show that any d-stationary point of (P1) in lev<5© must be a d-
stationary point for (P0). Firstly, it follows from Lemma 3.8 that z € Fy. Hence, it
follows from Proposition 3.4 and Theorem 3.6 that for any d € Tz, (2),

F'(z;d) = ©'(2;d) > 0,

where the inequality comes from ©'(z;d) > 0 for all d.

Next we will show the reverse implication: any d-stationary point z of (P0) with
O(z) < 7 is also a d-stationary point of (P1). Firstly, it follows from z € Fy that
I¢ (z) = I* () = 0 for all ¢ € [L], which are defined in Proposition 3.4. It simplifies
(3.3) as

L
(3.14) O'(z;d) = F'(z;d) + Z Belldu, — ¥p_1(0,up—1;dg, du,_,)||1-
=1
Together with Theorem 3.6, it further implies that for any d € Tx,(z),
(3.15) O'(z;d) = F'(z;d) > 0,

where the inequality holds since z is the d-stationary point of (P0). For any d ¢
T7,(2), we can construct a direction d as follows: set dg := dp and dy, := ¥;_; (0, u1,
cooyUg1;dg,dyy ... dy, ) in the order of £ = 1,...,L. Then by Theorem 3.6, we

have d € Tx,(z). Hence, it follows from (3.14) and (3.15) that

O'(z;d) =0 (2;d) — O'(2;d) + ©'(2;d)
>0/(z;d) — ©'(2;d)

(3.16) =F'(zd) — F'(z:d) + XL: Belldu, — o1 (0, 0015 dg, du, )1
=1
Next we will show that the right-hand side of (3.16) is nonnegative. Note that
(3.17) F'(z;d) = F'(2;d) = ¢'(uidy) — g (w:dy) > — K, XL: [ du, = du, |,
=1
where the equality follows from dy = dp and (3.2), and the inequality uses (2.11). We

only need to estimate {||dy, — du, ||, ¢ € [L]} by induction in the following. For £ =1,
it follows from the definition of d,,, and dy = dg that

(3.18) [duy = duy || = llduy, —¥5(0: do)]-
For ¢ =2,..., L, assume that
(3.19) |dw, — du, |

< ||du] - ¢§;1(97 Uj—1; do, duj—l)”

=17 j-1
+Kj*1 [ H (1+K11)1 Hduk _w;cfl(97uk71;d97duk71>”
k=1 Li=k+1
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holds for all j =1,...,£ — 1. Then we can deduce that (3.19) also holds at j = ¢:

lldu, — du, ||
=||du, — Vp_1(0,u—1;dg, du,_,)||
< du, = Y1 (0, w15 dg, du, )|
(3.20) + Kpa (|| duy = dug |+ -+ [ dup, = du, )
< du, = o1 (0, ue-15dg, dy, )|
o (IIdul = (0 do) | - [1+ K1 + -+ Ko [T 5 (1 + K“)]>
+-o A | du,, — Wy o(0,up—2;dg, du, )|l
=||du, — ¥p_1(0,0r—1;dg, du, )|

LKy, (Hdm — (05 do) | - TTiZ5 (1 + Kio1) + . > ,
—|—Hdu£71 - 1/)2_2(97 uy_2;dp, du472)||

where the first equality comes from the definition of d,,, the first inequality uses
dp = dg and (2.11), the last inequality follows from (3.19) at j = 1,...,¢—1. Together
with (3.18), it implies that (3.19) holds for all £ € [L]. Plugging these upper bounds
for {||du, — du,||,¢ € [L]} into (3.17), we have

F'(z;d) — F'(z;d)

> - K, (Hdul U (O:do)| [+ Ky - Ky T (1 K“n)
A lduy, =YL (0,un—1;dg, du, )|l
L L
=— K> | I O+ EKj-0)| ldu, = %1 (0,015 g, du, ).
=1 | j=0+1

Together with (3.16), it implies that

L L
O'(zd) =Y | Be—Ky | [T O+ K-0)| | - lldu, — -1 (0, u0-1;dg, du, )|
=1 j=0+1
(321) >0,

where the last inequality uses (3.6), d ¢ Tx,(z) and Theorem 3.6. Therefore, it yields
that ©'(z;d) > 0 for all d, meaning that z is a d-stationary point of (P1). |

Remark 3.10. Theorem 3.9 is different from Theorem 2.1 of [9] in two aspects.

(i) Theorem 2.1 of [9] only obtains one-sided implication that a d-stationary point
of the penalty problem must be a d-stationary point of the original problem,
while we have the equivalence. As a consequence, the penalization preserves
all the d-stationary points of (P) and (P0). And when g, {1)¢—1,¢ € [L]} are
smooth or have DC structures of the pointwise max type [11, Condition C2],
d-stationary points of (P1) can be obtained by trust region methods [30] or
majorization minimization frameworks [11].

(if) Motivated by [21, Theorem 2.5] and [22, Lemma 9], we replace the bounded-
ness requirement of z with ©(z) < ©(2°), which is easier to check since ©(2?)
is easy to calculate. And the condition ©(z) < ©(2°) also helps to obtain
the threshold-like conditions expressed by {Ky,¢ € [L — 1]} and K, which
provides the relations between penalty thresholds and the number of layers
L.

This manuscript is for review purposes only.
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3.3. Second-order d-stationarity. Here we compare the sets of second-order
d-stationary points SDy and SD; of (P0) and (P1) to exhibit their differences in
depicting second-order necessary conditions for (P).

First of all, the idea of using second-order conditions of reformulated problems
to characterize optimality conditions of the original problem is motivated by [10,
Proposition 9.4.2] for (P) and (P1) with L = 1, i.e. ming h(G(9)) with G(8) :=
(o (0) T, A10]1)T and h(y) == g([y]1:n,) + [¥](ny4+1)- The second-order necessary con-
ditions in (9.41) of [10, Proposition 9.4.2] can be reorganized as: if 6 is a local mini-
mizer of (P), then for all p > max{K,, 1} where K, > 0 is a Lipschitz constant of g
near uy := Yo (6),

g (ursdy,) + 200 " dg > 0 for all d = (dy ,d,;,) " with dy, = ¥)(6;do),

and g (ux; du, ) + 2)pllda||? + plles” (03 do) |11 > 0,
for all d = (dg ,d,, )" with dy, = 1¥((0;do), ¢'(u1;du,) + 270" dg = 0,

which is actually covered by our second-order necessary conditions in constructing
SD; since for any z = (07, u] )T with uy = 10(0),
e for any d = (dy ,d,,)" with du, = ¥((6;dy), it follows from Proposition 3.4

that ©'(z;d) = ¢’ (u1;dy,) + 200 " dy;
e it follows from Proposition 3.4 that

{d | du, =(0;dg), g’ (ur; du,) + 200 Tdg = 0} C {d | ©(2;d) = 0};

e for any d with dy, = ¢((0;dg) and g'(u1;dy, ) + 200" dg = 0, it follows from
Proposition 3.5 with the setting of 51 = p and p > max{K, 1} that

0@ (z;:d) = ¢ (ur;du,) + 2X||do |2 + pl[ 057 (85 do) 11
< gD (ur; dy,) + 2]l do |2 + pl[ 0P (0 o)1

Hence, we will focus on our second-order necessary conditions for (P0) and (P1) rather
than generalizing (9.41) of [10, Proposition 9.4.2] to the case of (P).

By the results in Sections 3.1 and 3.2, the second-order necessary conditions of
(P0) and (P1) specified in Definition 3.2 are both able to characterize solutions of
(P). It follows from Lemma 3.1 and Theorem 3.9 that

80 g SDO N le’US:Y@ g Do N le’US:Y@

S C SDin levS;YG Cc DN ZE’US:Y@.

Together with the bijection between S and Sy (discussed after Lemma 2.1), it implies
that for any 6 € S, the point z = (0", u{,...,u} )" must belong to SDyNlev<sO and
SD1Nlev<5O where ug == y_1(6,u1, ..., ue—1) for all £ € [L]. Furthermore, we could
find the latter condition z € SD; Nlev<5O is stronger by the following observation.

THEOREM 3.11. Under Assumptions 1, 2 and (3.6), SDy N lev<z® DO SD1 N
lev<~50.

Proof. By the definitions of SDy and SDq,

SDy NlevesO = {z | FP(2;d) > 0,¥d € Pr,(2) with F'(z;d) = 0} N (Dy N lev<50O),
SD; NlevesO = {2 | 0@ (2;d) > 0,¥d with ©'(z;d) = 0} N (Dy Nlev<~O).

This manuscript is for review purposes only.
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Together with Dy N lev<y© = D; Nlev<5O from Theorem 3.9, we only need to prove
that for any z € D; Nlev<50O satisfying 0@ (2;d) > 0 for all d with ©'(z;d) = 0, the
inequality F(®)(z;d) > 0 holds for all d € Pr,(z) with F'(z;d) = 0.

First we show

(3.22) b2 (0, 0_1;dg, du, ) =0, £ € [L] for all z € Fy,d € Pr,()

by contradiction. If there exists ¢ € [L] and i € [IN¢], such that [wéQ_)l (0,ur—1;dg,dy,_,
)]i > 0, then it follows from the definition of second-order directional derivatives that
for any sufficiently small positive number 7,

0 < [¥e—1(0 +7dg,up—1 4 Tdu,_,)]i = [Ye—1(0,00-1)]; — T[t0;_1 (0, wr—1; dp, du,_, )]:-
Together with z € Fy,d € Px,(z) C Tx,(2), it implies that

[ug + Tdy,|i — [Ye—1(0 + Tdg, w1 + Tdy, )]s
=[e—1(0,ue—1)]; + T[p_1 (0, we—15do, du, )] — [e—1(0 + 7dg, we—1 + Tdu, ,)]i
<0

for any sufficiently small positive 7, which contradicts with d € Pr,(z). Similar contra-

diction appears if there exists £ € [L] and ¢ € [Ny], such that [zpﬁ)l(e, w—1;dg,du, )i
< 0, which yields (3.22).
Hence, for any z € SD; Nlev<5O, we have

L
0< 0@ (zd) = FP(z1d) + Y Bellf?, (0, ue—1;dg, du, )| = FP(2:d)
(=1

for all d € Pr,(z) with F’(z;d) = 0, where the inequality is derived by

{d € Pr,(2) | F'(2;d) = 0} C {d € Tr,(2) | F'(z;d) = 0} C {d | ©(z;d) = 0}
from z € Fy, Theorem 3.6 and Proposition 3.4, the first equality uses z € Fy, Theorem
3.6 and Proposition 3.5, and the last equality uses (3.22). d

Remark 3.12. Here we discuss the conditions under which the equality in The-
orem 3.11 holds. Under the premises of Theorem 3.11, it follows from (3.21) that
©'(z;d) > 0 for any z € Dy Nlev<5O = Dy Nlev<50 and any d ¢ Tx, (z). Hence, for
any z € Dy Nlev<50 = D1 Nlev<50,

(3.23)
{d]©'(2;d) =0} ={d € Tr,(2) | ©'(2;d) = 0} = {d € Tx,(2) | F'(2;d) = 0},

where the last equality uses z € Fy, Theorem 3.6 and Proposition 3.4. Together with
Proposition 3.5 and Theorem 3.6, it implies that for any d with ©’(z;d) = 0,

L
0P (2;d) = FO(z:d) + Y Bl (0, w15 do, du,_, )11,
/=1

which indicates that z € SD; Nlev<5O if and only if z € D; Nlev<50 and

L
(3.24) FO(zd) + 3" Bl (0,01 dg, du, )]s > 0
/=1
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for all d € Tx,(z) satisfying F'(z;d) = 0. Then it follows from (3.22) and Pg, (z) C
Tr, (%) that, the equality in Theorem 3.11 holds if and only if

L
FO(zd)+ 3 Bell (0, urss do, du, )|l 2 0,
=1

for all d € Tx,(2)\Pr, (z) satisfying F'(z;d) = 0.

(3.25)

Sufficient conditions for (3.25) include the following two conditions.
e Pr,(z) = Tx,(2). If Fy is a polyhedron or a union of finite number of poly-
hedrons, then Pz, (z) = Tx,(z) holds for any z € Fy. For example, under the
setting of o(0) :=a' 0,11 (0,u;) := [uy]4 for a vector a € R™,

Fo={z= (9T7u17U2)T | up = CLT97 ug = [u1]4}
:{z|u1:aT9, uy > 0, uQ:ul}U{z|u1:aT0, up <0, ug =0}

is a union of two polyhedrons.

e F' is convex and twice directionally differentiable. Since F(z) = g(u) +
A||]|?, F is convex and twice directionally differentiable when g is convex
and twice directionally differentiable. In this case, (3.25) naturally holds

F(z+’rd)ff‘2(/22)7F'(z;'rd) > 0 for all d.

since F(?)(2;d) = lim, o

Inspired by Remark 3.12, we can provide an example where SDy Nlev<7© 2 SD; N
lev<50 under the premises of Theorem 3.11.

Ezample 3.13. Consider (P) with L =2,n = N; = No =1 and A = 0.01,
Yo(0) := 0, Y1(0,u1) :=u2, g(ur,us) := [—u? + 0.5uy + 0.0001] .

On the one hand, it can be verified that 20 = (0,40(0),11(0,%0(0)))T = 0 is a
second-order d-stationary point of (P0). Firstly, it follows from Theorem 3.6, the
definition of Pr,(-) and (3.22) that 77, (0) = {(ds,du,,du,)" | du, = do, du, = 0}
and Pr,(0) = {0} since {0} C Pr (0) C {d € T#(0) | 2d%, = 0} = {0}. Then it
can be verified that F'(0;d) = 0.5d,, = 0 > 0 for all d € Tx,(0), and F®(0;d) =
—2d2 4+ 0.02d = 0 > 0 for all d € Pr,(0) N {d | F'(0;d) = 0} = {0}. On the
other hand, z° is not a second-order d-stationary point of (P1) with 3; = 1,8, =
0.6 where (3.6) holds. First we can verify (3.6) holds, i.e. f; > Ky4(1 + K;) and
B2 > K,. Since ¥ = F(2°) = 107, for all (6,u1,us)" € lev<5©, it can be calculated
that |uq| < 0] + |ug — 0] < 4/10~4/10~2 4 10~* = 0.1001. It implies that for all
(0,u1,u2) T, (0,11, u2) " € lev<sO,

lg(u) — g(a)| < \/(ul + @)% 4 0.25]|u — @l| < 0.5386]|u — ul|,
‘¢1(9,U1) — w1(97ﬂ1)| < \ul —|—ﬂ1‘ . |u1 — ’a1| < 0.21|U1 — ’E1|.

Hence, there exist K, € (0,0.5386] and K; € (0,0.21] satisfying (2.8)-(2.9), which
guarantees (3.6). Then, it follows from Theorem 3.9 and z° € Dy N lev<5;O that
20 € Dy Nlev<;O. Together with Remark 3.12, it implies that 2 € SD; if and
only if (3.24) holds at 20 for all d € Tx,(2°) with F'(2%d) = 0. However, for any
d = (dg,dy,,dy,)" with d,, =0and dg = d,,, # 0, we have d € Tx,(2°), F'(°;d) =0
and FO)(:0d) + Y25, B0, (00,00 ida,du, )1 = —2d2, +0.02d3 + 1242, =
—0.78d% < 0, which violates (3.24).

In Section 4, we will provide an application of (P) where the second-order d-

stationary points of corresponding (P0) and (P1) are computable by certain algo-
rithms.
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3.4. Second-order sufficient condition. Inspired by [10, Proposition 9.4.2
(b)], we provide second-order sufficient conditions for strong local minimizers [10,
Section 6.4] of (P) in this subsection. For a function f : F C R™ — R, we say
xr € F is a strong local minimizer of f on F if there exist €1,e5 > 0 such that
f(@) > f(x) + €|z — | for all Z € F satisfying [|Z — z|| < €2. To this end, we need
the following assumption about twice semidifferentiability [25, Definition 13.6].

ASSUMPTION 3. Function g and each component of vector functions {¢,_1,¢ €
[L]} are twice semidifferentiable on RNt and R*Ne-1 ¢ € [L] respectively.
Assumption 3 is stronger than Assumption 2. As shown in Lemma 3.1, Assumption
2 provides an upper bound of liminf; o ¢ —q %7;@@ along certain directions,
whereas (3.29)-(3.31) indicate that Assumption 3 can simultaneously offer a lower
bound for it in all directions. For any twice semidifferentiable function f, we have
df(z)(d) = lim,0,¢—a Jatrd)—/@) f'(x;d) for any z,d, and

i J &+ 7d) — fl2) — 7df(2)(d) flet7d) = f(x) = 7f(x;d)

= 1'
T\IL{)I ’7'2/2 7'1?01 T2/2
d' —d d'—d
(3.26) [z 47d) = f(z) = 7f'(2;d)
= lim 5
710 T /2
= f(z)(x; d),

for any x, d. For any twice semidifferentiable functions fi, fo on R™ and any a1, as € R,
the combination ai f1 +as fo is twice semidifferentiable on R™. Then based on previous
subsections, we have the following second-order sufficient conditions for (P).

THEOREM 3.14. Under Assumptions 1, 3 and (3.6), for any z = (0T, u")" €
lev<50, if

©'(z;d) > 0 for all d,
L

(3.27) and F@ (z;d) = Bellw ™, (0, we-13dg, du, )1 > 0,
=1

for all d # 0 with ©'(z;d) = 0,
then z is a strong local minimizer of (P1) and 0 is a strong local minimizer of (P).

Proof. We first prove that z is a strong local minimizer of (P1). According to
[25, Theorem 13.24 (c)], it is equivalent to prove that 0 € 99(z) and

.. .9+ Td)-0(2)
(3.28) hglﬁ)nf =y
d'—d

>0 for all d # 0.

Since 0 € 9O(z) can be obtained by d0(z) C dO(z) from [25, Theorem 8.6] and
0 € 9O(z) from ©'(z;d) > 0 for all d and [25, Exercise 8.4], we only need to prove
(3.28). For any d # O satisfying ©'(z;d) > 0, it follows from Assumption 1 that
lim;0.a'—a[O(z + 7d") — ©(2)]/7 exists and equals to ©’(z;d), which implies that

O(z+7d) — O(2) O(z+7d) —6(2)]/T

lim inf = lim inf = .
ity = oo 20
d'—d d' —d
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For any d # 0 satisfying ©'(z;d) = 0, it follows from ©'(z;d’) > 0 for all d’ that
O(z+7d') — 6(2)

hIﬂI—ll,iOnf 7—2/2
d'—d
N — _ 1. !
> Jim juf 2E74) — 6(2) — 76'(2:d")
740 7—2/2
d'—d
F N F(2) — 7F' (2 d
(3.29) > lim inf (z+7d) = F(z) —7F'(;d)
710 7-2/2
d/—>d
z+7d (2)=7f) (2 d
"’Zﬂe Z hmlnffe’] d') — fe;(2) Tfl,_]( )

72/2 ’
=1 jE[Nz] d/—>d

where fr;(2) = |[ue]; — [Ye=1];(0,ue—1)| for all £ € [L],j € [N¢]. By the twice
semidifferentiability of g and A|| - ||2, it follows from (3.26) that

N _ 1o g
(3.30) 1imian(z—|—Td) F(z) —1F'(z;d)

740 T2/2
d' —d

= F®(z:d).

And for all £ € [L],j € [INg], it follows from twice semidifferentiability of [¢,_1]; and
[10, (4.15)] that

foj(z+71d) — fo;(2) = 7f; ; (5 d)

lim inf

710 T2/2
d'—d
[0 (0, w15 dg, du, ) i G € TL(2) UL, (2 d),
> D, Oieridovdug e 65 € TG UTE (:0),
_|[¢£71<97u471adeﬂdul—l)]ﬂ|7 ifj € Ig,O(Z;d)7

where I (2), I°(z), I§(z) are defined as in Proposition 3.4, If , (z;d), I§ _(z:d),
I§ o(z;d) are defined as in Proposition 3.5. In fact, If (z) = I‘(z) = 0 for all ¢
since z € Fy according to Lemma 3.8, and furthermore it follows from (3.23) that
Ig’+(z; d) = Igﬁ(z; d) = for all £. Thus, the inequality can be simplified as

(z4+7d) — foi(2) —7f) (z;d
(3.31) liminf fuq(z +7d) fc;;(Z) Tf (2 d) §
e 72/2

Plugging (3.30) and (3.31) into (3.29), we have

|12 (0, 15 do, du,, )] -

.. .O(Ez+7d)—-0(z)
hrfllonf 2/ > F(Z) (z; d Zﬁﬂwz 1 9 ug_1;dg, dy,_ 1)”1 >0,

d'—d =1

where the last inequality comes from (3.27). Thus, (3.28) holds and z is a strong local
minimizer of (P1).

Next we prove 6, the component of z, is a strong local minimizer of (P) by
contradiction. If @ is not a strong local minimizer of (P), then there exists a sequence
{6% k > 1} converging to # such that

1
W(O") + AOF* < w(0) + AllO]* + 2 10° — 0]
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Based on {#*, k > 1}, we can construct {z¥,k > 1} C F, by setting 2% = ((6%) T, (uf)T
sy (WY with uf =41 (0%, uf, ... ul_|) for all £ € [L]. Together with z € F
from Lemma 3.8, it implies that

1 1
O(=") = W(OF) + A0%* < w(0) + N|O]* + 2 [16" = 0" = ©(=2) + L [|6* — 0]
(3.32) <O(z)+ %sz — 2|2

Meanwhile, it follows from the continuity of {¢y_1,¢ € [L]} and 6% — 6 that 2% — 2.
Together with the strict inequality in (3.32), it contradicts the fact that z is a strong
local minimizer of (P1). Hence, 6 is a strong local minimizer of (P). |

Remark 3.15. According to (3.23), the sufficient condition (3.27) is equivalent
to ©'(z;d) > 0 for all d and F® (z;d) — S5 Bel|v$®, (6, us_1;dg, du, )1 > O for
all d # 0 with d € Tx,(z) and F'(z;d) = 0. Hence, it can be observed that for
the case L = 1, (3.27) is milder than [10, (9.42)] for ming h(G(#)) with G(6) :=
(Wo(®)T, AOI2)T and A(y) := g([3l1:n,) + [, +1), since under p = By and J, =
{7 € M| 1867 0do)]; < 0}, T = {N1 + 1} U (IVi]\ ),

WA (G(0);G'(0:do)) + p Y GP(0:dg) — > G (0;dp)]

JEJ ¢ JjeEJ -
= 9@ (0(6); 1 (6; dg)) — 2XBald|> — B 0 (6; do) 4
<FO(zd) — B¢ (6; do) |1,

where the inequality uses F?)(z;d) = g (10(0); 04 (0; dg)) + 2)\||dg||? and dy # 0 for
all d € Tx, (2) with d # 0.

Theorem 3.14 enables us to determine whether a d-stationary point of (P1) is a strong
local minimizer for (P).

4. Application: RNNs. The recurrent neural network (RNN) is a kind of
feedforward neural networks for sequential processing. Different RNN variants, such as
Elman networks [12], Jordan networks [17], and LSTM [15], have been widely applied
on language modelling like ChatGPT and protein secondary structure prediction [13].
Due to the universal approximation property and the fundamental significance for the
other RNN variants [14], we focus on the training of the Elman RNN with a single
unidirectional hidden layer in this section. Without loss of generality, we consider the
case where the number of sequences is N = 1 and the number of time steps in the
sequence is T = 3. Given a sequence of inputs {z; € RYo ¢ € [3]} and an associated
sequence of labels {y; € RV2,t € [3]}, the model can be formulated as the following
constrained optimization problem

2
I = yll

. 2 2 2 2 2
omin S AAL + VI + W + 1P + el

(PO-RNN) SW.TY
subject to w; = Ws,_1 + Axy + b, s = o (wy),

Ut:VSt+Ca Tt:U(Ut)v t€[3]a

where sg = 0 € RVt and other notations are defined as follows.
1. Vector y refers to y = (y{ ,y5 ,y3 )| € R3Nz,
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2. Vectors s; € RM and r, € R™ refer to the hidden value and output at
time ¢, respectively. For brevity, we denote s = (s{,s5,s5)' € R3™M r =
(r{,rg,ra)" € R3Nz,

3. Vectors w, € RM and v, € RY2 refer to the auxiliary hidden value and
auxiliary output at time ¢, respectively. We denote w = (w{ ,wq ,w3 )" €
RNV v = (v],vq,v5 )" € R3N2,

4. Matrices W € RM>XN1 4 ¢ RN1xNo 1/ ¢ RN2XN1 and vectors b € RV1, ¢ €
R™2 are network parameters independent of ¢. And we aggregate those pa-
rameters as

(4.1) 0 := (Vec(A)T,Ve(;(X/)—r,vec(W)T,bT,cT)—r e R",
where vec(A) := (a ,...,a, )" for any matrix A = (ay,...,a,) € RP*7 with

{aj S ]Rp,j S [q]}, and n := NoN1 + N1 Ns + N12 + N7 + N3 in this case.
5. Function o(u) := max{u,au} for all u € R is (leaky) ReLU activator with
« € [0,1). For brevity, we will not distinguish whether o(-) applies on a scalar
or on a vector componentwisely when there is no ambiguity.
To reconcile the notations in (PO-RNN) with those in (P0), we could first define
L :=8 and

Ug—1 1= Wy, Uy = Sg, t € [3], uy =, ug :=1;

then define ug to be an empty placeholder, uy := (uf,...,u] )" for all £ € [§] as in

(1.1). Thereby, we have
oy — (T (T T T T T T TNT 6(N1+N.
u=ur = (W ,8 ,Wy, 8, W3 ,83,V ,7) € RS 2)3

which aggregates all the auxiliary variables s,w,r,v in (PO-RNN). Together with
(4.1), we have

(4.2) 2= (0", u")T € RN, where N :=n+ 6(Na + Ny),
so that the objective function of (PO-RNN) can be denoted as

F(z):= g(u) + A0]*, where g(u) := | - y||* /6.
And for the constraints of (PO-RNN), using Kronecker product ®, we denote
Por—o(0,uz2) = (v @Iy, 0 s @Iy, In, 0)0, tha_1(0,u2-1) := o(wy)
for all t € [3], and

0 s{®In, 0 0 Iy,
Ys(0,ug) := |0 sg @Iy, O 0 In, |6, ¥7(0,u7) :=0o(v).
0 s3Iy, 0 0 Iy,
Then it can be checked that

Wy = WStfl + Al’t + b, St =0 (U}t) s

=e_1(0,up—1), L € [§] &
we = pe-1(0,u¢-1) [8] {Ut_V5t+Ca re=o0(ve), t€[3],

and the above functions g and {¢y_1,¢ € [8]} are continuous. Hence, (PO-RNN) is
an application of (P0). Naturally, (PO-RNN) has a reformulation corresponding to
(P). As noted at the beginning of Section 3.2, they are equivalent when neglecting
dimension lifting.
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Remark 4.1. (PO-RNN) provides an example illustrating the differences between
(P) and (2.1)-(2.2) of [9]. Firstly, unifying A, V,W,b,c as 6 makes it convenient to
sharing parameters A, W, b in 1y, 12 and 4. Secondly, ¥g not only depends on 6 and
ug (i.e. s3), but also depends on ug,us (i.e. $1,82), which transmits the information
across multiple layers. In contrast, DNNs in [9] demand distinct parameters in dif-
ferent layers, which lacks a mechanism to maintain parameter consistency among the
layers sharing parameters during the training process. Figure 1 shows the architec-
tures of RNN in (P0-RNN) and DNN in (1.1) of [9].

° A' ’ ° V, - o . °
Loss

Y O A W

J

oo

e

> Ov Qv Ot gt gt Ot Ot
(e}

o
(=)

(a) RNN
Wy, b. Wa, b Wb
) DNN

F1a. 1. Architectures of RNN in (PO-RNN) and DNN in [9]

961 Next, we will explore the benefits of results in Section 3 for RNN training based on
962 (PO-RNN). For simplicity, we merge penalty parameters {(, ¢ € [L]} into (81, 82) > 0
963 in the ¢;-penalized form of (PO-RNN):

961 (P1-RNN) min O(z),
965 where
6 8
966 O(2) :=F(2) + B1 Y _ llue = ¥o-1(0,00-1) |y + B2 Y llwe — ve—1(0, 1)
=1 =7
3
967 =F(z)+ b Z (JJlwg — Wsp—1 — Axy — blj1 + ||st — o(wy)||1)
t=1
3
968 —l—BQZ(Hvt—Vst—cHl—i—Hrt—a(vt)Hl).
969 =1
970 For (PO-RNN) and (P1-RNN), denote
971 FRNN ] W= W1+ Az + b, sy =0 (wy),
. ve=Vsi+c, re=0(vy), t €3 ’
972 SENN .= argmin F(z), SEVYN .= argmin O(z),
973 =€ FgN z€RN

974 and break the direction d € RN according to the blocks of variable z defined in (4.2):

d=(dj,d))T", with
975 (4.3) dg = (), dy,dyy,d) dT)T
T T T T T T T T T 4T
dy (dul,...,dUS) (dwl,dsl,dw,z,ds2,dw3,d53,dv,dr) ,
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where all dimensions are consistent with the corresponding variables. And for any
d € RN, we define d, := (d, ,d} . d' )", d, :=(d} ,d] ,d] )7, ds:=(d] ,dl ,d] )T,

r19 Yy Wy vy Yugr Yoy 519 Wsor Wsy

dw = (d} ,d} ,d] )T, and dg, := 0 € RM. For any vector a € RPY, denote

wi ) Ywser Yws
a1 Ap+1 c Qp(g-1)41
mat, 4(a) = | : : :
ap azp pq
Applying the results in Sections 2 and 3 on (PO-RNN) and (P1-RNN), we obtain the
following corollary.

COROLLARY 4.2. (i) The optimal solution sets SFNYN and SENN are nonempty
and compact for all (f1, B2) > 0. (i) Any local minimizer z of (PO-RNN) is a second-
order d-stationary point of (PO-RNN), that is

z€ Fo "N and [VF(2)]7d > 0, Vd € Trrvn (2)
and d"V?F(z)d > 0, Vd € Prrvn(2) with [VF(2)]"d = 0,

and for all (B1,P2) > 0, any local minimizer z of (P1-RNN) is a second-order d-
stationary point of (P1-RNN), that is

©'(z;d) >0, ¥d € RN and ©® (2;d) > 0, Vd with ©'(z;d) = 0,

where for any z € FENN

_|dv, = Dvsy +Vds, +de, dr, =0 (v4;dy,),
Trrwn(2) = S d € RY| dy, = Dwsi—1 + Wds, , + Dazy +dy, o,
dst = U/(wt;dwt)v te [3]

Prpun(2) = {d € Tepun (2) | Dyd,, =0, Dyd,,, =0, t € 3]}

with D4 = matn, n,(da), Dy :=maty, n, (dv), Dw = matn, n, (dw).
(iii) Under the setting of

(4.4) B1 > V2/(3N), B2 > \/2%;7/3,

where 7y, = 0(0) = ||y||?/6,71 := Z?:O(\/’yy//\)i, we have that
(a) SENN = SENN - and
(b) for any z € lev<,, ©, z is d-stationary point of (PO-RNN) if and only if it is
a d-stationary point of (P1-RNN).

Proof. (i). The nonemptiness and compactness of SEVN and

Lemmas 2.1 and 2.2.

(49). Since g and {¢¢_1, ¢ € [8]} satisfy Assumptions 1 and 2, we attain the neces-
sity of second-order d-stationarity from Lemma 3.1, and the expression of Tféamv (2)
from Theorem 3.6. The expression of P}-éqmv (z) is further derived by its definition,
P]_-éaNN (z) C T_;.—[;%NN (z) and (3.22).

(#i7). The thresholds (4.4) can be obtained by refining the proof of Lemma 3.8
and Theorem 3.9 as follows. Note that

I =yl < /6y, [IVIE< A2/ W< A w/A

SENN come from
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for all z € lev<,,©. Next, we will estimate the constants K, > 0 and {K, > 0,/ €
[L — 1]} satisfying (2.11). By the definition of g(u) in (PO-RNN) and (P1-RNN), it
implies that

o
7 r—y dr_dr r—y 7
9/ ) — o' (s ) = | 2= vy g

27, -
(15) <y ld, - |

for any z € lev<,,© and any d, d € RN. Then for {1y, ¢ € [7]}, we divide them into

four groups. For {1g;_2,t = 2,3}, it follows from |[W{| < /7, /A for all z € lev<,,©
that

”1:[}575—2(0’ U2¢—2; d97 du2t—2) - wét—2(07 Ugt—2; Jf)’ Jll21,72)||

(4.6) ~
= HW(dst71 - dSt—l)H < 7@!/ ||d8t 1 _dst 1”

for all d,d € RYN with dp = dy. For {ar—1,t € [3]}, it follows from the definition of o
that

”#ét—l(eﬁth—l;d97dumf1)__ﬂét—l(evuﬂt—l;dé’dﬁwfl)”

4.7 = _
.7 0" (w0 duy) — 0" (w033 )| < e — o |

for all d,d € RN. For 1, it follows from ||V|| < VVy/A that for all z € lev<,, © and
for all d,d € RYN with dg = dy,

Hd@ 0 u67d97 ue) ¢@(9 u67d9’due”|

—dy,)
(4.8) Zs1 -
d52 —ds,) < Yy/ A Z lds, — ds, |-
V(ds, — ds;) te[3]

For 17, it follows from the definition of ¢ that
(4.9)  [[¥7(0, ur; dg, du;) — ¥7(0, urs do, du, )| = |07 (v5 o) — 0" (v3dy)[| < [|dy — do|

for all d,d € RY. Then we can yield (a) and (b) under the thresholds (4.4) by
replacing (2.11) used in Lemma 3.8 and Theorem 3.9 with (4.5)-(4.9) as follows.
e For Lemma 3.8, prove uy = t;—1(6,up—1) in the order of £ = 8,...,1 by
contradiction, but without the use of induction (3.12), under same definitions
of z. During the process, plug (4.5) with d = 0 into (3.7) and (3.9); in (3.11)
and (3.13), use

— (4.6) with dg =0,d =0, t = 2,3,
— (4.7) with dg =0,d =0, t = 1,2,3,
— (4.8) with dy = 0,d = 0,

— (4.9) with dy = 0,d = 0.

e For Theorem 3.9, keep the analysis before (3.19) unchanged except for plug-
ging (4.5) into (3.17). Then repeat (3.20) for £ = 2,...,8 instead of using
the induction (3.19). During the process, we use (4.6), (4.7), (4.8) and (4.9)
when the subscript of ¢ belongs to {2,4}, {1,3,5}, {6} and {7} in (3.20)
respectively. The calculations after (3.20) are also kept without changes. 0O
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The results in Corollary 4.2 can be easily extended to the case where N > 1,
T > 3 and s¢, wy, 1,0 aggregate corresponding components for all samples at tth
time step with thresholds

(4.10) B1 > nvyvV2/(ANT), B2 > /27y /(NT),

under v, := O(0) = |y||?/(2NT), 71 = Zg;}l(«/’yy/)\)i. And the exact penalty in
d-stationarity can be generalized to more scenarios including but not limited to more
complicated variants in RNNs (such as LSTM and GRU) with any locally Lipschitz
continuous and directionally differentiable activator (such as tanh and ELU).

Besides, it follows from the convexity of F' in (PO-RNN) and (P1-RNN) that for all
z € FENN dTV2F(2)d > 0foralld € Prrvn (2)N{d | [VF(2)]"d = 0}. Hence, every
d-stationary point of (PO-RNN) is a second-order d-stationary point for (PO-RNN).
Similarly, according to (3.24), every d-stationary point of (P1-RNN) in lev<, © is a
second-order d-stationary point for (P1-RNN) under (4.10). In fact, it follows from
Remark 3.12 that SDg Nlev<,, © = 8Dy Nlev<,, © = Dy Nlev<,, © = Dy Nlev<,, O
in this case. As a consequence, one can obtain a second-order d-stationary point of
(PO-RNN) and (P1-RNN) by applying the algorithms in [9, 11] on (P1-RNN) with
(4.10).

5. Conclusions. The paper investigates a class of nonconvex nonsmooth mul-
ticomposite optimization problems (P) with an objective function comprised of a
regularization term and a multi-layer composite function with twice directionally dif-
ferentiable and locally Lipschitz continuous components. The d-stationarity of (P) is
hard to attain directly, and its second-order d-stationarity is vague without additional
assumptions on the objective function. Based on the closed-form expression of the
tangent cone T, (-), we prove the equivalence between (P), the constrained form (P0)
and the ¢;-penalty formulation (P1) in terms of global optimality and d-stationarity.
The equivalence offers an indirect way to compute the d-stationary points of (P). Fur-
thermore, it provides second-order necessary and sufficient conditions for (P) through
(P0O) and (P1). The theoretical results are also applied to the training process of
recurrent neural networks.
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