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Abstract. We consider a class of nonconvex nonsmooth multicomposite optimization prob-4
lems where the objective function consists of a Tikhonov regularizer and a composition of multiple5
nonconvex nonsmooth component functions. Such optimization problems arise from tangible appli-6
cations in machine learning and beyond. To define and compute its first-order and second-order7
d(irectional)-stationary points effectively, we first derive the closed-form expression of the tangent8
cone for the feasible region of its constrained reformulation. Building on this, we establish its equiva-9
lence with the corresponding constrained and ℓ1-penalty reformulations in terms of global optimality10
and d-stationarity. The equivalence offers indirect methods to attain the first-order and second-order11
d-stationary points of the original problem in certain cases. We apply our results to the training12
process of recurrent neural networks (RNNs).13
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1. Introduction. In this paper, we consider the following unconstrained non-17

convex nonsmooth optimization problem18

min
θ∈Rn

Ψ(θ) + λ∥θ∥2,(P)19
20

where λ > 0, ∥ · ∥ is the Euclidean norm, and the mapping Ψ : Rn → R+ is defined by21

Ψ(θ) := g(u1, · · · , uL)22

with u1 := ψ0(θ) and uℓ := ψℓ−1(θ, u1, · · · , uℓ−1), ℓ = 2, · · · , L,2324

for L+ 1 continuous but possibly nonconvex nonsmooth component functions

ψℓ−1 : Rn+N̄ℓ−1 → RNℓ , ℓ = 1, . . . , L, and g : RN̄L → R+

with N̄0 := 0 and N̄ℓ :=
∑ℓ

j=1Nj for all ℓ = 1, . . . , L. Problem (P) covers a wide25

range of applications in machine learning where θ refers to the network parameter, Ψ26

is the loss function and λ∥θ∥2 is the regularizer to guarantee the boundedness of the27

solution set [21] and alleviate the overfitting [27] for (P).28

In [9], Cui et al. present a novel deterministic algorithmic framework that enables29

the computation of a d-stationary point of the empirical deep neural network training30

problem formulated as a multicomposite optimization problem. The model (P) differs31

from the model (2.1)-(2.2) of [9] in two aspects. The first difference is that we unify32

parameters {θ0, . . . , θL−1} (corresponding to {z1, . . . , zL} in [9]) as θ since the process33

of selecting θℓ−1 from θ can be achieved by ψℓ−1, which facilitates the sharing of34
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2 L. JIN, X. WANG, AND X. CHEN

parameters across layers simultaneously. Secondly, we explicitly articulate the infor-35

mation transmission across multiple layers (i.e. dependence of ψℓ−1 on u1, . . . , uℓ−2),36

which is widely used in network structure, such as RNN [13] and shortcut in Resnet.37

In [9] it assumes that g only depends on uL and ψℓ−1 only depends on (θ, uℓ−1).38

Although Ψ in (P) can be reorganized into Ψ(θ) = ḡ(·) ◦ ψ̄L−1(θ, ·) ◦ · · · ◦ ψ̄0(θ) with39

some functions ḡ, {ψ̄ℓ} coinciding the formulation (2.1)-(2.2) in [9] if neglecting the40

first difference, it can be found that the required number of auxiliary variables un-41

der this decomposition is much larger than N̄L. We illustrate the differences by an42

example of RNNs in Remark 4.1 with Figure 1. Thus, model (P) encompasses the43

formulation (2.1)-(2.2) presented in [9].44

Directly solving (P) by SGD-type methods (SGDs) is common in computer sci-45

ence. However, the automatic differentiation (AD), the key of SGDs, based on chain46

rules fails for the subdifferential of Ψ at a nondifferentiable point θ [4]. To the best47

of our knowledge, existing algorithms that directly solve unconstrained nonconvex48

nonsmooth problem (P) with rigorous convergence analysis can be roughly separated49

into two groups. One combines (S)GDs with smoothing techniques aiming at (approx-50

imate) Clarke stationary points [7, 20, 31]. Another approach constructs advanced51

AD algorithms based on chain rules for some generalized subdifferentials. The latter52

further branches into two distinct paths. Along the first path Nesterov [23] utilizes the53

chain rule of directional derivatives to define lexicographic differentiation and evalu-54

ate lexicographic subdifferential [2, 18]. However, the nice properties of lexicographic55

subdifferential [18, 23] seem to be mostly applied in sensitivity analysis and have not56

helped to develop an algorithm converging to a stationary point defined by lexico-57

graphic subdifferential or a d-stationary point. Moreover, it is mentioned in [3] that58

the AD method based on lexicographic differentiation is incompatible with existing59

AD frameworks. Therefore, Bolte and Pauwels [4] follow a path of conservative field,60

which is a generalization of Clarke subdifferential. Further study establishes conver-61

gence of SGDs in the sense of conservative field stationarity, which can be improved to62

Clarke stationarity under certain conditions. More references can be referred to [28].63

From the existing literature, directly solving (P) may only be able to find a Clarke64

stationary point if there is no special structure, such as weak convexity [19] and weak65

concavity [1].66

However, in general, Clarke stationarity may be an overly lenient condition in67

contrast with d-stationarity [11]. On the other hand, the d-stationary points of mul-68

ticomposite optimization (P) are too complicated to calculate directly (Proposition69

3.4). Therefore, a more practical approach is to reformulate (P) to derive a model70

with easily computable d-stationary points, while establishing their relationship in71

terms of d-stationarity. In [10, Section 9.4.2], the equivalence between (P) with L = 172

and its ℓ1-penalty form in d-stationarity is established under the premise of feasibility.73

In [9], a one-sided relation is obtained for simplified (P) with L > 1 and its ℓ1-penalty74

form, which provides the algorithm for calculating d-stationary points of DNN train-75

ing problem. More references that establish and utilize the relationship between the76

simplified (P) and its different reformulations in other kinds of stationarity can be77

referred to [22, 26, 27].78

Apart from the above first-order optimality conditions, the second-order opti-79

mality conditions for nonsmooth optimization problems have attracted widespread80

interest since the 1970s [25, Chapter 13]. To avoid the concept of second-order tan-81

gent cone, Cui et al. [8] use a kind of second-order subderivative [25, 13(7)] to establish82

second-order conditions for minimizing twice semidifferentiable and locally Lipschitz83

continuous functions with polyhedral constraints [8, Proposition 2.3], and apply the84

This manuscript is for review purposes only.



D-STATIONARITY OF NONSMOOTH MULTICOMPOSITE OPTIMIZATION 3

results on piecewise linear-quadratic programs. Jiang and Chen [16, Lemma 3.8] fur-85

ther extend the second-order necessary condition to convexly constrained optimization86

problems with twice semidifferentiable objective functions, and apply the results on87

minimax problems by using generalized directional derivatives and subderivatives. For88

(P) with L = 1 and twice semidifferentiable component functions, [10, Proposition89

9.4.2] offers second-order conditions by the relation between the original problem and90

its ℓ1-penalty reformulation, and the structure of the reformulation. However, the91

aforementioned second-order conditions are inapplicable to (P) with L > 1 even when92

g and {ψℓ} are all twice semidifferentiable, since the composition of such functions93

may not retain this property. More references that establish second-order optimal-94

ity conditions by other generalized Hessians and generalized second-order directional95

derivatives can be referred to commentary at the end of [25, Chapter 13].96

1.1. Model reformulation. Motivated by [6, 9], we reformulate (P) as a con-97

strained optimization problem. First we introduce auxiliary variables98

(1.1) uℓ := (u⊤1 , . . . , u
⊤
ℓ )

⊤ ∈ RN̄ℓ , ℓ = 1, . . . , L, and an empty placeholder u0,99

to decompose the nested structure of Ψ, obtaining the constrained form100

(P0) min
z

F (z) := g(u) + λ∥θ∥2, subject to uℓ = ψℓ−1(θ,uℓ−1), ℓ = 1, . . . , L,101

where for brevity we denote u := uL ∈ RN̄L ,102

z := (θ⊤, u⊤)⊤ ∈ RN̄ , and N̄ := n+ N̄L.(1.2)103104

The nonconvex nonsmooth objective function and the nonsmooth equality con-105

straints in (P0) pose significant challenges for both theoretical analysis and numer-106

ical tractability. Therefore, (P0) will only be used as an intermediary. Denote107

[L] := {1, . . . , L}. As the final reformulation, the ℓ1-penalty form of (P0) with positive108

penalty parameters {βℓ, ℓ ∈ [L]} is defined as:109

min
z

Θ(z) := F (z) +

L∑
ℓ=1

βℓ∥uℓ − ψℓ−1(θ,uℓ−1)∥1.(P1)110

111

We will analyze the properties of (P), (P0) and (P1) and establish the relationship112

between them, which makes it realistic to attain second-order stationary points of113

(P).114

1.2. Contribution. The contributions of this paper lie in threefold.115

Firstly, we obtain a full characterization of the tangent cone of the feasible re-116

gion of (P0) under directional differentiability and local Lipschitz continuity of g and117

{ψℓ−1, ℓ ∈ [L]} in Theorem 3.6. In general, it is challenging to express the tangent118

cone of a nonconvex feasible region [10, p525 and Remark 9.2.1]. For the nonconvex119

feasible region constructed by nonsmooth equality constraints in (P0), it can be ver-120

ified that NNAMCQ (no nonzero abnormal multiplier constraint qualification) [29,121

Remark 2] holds using the method similar to [22, Lemma 6]. Based on that, a subset122

of its tangent cone can be expressed by a superset of its normal cone [25, Corollary123

10.50] using the relations between tangent and normal cones [25, Theorems 6.26 and124

6.28]. However, the closed-form of its tangent cone is still difficult to obtain solely125

through constraint qualifications (CQs). In contrast, we provide a closed-form expres-126

sion of the tangent cone of the feasible region of (P0) by directly utilizing the pull-out127

structure of constraints.128
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4 L. JIN, X. WANG, AND X. CHEN

Secondly, we show the equivalence between (P), (P0) and (P1) regarding d-129

stationary points and global minimizers, which generalizes the results in [9] and Chap-130

ter 9 of [10]. As a consequence of the equivalence between (P) and (P1), the penalty131

form (P1) with according algorithms [11, 30] offers an alternative way to solve the132

original problem (P). Furthermore, we derive a unified second-order necessary con-133

dition for nonconvex nonsmooth constrained minimization with twice directionally134

differentiable objective functions, which extends the results in [8, 16]. Together with135

the equivalence between (P), (P0) and (P1), the second-order optimality conditions136

for (P0) and (P1) provide second-order necessary and sufficient criteria for (P), which137

cover the ones proposed in [10, Proposition 9.4.2].138

Thirdly, we apply our theoretical results to the minimization problem for train-139

ing an Elman RNN with a single unidirectional hidden layer. The equivalence in140

d-stationarity of (P0-RNN) and (P1-RNN) not only generalizes the result from Theo-141

rem 2.1 of [9], but also provides the explicit thresholds for penalty parameters. More-142

over, we observe that every d-stationary point of (P0-RNN) is also a second-order143

d-stationary point for (P0-RNN) and the same result holds for (P1-RNN) under cer-144

tain conditions, which makes their second-order d-stationary points computable by145

the methods for DC programs [11].146

1.3. Organization. The rest of this paper is organized as follows. In Section 2,147

we introduce some basic definitions and preliminary properties of (P), (P0) and (P1).148

The d-stationarity of (P), (P0), (P1) and the second-order d-stationarity of (P0),149

(P1) are defined in Section 3. Based on the closed-form expression of the tangent150

cone of the feasible region of (P0) in subsection 3.1, we establish the equivalence151

between (P), (P0) and (P1) in terms of global optimality and d-stationarity under152

certain conditions in subsection 3.2. And subsection 3.3 shows that second-order153

d-stationarity of (P0) and (P1) provides second-order necessary conditions for (P).154

Subsection 3.4 offers second-order sufficient conditions for strong local minimizers of155

(P) through (P1). In Section 4, we apply the general theoretical results to RNNs.156

Concluding remarks are given in Section 5.157

1.4. Notation. In the following, we denote the set of integers and nonnegative158

(positive) integers as Z and Z+ (Z++) respectively. For any m ∈ Z++, we denote159

[m] := {1, . . . ,m}. The accumulative multiplication is presented by
∏
. For any160

sequence {aj ≥ 0, j ∈ Z+} and any j1, j2 ∈ Z+ with j1 > j2, denote
∑j2

j=j1
aj := 0161

and
∏j2

j=j1
aj := 1. For any vector sequence {uj , j ∈ Z+} and any j1, j2 ∈ Z+ with162

j1 > j2, denote (uj1 , . . . , uj2) as an empty placeholder. For any vector a and positive163

integer i, [a]i refers to the ith component of a. For any two sets A,B ⊆ Rm, denote164

A + B = {a + b | a ∈ A, b ∈ B}. Denote B(0; 1) := {z ∈ RN̄ | ∥z∥ ≤ 1}. For any set165

F ⊆ Rm, the indicator function is defined as δF (x) = 0, if x ∈ F , and +∞, otherwise.166

For any m ∈ Z++, γ ∈ R and any function f : Rm → R ∪ {+∞}, the level set is167

defined as lev≤γf := {x ∈ Rm | f(x) ≤ γ}.168

Denote the optimal solution sets of (P), (P0) and (P1) by

S := argmin
θ∈Rn

[Ψ(θ) + λ∥θ∥2], S0 := argmin
z∈F0

F (z), S1 := argmin
z∈RN̄

Θ(z),

respectively, where169

F0 := {z ∈ RN̄ | uℓ = ψℓ−1(θ,uℓ−1), ℓ ∈ [L]}.(1.3)170171
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D-STATIONARITY OF NONSMOOTH MULTICOMPOSITE OPTIMIZATION 5

2. Preliminaries. In this section, we present some preliminaries that are used172

in subsequent sections. Let173

(2.1)
z0 := (0⊤, (u01)

⊤, . . . , (u0L)
⊤)⊤ with u0ℓ := ψℓ−1(0, u

0
1, . . . , u

0
ℓ−1), ℓ = 1, . . . , L,

γ̄ := Θ(z0).
174

Then we have z0 ∈ F0 ̸= ∅ and γ̄ = F (z0). Next, we prove that S,S0 and S1 are175

nonempty and compact under the continuity of g : RN̄L → R+ and {ψℓ−1 : Rn+N̄ℓ−1 →176

RNℓ , ℓ ∈ [L]}. Noting the nonnegativity of g, we can obtain the following result by177

the level-boundedness [25, Theorem 1.9] of (Ψ(·) + λ∥ · ∥2) and (F + δF0
).178

Lemma 2.1. The optimal solution sets S and S0 are nonempty and compact.179

In fact, it can be naturally obtained that (P) is equivalent to (P0) in global opti-180

mality. If θ̄ ∈ S, then z̄ := (θ̄⊤, ū⊤1 , . . . , ū
⊤
L )

⊤ ∈ S0 where ūℓ := ψℓ−1(θ̄, ū1, . . . , ūℓ−1)181

for all ℓ ∈ [L]; conversely, if z̄ := (θ̄⊤, ū⊤1 , . . . , ū
⊤
L )

⊤ ∈ S0, then θ̄ ∈ S.182

Lemma 2.2. The optimal solution set S1 is nonempty and compact.183

Proof. Since Θ is proper and continuous, we only need to show its level bounded-184

ness [25, Theorem 1.9]. For any γ ∈ R+ and any z ∈ lev≤γΘ, it follows from g(·) ≥ 0185

and ∥ · ∥ ≤ ∥ · ∥1 that186

∥θ∥ ≤
√
γ/λ,(2.2)187

∥uℓ − ψℓ−1(θ, u1, . . . , uℓ−1)∥ ≤ γβ−1
ℓ , ∀ℓ ∈ [L].(2.3)188189

Next, we will finish the proof in an inductive manner. For ℓ = 1, it follows from190

(2.2)-(2.3) and the continuity of ψ0 on Rn that191

∥u1∥ ≤ ∥u1 − ψ0(θ)∥+ ∥ψ0(θ)∥ ≤ γβ−1
1 +max{ψ0(θ) | ∥θ∥ ≤

√
γλ−1} < +∞.192193

For any ℓ = 2, . . . , L, assume that u1, . . . , uℓ−1 are bounded. Then it follows from194

(2.2) and (2.3) that195

∥uℓ∥ ≤ ∥uℓ − ψℓ−1(θ, u1, . . . , uℓ−1)∥+ ∥ψℓ−1(θ, u1, . . . , uℓ−1)∥196

≤ γβ−1
ℓ + ∥ψℓ−1(θ, u1, . . . , uℓ−1)∥ < +∞.197198

Hence, u is bounded by induction. Together with (2.2) and arbitrariness of z, it199

implies the boundedness of lev≤γΘ.200

For the main analysis we need the following concepts of directional differentiability201

and local Lipschitz continuity.202

Definition 2.3 ((twice) directional differentiability, Definition 1.1.3 and (4.10)203

of [10]). Given an open subset O of Rn and a scalar-valued function f : O → R. The204

directional derivative of f at a point x ∈ O along a direction d ∈ Rn is defined as205

f ′(x; d) := lim
τ↓0

f(x+ τd)− f(x)

τ
,(2.4)206

207

if the limit exists. The function f is directionally differentiable at x, if the limit (2.4)208

exists for all d ∈ Rn. The second-order directional derivative of f at a point x ∈ O209

along a direction d ∈ Rn is defined as210

f (2)(x; d) := lim
τ↓0

f(x+ τd)− f(x)− τf ′(x; d)

τ2/2
,(2.5)211

212
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6 L. JIN, X. WANG, AND X. CHEN

if the limit and the one for (2.4) exist. The function f is twice directionally differen-213

tiable at x, if the limits (2.4) and (2.5) exist for all d ∈ Rn.214

For a vector-valued function f : O → Rm with component functions {fi : O →
R, i ∈ [m]}, the directional derivative f ′(x; d) is defined as

f ′(x; d) := (f ′1(x; d), . . . , f
′
m(x; d))⊤,

if f ′i(x; d), i ∈ [m] exist. Furthermore, if f
(2)
i (x; d), i ∈ [m] exist, then the second-order

directional derivative f (2)(x; d) is defined as

f (2)(x; d) := (f
(2)
1 (x; d), . . . , f (2)m (x; d))⊤.

Function f is (twice) directionally differentiable at x, if all of its component functions215

are (twice) directionally differentiable at x.216

Definition 2.4 (local Lipschitz continuity). For any function f : O ⊆ Rn →217

Rm, we say f is locally Lipschitz continuous near x ∈ O, if there exists a neighborhood218

X of x and K ≥ 0 such that ∥f(x1)− f(x2)∥ ≤ K∥x1 − x2∥ for all x1, x2 ∈ X. And219

we say f is locally Lipschitz continuous, if f is locally Lipschitz continuous near every220

point in its domain O.221

If f is directionally differentiable at x and locally Lipschitz continuous near x222

with modulus K ≥ 0, then it follows from Definitions 2.3 and 2.4 that for all d ∈ Rn,223

∥f ′(x; d)∥ =

∥∥∥∥limτ↓0 f(x+ τd)− f(x)

τ

∥∥∥∥ ≤ lim
τ↓0

Kτ∥d∥
τ

= K∥d∥ <∞.(2.6)224
225

Hence, for all d, d̄ ∈ Rn, ∥f ′(x; d) − f ′(x; d̄)∥ is well-defined and we can similarly226

obtain that227

∥f ′(x; d)− f ′(x; d̄)∥ ≤ K∥d− d̄∥, ∀d, d̄ ∈ Rn.(2.7)228229

The remaining analysis will be based on the following assumptions about the230

directional differentiability and local Lipschitz continuity.231

Assumption 1. Functions g and {ψℓ−1, ℓ ∈ [L]} are directionally differentiable232

on RN̄L and Rn+N̄ℓ−1 , ℓ ∈ [L] respectively. Functions g and {ψℓ−1, ℓ ∈ [L]} are locally233

Lipschitz continuous.234

According to Lemma 2.2, lev≤γ̄Θ with γ̄ := Θ(z0) defined in (2.1) is nonempty and235

compact. Under Assumption 1, it follows from the compactness of lev≤γ̄Θ that there236

exist Kg > 0 and {Kℓ > 0, ℓ ∈ [L− 1]} such that237

|g(u)− g(ū)| ≤ Kg∥u− ū∥,(2.8)238

∥ψℓ−1(θ,uℓ−1)− ψℓ−1(θ, ūℓ−1)∥ ≤ Kℓ−1∥uℓ−1 − ūℓ−1∥, ℓ = 2, . . . , L(2.9)239240

for all (θ⊤,u⊤)⊤, (θ⊤, ū⊤)⊤ ∈ (lev≤γ̄Θ+ ϵB(0; 1)), where the positive real number241

ϵ is sufficiently small. In (2.9), the two terms at the left-hand side are consistent in242

the component θ, since the subsequent analysis only needs the Lipschitz continuity243

moduli of {ψℓ, ℓ ∈ [L − 1]} in component u. Besides, it should be noted that Kg244

and {Kℓ, ℓ ∈ [L − 1]} are non-increasing as {βℓ, ℓ ∈ [L]} increase since functions245

g, {ψℓ, ℓ ∈ [L − 1]} and γ̄ = F (z0) are independent of penalty parameters and for246

any z, Θ(z) is non-decreasing as {βℓ, ℓ ∈ [L]} increase. Furthermore, in Example 3.13247

and Section 4 we will show how to estimate Kg and {Kℓ, ℓ ∈ [L − 1]} for specific248

applications.249
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Remark 2.5. In fact, z0 and γ̄ can be replaced by any feasible point of (P0) and250

the value of Θ at that point. The replacement will not affect any theoretical results251

in this paper. We choose z0 and γ̄ defined in (2.1) since 0 is usually not a good252

candidate in data fitting. Thus, the requirement z ∈ lev≤γ̄Θ can be regarded as a253

mild condition.254

For clarity, break the direction d ∈ RN̄ according to the blocks of variable z as255

follows256

(2.10)
d = (d⊤θ , d

⊤
u )

⊤, where

du = ((du1
)⊤, . . . , (duL

)⊤)⊤ with duℓ
∈ RNℓ , ℓ ∈ [L].

257

Then under Assumption 1, it follows from (2.6)-(2.7) and (2.8)-(2.9) that for any258

z ∈ lev≤γ̄Θ, and any d, d̄ ∈ RN̄ with dθ = d̄θ,259

(2.11)

|g′(u; du)− g′(u; d̄u)| ≤ Kg∥du − d̄u∥,
∥ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)− ψ′

ℓ−1(θ,uℓ−1; d̄θ, d̄uℓ−1
)∥

≤ Kℓ−1∥duℓ−1
− d̄uℓ−1

∥, ℓ = 2, . . . , L,

260

where duℓ−1
:= ((du1)

⊤, . . . , (duℓ−1
)⊤)⊤ for all ℓ ∈ [L].261

Apart from Assumption 1, the analysis concerning second-order necessary condi-262

tions also requires the following assumption about the twice directional differentiabil-263

ity.264

Assumption 2. Functions g and {ψℓ−1, ℓ ∈ [L]} are twice directionally differen-265

tiable on RN̄L and Rn+N̄ℓ−1 , ℓ ∈ [L] respectively.266

We use the definitions of tangent cone [25, Definition 6.1] and radial cone [5].267

Definition 2.6 (tangent cone and radial cone). The tangent cone of a set F ⊆268

Rm at any point x ∈ F is defined as269

TF (x) := {d ∈ Rm | ∃xk → x with xk ∈ F and τk ↓ 0, such that
xk − x

τk
→ d}.270

271

The radial cone of a set F ⊆ Rm at any point x ∈ F is defined as272

PF (x) := {d ∈ Rm | ∃τk ↓ 0 such that x+ τkd ∈ F}.273274

Then it can be observed that PF (x) ⊆ TF (x). When F is convex, PF (x) coincides275

with T ◦
F (x) used in [16], and it further equals to TF (x) when F is polyhedral.276

3. Optimality and stationarity. This section will establish the relationship277

between (P), (P0) and (P1) in global optimality and (second-order) d-stationarity, and278

discuss the byproducts regarding second-order sufficient conditions. The d-stationary279

points are defined by the necessary tangent condition outlined at the end of [25, Chap-280

ter 8.C] without proof. And the second-order d-stationarity extends the second-order281

necessary condition in [16, Lemma 3.8] from a twice semidifferentiable objective func-282

tion with convex constraints to a twice directionally differentiable objective function283

with general constraints. We provide a detailed proof for the necessity of (second-284

order) d-stationarity under the assumptions of the nonemptiness of solution sets,285

twice directional differentiability and local Lipschitz continuity of objective functions286

as follows.287
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Lemma 3.1. Assume that argminx∈F f(x) ̸= ∅ with f : Rm → R. If x̄ ∈ F is288

a local minimizer of minx∈F f(x), f is directionally differentiable at x̄ and locally289

Lipschitz continuous near x̄, then f ′(x̄; d) ≥ 0 for any d ∈ TF (x̄). Moreover, if f is290

twice directionally differentiable at x̄, then f (2)(x̄; d) ≥ 0 for all d ∈ PF (x̄) ∩ {d ∈291

Rm | f ′(x̄; d) = 0}.292

Proof. Firstly, the local optimality implies that x̄ ∈ F is a local minimizer of293

(f + δF )(x) over Rm. Hence it follows from [25, Theorem 10.1] that294

lim inf
τ↓0,d′→d

(f + δF )(x̄+ τd′)− (f + δF )(x̄)

τ
≥ 0, ∀d ∈ Rm.295

296

Then the remainder is to show that for any d ∈ TF (x̄),297

lim inf
τ↓0,d′→d

(f + δF )(x̄+ τd′)− (f + δF )(x̄)

τ
≤ f ′(x̄; d).298

299

For any d ∈ TF (x̄), it follows from the definition of tangent cone that there exist300

xk → x̄, xk ∈ F and τk ↓ 0 such that dk := xk−x̄
τk

→ d as k → ∞, which implies301

lim inf
d′→d,τ↓0

f(x̄+ τd′)− f(x̄) + δF (x̄+ τd′)− δF (x̄)

τ
302

≤ lim inf
k→∞

f(x̄+ τkd
k)− f(x̄) + δF (x̄+ τkd

k)− δF (x̄)

τk
303

= lim inf
k→∞

f(x̄+ τkd
k)− f(x̄)

τk
304

= f ′(x̄; d),305306

where the first equality uses x̄ + τkd
k = xk ∈ F and x̄ ∈ F , the last equality comes307

from308

lim
d′→d,τ↓0

f(x̄+ τd′)− f(x̄)

τ
309

= lim
d′→d,τ↓0

f(x̄+ τd)− f(x̄)

τ
+ lim

d′→d,τ↓0

f(x̄+ τd′)− f(x̄+ τd)

τ
310

= lim
τ↓0

f(x̄+ τd)− f(x̄)

τ
+ 0 = f ′(x̄; d)311

312

by the fact that f is directionally differentiable at x̄ and locally Lipschitz continuous313

near x̄.314

For the second-order optimality condition, since x̄ ∈ F is a local minimizer of315

minx∈Rm(f + δF )(x), it follows from [25, Theorem 13.24 (a)] that for all d ∈ Rm,316

0 ≤ lim inf
τ↓0,d′→d

(f + δF )(x̄+ τd′)− (f + δF )(x̄)

τ2/2
,317

318

which implies that for all d ∈ PF (x̄) ∩ {d ∈ Rm | f ′(x̄; d) = 0},319

0 ≤ lim inf
τ↓0

(f + δF )(x̄+ τd)− (f + δF )(x̄)

τ2/2
≤ lim inf

k→∞

f(x̄+ τkd)− f(x̄)

τ2k/2
320

= lim inf
k→∞

f(x̄+ τkd)− f(x̄)− τkf
′(x̄; d)

τ2k/2
= f (2)(x̄; d),321

322
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where the second inequality uses the definition of PF (x̄), the first equality holds due323

to f ′(x̄; d) = 0, and the last equality comes from the twice directional differentiability324

of f at x̄ and τk ↓ 0.325

The first-order condition for convexly constrained optimization problems with326

a semidifferentiable objective function is established in [16, Lemma 3.8]. Lemma 3.1327

extends this condition to nonconvexly constrained optimization problems with a direc-328

tionally differentiable objective function. Actually, the two first-order conditions are329

completely identical in form since the directional derivative equals to the subderiva-330

tive used in [16, Lemma 3.8] under directional differentiability and local Lipschitz331

continuity. However, for the second-order condition, the nonconvexity of the feasi-332

ble region and non-twice-semidifferentiability of the objective function entail us to333

narrow the range of directions from T ◦
F (x) in [16] to PF (x) and relax the nonnega-334

tivity of second-order subderivatives to the nonnegativity of second-order directional335

derivatives. Based on Lemma 3.1, we can define unified first-order and second-order336

necessary conditions as follows.337

Definition 3.2 (second-order d-stationary point). For any f : Rm → R that is338

directionally differentiable on Rm and locally Lipschitz continuous, and any F ⊆ Rm339

such that ∅ ̸= argminx∈F f(x), we call x̄ ∈ F a d(irectional)-stationary point of340

minx∈F f(x) if f ′(x̄; d) ≥ 0 for all d ∈ TF (x̄). And we further call x̄ a second-order341

d-stationary point of minx∈F f(x) if f is also twice directionally differentiable at x̄342

with f (2)(x̄; d) ≥ 0 for all d ∈ PF (x̄) ∩ {d ∈ Rm | f ′(x̄; d) = 0}.343

Example 3.3. To illustrate Definition 3.2, we consider minx∈F f(x) with f(x) =344

max{−1, x1x2} + 0.1∥x∥2 and F = [−1, 1]2. This example has only three first-order345

d-stationary points (0, 0)⊤, (−1, 1)⊤ and (1,−1)⊤, while f is differentiable at the first346

point, but not differentiable at the other two points. At x̄ := (0, 0)⊤, f ′(x̄; d) =347

∇f(x̄)⊤d ≡ 0 for all d ∈ TF (x̄) = R2, whereas f (2)(x̄; d) = 2d1d2 + 0.2∥d∥2 < 0 for348

any d := (d1, d2)
⊤ ∈ {d ∈ PF (x̄) | f ′(x̄; d) = 0} = R2 with d2 = −d1 ̸= 0. Hence349

(0, 0)⊤ is not a second-order d-stationary point, and thus not a local minimizer.350

In contrast, at x̄ := (−1, 1)⊤, f ′(x̄; d) = (d1 − d2) − 0.2(d1 − d2) ≥ 0 for all351

d ∈ TF (x̄) = {(d1, d2)⊤ | d1 ≥ 0, d2 ≤ 0}, and f (2)(x̄; d) = 0 ≥ 0 for any d ∈ {d ∈352

PF (x̄) | f ′(x̄; d) = 0} = {d ∈ TF (x̄) | f ′(x̄; d) = 0} = {0}. Hence (−1, 1)⊤ is a second-353

order d-stationary point. Similarly, we can verify that (1,−1)⊤ is also a second-order354

d-stationary point. From the boundedness of the feasible set F and the continuity of355

the objective function f , the optimal solution set of this example is nonempty. Since356

f((−1, 1)⊤) = f((1,−1)⊤), the two points are optimal solutions.357

Since the local Lipschitz continuity of Ψ, F and Θ naturally holds under Assump-358

tion 1, the corresponding d-stationary points can be defined once we have checked their359

directional differentiability.360

Proposition 3.4. Under Assumption 1, Ψ is directionally differentiable on Rn,361

and the directional derivative of the objective function of (P) along any dθ ∈ Rn is362

g′ (u1, . . . , uL; du1
, . . . , duL

) + 2λθ⊤dθ,(3.1)363364

where uℓ := ψℓ−1(θ, u1, . . . , uℓ−1) for all ℓ ∈ [L], and duℓ
:= ψ′

ℓ−1(θ, u1, . . . , uℓ−1;365

dθ, du1
, . . . , duℓ−1

) for all ℓ ∈ [L]; F and Θ are directionally differentiable on RN̄ , and366

for any direction d ∈ RN̄ defined in (2.10),367

F ′(z; d) = g′(u; du) + 2λθ⊤dθ,(3.2)368369
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370

Θ′(z; d) =F ′(z; d) +

L∑
ℓ=1

βℓ

 ∑
i∈Iℓ

+(z)

[duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i(3.3)371

−
∑

i∈Iℓ
−(z)

[duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i372

+
∑

i∈Iℓ
0(z)

∣∣[duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i
∣∣ ,373

374

where for all ℓ ∈ [L],375

Iℓ+(z) := {i ∈ [Nℓ] | [uℓ − ψℓ−1(θ,uℓ−1)]i > 0},376

Iℓ−(z) := {i ∈ [Nℓ] | [uℓ − ψℓ−1(θ,uℓ−1)]i < 0},377

Iℓ0(z) := [Nℓ]\
(
Iℓ+(z) ∪ Iℓ−(z)

)
.378379

Proof. Firstly, applying [10, Proposition 4.1.2] sequentially on ψ1(·, ψ0(·)), . . . ,380

ψL−1(·, ψ0(·), ψ1(·, ψ0(·)), · · · ) and Ψ with directionally differentiable and locally Lip-381

schitz continuous {ψℓ−1, ℓ ∈ [L]} and g, we can obtain382

Ψ′(θ; dθ) =g
′ (ψ0(θ), ψ1(θ, ψ0(θ)), . . . ;383

ψ′
0(θ; dθ), ψ

′
1(θ, ψ0(θ); dθ, ψ

′
0(θ; dθ)), . . . ) ,384385

which can be reorganized as (3.1) with {uℓ, duℓ
, ℓ ∈ [L]} defined as above. Then the386

result about F can be directly obtained from Assumption 1 and Definition 2.3. And387

for Θ, it is sufficient to show the directional differentiability of each penalty term388

according to Definition 2.3, which can be obtained by the directional differentiability389

and local Lipschitz continuity of ∥ · ∥1 and {ψℓ−1, ℓ ∈ [L]} [10, Proposition 4.1.2].390

Together with the nonemptiness of optimal solution sets S, S0 and S1 and Defi-391

nition 3.2, it implies that under Assumption 1,392

• D := {θ ∈ Rn | [Ψ(·) + λ∥ · ∥2]′(θ; dθ) ≥ 0 for all dθ ∈ Rn} is the set of393

d-stationary points of (P);394

• D0 := {z ∈ RN̄ | z ∈ F0 and F ′(z; d) ≥ 0 for all d ∈ TF0
(z)} is the set of395

d-stationary points of (P0);396

• D1 := {z ∈ RN̄ | Θ′(z; d) ≥ 0 for all d ∈ RN̄} is the set of d-stationary points397

of (P1).398

Although the d-stationary point of (P) can be defined as above, the complicated399

nested structure in Ψ′ makes it challenging to compute. Notably, through (P0), we400

can express its d-stationarity more clearly and further establish (P)’s relationship with401

(P1) in Sections 3.1 and 3.2, which facilitates computation.402

And for the second-order necessary conditions of (P0) and (P1), the twice direc-403

tional differentiability of F and Θ can be verified under Assumptions 1 and 2.404

Proposition 3.5. Under Assumptions 1 and 2, F and Θ are twice directionally405
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differentiable on RN̄ and for any direction d ∈ RN̄ defined in (2.10),406

F (2)(z; d) = g(2)(u; du) + 2λ∥dθ∥2,407

Θ(2)(z; d) =F (2)(z; d) +

L∑
ℓ=1

βℓ

−
∑

i∈Iℓ
+(z)∪Iℓ

0,+(z;d)

[ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]i408

+
∑

i∈Iℓ
−(z)∪Iℓ

0,−(z;d)

[ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]i409

+
∑

i∈Iℓ
0,0(z;d)

∣∣∣[ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]i

∣∣∣
 ,410

411

where for all ℓ ∈ [L], Iℓ+(z), I
ℓ
−(z) and I

ℓ
0(z) are defined as in Proposition 3.4 and412

Iℓ0,+(z; d) := {i ∈ Iℓ0(z) | [duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i > 0},413

Iℓ0,−(z; d) := {i ∈ Iℓ0(z) | [duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i < 0},414

Iℓ0,0(z; d) := Iℓ0(z)\
(
Iℓ0,+(z; d) ∪ Iℓ0,−(z; d)

)
.415416

Proof. The result about F can be directly obtained from Assumptions 1, 2 and417

Definition 2.3. And for Θ, it is sufficient to show the twice directional differentiability418

of each penalty term according to Definition 2.3, which can be obtained by the twice419

directional differentiability and local Lipschitz continuity of {ψℓ−1, ℓ ∈ [L]} and the420

max-structure of | · | (i.e. for any x ∈ R, |x| = max{x,−x}) [10, Example 4.2.1].421

Together with Proposition 3.4, it implies that under Assumptions 1 and 2,422

• SD0 := {z ∈ D0 | F (2)(z; d) ≥ 0 for all d ∈ PF0(z) satisfying F
′(z; d) = 0} is423

the set of second-order d-stationary points of (P0);424

• SD1 := {z ∈ D1 | Θ(2)(z; d) ≥ 0 for all d ∈ RN̄ satisfying Θ′(z; d) = 0} is the425

set of second-order d-stationary points of (P1).426

Although it seems immature to define the second-order d-stationary point of (P)427

under Assumptions 1 and 2, we could next see how the sets SD0,SD1 help to provide428

second-order necessary conditions for (P).429

3.1. Closed-form of TF0
. Here we give the closed-form of the tangent cone of430

F0 in (1.3) based on directional derivatives of constraints of (P0), which plays an431

important role in the following subsections.432

Theorem 3.6. Under Assumption 1, it holds that433

TF0(z) = {d ∈ RN̄ | duℓ
= ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
), ℓ ∈ [L]},434435

for any feasible point z ∈ F0.436

Proof. We firstly prove the one-sided inclusion437

TF0
(z) ⊆ {d ∈ RN̄ | duℓ

= ψ′
ℓ−1(θ,uℓ−1; dθ, duℓ−1

), ℓ ∈ [L]}.438439

According to Definition 2.6, for any d ∈ TF0(z), there exists a sequence {zk ∈ F0, k ∈440

Z++} converging to z and a sequence τk ↓ 0 such that d = limk→∞
zk−z
τk

. Denoting441

dk := zk−z
τk

, we have zk = z + τkd
k for all k and dk → d as k → ∞. For ℓ = 1, it442
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follows from the definition of ψ′
0, τk ↓ 0, local Lipschitz continuity of ψ0 and dkθ → dθ443

that444

du1 − ψ′
0(θ; dθ) = lim

k→∞

[
uk1 − u1
τk

− ψ0(θ + τkd
k
θ)− ψ0(θ)

τk

]
445

= lim
k→∞

[uk1 − ψ0(θ
k)]− [u1 − ψ0(θ)]

τk
= 0,446

447

where the second equality uses θk = θ+τkd
k
θ , the last equality comes from zk, z ∈ F0.448

For ℓ = 2, . . . , L, it follows from the definition of ψ′
ℓ−1, τk ↓ 0, local Lipschitz continuity449

of ψℓ−1 and (dkθ , d
k
uℓ−1

) → (dθ, duℓ−1
) that450

duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)451

= lim
k→∞

[
ukℓ − uℓ
τk

−
ψℓ−1(θ + τkd

k
θ ,uℓ−1 + τkd

k
uℓ−1

)− ψℓ−1(θ,uℓ−1)

τk

]
452

= lim
k→∞

[ukℓ − ψℓ−1(θ
k,uk

ℓ−1)]− [uℓ − ψℓ−1(θ,uℓ−1)]

τk
= 0,453

454

where the second equality holds due to zk = z + τkd
k, the last equality comes from455

zk, z ∈ F0.456

Next we deduce the reverse inclusion457

TF0(z) ⊇ {d ∈ RN̄ | duℓ
= ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
), ℓ ∈ [L]}.458459

By Definition 2.6, it is equivalent to show, for any d ∈ RN̄ satisfying460

(3.4) duℓ
= ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
), ℓ ∈ [L],461

there exist sequences {τk ↓ 0} and {dk → d} such that {z + τkd
k} ⊆ F0. For any d462

satisfying (3.4) and any decreasing sequence {τk ↓ 0}, define463

dkθ := dθ, d
k
u1

:=
ψ0(θ + τkd

k
θ)− ψ0(θ)

τk
, and464

dkuℓ
:=

ψℓ−1(θ + τkd
k
θ ,uℓ−1 + τkd

k
uℓ−1

)− ψℓ−1(θ,uℓ−1)

τk
in the order of ℓ = 2, . . . , L,465

466

for all k. We prove that dk → d and zk := (z + τkd
k) ∈ F0 for all k. Firstly,467

limk→∞ dkθ = dθ. Then it follows from the definition of dku1
, dkθ = dθ, τk ↓ 0 and the468

directional differentiability of ψ0 that limk→∞ dku1
= ψ′

0(θ; dθ) = du1 , where the last469

equality holds due to (3.4). For any ℓ = 2, . . . , L, assume that dkuℓ−1
→ duℓ−1

has been470

verified. Then it follows from the definition of dkuℓ
and local Lipschitz continuity of471

ψℓ−1 that472

lim
k→∞

dkuℓ
= lim

k→∞

ψℓ−1(θ + τkdθ,uℓ−1 + τkduℓ−1
)− ψℓ−1(θ,uℓ−1)

τk
473

=ψ′
ℓ−1(θ,uℓ−1; dθ, duℓ−1

) = duℓ
,474475

where the second equality comes from τk ↓ 0 and directional differentiability of ψℓ−1,476

the last equality holds due to (3.4). By induction and (2.10), we obtain that dk → d.477

From zk := (z + τkd
k) and (1.2), (2.10), we first have478

θk := θ + τkd
k
θ , and u

k
ℓ = uℓ + τkd

k
uℓ
, ∀ℓ ∈ [L].(3.5)479480
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For ℓ = 1, (3.5) and the definition of dku1
imply that uk1 = u1+ψ0(θ

k)−ψ0(θ) = ψ0(θ
k),481

where the last equality follows from z ∈ F0. For ℓ = 2, . . . , L, (3.5) and the definition482

of dkuℓ
imply that ukℓ = uℓ + ψℓ−1(θ

k,uk
ℓ−1)− ψℓ−1(θ,uℓ−1) = ψℓ−1(θ

k,uk
ℓ−1), where483

the last equality follows from z ∈ F0. Combining the results for all ℓ ∈ [L], we obtain484

that zk ∈ F0 for all k.485

It is noteworthy that Theorem 3.6 provides the expression for TF0
(z), where F0486

is defined by nonsmooth constraints. In general, such an expression for the tan-487

gent cone of the feasible region is only achievable for smooth constraints under the488

Linear Independence Constraint Qualification (LICQ) [24, Lemma 12.2]. The one-489

sided inclusion for TF0
(z) can only guarantee one-sided implication between (P0) and490

(P1) [10, Theorem 9.2.1 and Remark 9.2.1], while the closed-form in Theorem 3.6491

can guarantee the equivalence (see Theorem 3.9). If we use constraint qualifications492

for nonsmooth constraints named NNAMCQ [22] and relations between tangent and493

normal cones [25, Theorems 6.26 and 6.28], we can only obtain a subset of TF0(z)494

presented by {ψ′
ℓ−1, ℓ ∈ [L]}, which fails to imply the full characterization of TF0

(z)495

in certain cases such as TFRNN
0

(z) in Section 4. Noting that PF0
(z) ⊆ TF0

(z) for any496

z ∈ F0, Theorem 3.6 also provides the expression of a superset of PF0(z), which helps497

to obtain its closed-form in certain cases (see Section 4).498

3.2. Equivalence in optimality and d-stationarity. Here we show the equiv-499

alence of (P), (P0) and (P1) in global optimality and d-stationarity. Firstly, (P) and500

(P0) are equivalent in global optimality as we discussed after Lemma 2.1. Simi-501

larly, according to Proposition 3.4 and Theorem 3.6, (P) and (P0) are equivalent in502

d-stationarity when neglecting dimension lifting.503

Lemma 3.7. If θ ∈ D, then z := (θ⊤, u⊤1 , . . . , u
⊤
L )

⊤ ∈ D0 where uℓ := ψℓ−1(θ, u1,504

. . . , uℓ−1) for all ℓ ∈ [L]. Conversely, if z := (θ⊤, u⊤)⊤ ∈ D0, then θ ∈ D.505

Proof. For any θ ∈ D, it follows from z := (θ⊤, u⊤1 , . . . , u
⊤
L )

⊤ with uℓ := ψℓ−1(θ,506

u1, . . . , uℓ−1) for all ℓ ∈ [L] that z ∈ F0. Then for any d ∈ TF0(z), we have duℓ
=507

ψ′
ℓ−1(θ,uℓ−1; dθ, duℓ−1

) for all ℓ ∈ [L] by Theorem 3.6. Together with Proposition 3.4,508

it implies that for any d ∈ TF0
(z),509

F ′(z; d) = Ψ′(θ; dθ) + 2λθ⊤dθ ≥ 0,510511

where the inequality comes from θ ∈ D. On the other hand, if z := (θ⊤, u⊤)⊤ ∈ D0,512

then z ∈ F0, i.e. uℓ := ψℓ−1(θ, u1, . . . , uℓ−1) for all ℓ ∈ [L]. Then for any dθ ∈ Rn, it513

follows from Proposition 3.4 that under the setting of d := (d⊤θ , d
⊤
u1
, . . . , d⊤uL

)⊤ with514

duℓ
:= ψ′

ℓ−1(θ, u1, . . . , uℓ−1; dθ, du1
, . . . , duℓ−1

) for all ℓ ∈ [L],515

Ψ′(θ; dθ) + 2λθ⊤dθ = F ′(z; d) ≥ 0,516517

where the inequality uses d ∈ TF0
(z) from Theorem 3.6 and z ∈ D0.518

To establish the equivalence between (P0) and (P1), inspired by Theorem 2.1 (a)519

of [9], we first show that under proper setting of {βℓ > 0, ℓ ∈ [L]} restricted by Kg520

and {Kℓ > 0, ℓ ∈ [L− 1]}, the d-stationary point of (P1) in lev≤γ̄Θ must be feasible521

to (P0), where γ̄ is defined in (2.1).522

Lemma 3.8. Under Assumption 1, let z be a d-stationary point of (P1) with523

Θ(z) ≤ γ̄ and {βℓ > 0, ℓ ∈ [L]} satisfying524

βℓ > Kg

L∏
j=ℓ+1

(1 +Kj−1), for all ℓ ∈ [L].(3.6)525

526
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Then z ∈ F0.527

Proof. To show z ∈ F0, we are going to prove uℓ = ψℓ−1(θ, u1, . . . , uℓ−1) in the528

order of ℓ = L, . . . , 1 separately.529

To show uL = ψL−1(θ, u1, . . . , uL−1) by contradiction, we use IL+(z), I
L
−(z) and530

IL0 (z) defined in Proposition 3.4. Suppose uL ̸= ψL−1(θ, u1, . . . , uL−1), then I
L
+(z) ∪531

IL−(z) ̸= ∅. Let z̄ := (θ̄⊤, ū⊤1 , . . . , ū
⊤
L )

⊤ with532

θ̄ := θ, ū1 := u1, . . . , ūL−1 := uL−1,533

ūL := ψL−1(θ, u1, . . . , uL−1) ̸= uL,534535

and d := z̄ − z = (0, . . . ,0, duL
) ̸= 0. Then it follows from Proposition 3.4 that536

Θ′(z; d) = F ′(u; du) + βL

 ∑
i∈IL

+(z)

[duL
]i −

∑
i∈IL

−(z)

[duL
]i +

∑
i∈IL

0 (z)

|[duL
]i|

537

= g′(u; du)− βL∥duL
∥1(3.7)538

≤ (Kg − βL)∥duL
∥1 < 0,539540

where the two equalities use the definitions of d and IL+(z), I
L
−(z), I

L
0 (z), the first541

inequality holds due to (2.11) at d̄ = 0 and ∥·∥ ≤ ∥·∥1, and the last inequality follows542

from (3.6) and duL
̸= 0. However, it contradicts Θ′(z; d) ≥ 0 for all d ∈ RN̄ . Hence543

uL = ψL−1(θ, u1, . . . , uL−1).544

For any ℓ = L − 1, . . . , 1, we next show uℓ = ψℓ−1(θ, u1, . . . , uℓ−1) using Iℓ+(z),545

Iℓ−(z) and I
ℓ
0(z) in Proposition 3.4. Suppose uℓ ̸= ψℓ−1(θ, u1, . . . , uℓ−1), then I

ℓ
+(z) ∪546

Iℓ−(z) ̸= ∅. Let z̄ := (θ̄⊤, ū⊤1 , . . . , ū
⊤
L )

⊤ with547

θ̄ := θ, ū1 := u1, . . . , ūℓ−1 := uℓ−1,548

ūℓ = ψℓ−1(θ, u1, . . . , uℓ−1) ̸= uℓ,549

ūℓ+1 := uℓ+1 + ψ′
ℓ(θ, u1, . . . , uℓ;0, . . . ,0, ūℓ − uℓ),550

...551

ūL := uL + ψ′
L−1(θ, u1, . . . , uL−1;0, . . . ,0, ūℓ − uℓ, . . . , ūL−1 − uL−1),552553

and d := z̄ − z = (0, . . . ,0, duℓ
, . . . , duL

) ̸= 0. Then it can be checked that554

(3.8) duℓ+1
= ψ′

ℓ(θ,uℓ; dθ, duℓ
), . . . , duL

= ψ′
L−1(θ,uL−1; dθ, duL−1

).555

Together with Proposition 3.4, it implies that556

Θ′(z; d) = F ′(u; du) + βℓ

 ∑
i∈Iℓ

+(z)

[duℓ
]i −

∑
i∈Iℓ

−(z)

[duℓ
]i +

∑
i∈Iℓ

0(z)

|[duℓ
]i|

557

= g′(u; du)− βℓ∥duℓ
∥1558

≤ Kg∥du∥ − βℓ∥duℓ
∥1,(3.9)559560

where the two equalities use the definitions of d and Iℓ+(z), I
ℓ
−(z), I

ℓ
0(z), the inequality561

holds due to (2.11) at d̄ = 0. Next we give an upper bound of ∥du∥ by estimating562

{duj
, j ∈ [L]}. Since du1

= 0, . . . , duℓ−1
= 0, we only need to analyze {duj

, j =563

ℓ, . . . , L}. For j = ℓ, it follows from the definitions of duℓ
and ūℓ that564

∥duℓ
∥ = ∥uℓ − ψℓ−1(θ, u1, . . . , uℓ−1)∥ ≠ 0.(3.10)565566
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For j = ℓ+ 1, it follows from (3.8) that567

∥duℓ+1
∥ = ∥ψ′

ℓ(θ,uℓ; dθ, duℓ
)∥ ≤ Kℓ(∥du1∥+ · · ·+ ∥duℓ

∥) = Kℓ∥duℓ
∥,(3.11)568569

where the inequality holds due to (2.11) at d̄ = 0, dθ = 0, the last equality uses570

du1
= 0, . . . , duℓ−1

= 0. And for j ≥ ℓ+ 2, assume that571

∥dk∥ ≤

(
Kk−1

k−1∏
i=ℓ+1

(1 +Ki−1)

)
∥duℓ

∥(3.12)572

573

for all k = ℓ+ 1, . . . , j − 1. Then we can obtain that (3.12) also holds at k = j:574

∥duj
∥ = ∥ψ′

j−1(θ,uj−1; dθ, duj−1
)∥575

≤ Kj−1(∥du1
∥+ · · ·+ ∥duj−1

∥)(3.13)576

= Kj−1(∥duℓ
∥+ ∥duℓ+1

∥+ · · ·+ ∥duj−1
∥)577

≤

(
Kj−1

j−1∏
i=ℓ+1

(1 +Ki−1)

)
∥duℓ

∥,578

579

where the first inequality holds due to (2.11) at d̄ = 0, dθ = 0, the second equality uses580

du1
= 0, . . . , duℓ−1

= 0, and the second inequality uses (3.12) at k = ℓ+ 1, . . . , j − 1.581

By induction and (3.11), it implies that (3.12) holds for all k = ℓ+1, . . . , L. Plugging582

these upper bounds for {∥duj∥, j ∈ [L]} into (3.9), we have583

Θ′(z; d) ≤ Kg(∥duℓ
∥+ ∥duℓ+1

∥+ · · ·+ ∥duL
∥)− βℓ∥duℓ

∥584

≤

(
Kg

(
1 +Kℓ + · · ·+KL−1

L−1∏
i=ℓ+1

(1 +Ki−1)

)
− βℓ

)
∥duℓ

∥585

≤

(
Kg

L∏
i=ℓ+1

(1 +Ki−1)− βℓ

)
∥duℓ

∥586

< 0,587588

where the last inequality uses (3.6) and (3.10). However, it contradicts Θ′(z; d) ≥ 0589

for all d ∈ RN̄ . Hence, uℓ = ψℓ−1(θ, u1, . . . , uℓ−1), which yields the result due to the590

arbitrariness of ℓ.591

In general, condition (3.6) can be satisfied under β1 = · · · = βL = β with suf-592

ficiently large β > 0, since Kg and {Kℓ, ℓ ∈ [L − 1]} defined in (2.8) and (2.9) are593

non-increasing when β is increasing. For certain applications in machine learning,594

such as training process of RNNs to be shown in Section 4, Lipschitz moduli Kg595

and {Kℓ, ℓ ∈ [L − 1]} satisfying (2.11) on lev≤γ̄Θ are easy to estimate (see (4.5)-596

(4.9)), which provides computable thresholds for {βℓ, ℓ ∈ [L]}. Based on Lemma 3.8,597

we could show the equivalence of (P0) and (P1) in terms of global optimality and598

d-stationarity.599

Theorem 3.9. Under Assumption 1, set {βℓ > 0, ℓ ∈ [L]} satisfying (3.6). Then600

(a) S0 = S1;601

(b) for any z ∈ lev≤γ̄Θ with γ̄ defined in (2.1), z is a d-stationary point of (P0)602

if and only if it is a d-stationary point of (P1).603
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16 L. JIN, X. WANG, AND X. CHEN

Proof. (a). For any z ∈ S1, it follows from Lemma 3.1 that Θ′(z; d) ≥ 0 for604

all d ∈ RN̄ , i.e. z is a d-stationary point of (P1). Together with Lemma 3.8 and605

Θ(z) ≤ Θ(z0) = γ̄ from the global optimality of z, it implies that z ∈ F0. Hence,606

S1 ⊆ F0. Since S1 ̸= ∅, we further have607

S1 = argmin
z∈RN̄

Θ(z) = argmin
z∈F0

Θ(z) = argmin
z∈F0

F (z) = S0.608

609

(b). We first show that any d-stationary point of (P1) in lev≤γ̄Θ must be a d-610

stationary point for (P0). Firstly, it follows from Lemma 3.8 that z ∈ F0. Hence, it611

follows from Proposition 3.4 and Theorem 3.6 that for any d ∈ TF0
(z),612

F ′(z; d) = Θ′(z; d) ≥ 0,613614

where the inequality comes from Θ′(z; d) ≥ 0 for all d.615

Next we will show the reverse implication: any d-stationary point z of (P0) with616

Θ(z) ≤ γ̄ is also a d-stationary point of (P1). Firstly, it follows from z ∈ F0 that617

Iℓ+(z) = Iℓ−(z) = ∅ for all ℓ ∈ [L], which are defined in Proposition 3.4. It simplifies618

(3.3) as619

(3.14) Θ′(z; d) =F ′(z; d) +

L∑
ℓ=1

βℓ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥1.620

Together with Theorem 3.6, it further implies that for any d ∈ TF0
(z),621

Θ′(z; d) = F ′(z; d) ≥ 0,(3.15)622623

where the inequality holds since z is the d-stationary point of (P0). For any d /∈624

TF0
(z), we can construct a direction d̄ as follows: set d̄θ := dθ and d̄uℓ

:= ψ′
ℓ−1(θ, u1,625

. . . , uℓ−1; d̄θ, d̄u1
, . . . , d̄uℓ−1

) in the order of ℓ = 1, . . . , L. Then by Theorem 3.6, we626

have d̄ ∈ TF0(z). Hence, it follows from (3.14) and (3.15) that627

Θ′(z; d) =Θ′(z; d)−Θ′(z; d̄) + Θ′(z; d̄)628

≥Θ′(z; d)−Θ′(z; d̄)629

=F ′(z; d)− F ′(z; d̄) +

L∑
ℓ=1

βℓ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥1.(3.16)630

631

Next we will show that the right-hand side of (3.16) is nonnegative. Note that632

F ′(z; d)− F ′(z; d̄) = g′(u; du)− g′(u; d̄u) ≥ −Kg

L∑
ℓ=1

∥duℓ
− d̄uℓ

∥,(3.17)633

634

where the equality follows from d̄θ = dθ and (3.2), and the inequality uses (2.11). We635

only need to estimate {∥duℓ
− d̄uℓ

∥, ℓ ∈ [L]} by induction in the following. For ℓ = 1,636

it follows from the definition of d̄u1
and d̄θ = dθ that637

∥du1 − d̄u1∥ = ∥du1 − ψ′
0(θ; dθ)∥.(3.18)638639

For ℓ = 2, . . . , L, assume that640

∥duj
− d̄uj

∥(3.19)641

≤∥duj
− ψ′

j−1(θ,uj−1; dθ, duj−1
)∥642

+Kj−1

j−1∑
k=1

[
j−1∏

i=k+1

(1 +Ki−1)

]
∥duk

− ψ′
k−1(θ,uk−1; dθ, duk−1

)∥643

644
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holds for all j = 1, . . . , ℓ− 1. Then we can deduce that (3.19) also holds at j = ℓ:645

∥duℓ
− d̄uℓ

∥646

= ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; d̄θ, d̄uℓ−1
)∥647

≤∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥648

+Kℓ−1(∥du1
− d̄u1

∥+ · · ·+ ∥duℓ−1
− d̄uℓ−1

∥)(3.20)649

≤∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥650

+Kℓ−1

(
∥du1 − ψ′

0(θ; dθ)∥ · [1 +K1 + · · ·+Kℓ−2

∏ℓ−2
i=2(1 +Ki−1)]

+ · · ·+ ∥duℓ−1
− ψ′

ℓ−2(θ,uℓ−2; dθ, duℓ−2
)∥

)
651

= ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥652

+Kℓ−1 ·
(
∥du1

− ψ′
0(θ; dθ)∥ ·

∏ℓ−1
i=2(1 +Ki−1) + . . .

+∥duℓ−1
− ψ′

ℓ−2(θ,uℓ−2; dθ, duℓ−2
)∥

)
,653

654

where the first equality comes from the definition of d̄uℓ
, the first inequality uses655

dθ = d̄θ and (2.11), the last inequality follows from (3.19) at j = 1, . . . , ℓ−1. Together656

with (3.18), it implies that (3.19) holds for all ℓ ∈ [L]. Plugging these upper bounds657

for {∥duℓ
− d̄uℓ

∥, ℓ ∈ [L]} into (3.17), we have658

F ′(z; d)− F ′(z; d̄)659

≥−Kg

(
∥du1

− ψ′
0(θ; dθ)∥ · [1 +K1 + · · ·+KL−1

∏L−1
i=2 (1 +Ki−1)]

+ · · ·+ ∥duL
− ψ′

L−1(θ,uL−1; dθ, duL−1
)∥

)
660

=−Kg

L∑
ℓ=1

 L∏
j=ℓ+1

(1 +Kj−1)

 ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥.661

662

Together with (3.16), it implies that663

Θ′(z; d) ≥
L∑

ℓ=1

βℓ −Kg

 L∏
j=ℓ+1

(1 +Kj−1)

 · ∥duℓ
− ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)∥664

> 0,(3.21)665666

where the last inequality uses (3.6), d /∈ TF0
(z) and Theorem 3.6. Therefore, it yields667

that Θ′(z; d) ≥ 0 for all d, meaning that z is a d-stationary point of (P1).668

Remark 3.10. Theorem 3.9 is different from Theorem 2.1 of [9] in two aspects.669

(i) Theorem 2.1 of [9] only obtains one-sided implication that a d-stationary point670

of the penalty problem must be a d-stationary point of the original problem,671

while we have the equivalence. As a consequence, the penalization preserves672

all the d-stationary points of (P) and (P0). And when g, {ψℓ−1, ℓ ∈ [L]} are673

smooth or have DC structures of the pointwise max type [11, Condition C2],674

d-stationary points of (P1) can be obtained by trust region methods [30] or675

majorization minimization frameworks [11].676

(ii) Motivated by [21, Theorem 2.5] and [22, Lemma 9], we replace the bounded-677

ness requirement of z with Θ(z) ≤ Θ(z0), which is easier to check since Θ(z0)678

is easy to calculate. And the condition Θ(z) ≤ Θ(z0) also helps to obtain679

the threshold-like conditions expressed by {Kℓ, ℓ ∈ [L − 1]} and Kg, which680

provides the relations between penalty thresholds and the number of layers681

L.682

This manuscript is for review purposes only.



18 L. JIN, X. WANG, AND X. CHEN

3.3. Second-order d-stationarity. Here we compare the sets of second-order683

d-stationary points SD0 and SD1 of (P0) and (P1) to exhibit their differences in684

depicting second-order necessary conditions for (P).685

First of all, the idea of using second-order conditions of reformulated problems686

to characterize optimality conditions of the original problem is motivated by [10,687

Proposition 9.4.2] for (P) and (P1) with L = 1, i.e. minθ h(G(θ)) with G(θ) :=688

(ψ0(θ)
⊤, λ∥θ∥2)⊤ and h(y) := g([y]1:N1

) + [y](N1+1). The second-order necessary con-689

ditions in (9.41) of [10, Proposition 9.4.2] can be reorganized as: if θ is a local mini-690

mizer of (P), then for all ρ > max{Kg, 1} where Kg > 0 is a Lipschitz constant of g691

near u1 := ψ0(θ),692

g′(u1; du1
) + 2λθ⊤dθ ≥ 0 for all d = (d⊤θ , d

⊤
u1
)⊤ with du1

= ψ′
0(θ; dθ),693

and g(2)(u1; du1
) + 2λρ∥dθ∥2 + ρ∥ψ(2)

0 (θ; dθ)∥1 ≥ 0,694

for all d = (d⊤θ , d
⊤
u1
)⊤ with du1

= ψ′
0(θ; dθ), g

′(u1; du1
) + 2λθ⊤dθ = 0,695696

which is actually covered by our second-order necessary conditions in constructing697

SD1 since for any z = (θ⊤, u⊤1 )
⊤ with u1 = ψ0(θ),698

• for any d = (d⊤θ , d
⊤
u1
)⊤ with du1

= ψ′
0(θ; dθ), it follows from Proposition 3.4699

that Θ′(z; d) = g′(u1; du1) + 2λθ⊤dθ;700

• it follows from Proposition 3.4 that701

{d | du1 = ψ′
0(θ; dθ), g

′(u1; du1) + 2λθ⊤dθ = 0} ⊆ {d | Θ′(z; d) = 0};702703

• for any d with du1
= ψ′

0(θ; dθ) and g
′(u1; du1

) + 2λθ⊤dθ = 0, it follows from704

Proposition 3.5 with the setting of β1 = ρ and ρ > max{Kg, 1} that705

Θ(2)(z; d) = g(2)(u1; du1
) + 2λ∥dθ∥2 + ρ∥ψ(2)

0 (θ; dθ)∥1706

< g(2)(u1; du1
) + 2λρ∥dθ∥2 + ρ∥ψ(2)

0 (θ; dθ)∥1.707708

Hence, we will focus on our second-order necessary conditions for (P0) and (P1) rather709

than generalizing (9.41) of [10, Proposition 9.4.2] to the case of (P).710

By the results in Sections 3.1 and 3.2, the second-order necessary conditions of711

(P0) and (P1) specified in Definition 3.2 are both able to characterize solutions of712

(P). It follows from Lemma 3.1 and Theorem 3.9 that713

S0 ⊆ SD0 ∩ lev≤γ̄Θ ⊆ D0 ∩ lev≤γ̄Θ
|| ||
S1 ⊆ SD1 ∩ lev≤γ̄Θ ⊆ D1 ∩ lev≤γ̄Θ.

714

715

Together with the bijection between S and S0 (discussed after Lemma 2.1), it implies716

that for any θ ∈ S, the point z = (θ⊤, u⊤1 , . . . , u
⊤
L )

⊤ must belong to SD0∩ lev≤γ̄Θ and717

SD1∩ lev≤γ̄Θ where uℓ := ψℓ−1(θ, u1, . . . , uℓ−1) for all ℓ ∈ [L]. Furthermore, we could718

find the latter condition z ∈ SD1 ∩ lev≤γ̄Θ is stronger by the following observation.719

Theorem 3.11. Under Assumptions 1, 2 and (3.6), SD0 ∩ lev≤γ̄Θ ⊇ SD1 ∩720

lev≤γ̄Θ.721

Proof. By the definitions of SD0 and SD1,722

SD0 ∩ lev≤γ̄Θ = {z | F (2)(z; d) ≥ 0,∀d ∈ PF0
(z) with F ′(z; d) = 0} ∩ (D0 ∩ lev≤γ̄Θ),723

SD1 ∩ lev≤γ̄Θ = {z | Θ(2)(z; d) ≥ 0,∀d with Θ′(z; d) = 0} ∩ (D1 ∩ lev≤γ̄Θ).724725
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Together with D0 ∩ lev≤γ̄Θ = D1 ∩ lev≤γ̄Θ from Theorem 3.9, we only need to prove726

that for any z ∈ D1 ∩ lev≤γ̄Θ satisfying Θ(2)(z; d) ≥ 0 for all d with Θ′(z; d) = 0, the727

inequality F (2)(z; d) ≥ 0 holds for all d ∈ PF0
(z) with F ′(z; d) = 0.728

First we show729

ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

) = 0, ℓ ∈ [L] for all z ∈ F0, d ∈ PF0
(z)(3.22)730731

by contradiction. If there exists ℓ ∈ [L] and i ∈ [Nℓ], such that [ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

732

)]i > 0, then it follows from the definition of second-order directional derivatives that733

for any sufficiently small positive number τ ,734

0 < [ψℓ−1(θ + τdθ,uℓ−1 + τduℓ−1
)]i − [ψℓ−1(θ,uℓ−1)]i − τ [ψ′

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]i.735736

Together with z ∈ F0, d ∈ PF0(z) ⊆ TF0(z), it implies that737

[uℓ + τduℓ
]i − [ψℓ−1(θ + τdθ,uℓ−1 + τduℓ−1

)]i738

= [ψℓ−1(θ,uℓ−1)]i + τ [ψ′
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]i − [ψℓ−1(θ + τdθ,uℓ−1 + τduℓ−1
)]i739

< 0740741

for any sufficiently small positive τ , which contradicts with d ∈ PF0(z). Similar contra-742

diction appears if there exists ℓ ∈ [L] and i ∈ [Nℓ], such that [ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]i743

< 0, which yields (3.22).744

Hence, for any z ∈ SD1 ∩ lev≤γ̄Θ, we have745

0 ≤ Θ(2)(z; d) = F (2)(z; d) +

L∑
ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 = F (2)(z; d)746

747

for all d ∈ PF0(z) with F
′(z; d) = 0, where the inequality is derived by748

{d ∈ PF0(z) | F ′(z; d) = 0} ⊆ {d ∈ TF0(z) | F ′(z; d) = 0} ⊆ {d | Θ′(z; d) = 0}749750

from z ∈ F0, Theorem 3.6 and Proposition 3.4, the first equality uses z ∈ F0, Theorem751

3.6 and Proposition 3.5, and the last equality uses (3.22).752

Remark 3.12. Here we discuss the conditions under which the equality in The-753

orem 3.11 holds. Under the premises of Theorem 3.11, it follows from (3.21) that754

Θ′(z; d) > 0 for any z ∈ D0 ∩ lev≤γ̄Θ = D1 ∩ lev≤γ̄Θ and any d /∈ TF0(z). Hence, for755

any z ∈ D0 ∩ lev≤γ̄Θ = D1 ∩ lev≤γ̄Θ,756

{d | Θ′(z; d) = 0} = {d ∈ TF0
(z) | Θ′(z; d) = 0} = {d ∈ TF0

(z) | F ′(z; d) = 0},
(3.23)

757758

where the last equality uses z ∈ F0, Theorem 3.6 and Proposition 3.4. Together with759

Proposition 3.5 and Theorem 3.6, it implies that for any d with Θ′(z; d) = 0,760

Θ(2)(z; d) = F (2)(z; d) +

L∑
ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1,761

762

which indicates that z ∈ SD1 ∩ lev≤γ̄Θ if and only if z ∈ D1 ∩ lev≤γ̄Θ and763

F (2)(z; d) +

L∑
ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 ≥ 0(3.24)764

765
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for all d ∈ TF0
(z) satisfying F ′(z; d) = 0. Then it follows from (3.22) and PF0

(z) ⊆766

TF0
(z) that, the equality in Theorem 3.11 holds if and only if767

(3.25)
F (2)(z; d) +

L∑
ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 ≥ 0,

for all d ∈ TF0
(z)\PF0

(z) satisfying F ′(z; d) = 0.

768

Sufficient conditions for (3.25) include the following two conditions.769

• PF0
(z) = TF0

(z). If F0 is a polyhedron or a union of finite number of poly-770

hedrons, then PF0
(z) = TF0

(z) holds for any z ∈ F0. For example, under the771

setting of ψ0(θ) := a⊤θ, ψ1(θ, u1) := [u1]+ for a vector a ∈ Rn,772

F0 = {z = (θ⊤, u1, u2)
⊤ | u1 = a⊤θ, u2 = [u1]+}773

= {z | u1 = a⊤θ, u1 ≥ 0, u2 = u1} ∪ {z | u1 = a⊤θ, u1 ≤ 0, u2 = 0}774775

is a union of two polyhedrons.776

• F is convex and twice directionally differentiable. Since F (z) = g(u) +777

λ∥θ∥2, F is convex and twice directionally differentiable when g is convex778

and twice directionally differentiable. In this case, (3.25) naturally holds779

since F (2)(z; d) = limτ↓0
F (z+τd)−F (z)−F ′(z;τd)

τ2/2 ≥ 0 for all d.780

Inspired by Remark 3.12, we can provide an example where SD0 ∩ lev≤γ̄Θ ⊋ SD1 ∩781

lev≤γ̄Θ under the premises of Theorem 3.11.782

Example 3.13. Consider (P) with L = 2, n = N1 = N2 = 1 and λ = 0.01,783

ψ0(θ) := θ, ψ1(θ, u1) := u21, g(u1, u2) := [−u21 + 0.5u2 + 0.0001]+.784785

On the one hand, it can be verified that z0 = (0, ψ0(0), ψ1(0, ψ0(0)))
⊤ = 0 is a786

second-order d-stationary point of (P0). Firstly, it follows from Theorem 3.6, the787

definition of PF0
(·) and (3.22) that TF0

(0) = {(dθ, du1
, du2

)⊤ | du1
= dθ, du2

= 0}788

and PF0
(0) = {0} since {0} ⊆ PF0

(0) ⊆ {d ∈ TF0
(0) | 2d2u1

= 0} = {0}. Then it789

can be verified that F ′(0; d) = 0.5du2 = 0 ≥ 0 for all d ∈ TF0(0), and F (2)(0; d) =790

−2d2u1
+ 0.02d2θ = 0 ≥ 0 for all d ∈ PF0(0) ∩ {d | F ′(0; d) = 0} = {0}. On the791

other hand, z0 is not a second-order d-stationary point of (P1) with β1 = 1, β2 =792

0.6 where (3.6) holds. First we can verify (3.6) holds, i.e. β1 > Kg(1 + K1) and793

β2 > Kg. Since γ̄ = F (z0) = 10−4, for all (θ, u1, u2)
⊤ ∈ lev≤γ̄Θ, it can be calculated794

that |u1| ≤ |θ| + |u1 − θ| ≤
√

10−4/10−2 + 10−4 = 0.1001. It implies that for all795

(θ, u1, u2)
⊤, (θ, ū1, ū2)

⊤ ∈ lev≤γ̄Θ,796

|g(u)− g(ū)| ≤
√
(u1 + ū1)2 + 0.25∥u− ū∥ < 0.5386∥u− ū∥,797

|ψ1(θ, u1)− ψ1(θ, ū1)| ≤ |u1 + ū1| · |u1 − ū1| < 0.21|u1 − ū1|.798799

Hence, there exist Kg ∈ (0, 0.5386] and K1 ∈ (0, 0.21] satisfying (2.8)-(2.9), which800

guarantees (3.6). Then, it follows from Theorem 3.9 and z0 ∈ D0 ∩ lev≤γ̄Θ that801

z0 ∈ D1 ∩ lev≤γ̄Θ. Together with Remark 3.12, it implies that z0 ∈ SD1 if and802

only if (3.24) holds at z0 for all d ∈ TF0(z
0) with F ′(z0; d) = 0. However, for any803

d = (dθ, du1 , du2)
⊤ with du2 = 0 and dθ = du1 ̸= 0, we have d ∈ TF0(z

0), F ′(z0; d) = 0804

and F (2)(z0; d) +
∑L

ℓ=1 βℓ∥ψ
(2)
ℓ−1(θ

0,u0
ℓ−1; dθ, duℓ−1

)∥1 = −2d2u1
+ 0.02d2θ + 1.2d2u1

=805

−0.78d2θ < 0, which violates (3.24).806

In Section 4, we will provide an application of (P) where the second-order d-807

stationary points of corresponding (P0) and (P1) are computable by certain algo-808

rithms.809
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3.4. Second-order sufficient condition. Inspired by [10, Proposition 9.4.2810

(b)], we provide second-order sufficient conditions for strong local minimizers [10,811

Section 6.4] of (P) in this subsection. For a function f : F ⊆ Rm → R, we say812

x ∈ F is a strong local minimizer of f on F if there exist ϵ1, ϵ2 > 0 such that813

f(x̄) ≥ f(x) + ϵ1∥x̄− x∥2 for all x̄ ∈ F satisfying ∥x̄− x∥ ≤ ϵ2. To this end, we need814

the following assumption about twice semidifferentiability [25, Definition 13.6].815

Assumption 3. Function g and each component of vector functions {ψℓ−1, ℓ ∈816

[L]} are twice semidifferentiable on RN̄L and Rn+N̄ℓ−1 , ℓ ∈ [L] respectively.817

Assumption 3 is stronger than Assumption 2. As shown in Lemma 3.1, Assumption818

2 provides an upper bound of lim infτ↓0,d′→d
Θ(z+τd′)−Θ(z)

τ2/2 along certain directions,819

whereas (3.29)-(3.31) indicate that Assumption 3 can simultaneously offer a lower820

bound for it in all directions. For any twice semidifferentiable function f , we have821

df(x)(d) := limτ↓0,d′→d
f(x+τd′)−f(x)

τ = f ′(x; d) for any x, d, and822

(3.26)

lim
τ↓0
d′→d

f(x+ τd′)− f(x)− τdf(x)(d′)

τ2/2
= lim

τ↓0
d′→d

f(x+ τd′)− f(x)− τf ′(x; d′)

τ2/2

= lim
τ↓0

f(x+ τd)− f(x)− τf ′(x; d)

τ2/2

= f (2)(x; d),

823

for any x, d. For any twice semidifferentiable functions f1, f2 on Rn and any a1, a2 ∈ R,824

the combination a1f1+a2f2 is twice semidifferentiable on Rn. Then based on previous825

subsections, we have the following second-order sufficient conditions for (P).826

Theorem 3.14. Under Assumptions 1, 3 and (3.6), for any z = (θ⊤, u⊤)⊤ ∈827

lev≤γ̄Θ, if828

(3.27)

Θ′(z; d) ≥ 0 for all d,

and F (2)(z; d)−
L∑

ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 > 0,

for all d ̸= 0 with Θ′(z; d) = 0,

829

then z is a strong local minimizer of (P1) and θ is a strong local minimizer of (P).830

Proof. We first prove that z is a strong local minimizer of (P1). According to831

[25, Theorem 13.24 (c)], it is equivalent to prove that 0 ∈ ∂Θ(z) and832

lim inf
τ↓0
d′→d

Θ(z + τd′)−Θ(z)

τ2/2
> 0 for all d ̸= 0.(3.28)833

834

Since 0 ∈ ∂Θ(z) can be obtained by ∂̂Θ(z) ⊆ ∂Θ(z) from [25, Theorem 8.6] and835

0 ∈ ∂̂Θ(z) from Θ′(z; d) ≥ 0 for all d and [25, Exercise 8.4], we only need to prove836

(3.28). For any d ̸= 0 satisfying Θ′(z; d) > 0, it follows from Assumption 1 that837

limτ↓0,d′→d[Θ(z + τd′)−Θ(z)]/τ exists and equals to Θ′(z; d), which implies that838

lim inf
τ↓0
d′→d

Θ(z + τd′)−Θ(z)

τ2/2
= lim inf

τ↓0
d′→d

[Θ(z + τd′)−Θ(z)]/τ

τ/2
= +∞ > 0.839

840
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For any d ̸= 0 satisfying Θ′(z; d) = 0, it follows from Θ′(z; d′) ≥ 0 for all d′ that841

lim inf
τ↓0
d′→d

Θ(z + τd′)−Θ(z)

τ2/2
842

≥ lim inf
τ↓0
d′→d

Θ(z + τd′)−Θ(z)− τΘ′(z; d′)

τ2/2
843

≥ lim inf
τ↓0
d′→d

F (z + τd′)− F (z)− τF ′(z; d′)

τ2/2
(3.29)844

+

L∑
ℓ=1

βℓ
∑

j∈[Nℓ]

lim inf
τ↓0
d′→d

fℓ,j(z + τd′)− fℓ,j(z)− τf ′ℓ,j(z; d
′)

τ2/2
,845

846

where fℓ,j(z) := |[uℓ]j − [ψℓ−1]j(θ,uℓ−1)| for all ℓ ∈ [L], j ∈ [Nℓ]. By the twice847

semidifferentiability of g and λ∥ · ∥2, it follows from (3.26) that848

lim inf
τ↓0
d′→d

F (z + τd′)− F (z)− τF ′(z; d′)

τ2/2
= F (2)(z; d).(3.30)849

850

And for all ℓ ∈ [L], j ∈ [Nℓ], it follows from twice semidifferentiability of [ψℓ−1]j and851

[10, (4.15)] that852

lim inf
τ↓0
d′→d

fℓ,j(z + τd′)− fℓ,j(z)− τf ′ℓ,j(z; d
′)

τ2/2
853

≥


−[ψ

(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]j , if j ∈ Iℓ+(z) ∪ Iℓ0,+(z; d),
[ψ

(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)]j , if j ∈ Iℓ−(z) ∪ Iℓ0,−(z; d),
−|[ψ(2)

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]j |, if j ∈ Iℓ0,0(z; d),

854

855

where Iℓ+(z), I
ℓ
−(z), I

ℓ
0(z) are defined as in Proposition 3.4, Iℓ0,+(z; d), I

ℓ
0,−(z; d),856

Iℓ0,0(z; d) are defined as in Proposition 3.5. In fact, Iℓ+(z) = Iℓ−(z) = ∅ for all ℓ857

since z ∈ F0 according to Lemma 3.8, and furthermore it follows from (3.23) that858

Iℓ0,+(z; d) = Iℓ0,−(z; d) = ∅ for all ℓ. Thus, the inequality can be simplified as859

lim inf
τ↓0
d′→d

fℓ,j(z + τd′)− fℓ,j(z)− τf ′ℓ,j(z; d
′)

τ2/2
≥ −|[ψ(2)

ℓ−1(θ,uℓ−1; dθ, duℓ−1
)]j |.(3.31)860

861

Plugging (3.30) and (3.31) into (3.29), we have862

lim inf
τ↓0
d′→d

Θ(z + τd′)−Θ(z)

τ2/2
≥ F (2)(z; d)−

L∑
ℓ=1

βℓ∥ψ(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 > 0,863

864

where the last inequality comes from (3.27). Thus, (3.28) holds and z is a strong local865

minimizer of (P1).866

Next we prove θ, the component of z, is a strong local minimizer of (P) by867

contradiction. If θ is not a strong local minimizer of (P), then there exists a sequence868

{θk, k ≥ 1} converging to θ such that869

Ψ(θk) + λ∥θk∥2 < Ψ(θ) + λ∥θ∥2 + 1

k
∥θk − θ∥2.870

871
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Based on {θk, k ≥ 1}, we can construct {zk, k ≥ 1} ⊆ F0 by setting zk = ((θk)⊤, (uk1)
⊤872

, . . . , (ukL)
⊤)⊤ with ukℓ := ψℓ−1(θ

k, uk1 , . . . , u
k
ℓ−1) for all ℓ ∈ [L]. Together with z ∈ F0873

from Lemma 3.8, it implies that874

Θ(zk) = Ψ(θk) + λ∥θk∥2 < Ψ(θ) + λ∥θ∥2 + 1

k
∥θk − θ∥2 = Θ(z) +

1

k
∥θk − θ∥2875

≤ Θ(z) +
1

k
∥zk − z∥2.(3.32)876

877

Meanwhile, it follows from the continuity of {ψℓ−1, ℓ ∈ [L]} and θk → θ that zk → z.878

Together with the strict inequality in (3.32), it contradicts the fact that z is a strong879

local minimizer of (P1). Hence, θ is a strong local minimizer of (P).880

Remark 3.15. According to (3.23), the sufficient condition (3.27) is equivalent881

to Θ′(z; d) ≥ 0 for all d and F (2)(z; d) −
∑L

ℓ=1 βℓ∥ψ
(2)
ℓ−1(θ,uℓ−1; dθ, duℓ−1

)∥1 > 0 for882

all d ̸= 0 with d ∈ TF0
(z) and F ′(z; d) = 0. Hence, it can be observed that for883

the case L = 1, (3.27) is milder than [10, (9.42)] for minθ h(G(θ)) with G(θ) :=884

(ψ0(θ)
⊤, λ∥θ∥2)⊤ and h(y) := g([y]1:N1) + [y](N1+1), since under ρ := β1 and J+ :=885

{j ∈ [N1] | [ψ(2)
0 (θ; dθ)]j ≤ 0}, J− := {N1 + 1} ∪ ([N1]\J+),886

h(2)(G(θ);G′(θ; dθ)) + ρ [
∑
j∈J+

G
(2)
j (θ; dθ)−

∑
j∈J−

G
(2)
j (θ; dθ)]887

= g(2)(ψ0(θ);ψ
′
0(θ; dθ))− 2λβ1∥dθ∥2 − β1∥ψ(2)

0 (θ; dθ)∥1888

<F (2)(z; d)− β1∥ψ(2)
0 (θ; dθ)∥1,889890

where the inequality uses F (2)(z; d) = g(2)(ψ0(θ);ψ
′
0(θ; dθ)) + 2λ∥dθ∥2 and dθ ̸= 0 for891

all d ∈ TF0(z) with d ̸= 0.892

Theorem 3.14 enables us to determine whether a d-stationary point of (P1) is a strong893

local minimizer for (P).894

4. Application: RNNs. The recurrent neural network (RNN) is a kind of895

feedforward neural networks for sequential processing. Different RNN variants, such as896

Elman networks [12], Jordan networks [17], and LSTM [15], have been widely applied897

on language modelling like ChatGPT and protein secondary structure prediction [13].898

Due to the universal approximation property and the fundamental significance for the899

other RNN variants [14], we focus on the training of the Elman RNN with a single900

unidirectional hidden layer in this section. Without loss of generality, we consider the901

case where the number of sequences is N = 1 and the number of time steps in the902

sequence is T = 3. Given a sequence of inputs {xt ∈ RN0 , t ∈ [3]} and an associated903

sequence of labels {yt ∈ RN2 , t ∈ [3]}, the model can be formulated as the following904

constrained optimization problem905

(P0-RNN)

min
A,V,W,b,c,
s,w,r,v

∥r − y∥2

6
+ λ(∥A∥2F + ∥V ∥2F + ∥W∥2F + ∥b∥2 + ∥c∥2),

subject to wt =Wst−1 +Axt + b, st = σ (wt) ,

vt = V st + c, rt = σ (vt) , t ∈ [3],

906

where s0 = 0 ∈ RN1 and other notations are defined as follows.907

1. Vector y refers to y = (y⊤1 , y
⊤
2 , y

⊤
3 )

⊤ ∈ R3N2 .908
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2. Vectors st ∈ RN1 and rt ∈ RN2 refer to the hidden value and output at909

time t, respectively. For brevity, we denote s = (s⊤1 , s
⊤
2 , s

⊤
3 )

⊤ ∈ R3N1 , r =910

(r⊤1 , r
⊤
2 , r

⊤
3 )

⊤ ∈ R3N2 .911

3. Vectors wt ∈ RN1 and vt ∈ RN2 refer to the auxiliary hidden value and912

auxiliary output at time t, respectively. We denote w = (w⊤
1 , w

⊤
2 , w

⊤
3 )

⊤ ∈913

R3N1 , v = (v⊤1 , v
⊤
2 , v

⊤
3 )

⊤ ∈ R3N2 .914

4. Matrices W ∈ RN1×N1 , A ∈ RN1×N0 , V ∈ RN2×N1 and vectors b ∈ RN1 , c ∈915

RN2 are network parameters independent of t. And we aggregate those pa-916

rameters as917

θ :=
(
vec(A)⊤, vec(V )⊤, vec(W )⊤, b⊤, c⊤

)⊤ ∈ Rn,(4.1)918919

where vec(A) := (a⊤1 , . . . , a
⊤
q )

⊤ for any matrix A = (a1, . . . , aq) ∈ Rp×q with920

{aj ∈ Rp, j ∈ [q]}, and n := N0N1 +N1N2 +N2
1 +N1 +N2 in this case.921

5. Function σ(u) := max{u, αu} for all u ∈ R is (leaky) ReLU activator with922

α ∈ [0, 1). For brevity, we will not distinguish whether σ(·) applies on a scalar923

or on a vector componentwisely when there is no ambiguity.924

To reconcile the notations in (P0-RNN) with those in (P0), we could first define925

L := 8 and926

u2t−1 := wt, u2t := st, t ∈ [3], u7 := v, u8 := r;927928

then define u0 to be an empty placeholder, uℓ := (u⊤1 , . . . , u
⊤
ℓ )

⊤ for all ℓ ∈ [8] as in929

(1.1). Thereby, we have930

u := uL = (w⊤
1 , s

⊤
1 , w

⊤
2 , s

⊤
2 , w

⊤
3 , s

⊤
3 , v

⊤, r⊤)⊤ ∈ R6(N1+N2),931932

which aggregates all the auxiliary variables s, w, r, v in (P0-RNN). Together with933

(4.1), we have934

z := (θ⊤, u⊤)⊤ ∈ RN̄ , where N̄ := n+ 6(N2 +N1),(4.2)935936

so that the objective function of (P0-RNN) can be denoted as937

F (z) := g(u) + λ ∥θ∥2 , where g(u) := ∥r − y∥2 /6.938939

And for the constraints of (P0-RNN), using Kronecker product ⊗, we denote940

ψ2t−2(θ,u2t−2) := (x⊤t ⊗ IN1
0 s⊤t−1 ⊗ IN1

IN1
0) θ, ψ2t−1(θ,u2t−1) := σ(wt)941942

for all t ∈ [3], and943

ψ6(θ,u6) :=

0 s⊤1 ⊗ IN2
0 0 IN2

0 s⊤2 ⊗ IN2
0 0 IN2

0 s⊤3 ⊗ IN2
0 0 IN2

 θ, ψ7(θ,u7) := σ(v).944

945

Then it can be checked that946

uℓ = ψℓ−1(θ,uℓ−1), ℓ ∈ [8] ⇔

{
wt =Wst−1 +Axt + b, st = σ (wt) ,

vt = V st + c, rt = σ (vt) , t ∈ [3],
947

948

and the above functions g and {ψℓ−1, ℓ ∈ [8]} are continuous. Hence, (P0-RNN) is949

an application of (P0). Naturally, (P0-RNN) has a reformulation corresponding to950

(P). As noted at the beginning of Section 3.2, they are equivalent when neglecting951

dimension lifting.952
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Remark 4.1. (P0-RNN) provides an example illustrating the differences between953

(P) and (2.1)-(2.2) of [9]. Firstly, unifying A, V,W, b, c as θ makes it convenient to954

sharing parameters A,W, b in ψ0, ψ2 and ψ4. Secondly, ψ6 not only depends on θ and955

u6 (i.e. s3), but also depends on u2, u4 (i.e. s1, s2), which transmits the information956

across multiple layers. In contrast, DNNs in [9] demand distinct parameters in dif-957

ferent layers, which lacks a mechanism to maintain parameter consistency among the958

layers sharing parameters during the training process. Figure 1 shows the architec-959

tures of RNN in (P0-RNN) and DNN in (1.1) of [9].960

(a) RNN

(b) DNN

Fig. 1. Architectures of RNN in (P0-RNN) and DNN in [9]

Next, we will explore the benefits of results in Section 3 for RNN training based on961

(P0-RNN). For simplicity, we merge penalty parameters {βℓ, ℓ ∈ [L]} into (β1, β2) > 0962

in the ℓ1-penalized form of (P0-RNN):963

(P1-RNN) min
z∈RN̄

Θ(z),964

where965

Θ(z) :=F (z) + β1

6∑
ℓ=1

∥uℓ − ψℓ−1(θ,uℓ−1)∥1 + β2

8∑
ℓ=7

∥uℓ − ψℓ−1(θ,uℓ−1)∥1966

=F (z) + β1

3∑
t=1

(∥wt −Wst−1 −Axt − b∥1 + ∥st − σ(wt)∥1)967

+ β2

3∑
t=1

(∥vt − V st − c∥1 + ∥rt − σ(vt)∥1) .968

969

For (P0-RNN) and (P1-RNN), denote970

FRNN
0 :=

{
z

∣∣∣∣∣wt =Wst−1 +Axt + b, st = σ (wt) ,
vt = V st + c, rt = σ (vt) , t ∈ [3]

}
,971

SRNN
0 := argmin

z∈FRNN
0

F (z), SRNN
1 := argmin

z∈RN̄

Θ(z),972

973

and break the direction d ∈ RN̄ according to the blocks of variable z defined in (4.2):974

(4.3)

d = (d⊤θ , d
⊤
u )

⊤, with

dθ =
(
d⊤A, d

⊤
V , d

⊤
W , d⊤b , d

⊤
c

)⊤
,

du = (d⊤u1
, . . . , d⊤u8

)⊤ = (d⊤w1
, d⊤s1 , d

⊤
w2
, d⊤s2 , d

⊤
w3
, d⊤s3 , d

⊤
v , d

⊤
r )

⊤,

975
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where all dimensions are consistent with the corresponding variables. And for any
d ∈ RN̄ , we define dr := (d⊤r1 , d

⊤
r2 , d

⊤
r3)

⊤, dv := (d⊤v1 , d
⊤
v2 , d

⊤
v3)

⊤, ds := (d⊤s1 , d
⊤
s2 , d

⊤
s3)

⊤,
dw := (d⊤w1

, d⊤w2
, d⊤w3

)⊤, and ds0 := 0 ∈ RN1 . For any vector a ∈ Rpq, denote

matp,q(a) :=

a1 ap+1 · · · ap(q−1)+1

...
...

...
...

ap a2p · · · apq

 .

Applying the results in Sections 2 and 3 on (P0-RNN) and (P1-RNN), we obtain the976

following corollary.977

Corollary 4.2. (i) The optimal solution sets SRNN
0 and SRNN

1 are nonempty978

and compact for all (β1, β2) > 0. (ii) Any local minimizer z of (P0-RNN) is a second-979

order d-stationary point of (P0-RNN), that is980

z ∈ FRNN
0 and [∇F (z)]⊤d ≥ 0, ∀d ∈ TFRNN

0
(z)981

and d⊤∇2F (z)d ≥ 0, ∀d ∈ PFRNN
0

(z) with [∇F (z)]⊤d = 0,982
983

and for all (β1, β2) > 0, any local minimizer z of (P1-RNN) is a second-order d-984

stationary point of (P1-RNN), that is985

Θ′(z; d) ≥ 0, ∀d ∈ RN̄and Θ(2)(z; d) ≥ 0, ∀d with Θ′(z; d) = 0,986987

where for any z ∈ FRNN
0 ,988

TFRNN
0

(z) =

d ∈ RN̄

∣∣∣∣∣dvt = DV st + V dst + dc, drt = σ′(vt; dvt),
dwt = DW st−1 +Wdst−1 +DAxt + db,

dst = σ′(wt; dwt), t ∈ [3]

 ,989

PFRNN
0

(z) = {d ∈ TFRNN
0

(z) | DV dst = 0, DW dst−1
= 0, t ∈ [3]}990

991

with DA := matN1,N0(dA), DV := matN2,N1(dV ), DW := matN1,N1(dW ).992

(iii) Under the setting of993

β1 > γ1γy
√
2/(3λ), β2 >

√
2γy/3,(4.4)994

995

where γy := Θ(0) = ∥y∥2/6, γ1 :=
∑2

i=0(
√
γy/λ)

i, we have that996

(a) SRNN
0 = SRNN

1 ; and997

(b) for any z ∈ lev≤γy
Θ, z is d-stationary point of (P0-RNN) if and only if it is998

a d-stationary point of (P1-RNN).999

Proof. (i). The nonemptiness and compactness of SRNN
0 and SRNN

1 come from1000

Lemmas 2.1 and 2.2.1001

(ii). Since g and {ψℓ−1, ℓ ∈ [8]} satisfy Assumptions 1 and 2, we attain the neces-1002

sity of second-order d-stationarity from Lemma 3.1, and the expression of TFRNN
0

(z)1003

from Theorem 3.6. The expression of PFRNN
0

(z) is further derived by its definition,1004

PFRNN
0

(z) ⊆ TFRNN
0

(z) and (3.22).1005

(iii). The thresholds (4.4) can be obtained by refining the proof of Lemma 3.81006

and Theorem 3.9 as follows. Note that1007

∥r − y∥ ≤
√
6γy, ∥V ∥ ≤

√
γy/λ, ∥W∥ ≤

√
γy/λ,1008

1009
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for all z ∈ lev≤γy
Θ. Next, we will estimate the constants Kg > 0 and {Kℓ > 0, ℓ ∈1010

[L − 1]} satisfying (2.11). By the definition of g(u) in (P0-RNN) and (P1-RNN), it1011

implies that1012

|g′(u; du)− g′(u; d̄u)| = | (r − y)⊤(dr − d̄r)

3
| ≤ ∥r − y∥

3
∥dr − d̄r∥1013

≤
√

2γy
3

∥dr − d̄r∥(4.5)1014
1015

for any z ∈ lev≤γy
Θ and any d, d̄ ∈ RN̄ . Then for {ψℓ, ℓ ∈ [7]}, we divide them into1016

four groups. For {ψ2t−2, t = 2, 3}, it follows from ∥W∥ ≤
√
γy/λ for all z ∈ lev≤γyΘ1017

that1018

(4.6)
∥ψ′

2t−2(θ,u2t−2; dθ, du2t−2
)− ψ′

2t−2(θ,u2t−2; d̄θ, d̄u2t−2
)∥

=
∥∥W (dst−1

− d̄st−1
)
∥∥ ≤

√
γy/λ∥dst−1

− d̄st−1
∥

1019

for all d, d̄ ∈ RN̄ with dθ = d̄θ. For {ψ2t−1, t ∈ [3]}, it follows from the definition of σ1020

that1021

(4.7)
∥ψ′

2t−1(θ,u2t−1; dθ, du2t−1)− ψ′
2t−1(θ,u2t−1; d̄θ, d̄u2t−1)∥

= ∥σ′(wt; dwt)− σ′(wt; d̄wt)∥ ≤ ∥dwt − d̄wt∥
1022

for all d, d̄ ∈ RN̄ . For ψ6, it follows from ∥V ∥ ≤
√
γy/λ that for all z ∈ lev≤γyΘ and1023

for all d, d̄ ∈ RN̄ with dθ = d̄θ,1024

(4.8)

∥ψ′
6(θ,u6; dθ, du6)− ψ′

6(θ,u6; d̄θ, d̄u6)∥

=

∥∥∥∥∥∥
V (ds1 − d̄s1)
V (ds2 − d̄s2)
V (ds3 − d̄s3)

∥∥∥∥∥∥ ≤
√
γy/λ

∑
t∈[3]

∥dst − d̄st∥.
1025

For ψ7, it follows from the definition of σ that1026

∥ψ′
7(θ,u7; dθ, du7

)− ψ′
7(θ,u7; d̄θ, d̄u7

)∥ = ∥σ′(v; dv)− σ′(v; d̄v)∥ ≤ ∥dv − d̄v∥(4.9)10271028

for all d, d̄ ∈ RN̄ . Then we can yield (a) and (b) under the thresholds (4.4) by1029

replacing (2.11) used in Lemma 3.8 and Theorem 3.9 with (4.5)-(4.9) as follows.1030

• For Lemma 3.8, prove uℓ = ψℓ−1(θ,uℓ−1) in the order of ℓ = 8, . . . , 1 by1031

contradiction, but without the use of induction (3.12), under same definitions1032

of z̄. During the process, plug (4.5) with d̄ = 0 into (3.7) and (3.9); in (3.11)1033

and (3.13), use1034

– (4.6) with dθ = 0, d̄ = 0, t = 2, 3,1035

– (4.7) with dθ = 0, d̄ = 0, t = 1, 2, 3,1036

– (4.8) with dθ = 0, d̄ = 0,1037

– (4.9) with dθ = 0, d̄ = 0.1038

• For Theorem 3.9, keep the analysis before (3.19) unchanged except for plug-1039

ging (4.5) into (3.17). Then repeat (3.20) for ℓ = 2, . . . , 8 instead of using1040

the induction (3.19). During the process, we use (4.6), (4.7), (4.8) and (4.9)1041

when the subscript of ψ belongs to {2, 4}, {1, 3, 5}, {6} and {7} in (3.20)1042

respectively. The calculations after (3.20) are also kept without changes.1043
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The results in Corollary 4.2 can be easily extended to the case where N > 1,1044

T > 3 and st, wt, rt, vt aggregate corresponding components for all samples at tth1045

time step with thresholds1046

β1 > γ1γy
√

2/(λNT ), β2 >
√

2γy/(NT ),(4.10)1047
1048

under γy := Θ(0) = ∥y∥2/(2NT ), γ1 :=
∑T−1

i=0 (
√
γy/λ)

i. And the exact penalty in1049

d-stationarity can be generalized to more scenarios including but not limited to more1050

complicated variants in RNNs (such as LSTM and GRU) with any locally Lipschitz1051

continuous and directionally differentiable activator (such as tanh and ELU).1052

Besides, it follows from the convexity of F in (P0-RNN) and (P1-RNN) that for all1053

z ∈ FRNN
0 , d⊤∇2F (z)d ≥ 0 for all d ∈ PFRNN

0
(z)∩{d | [∇F (z)]⊤d = 0}. Hence, every1054

d-stationary point of (P0-RNN) is a second-order d-stationary point for (P0-RNN).1055

Similarly, according to (3.24), every d-stationary point of (P1-RNN) in lev≤γy
Θ is a1056

second-order d-stationary point for (P1-RNN) under (4.10). In fact, it follows from1057

Remark 3.12 that SD0 ∩ lev≤γy
Θ = SD1 ∩ lev≤γy

Θ = D0 ∩ lev≤γy
Θ = D1 ∩ lev≤γy

Θ1058

in this case. As a consequence, one can obtain a second-order d-stationary point of1059

(P0-RNN) and (P1-RNN) by applying the algorithms in [9, 11] on (P1-RNN) with1060

(4.10).1061

5. Conclusions. The paper investigates a class of nonconvex nonsmooth mul-1062

ticomposite optimization problems (P) with an objective function comprised of a1063

regularization term and a multi-layer composite function with twice directionally dif-1064

ferentiable and locally Lipschitz continuous components. The d-stationarity of (P) is1065

hard to attain directly, and its second-order d-stationarity is vague without additional1066

assumptions on the objective function. Based on the closed-form expression of the1067

tangent cone TF0
(·), we prove the equivalence between (P), the constrained form (P0)1068

and the ℓ1-penalty formulation (P1) in terms of global optimality and d-stationarity.1069

The equivalence offers an indirect way to compute the d-stationary points of (P). Fur-1070

thermore, it provides second-order necessary and sufficient conditions for (P) through1071

(P0) and (P1). The theoretical results are also applied to the training process of1072

recurrent neural networks.1073
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