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DATA-DRIVEN DISTRIBUTIONALLY ROBUST MULTIPRODUCT
PRICING PROBLEMS UNDER PURE CHARACTERISTICS
DEMAND MODELS*

JIE JIANGT, HAILIN SUN#, AND XIAOJUN CHENS

Abstract. This paper considers a multiproduct pricing problem under pure characteristics de-
mand models when the probability distribution of the random parameter in the problem is uncertain.
We formulate this problem as a distributionally robust optimization (DRO) problem based on a con-
structive approach to estimating pure characteristics demand models with pricing by Pang, Su and
Lee. In this model, the consumers’ purchase decision is to maximize their utility. We show that
the DRO problem is well-defined, and the objective function is upper semicontinuous by using an
equivalent hierarchical form. We also use the data-driven approach to analyze the DRO problem
when the ambiguity set, i.e., a set of probability distributions that contains some exact information
of the underlying probability distribution, is given by a general moment-based case. We give con-
vergence results as the data size tends to infinity and analyze the quantitative statistical robustness
in view of the possible contamination of driven data. Furthermore, we use the Lagrange duality to
reformulate the DRO problem as a mathematical program with complementarity constraints, and
give a numerical procedure for finding a global solution of the DRO problem under certain specific
settings. Finally, we report numerical results that validate the effectiveness and scalability of our
approach for the distributionally robust multiproduct pricing problem.

Key words. pure characteristics demand model, stochastic optimization, distributional robust-
ness, data-driven, mathematical program with complementarity constraints
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1. Introduction. The utility theory has been widely adopted to describe the
behavior of individual consumers in economics and finance, since the seminal work
on games and economic behavior by Von Neumann and Morgenstern [36]. In a pure
characteristics demand model, utility functions of consumers are functions of prod-
uct characteristics including the price, which are used to obtain the market share
equations [3]. Such utility functions are discontinuous and lead to computationally
intractable estimation of the demand model. To overcome the computational diffi-
culty, in [29], Pang et al. gave a novel and constructive reformulation, in which the
consumers’ purchase decision problems were formulated by a system of linear com-
plementarity constraints. Such formulation allows us to estimate the consumers’ pure
characteristics demand model by a quadratic program with linear complementarity
constraints, which is numerically tractable by using some existing methodology [33].
Motivated by the work in [29], Chen et al. considered in [4] a regularized sample aver-
age approximation (SAA) of a class of optimization problems involving set-valued sto-
chastic equilibrium constraints that includes the estimation problem with exogenous
price proposed in [29], and established graphical convergence results. Recently, Jiang

*Submitted to the editors DATE.

Funding: This work is supported by The Hong Kong Polytechnic University Post-doctoral
Fellow Scheme, The Hong Kong Grant Council Grant (PolyU15300322 and N_PolyU507/22) and the
National Natural Science Foundation of China (12201084, 12122108 and 12261160365).

TCollege of Mathematics and Statistics, Chongqing University, Chongqing, China
(jiangjiecq@163.com).

tKey Laboratory of NSLSCS, Ministry of Education, Jiangsu International Joint Labora-
tory of BDMCA, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
(hlsun@njnu.edu.cn).

$Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
(maxjchen@polyu.edu.hk).

This manuscript is for review purposes only.


mailto:jiangjiecq@163.com
mailto:hlsun@njnu.edu.cn
mailto:maxjchen@polyu.edu.hk

ot Ot Ot Ot Ot
L o= O

Tt e W

S O O Ut ot Ut ot Ot
N = O © 0 9 O

63
64
65
66
67
68
69
70

~J
[\

(S BTSNV

PN IIES RS PN |

2 J. JIANG, H. SUN, AND X. CHEN

and Chen employed the distributionally robust approach to estimate the parameters
in a pure characteristics demand model with the fixed price when the probability
distribution is uncertain in [21]. It is worth pointing out that the aforementioned
works [4, 21, 29] estimated the parameters in utility functions of pure characteristics
demand models when the characteristics of products are given.

The price is an important factor for consumers when they determine their pur-
chase decisions. When the parameters in the pure characteristics demand model are
known, multiproduct pricing models are established based on the pure characteris-
tics demand model and the observed product characteristics to obtain the optimal
prices in [29, 34]. It is noteworthy that a set of finite numbers of random samples
was used in [29], while continuous random variables and a regularized SAA approach
were employed in [34] under the assumption that the true probability distribution of
random parameters in the model is known. However, in practical applications, the
true probability distribution cannot be detected exactly. In this paper, we consider
the multipruduct pricing problem when the true probability distribution of the con-
sumers’ preference random parameter is unknown. We will apply the distributionally
robust optimization (DRO) approach (see, e.g., [7, 10, 28]) to deal with the unknown
information by accessing a set of probability distributions that includes the true one.

To present our DRO approach, we first introduce some basic settings. Consider
a market with 7 (T > 1) firms and m (m > 1) products indexed by ¢t = 1,...,T
and 7 = 1,...,m respectively, where each product can only been produced by one
firm. The target firm is the first firm which produces products 1, ..., K with K < m.
We assume that the target firm will produce product ¢ rather than product j for
any 1 <17 < j < K when products i and j have the same net profit. Namely, these
products are indexed in rank order according to the firm’s individual preference. Each
product j is characterized by a vector of observed characteristics x; € R¢ and price
p; > 0. Suppose that the consumers in the market are heterogenous. The R®-valued
random vector ¢ with support set being = C R? is used to estimate heterogeneous
consumers’ preferences or tastes over the observed product characteristics and price
in the differentiated product setting.

For fixed product characteristics, we use u;(p;,§) to denote a consumer’s utility
with preference £ purchasing product j at price p; for j =1,..., K. In [29], the utility
for a consumer purchasing product j with preference £ is given by

(1.1) ui(ps, &) = Bi(€) Twj — a;(E)p; + (&),  j=1,....K,

where 3;(¢) € R and a;(¢) € Ry model the consumer’s preference regarding the
observed product j’s characteristics =; and price pj, respectively, and 7;(§) € R is the
product characteristic or demand shock that is observed by the firms and consumers
but is not available in the data. We use u;(§) to denote a consumer’s utility with
preference £ purchasing product j at fixed price p; for j = K +1,...,m. Let P be a
convex and compact set in Rff 4. We assume that the utility function u : P x Z — R™
with
u(p, 6) = (U1(p1, 6)7 EER) UK(pKv f)’ UK+1(§)7 s 7um(§))T

is continuous with respect to (w.r.t.) the tuple (p, &).

To estimate the consumer’s purchasing strategies with preference £, Pang et al.
[29, (7)] proposed to maximize the consumer’s utility with preference £ by the following
maximization problem

max y u(p,€)

1.2
(1:2) st. ely<1,y>0,
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DISTRIBUTIONALLY ROBUST MULTIPRODUCT PRICING 3

where y is an m-dimensional decision variable with the ith (1 < ¢ < m) component
denoting the purchase weight of product ¢ and e € R™ is a vector with each element
being one. The KKT condition of the linear program (1.2) is necessary and sufficient
for the optimality, that is, y* is a solution of (1.2) if and only if there is v* € R, such

that . (g) i (_2r S) (z) . (—u(f,€)> > 0.

Pang et al. in [29] formulated the target firm’s pricing problem as a mathematical
program with linear complementarity constraints (see monographs [6, 9, 27]):

max E [y (&) (p = )]

st. 0< (:8) L (ZT 8) (ggg) + (“(f’ O) >0,

where ¢ € Rf is a vector whose entry c; denotes the marginal cost of product j for
Jj=1,..., K, yx(§) is a K-dimensional vector consisting of the first K components
of y(&) such that the objective function is well-defined.

For fixed (p, £), let S(p, &) be the optimal solution set of problem (1.2). The target
firm’s pricing problem can be equivalently written as follows (see [29, (23)] and [34,

(2) and (4)]):

max E [yix)(§) " (p — ¢)]
st y(&) € S(p,§),

where y(£) is a measurable selection selected from S(p,£) that makes the objective
function E [y[;q T (p— c)] achieve a maximum. S(p,&) is generally set-valued and
we cannot find a continuous single-valued function y(p, §) € S(p,§) w.r.t. p for almost
every £. Consider a simple example as in [4]: u(p,§) = (& — p,&) € R?, where
€= (&,&) " with & € R and & > 0. Then the solution set has the form:

(1.3)

(1,0)7, p <& — &
S(p,f): {(a,lfa)T:OzE[O,l]}, p:§1752;
(07 1)T7 p > 51 - 527

and we can not find a continuous single-valued function y(p, &) € S(p,&) w.r.t. p. The
standard optimization method and SAA scheme in the literature become intractable
for solving problem (1.3).

We consider the following extended multiproduct pricing problem as a two-stage
stochastic optimization problem:

(1.4) max E[Q(p,¢)],

pEP

where Q(p, &) := H(p,&) — h(p,&), and H(p,&) is the second stage optimal value
function, i.e.,

(15) H(p,§) := r?jr/l(%? g (y[K] - C))

st y(§) € S(p,9).

Here g : R — R is a strictly increasing and continuous function, which can be viewed
as a utility function of the profit, and h : RX x = — R, is continuous w.r.t. p for
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4 J. JIANG, H. SUN, AND X. CHEN

almost every ¢ € = and measurable w.r.t. ¢ for all p € RX. This term h(p,¢) can
be viewed as a regularization term or a budget term, which is used to ensure some
additional properties of the pricing model, such as boundedness, sparsity, etc. When
h(p,&) =0 and g (yx) (&) T (p — ©)) = yx)(€) T (p — ¢), problem (1.4) is equivalent to
problem (1.3). Also, from the viewpoint of two-stage stochastic optimization, the
term —E[h(p,£)] can be viewed as a first stage profit. When S(p, £) is not a singleton,
problem (1.5) tacitly assumes that the firm will take the best selection of a vector from
S(p, €) to achieve its goal. In fact, such selection determines an optimistic attitude of
the firm. Therefore, it can be viewed as an optimistic version. Correspondingly, the
pessimistic type can be defined.

In practice, it is usually argued that the true probability distribution of £ in (1.4)
cannot be captured exactly. To obtain the true probability distribution, it requires
that the size of the empirical data tends to infinity, which is usually impracticable
and costly. In most real applications, only limiting finite empirical data (i.e., partial
information) are available. DRO is a popular approach to settle this dilemma (see
[7, 28]). In view of this, we further consider the distributionally robust counterpart
of the extended multiproduct pricing problem (1.4) as follows:

(P) max juf Ep [Q(p,8)],

where F is the ambiguity set.

The main contributions of this paper are summarized as follows.

e We establish interesting properties of the extended multiproduct pricing prob-
lem (1.4) and its distributionally robust counterpart (P) in a hierarchical form
on the measurability and semicontinuity of the second stage optimal value
function with a closed form sparse solution. We prove the existence of so-
lutions of the discontinuous and nonconvex optimization problems (1.4) and
(P).

e Problem (P) is analyzed from a data-driven viewpoint when the ambiguity
set is given by a general moment-based form. We derive convergence re-
sults when the data-driven moment information converges almost surely to
the true one as data size tends to infinity. It is worth pointing out that
our data-driven analysis differs from the existing ones [7, 28] regarding the
ambiguity sets. Additionally, we give a quantitative statistical robustness
assertion under moderate conditions when the data-driven moment informa-
tion is contaminated. The data-driven analysis ensures that the data-driven
model is reliable when the data size is sufficiently large or even if the data
are contaminated slightly.

e We reformulate problem (P) with a general moment ambiguity set as a math-
ematical program with complementarity constraints (MPCC) by using the
Lagrange duality. We propose a numerical procedure to find a global solution
for problem (P) with finite elements in E. This procedure is based on the
MPCC reformulation and the closed-form expression of the second stage op-
timal value function. We report some numerical results using this procedure,
which preliminarily illustrate the necessariness of the distributionally robust
approach and data-driven analysis for multiproduct pricing problems.

The reminder of the paper is organized as follows. In Section 2, we present
some useful properties, including measurability, semicontinuity, etc. In Section 3, the
data-driven analysis is studied. In Section 4, the equivalent MPCC reformulation
of problem (P) is discussed. In Section 5, numerical procedures are given and some
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DISTRIBUTIONALLY ROBUST MULTIPRODUCT PRICING 5

numerical results are reported. Finally, we give concluding remarks in Section 6.
Notations. For some integer n > 1, R’ denotes the nonnegative part of R",
and R’ denotes the set of positive vectors (in the componentwise sense) in R™. |||
and |[-||, denote the Euclidean norm and the infinity norm, respectively. (-)4 :=
max{0,-}. For z € R” and X,Y C R”, d(z,Y) := infyey ||z —y|| and d(X,Y) :=
sup,cy infyey ||z — y||. We use D with some subscripts to denote probability metrics,
such as Dg (-, -) denotes the {-structure probability metric induced by a set of measur-
able functions G, Dy (-, ) denotes the total variational metric, Dy (-, ) denotes the
Kantorovich metric, etc. B denotes the closed unit ball in the corresponding space.

2. Properties. In this section, we will explore several useful properties of our
models. Specifically, we will investigate the semicontinuity of the second stage optimal
value function H(p,§), as well as the existence of solutions for problem (1.4) and
problem (P). We first establish the measurability of these problems. To this end, we
first recall some concepts, which can be found in [31, Definitions 14.1 and 14.27]. Let
(2, A) be a measurable space with = being the nonempty support set of £ and A being
some o-field of subsets of Z=. A mapping ¢ : E — R"™ is measurable if for every open set
O CR"theset o 1(0) :={£ € Z: p(€) € O} € A. A set-valued mapping S : = = R"
is measurable if for every open set O C R™ the set S71(0) ;== {£ € 2: S()NO #
0} € A. A function f: R" x = — R := {RU{+o0}} is called a normal integrand if its
epigraphical mapping Sy : = = R" X R, i.e. S§(§) :={(z,a) e R" xR: f(z,¢) < a},
is closed-valued and measurable.

PROPOSITION 2.1. For any fized p € P, the optimal solution set S(p,-) of problem
(1.2) is closed-valued and measurable.

Proof. Consider Y := {y € R : ey < 1} and £(y, &) = —yTu(p, &) + Sy (y),

where dy (+) is the indicator function regarding to Y, i.e., dy(y) = 0 for y € Y and
dy (y) = +o00 otherwise. Then we have

S(p, &) = argmin{(y, &).
Yy

Since Y is a closed set, it is not difficult to verify that Jdy (y) is lower semicon-
tinuous (Isc) (see [31, Definition 1.5]) on R™. Due to the continuity of u, we know
that £(y, ) is Isc w.r.t. (y,£). Then, we have that S(p,-) is closed-valued. Further,
we know from [31, Example 14.31] that £(y, &) is a normal integrand. Finally, based
on [31, Theorem 14.37], we have that S(p, -) is measurable. d

PROPOSITION 2.2. For any fixzed p € P, Q(p,-) in problem (1.4) is finite and
measurable.

Proof. Due to the nonemptiness and boundedness of S(p, &), Q(p,-) is finite ob-
viously. In what follows, we focus on the measurability of Q(p, -).

Consider problem (1.5). Since g is continuous and strictly increasing, we know
from [31, Example 14.51] and Proposition 2.1 that H(p,) is measurable. Moreover,
since h is continuous, we have that Q(p, &) = H(p,&) — h(p, &) is also measurable. 0O

For given p, denote the inner infimum of problem (P) by ¥(p), i.e.,
(2.1) I(p) = jnf Er [Qp, )]
and for given p and &, denote the index set

I(p,§) == {s : us(ps;§) = (u(p, )4/l - s € {1,..., K}}.

This manuscript is for review purposes only.
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To investigate the semicontinuity of ), we need the following concept named the
sparse solution.

DEFINITION 2.3 (the sparse solution, [34, Definition 2]). For given p € P and
& € E, the sparse solution of problem (1.5) denoted by y(p,§), is defined as

(i) if Z(p,&) # 0, then ys(p,€) =1 and y;(p, &) =0 fori=1,...,m and i # s,

where s := min{j : (p — ¢); = MaxX;cz(p,e)(p — €)i};

(ii) if Z(p,§) = O and |[(u(p,§))+ ]l > 0, then ys(p,§) = 1 and yi(p,§) = 0 for

i=1,...,m and i # s, where s := min{j : u;(p;, &) = |u(p, &) };
(iii) if Z(p, &) =0 and [|(u(p,§))+ |l = 0, then y(p, &) =0.

Based on Definition 2.3, we know that for any given p € P and £ € Z, there always
exists a unique corresponding sparse solution y(p,§). To facilitate understanding of
the sparse solution, we provide the following example.

Example 2.4. Assume that there are three products in the market, indexed by
1,2, 3, two firms with the target firm producing the products 1 and 2 and the rival
firm producing product 3, two kinds of consumers’ tastes, i.e., 2 = {£1,&2}. Let ¢ =
(0.5,2.5)T and P = [1,3] x [2,4]. Further, let u;(p1,&1) = 3 —p1, ui(p1, &) = 6—2p1,
uz(p2,&1) = 3—2pa, ua(pa, &) = 7—pa, uz(&1) = 3 and uz(€2) = 2. Now consider the
sparse solution for p = (1,3)T € P and & = &, &.

As for consumers with taste &1, we have

ui1(p1,&1) =2 <3 =wu3(&1) and wa(p2,§1) = —3 <3 =u3(&),

which implies that the consumers with taste £; would prefer to product 3.
As for consumers with taste &3, we have

U1(p1,§2) = U2(P2,§2) =4>2= U3(§2)-

Based on Definition 2.3, we have that the sparse solutions for p = (1,3)T and
=616 are y(p, &) = (0,0,1)7 and y(p, &) = (1,0,0)7, respectively.

Note that products 1, 2, 3 are indexed in rank order according to the target firm’s
individual preference. The sparse solution implies not only the preference of con-
sumers, but also the preference of the target firm. That is, both the target firm and
consumers with taste & would like to choose the sparse solution y(p, &) = (1,0,0) .

With the aid of the sparse solution, we can give the closed-form expression of H.

PROPOSITION 2.5. For given p € P and £ € Z, H(p,£) = g (y)(p, &) " (p — ¢)),
where Y1 (p, §) is the first K components of the sparse solution y(p,§).

Proof. We give the proof by considering the following two cases.

Case 1: Z(p,&) # (0. In this case, there exists some i € {1,..., K} such that
wi(pi, ) = [[(w(p,€))+]l- Let y(p,&) be the sparse solution and s be the smallest
index such that (p — ¢)s = max;ez(pe)(p — ¢)i- Then s € {1,..., K}, ys(p,§) = 1 and
yi(p, &) = 0 for all i # s. Obviously, y(p, &) € S(p, &) with

Sp,&) ={y:e'y<1,y>0,and y; = 0 if u;(ps, &) < [[(w(p.€))+]loo} -

Since (p — ¢) is one of the largest component of p — ¢, y(x(p, OT(p—c)> gj[—'l—(] (p—-c)
for all y € S(p, ), where gx is the first K components of 3. Due to the monotonicity
of g, we have g(yix)(p.&) " (p — ¢)) = 9(Fj(p — ¢)), which verifies that H(p,€) =
9wk (P €) T (p —0)).

This manuscript is for review purposes only.
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Case 2: Z(p,&) = (0. In this case, by the definition of S(p,¢) and y(p, £), for all

Y€ S(pa 5)7 yr=0,t=1,..., K and thus H(pa 5) - g(O) = g(y[K](p7§)T(p - C))
By summarizing the above two cases, the proof is complete. ]

In general, H is not continuous. To see this, we give a simple example as follows.

Example 2.6. Assume that there are products 1,2 in the market. The target
firm produces product 1 and the rival produces product 2. Let g(t) = t, h = 0,
u(p, &) = & — &ap and uz (&) = &3, where & ~ U(0,1) for ¢ = 1,2,3 are independent
with each other. Let & = (&1,&2,&3) . In this case, we have

0, &1 — &ap < &3,

H —
#.8) {p —c, & —&p>4Es,

which is discontinuous w.r.t. p for given £ in general.

Despite the discontinuity of H(-,£), we have the following upper semicontinuity
property.
PROPOSITION 2.7. For fized £ € Z, H(-,£) is upper semicontinuous over P, i.e.,

(2.2) limsup H (p',§) < H(p, €)
p'—p

for any p € P. Moreover, ¥(-), defined in (2.1), is also upper semicontinuous.

Proof. We prove the upper semicontinuity of H(-,£) by considering two cases.

Case 1: Z(p,&) # 0. Based on the definition of sparse solution y(p, £), we know
that there exists an s € {1,..., K} such that the sth component of y(p, £) equals to 1,
ie., ys(p, &) = 1. Moreover, for any index i € {1,..., K}, we have one of the following
three cases holds:

(1) ui(pi,§) = us(ps,€) and (p — ¢)s > (p — ¢); for i # s;

(2) ui(pis &) < us(ps,§) for i # s;

(3) wi(pi, &) = us(ps, &) and (p —¢)s = (p — ¢); for i > s.

We use notations 77, Zo and Z3 to represent the sets of indexes satisfying above
three cases, respectively. Obviously, we have

U Zi={1,....,K}and I, NZ; = O for k # j and k,j = 1,2,3.

Consider p' := (p,...,ph)" € RE that is sufficiently closed to p.

For ¢ € Z;, there are two possible cases: (la) u;(p},&) = |[(u(p’,€))+]~; (1b)
wi(p;, &) < [[(u(®',€))+lo- If case (1la) holds, we know from (p —¢)s > (p — ¢); that
v, P —¢)i=00r 0 <y, )P — )i < ys(p,&)(p — ¢)s; if case (1b) holds, we
have y;(p', ) = 0 and thus y;(p’, §)(p" — ¢); = 0.

For i € T, we know from the continuity of u(-,-) that u;(p}, &) < us(pl,§), and
then y;(p’,&) = 0. Thus, y;(p',&)(p’ — ¢); =0 for i € Ts.

For i € 73 and any sequence {pk}kzl with p¥ — p as k — oo, we have that either
yi(p*,€) = 0 (and thus y;(p*,€)(p' — ¢)i = 0) or y;(p*, )(P* — )i = ys(p, ) (p — ©)s
as k — oo.

To summarize the above three cases, we obtain that

limsup H (p',§) = limsup (g (yx (p',€) " (' = ) = lim g (y) (0",) " (0" — )
p'—p o0

= lim g (ye (0" 0" — ) <9 (x1 . O) (0 — ) = H(p. ),

This manuscript is for review purposes only.
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8 J. JIANG, H. SUN, AND X. CHEN

where {p*}1>1 is a sequence such that p* — p as k — oo and

limsup g (y (0, ) T (0 = ¢)) = Jim g (i) "9 (" —0),
p’%p — 0
s¥ is the index with y (p*, &) = 1, if Z(p*, &) # 0; s* is any index in {1,..., K}, if
Z(p*, &) =0.

Case 2: Z(p,&) = 0. We have yix)(p, &) = 0 € RF and maxi<j<k ui(p;, &) <
[l(w(p,€))+|| o - According to the continuity of u(-,-), for p’ being sufficiently closed to
p, we know that maxi<i<x u;(p;,§) < |[(u(p’,€))+||o » Which indicates yix(p’, &) =
0 € R, and thus H(p', &) = H(p,§) = 0, which indicates that limsup,,_,, H(p',£) =
0= H(p,&). To sum up, we verified (2.2).

Next, we focus on the upper semicontinuity of ¥¥() on the basis of (2.2). By using
Fatou’s lemma, we have, for any F' € F, that

i sup B 17/, €)] = limsup | H(p F(d€) < [ lmsup H(p' P(de

(2.3) p'—p p'—p 2 p'op
S ]EF[H(p7 f)]7

where the last inequality follows from the upper semicontinuity of H(-,¢) for each
fixed €. Note that

limsupd(p') = limsup inf Ep[H(p',€) + h(p', )]

p'—p p'—p FeF

< inf limsup Ep[H(p', &) + h(p',€)]
p'—p

FeF
< jnf Ep[H(p.€) + h(p.€)

=(p),
where the last inequality follows from (2.3). d

The upper semicontinuity of J(-) is an important property for a maximization
problem. Immediately, we have the following proposition.

PROPOSITION 2.8. Problem (P) has an optimal solution p* € P with an optimal
solution of the second stage problem (1.5) being the corresponding sparse solution.

Proof. By Proposition 2.7 (i.e., the upper semicontinuity of 9()) and the com-
pactness of P, we know that an optimal p* is attained for problem (P). Plugging p*
into problem (1.5), we can always select the sparse solution y(p*, -) such that problem
(1.5) attains the maximum (Proposition 2.5). According to Proposition 2.2, Q(p*, -) is
measurable. Therefore, p* is a solution of problem (P) with the corresponding second
stage sparse solution y(p*, -). O

3. Data-driven analysis. To proceed the study in this section, we need to
define the ambiguity set F in the distributionally robust multiproduct pricing problem
(P). Generally speaking, there are mainly two types of ambiguity sets. One is the
moment-based type (see e.g. [7]); the other one is the distance-based type (see e.g.
[28]). Of particular interest of this paper, we consider the general moment-based
ambiguity set, which can be written as

(3.1) F(n) ={FeM(E):Ep[¥(n,¢)] €K},

where M(Z) denotes the collection of all probability measures supported on =, ¥ is
a mapping consisting of vectors and/or matrices with measurable components, 7 is

This manuscript is for review purposes only.
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some nominal moment information, the mathematical expectation of ¥ is taken w.r.t.
each component of ¥ and I is a closed convex cone in the Cartesian product of some
finite dimensional vector and/or matrix spaces.

We give two examples to validate the general moment ambiguity set (3.1).

Ezample 3.1 (Delage and Ye [7]). Consider the following ambiguity set with the
first- and second-order moment information:

(Erle] - ) S Er[E] - p) < 71}

(32) 7= {F M g - € -] < s

where p € R® and ¥ € R**% denote the perceived mean vector and positive definite
covariance matrix of the nominal probability distribution, respectively, and v; > 0
and 2 > 1 are two constants quantifying decision-maker’s confidence in p and ¥. By
using the well-known Schur complement, we can rewrite (3.2) as (3.1) with

oo 5]
U(n, &) = (L=8" -m
E—wE—p)" =7

where 7 = (u,X) and S*™' and S* denote the cones of (s + 1) x (s + 1) and s x s
negative semidefinite symmetric matrices, respectively.

Ezample 3.2 (Guo et al. [13]). The second example of (3.1) is the so-called
piecewise uniform approximation of ambiguity set based on moment condition. Let
U be a continuous vector-valued function. Consider, for example, that

and K =S5 x §° |

R f—ﬂ—’Yle _ s+l
\Ij(nag) B <(f _ N)Tz_l(é- _ u) _ 72) and IC = ]R_ y

where n = (i, X), p and ¥ denote the perceived mean vector and positive definite
covariance matrix of the nominal probability distribution respectively, and v; and v
are corresponding confidence parameters.

To measure the distance between two probability measures, we give the definition
of a class of probability metrics, which is known as (-structure probability metrics.

DEFINITION 3.3 ({-structure probability metrics). Let G be a set of measurable
functions from Z to R. For F',F € M(E), we say

Dg(F', F) := sup [Ep[R(&)] — Er[A()]]

a (-structure metric between F' and F induced by G.

In what follows, for F' € M(Z) and F1, F2 C M(E), we use the following notations

— 3 / . 3 /
(33) Dg(F, .7:1) = F}Iélf.;:l ]D)Q(F, F ), Dg(]rl,}—g) = }?ggl F}Ielf}_2 Dg(F, F )
and
(34) Hg(fl,fg) = max {Dg(fl,FQ),Dg(fQ,fl)}

to denote the distance between F' and JFi, the deviation between F; and JF3, the
Hausdorff distance between F; and F3 induced by Dg, respectively.

This manuscript is for review purposes only.



315
316
317
318
319

325

326
327
328
329
330
331
332

334

w W W W
w W W W
o = O O

339

340
341
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Since the (-structure metric Dg (-, -) is defined by G, G is also called the generator
of Dg(+,-). With different generators, probability metrics with (-structure include
many commonly-used probability metrics, such as Fortet-Mourier metric, total vari-
ation metric and Kantorovich metric, etc [30]. Specifically, we give definitions of the
total variation metric and the Kantorovich metric.

Let

Gry = {h : 2 — R : & is measurable and sup |[A(§)] < 1} .
ez

The total variation metric between F’, F € M(Z) is defined as

Dry (F', F) = ,Sup [Ep [A(E)] — Ep[A()]] -

Similar to (3.3) and (3.4), for F € M(E) and Fy, Fa C M(2), let

DTv(F, ]:1) = F}Ielf}_1 ]D)TV(F, F’), DT‘/(]:I,]:Q) = }?2_21 Fig.f%‘g DT\/(F, F/)
and the Hausdorff distance Hyy (F1, Fa) := max {Dry (Fi, F2), Dry (Fa, F1)} -

Let Gy == {h:E = R: k(&) — A < |€ —¢'||} . The Kantorovich metric be-
tween [, F' € M(E) is defined as Dy (F, F') = suppeg,, [Er[R(§)] — Er[A(§)]]. Tt is
worth pointing out that the Kantorovich metric is also known as the first Wasserstein
metric (see [35, Theorem 5.10]), which is defined as

/ . !/ !
D (P F) = _int [ €~ elan(e’ ),
where TI(F”, F') denotes the set of all probability distributions supported on E x Z
with marginal distributions being F’ and F, respectively.

In practice, it is more likely that the decision maker can only have in hand some
data, which can be used to deduce the information of 7, for example, IV independent
identically distributed (iid) samples of £. Based on these data, we can then construct
the data-driven counterpart of 1, denoted by 7. Thus, the data-driven counterpart
of the general moment-based ambiguity set (3.1) reads

(3.5) F(in) :={F € M(8) : Ep [¥(in,&)] € K}

_In what follows, to simplify the notation, without any confusion, we use F and
Fn to represent F(n) and F (7 ), respectively.

On the basis of the data-driven ambiguity set (3.5), we obtain the following data-
driven counterpart of the DRO problem (P) as follows:

(3.6) max inf Er[Q,6)].

Analogous to 9(p) in (2.1), we denote Oy (p) := infp.z. Er[Q(p,£)]. Then, in this
section, we will concentrate on the relationship between the following two problems:

(3.7) max J(p)
and
(3.8) max Iy (p),

peP

This manuscript is for review purposes only.
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which, in fact, are problems (P) and (3.6), respectively.

To facilitate the forthcoming discussion, we denote optimal values and optimal
solution sets of problems (3.7) and (3.8) by v*, P* and 0y, Py, respectively.

In what follows, we focus on discussing the relationship between problems (3.7)
and (3.8). First, we assume that the data-driven moment information 7y — n with
probability 1 (w.p.1) as N — oo, and the convergence assertions are established as
the data size N tends to infinity. After that, in view of the fact that the driven data
may contain noises, we investigate the statistical robustness quantitatively.

3.1. Convergence analysis. First, we have the following lemma in which an
upper bound of the discrepancy between optimal values of problems (3.7) and (3.8)
is given on the basis of the total variation metric.

LEMMA 3.4. Assume that there exists an L > 0 such that |Q(p,&)| < L for any
pEP and £ € =. Then

|@N — ’U*| S LHT\/(ﬁN,]‘-).

Proof. Note the following derivation:

~ _ * _ 3 _ < 3 _
iy — v =maxvy(p) — maxij(p) < max (ﬁN (p) ﬂ(p))

= max < inf Ep [Q(p,&)] — I;Iéf}__]EF [Q(p, 5)])

peP F/ 6.7?1\1

= max ( inf sup (EF’ [Q(p, f)} —Er [Q(nﬂ]))

PEP \F'eFy FEF
<max inf sup [Er [Q(p,§)] — Er [Q(p, )]
PEP FreFy FEF

(a)
< inf sup Dry (F', F)
F'eFy FEF

:LDTV(ﬁNu]:)a

where (a) follows from the boundedness property |Q(p,&)| < L, the measurability of
Q(p, ) (see Proposition 2.2) and the definition of the total variation metric.

A similar procedure can be applied to the case v* — O, and we can obtain that
v* — ’lA)N § LDTv(f, .7'-]\/) Thus, we obtain |”LA1N - ’U*| § LHTv(.FN,f). O

Remark 3.5. In Lemma 3.4, the uniform boundedness of |Q(p,&)| over P x E is
required. This assumption can be satisfied trivially under certain specific conditions.
For instance, if = is bounded, we know from the boundedness of P and the continuity
of g and h in (1.5) that the uniform boundedness property holds.

To derive the convergence assertion, we investigate the convergence Hrpy (]? N, F)
to zero as N tends to infinity. Then we make the following standard assumption.

Assumption 3.6 (Slater condition). There exist an Fy € M(E) and a positive
constant v > 0 such that Eg, [¥(n,£)] + B C K holds.

We give the following lemma which can be found in [26, Corollary 6].

LEMMA 3.7. Let Assumption 3.6 hold and F(n) be defined in (3.1). Suppose: (i)
there exist a A\g > 0 and a measurable function k(§) such that ||¥(n1,&) — W(ng, &)|| <
k(&) [lm — n2|| for all m1,me with ||n:|| < Ao, @ = 1,2; (i) there exists a C > 0 such

This manuscript is for review purposes only.
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that Ep[k(£)] < C for all F' € Ugepy i <roy F (7). Then

2CA
Ho(F(m), Fln)) = == 71 = 2|

for all ny,mo with ||n| < Ao, i = 1,2, where A := maxpe =) Dg(F, Fo) and the
generator G, v and Fy are defined in Assumption 3.6.

Then we are ready to present the main result of this subsection.

THEOREM 3.8. Let Assumption 3.6 hold and F(n) be defined in (3.1). Suppose
that: (i) there exists an L > 0 such that |Q(p,&)| < L for any p € P and £ € E; (ii)
there exist a Ao > 0 and a measurable function k(€) such that ||¥(m,&) — U(n, | <
k(&) [lm — n2|| for all 1, ne with ||n; — n|| < Mo, @ = 1,2; (i) there exists a C > 0 such
that Ep[k(&)] < C for all F' € Upepy|jn—nli<xo}F (M) If N — 1 w.p.1 as N — oo,
then we have Oy — v* w.p.1 as N — oo. Furthermore, d(Px,P*) — 0 w.p.1 as
N — .

Proof. By invoking Lemma 3.7, we know from max e p(z) Drv (F, Fo) < 2 (based
on the definition of the total variational metric) that: for any 7y, ne with ||n; — 9| < Ao
for i = 1,2, Hpy (F(m), F(n2)) < 4C ||jm — n2|| /7. Since iy — n w.p.1 as N — oo,
we obtain ||y — 1| < Ao w.p.1 for sufficiently large N. Thus,

~ 4C .
Hry (Fn, F) < = v — |

holds w.p.1 for sufficiently large N. According to Lemma 3.4, we obtain

~ 4LC
limsup [0y — v*| < Llimsup Hyy (Fy, F) <

limsup ||y — 7|l = 0
N—o0 N—oo N—oco

w.p.1, which implies that oy — v* w.p.1 as N — oc.
Note from the proof procedure of Lemma 3.4 that

sup |On(p) — 9(p)| < LHpy (Fy, F) = 0 w.p.l as N — oc.
pEP

With this observation, by using Proposition 2.7 and [20, Lemma C.1], we know that
d(Py,P*) = 0 w.p.1 as N — oco.

The proof is complete. ]

Remark 3.9. All assumptions in Lemma 3.7 are routine. Specifically, the conver-
gence 1y — 1 w.p.1 as N — oo can be ensured by the celebrated law of large numbers
(LLN) if the driven data &!,... &N are iid samples of £&. The other assumptions can
also be found in [26].

3.2. Quantitative statistical robustness. The concept of statistical robust-
ness aims at allowing for arbitrarily small variation of the concentrated statistical
estimator when a sufficiently small perturbation is introduced into the underlying
empirical probability distribution. This idea primarily stems from the pioneering
work of Hampel [15], and a comprehensive summary of statistical robustness is pro-
vided by Huber in [18]. Significant research has been conducted on both qualitative
statistical robustness [5, 23, 24, 25] and quantitative statistical robustness [12, 37, 14].
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In this subsection, we consider the quantitative statistical robustness of the data-
driven problem (3.6). To this end, we assume that the driven data are perturbed or
contaminated, denoted by é Lo ,f N which follow from another probability distribu-
tion, denoted by F. The moment information of the contaminated data 51, e ,§~N
is denoted by 75. Analogously, we denote the following contaminated data-driven
ambiguity set

Flin) = A{F e M(E): Er [¥(in,£)] € £},

which is simply written as F ~. Then we obtain the following contaminated data-
driven problem

(3.9) max FienjgN Er [Q(p,€)] .

Denote Uy (p) := inf .7 Er[Q(p,§)] and thus problem (3.9) can be recast as

(3.10) max In(p).

In what follows, we estimate the quantitative relationship between problems (3.8)
and (3.10). We first give the following Lipschitz continuity property of the optimal
value function.

LEMMA 3.10. Under the conditions of Lemmas 3.4 and 3.7, there exists a positive
constant C, independent of N, such that

[o(ny) = v(nX)| < Cllny — nx||

for any ||77}VH < Xo,i = 1,2, where X\g > 0 is defined in Lemma 3.7 and v(nl) is the
optimal value of problem maxpep infpcry ) Ep [Q(p,&)] fori=1,2.

Proof. Similar to Lemma 3.4, we have

v(ny) —v(nf) =max inf  Ep[Q(p,§)] -~ max inf Ep[Q(p.£)]

PEP FEF(ny) PEP FEF(n3)
< max inf E O] — inf E ,
<ol 5rQ0.O1- int, ErlQ0))

= max ( inf sup (EF’ [Q(p, 5)] —Ep [Q(Pa 5)]))

PEP \ F'EF(ny) FeF(n2,)

< max inf su Ep O —E ,
< may F/Gf(njlv)FGf(I:ﬁ\,)| F [Q(p,§)] = Er [Q(p, §)]]

<C;  inf sup Dy (F',F) = CiDrv(F(ny), F(nx))s
F'eF(ny) FeF(n?)

where C] is some positive constant. The other side v(n3;) — v(nk) can be estimated
analogously. Finally, we obtain ’v(n}v) —v(nk)| < CiHrv (F(nk), F(n%))- Then, by
using Lemma 3.7 and replacing Hg with Hpy, we complete the proof. 0

We need the following assumption, which specifies how the moment information
relies on the driven data.

Assumption 3.11. There exists an L > 0 such that monllvgnt information parame-
ters 7y from &f,..., &Y, j = 1,2 satisfy lnk —n& |l < % >icq ||t — &
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It is noteworthy that some similar assumptions can be found in [12, Lemma 1]
and [37]. The following example shows Assumption 3.11 holds when E is bounded.

Example 3.12. Let = be bounded. Assume that the moment information 7 is
consist of mean vector and covariance matrix (see, e.g., [7]), i.e., n = (i, 2). Then,

for j = 1,2, we have 74 = (m'v’i?'\,)’ where

and i?v =

2|~
1=
I

Immediately, we have

|an — x|l =

2

Z

Note that, for i =1,..., N,

(3.12)

(§i MN) _(f )(52

(& —ph — &+ %) + (¢

1 N
NZ% NZEQ

)

) (€ - k) — <f;—nN>+<s2—

& — k) (6 — k) — (6 —i3)) |+ (€ — m) (& — 3T — (& — B3 (& —
k) ik - &+ A& - 137

<& - uNHH& fin — & + iy || + |61 — A

2

Z — (& — ) T

N Z Hfl §2”

Z\H

Z — i)’

n) " = (& — E)(& — i) |-

)l

i) - (& - ke - i)

— &+ il |6 — Ak |

= (l&f = Akl + 15 — A% D) 1€t - ik — & + a3 |
< (16 = x|l + ll&a = ax D) (& = &l + llan = A& ])

N

R (LT
<offe-gll++> ¢ -4
j=1

where C' > 0 depends only on the diameter of the support set =. By substituting

(3.12) into (3.11), we obtain

- < £ (16 -el+ 5 zHe ) -2 Sl -l

In this case, by letting L = 2C', we know that Assumption 3.11 holds.

Finally, we give the following quantitative statistical robustness result.
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THEOREM 3.13. Let Assumption 3.11 hold. Suppose that: (i) conditions in Lem-
mas 3.4 and 3.7 hold; (ii) F,F € M1(E) :={F' € M(E) : Ep:[||&]|] < o0}. Then

Dy (F®N o iyt F®N o @;Vl) < LDw (F, F),

for all N € N, where FON o o' and FEN o o' are probability distributions over
R induced by the optimal value dn of problem (3.8), F®N (or 13®N) denotes the
probability distribution over =N with marginal being F (or F), Z9N denotes the
Cartesian product = X ... x = and L is defined in Assumption 3.11.

N

The proof of Theorem 3.13 is similar to that in [12, 22, 37], which is mainly based
on the definition of Kantorovich metric, and thus we omit it here.

4. MPEC reformulation. In this section, we consider the reformulation of the
distributionally robust multiproduct pricing problem (P), which paves the way for
solving problem (P) numerically.

For fixed p € P, we consider the inner minimization problem of (P) under the
ambiguity set (3.1) as follows:

1) e o Er[Q(p, €)]
' st.  Ep[¥(E)]ek.

The Lagrangian function of the minimization problem (4.1) is

L(F,A) :=Ep[Q(p, §)] + (A Er [¥(S)])

where (-, ) denotes the inner product in the space of K, A € £* and K* denotes the
polar cone of I, i.e., K* := {A: (A,T") <0, VI € K}, which is also a closed convex
cone since K is a closed convex cone.

Then the Lagrangian dual problem of (4.1) can be written as

4.2 su inf  L(F,A).
(4.2) AEIIC)* FeM(E) ( )

Consider the inner minimization problem of (4.2)

pdbf (EplQE.&)+ (AEr (W) = inf _ Er[Q.€) + (A, ¥(©)).

where the equality is due to the definition of inner product in K (in the sense of
componentwise). Obviously, its optimal value, denoted by ¢(p, A), is

(4.3) #p, A) = inf (Q(p,§) + (A, ¥(E)))

due to the definition of probability distribution, that is, ' will take a single point
probability distribution (or Dirac probability measure) to attain the minimum.
Therefore, the Lagrangian dual problem (4.2) can be further written as

(4.4) sup ¢(p,A).
AeK
Finally, we obtain the reformulation of problem (P) as follows:
4.5 A).
(4.5) emax o(p, A)

The following assertions follow from [32, Proposition 3.4], which asserts the dual
gap between problem (P) and its dual problem (4.5).
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PROPOSITION 4.1. Let p € P be fixed. If the Slater-type constraint qualification
(4.6) aB C —{Ep[¥()]: Fe ME)}+K
holds for some « > 0, then there is no dual gap between the primal problem (4.1)

and the Lagrangian dual problem (4.4) (i.e., the optimal values of problems (4.1) and
(4.4) are consistent). If, in addition, these optimal values are finite, then the optimal
solution set of (4.4) is nonempty and bounded.

Conwersely, if the optimal value of problem (4.4) is finite and the optimal solution
set of problem (4.4) is nonempty and bounded, then Slater-type condition (4.6) holds.

In general, ¢(p,A) in (4.3) cannot be computed trivially if the support set =
contains infinite elements. In view of this, we consider its discrete approximation =¥ =
{€Y, ..., €7}, where samples €1, ... £ are obtained by some random or deterministic
way (see also [29]). It can also be viewed as that all consumers in the market have v
preferences or tastes. Then we denote

ou(p,A) == inf (Q(p, &) + (A, ¥(€))) = min (Q(p,&") + (A, ¥(£))) .

§EEY 1<i<v
Thus, we obtain the approximation of problem (4.5) as follows:

4.7 (p, ).
(4.7) semax v A)

In fact, based on the definition of Q(p, &) in (1.5), problem (4.7) can be recast as
a large-scale constrained optimization problem as follows:

. . . T
pcax - min (<A, W(¢)) — hip, &) + maxg <(ny1) (p— C)))

4 st. 0< (g) L (_ST 8) (5) * <_U(]19’ 8’)) =0 dstsy

In what follows, we will adopt some routine approaches in robust optimization [2] to
equivalently reformulate problem (4.8).
For given p € P and A € K*, the inner min-max problem of (4.8), i.e.,

min (<A, W(E) ~ h(p. &) + masg <(ny1>T - C)>>

1<i<v

49 st 0< (g) 1 <2T 8) (:) * (U(? 5”’)) = isrsy

is equivalent to a max-min problem as below:
(4.10)
_ . NT
max - min <<A7 () —hp,&) +g ((%;q) (p— C)>>

{9}, 1sisv

In fact, it is known that the optimal value of problem (4.9) is always larger than or
equal to that of problem (4.10). Then we only need to verify that it holds vice versa.
For any given 1 < i < v, denote (y**,7%*) an arbitrary optimal solution of the inner
maximization problem of (4.9). Then {(y“*,v“*)}’_, is a feasible solution of the
outer maximization problem of (4.10). By letting (3*,7") = (y**,y**) fori =1,...,v
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in problem (4.10), we obtain a lower bound of the optimal value of problem (4.10) as
below:

i i T,% T
min (A W(€) &)+ 9 () 0-0).
which actually equals to the optimal value of problem (4.9). Thus, we have shown
that the optimal values of problems (4.9) and (4.10) are equal. Then, by using (4.10),

we can rewrite problem (4.8) as
(4.11)

min (A, ¥(£')) — h(p,&") + g <(ny1)T o= ))>

max
pEP, A {(y? 7)) }Y_, 1<i<v

5.t o< (U 1( % (V) + (TP 50 1<i<w
¥ —e' 0/ \vy 1

We then summarize the above discussion and obtain the following proposition.

PROPOSITION 4.2. Suppose that: (i) the support set = = {&1,...,&"}; (ii) the
Slater-type constraint qualification (4.6) holds. Then, the optimal value of problem
(P) is equal to that of problem (4.11). Moreover, p is an optimal solution of problem
(P) if and only if there exist A,{(y",v*)}Y_, such that p together with them is an
optimal solution of problem (4.11).

Problem (4.11) is a typical MPCC that has been extensively studied (see mono-
graph [27]). Numerous papers (e.g., [1, 17, 19, 11]) have contributed to solving (4.11)
for various types of stationary points. Furthermore, we observe that the objective
function of problem (4.11) is concave w.r.t. p and A. The observation and the closed-
form expression of the sparse solution yx) can help us to develop numerical procedures
to a global optima of problem (P) with a support set = containing a finite number of
elements.

5. Numerical experiments. In this section, by employing the MPCC reformu-
lation (4.11) and the sparse solution (see Definition 2.3), we give numerical procedures
to find a global optima of problem (P) in some specific cases. Moreover, we illustrate
our approach by three numerical examples.

5.1. Numerical procedures for problems (1.4) and (P). In this subsection,
we consider some numerical procedures for problems (1.4) and (P) when the support
set is finite. To this end, we assume that the support set = = {&!, ... &V} for some
v € N and the probability for & = ¢ is m; for i = 1,...,v. Denote 7 = (my,...,m,)".
Surely, we have m > 0 and e'r=1.

First of all, we consider the numerical procedures of problem (1.4), that is,

(51) max Z;’:I ﬂ-iQ(p7 51)7

peEP
where Q(pa gz) = H(pa gz) - h‘(pa 52) and

H(p.§") = max g((yE}q)T(p—C))

(5.2) , .
st. Yy eSpg),i=1,...,u.

Denote 73} ={peP:yp&)=1}fori=1,...,vand j = 1,...,K, where
y;j(p, ") denotes the value of the jth component of the sparse solution for given p and
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¢ (see Definition 2.3). For fixed 4, denote P, := P\ (UL, P}). It is worth pointing
out that ’P} might be empty for some ¢ € {1,...,v} and j € {1,..., K}. Furthermore,
if the utility function u(p, &) is given by a linear case (i.e., (1.1)) and P is convex,
then 73; isconvex fori =1,...,vand j =1,..., K. To see this, consider the feasible
set of (1.2) and let IT be the set of vertices of the feasible set. Then for any ¢ € II,

{ueR™:jcargmax y' u st.e y<1, y>0}
y

is a convex set formed by the convex combination of edges emanating from this vertex.
Since affine mappings carry convex sets to convex sets, and P is convex, P; is also
convex.

Let J:={{ji}to;:5€{l,...,K+1},i=1,...,v}. Since, for each p € P and
i €{1,...,v}, there exists a j; such that p € P}, , we have P = U v e (ﬂ;»’zlpl»i).
Moreover, due to the uniqueness of the sparse solution, for different {j;}v_,, {ji}/_, €
J, (NP N <ﬂ§’:177§_) = (). Then there exists a partition of P induced by J such
that there exist at most (K +1)” blocks in the partition and each block corresponding
to a subproblem as follows:

max 337, Tg (yi1 (0. € T (p — ¢)) = >v_; mih(p, &)

(5.3) ,
st pen P,

where yx1(p, £¢%) denotes the first K components of the sparse solution of the second
stage problem (5.2) for given p and &'. Note that for each p € P!, y;,(p,£") = 1 and
yk(p, &) = 0 for k # j;, which implies H(p,&") = g(p;, — ¢j;). Therefore, problem
(5.3) can be further recast as

m}?X Z;‘j:l mig (P, — ¢5.) — Ziyzl mih(p, fi)

(5.4) _
st. pen,P;.

Specially, when 73]Z is convex and closed, g(-) is concave and h(-, &%) is convex for
t=1,...,v, problem (5.4) is convex, which can be solved effectively.
To summarize the aforementioned statements, we have the following procedures
to compute a global solution of problem (1.4).
S1 Compute partitions N/_, P} , {ji}/; € J.
S2 For each given {j;}¥_; with j; € {1,...,K + 1}, ¢ = 1,...,v, calculate a
global solution of subproblem (5.4).
S3 Choose one of the largest objectives among these subproblems, and output
its optimal value and optimal solution.
Next, we consider problem (P), i.e., the distributionally robust counterpart of
problem (1.4), as follows:

(5.5) max inf Y " mQ(p, &),
=1

pEP mEF

where Q(p,¢?) is the same as that in (5.1). By using the dual reformulation in Sec-
tion 4 and the v partitions of P in (5.3), (5.5) can be divided into at most (K + 1)
subproblems as follows:

s mes (i (E) < h€) 4o (i () (- 0))

1<i<v
st.  peni_ P,
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where yx1(p, £%) denotes the first K components of the sparse solution of problem (5.2)
for given p and &%, Similarly, problem (5.6) is equivalent to the following problem:

(5.7) max ( min <A7 \P(fz)> —h(p, &) + 9 (pj, — Cji))

p,AEK* 1<i<v
v %
st.  pen_,Pj.

To solve problem (5.5), we only need to replace S2 by S2’ as follows.

S2' For each given {j;}¥_; with j; € {1,...,K+1},i=1,...,v, compute a global
solution of (5.7).

Since J induces a partition of P, we have the following assertions.

PROPOSITION 5.1. Procedures S1, S2 and S8 output the globally optimal value
and a globally optimal solution of problem (5.1). Procedures S1, S2 and S3 output
the globally optimal value and a globally optimal solution of problem (5.5).

5.2. Numerical results. In this subsection, we provide three numerical exam-
ples to illustrate our models and approaches. First, we consider the stress test (see,
e.g., [8, 16]) using a simple example where the random vector has three possible real-
izations. The second example is performed with one pricing product and some larger
sample sizes. Based on the second example, the last example considers a general case
with multiple pricing products and larger sample sizes. All codes were implemented
in MATLAB R2018b on a laptop with the 13th Gen Intel(R) Core(TM) i9-13900H
(2.60 GHz) and 32GB RAM.

First of all, we do the stress test, which shows the reasonability and necessariness
of the distributionally robust multiproduct pricing problem (P).

Example 5.2. Let K = 2 and m = 4, i.e., there are total four products in the
market and the target firm produces two products. The utility of a consumer with
preference & = (&1,&9,£3)" for purchasing product j (j = 1,2,3,4) is defined as
u’j(pjag) = 51 +€233j - E?)pj' Set x = ($1,$2,$3,JI4)T = (57273a l)Ta p3=3,ps =05
and ¢ = (c1,co) " with ¢; = 5, ¢ = 3. Then, the target firm aims to determine the
price p = (p1,p2) .

Let the probability distribution of random vector & be

€' =(3,3,1)T with probability m; =
(5.8) €=12¢%2=(2,2,1)T with probability m =
€ =(1,1,2) " with probability 73 =

=112
Set P = [1,9] % [1,9], ¢ (yx1 (&) (0 = ©)) = yw)(©)T (b — ¢) and h(p,€) = G-,
where p = (5,4) T is a predetermined price vector.
It is highly probable that the estimated probability distribution of the random
vector £ is not the true distribution. To account for this uncertainty, we construct an
ambiguity set defined as

Fi={r=(m,m,ms) €RY :m& +m +m& —p—05e<0, e =1},

00| 00| |

where p is the nominal mean vector of £, e € R3 be a vector with all elements equal
to 1, and F includes the discrete probability distribution in (5.8).

Analysis of Example 5.2: Immediately, an ambiguity-neutral target firm will make

a decision according to the stochastic programming problem (1.4), that is

(12
il

(5.9) max > i (yi(P)(p1 — c1) + Y5 (p) (P2 — c2)) o
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20 J. JIANG, H. SUN, AND X. CHEN

where 71,72, w3 are defined in (5.8) and y*(p) = (yi(p),y5(p), ¥4(p), yi(p)) " is the
sparse solution of the corresponding second stage problem with price p and &" for
i=1,2,3.

An ambiguity-averse target firm hedges against the possibility, and would like to
make a decision according to problem (P), that is the following DRO problem

12
sl

(5.10) max inf Y m; (45 (p)(p1 — 1) + y5(p) (P2 — c2)) o

pEP mEF =

To solve problem (5.9), we employ procedures S1, S2 and S3 to find an optimal
solution. Note that in this case, i = 1,2,3 and j; € {1,2,3}. Then we can find
the partition N{_,Pi, {ji}f_; € J of P as in Sy as follows: P] = [1,9] x [1,9],
P = [1,7] x [1,9], P = [7,9] x [1,9], P§ = [1,2.5] x [1,9], P§ = [2.5,9] x [1,9]
and PJZ = () for the rest (7,7;). The corresponding sparse solution reads: y[lz] (p) =

(1,0)", pe[1,9] x [1,9],

2 (laO)T pe [1a7] X [179] 3 (LO)T) pe [1525] X [1,9]’
= d =
i (P) {(O,O)T otherwise, and 4 (p) (0,0)7, otherwise.

Therefore, by procedure S2, problem (5.9) can be solved via the following three
subproblems:

3 1 1 Ilp — plI”
5.11 2p1—5)+=(p1 —5) + -(p —5) — —
(5.11) pep s 2 (P1=5) + g1 =5) + 2 (p1 = 5) T
3 1 Ilp — 2
5.12 S(p1—5)+=(pr —5) — ——L
(5.12) S 1 (Pr=5)+ 2 (p1—5) ol
112
_lp—pl"

(5.13) max

—(p1—5
pePInP2nPs 4 ( )

64

The optimal solutions for problems (5.11), (5.12), and (5.13) are (2.5,4)7, (7,4)7,

and (9,4) T, with optimal values of —%, %, and 14—1, respectively. Therefore, (9,4) "
and % are the optimal solution and optimal value of problem (5.9), respectively.

In what follows, we calculate an optimal solution and the optimal value of problem
(5.10). According to (5.6), we consider the following problem

(5.14) max ( min <<A7 \IJ(§Z)> + ny] (p)T(p - C)) — |p64ﬁ”>

1 2 3 * ]
pEP; NPZ NP AEK 1<i<v

with (j1, j2, j3) = (1,1,1),(1,1,3) or (1,3, 3), where ¥ () = { —pu—0.5¢ and K* = R3.
It is noteworthy that for different {j;}3_;, y[iK] (p), i = 1,2,3, are given above, then

problem (5.14) is convex w.r.t. (p,A), which can be solved effectively.

When we take = (2.2,2.2,1)7 in the ambiguity set J, the optimal solution of
problem (5.10) is (p,A) = (7,4,0,0,0)T, achieving an optimal value %. By setting

p = (7,4)7 in (5.10), we can obtain the worst-case probability distribution 7= =
(0,0.5,0.5)" for problem (5.10). Similarly, when u = (2.625,2.625,1.125)7 is set in
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the ambiguity set F, the optimal solution to problem (5.10) is p = (7,4) T, achieving
an optimal value of }—é. The worst-case probability distribution in this case is T =
(0,0.375,0.625) T.

To make a stress test, consider contaminations of the discrete probability dis-
tribution in (5.8) with the worst probability distribution from (5.10) under p =
(2.2,2.2,1)7 and p = (2.625,2.625,1.125) T, respectively, that is

0.75 0 0.75 0
(1-a)|0125 ] +a|05] and (1 —«) [0.125 | +« | 0.375 ],
0.125 0.5 0.125 0.625

where « € [0, 1] denotes the contamination level. Under different contamination lev-
els, we plot objectives when p = (9,4) T (an optimal solution of the ambiguity-neutral
target firm) and p = (7,4) " (an optimal solution of the ambiguity-averse target firm)
in Figure 1. Figure 1 shows that around « = 0.477 (or a = 0.533), the optimal so-
lution of the ambiguity-averse target firm begins to perform better than the optimal
solution of the ambiguity-neutral target firm. This means that if the perceptive prob-
ability distribution in (5.8) is contaminated (e.g., o > 0.477 for u = (2.2,2.2,1)" and
a > 0.533 for u = (2.625,2.625,1.125)T), the ambiguity-neutral target firm might
make a worse decision than the ambiguity-averse one. Additionally, the fact that the
objective value for the ambiguity-neutral target firm changes more steeply than that
for the ambiguity-averse target firm suggests that the distributionally robust multi-
product pricing model is more resilient to contaminated data. In practice, it is often
difficult to know the true distribution exactly, which highlights the reasonableness
and necessariness of our distributionally robust multiproduct pricing model.

stochastic program
—= == distributionally robust problem

stochastic program
—==—=distributionally robust problem

Objective

-0.5 -0.5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Contamination Level Contamination Level

(a) Stress test for p = (2.2,2.2,1)T. (b) Stress test for u = (2.625,2.625,1.125)T.

Fic. 1. Objectives of stochastic and distributionally robust models under different levels of
contamination.

In the next example, we apply the same methodology to a larger sample size case.

Example 5.3. Let K =1 and m = 3. Assume that £ is a random vector supported
over Ri, ie., &= (£,8&,&)T; the utility of the consumer with preference ¢ purchasing
product j (j = 1,2, 3) is defined as u; (p;, §) = &1+&xj—E3pj, where x = (21, 29, 23) =
(5,1,3), po = 2, p3 = 4 and ¢; = 2; ¢ is an identity mapping, i.e., g(t) = ¢, and
h(p1,€) = |lp1 — 3||* /81; the feasible set of the price is P = [1,9]. The ambiguity set
F(n) is defined as (see Example 3.2):

(5.15) Fn) = {F € M(E):Ep K(S B #f};fﬁ(}”jeﬂ) B 72)] € Ri} :

This manuscript is for review purposes only.



677

678

679
680
681

682

683
684
685
686
687
688

689
690

691
692
693
694

695

22 J. JIANG, H. SUN, AND X. CHEN

where 7 = (1, ) € R? x R3*3 with ¥ being positive definite, 71,72 € R are two
scalars.

To generate the discrete samples {£}Y_;, we adopt the uniform probability dis-
tribution over [1,7]. Specifically, we generate {&{}¥_;, {€3}Y_; and {€4}7_, indepen-
dently, and each of them are iid and follow the uniform probability distribution over
[1,7]. Based on (4.11) and ambiguity set (5.15), the DRO problem can be written as

max ( min <A, \IJ(§Z)> — @18;13)2 +yi(p — 01))

p1EP,AEK*, 1<i<v

(5.16)  {Giaii, _ , :
s.t. 0< (y)L( 0_ e) (yi>+<_“(p’§)> >0,1<i<u,
ol —e' 0/ \vy 1

_(, g&omome
where ¥(¢) = <(§ — ) "ETHE - p) - w) ’

Analysis of Example 5.3: First, for v = 20, 50, 100, 200, 400, 1000, 2000, 5000, we
compute the optimal solutions and the optimal values of problem (5.16). In problem
(5.16), weset 71 = Yo = 1, u = (4,4,4) T, and ¥ = diag(3, 3, 3). The numerical results
are presented in Table 1.

TABLE 1
Optimal solutions and optimal values of (5.16) for v = 20, 50, 100, 200, 400, 1000, 2000, 5000.

sample size v 20 50 100 200 400 1000 2000 5000

optimal solutions 6.57 4.13  3.81 3.46  3.41 3.45 3.53 3.39
optimal values 3.563 131 093 086 0.79 0.71 0.68 0.63
CPU times (s) 2.14 4,51 10.10 19.37 38.12 117.18 215.98 836.25

Second, we show the convergence tendency of the objective of DRO problem
(5.16) when 7 is approximated. We set v = 100, 200, 400, 1000, 2000, 5000 and fix
M=v=1n=(uX) with u = (4,4,4)", and ¥ = diag(3,3,3). To perturb 7, we
set e = (u+ €16, X + eoI), where I is an identity matrix with a proper dimension,
€ = (€1, €2) are chosen from

{(0.4,4), (0.3,3), (0.2, 2), (0.1, 1), (0.05,0.5), (0.02,0.2), (0.01,0.1), (0,0 }.

For fixed v, we plot in Figure 2 (a) the objective of the DRO problem (5.16) regarding
to e. We can clearly observe from Figure 2 that the objective gradually converges to
the true one, i.e., e = (0,0).

Moreover, we generate {w; N |, 7 =1,2,3 independently, using the uniform prob-
ability distribution over [1,7]. Then we define the data-driven moment information
of (11, %) by (fin,Xn) with

| (X N N T A 1 N N N
1 $OEDIED VE) IEWENER S D 3D 3ED o)
=1 =1 i=1 =1 =1 =1

where T; = (w; - Zf\il o.);)z. For each sample size N = 10, 50, 100, 500, 1000, we
generate the data-driven moment information (fiy, ) ~) 20 times and compute the
optimal value of problem (5.16) when v = 100. The convergence behavior of the
optimal value as the sample size grows is shown in the boxplot in Figure 2(b).

In the last example, we consider a multiproduct case with larger sample sizes.

=
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=0~ =100 _ - -
09 ||— 0 =200 _ - 1.05 !
=400 [ 3 i
o085~ b= 1=1000 , 7’ _ | -
l = -0~ |
Lo amm : |
V= _ |
08 - ! —
A ‘ !
Sors o/ 2095 - é
X H =
2 07 - el T
o , / - b o i o
e e B : 1 +
0.65 p 4 d - I I !
w » _ = "4 I i -
0.6 4 ’ o 0.85 | .
- , ’ P |
=
=_ — - — _g,. — L
0s50- = =& T =
! 08
A +
05
(0.44) (033) (022 (0.L1) (0.0505)(0.020.2) (0.0L0.1) (0,0) 10 50 100 500 1000
€ Data-driven sample size N

(a) Convergence for v = 100, 200, 400, 1000, (b) Boxplots for v = 100 with different data-
2000, 5000. driven sample sizes.

F1G. 2. Convergence of the DRO problem (5.16).

Ezample 5.4. Let m = 11 and K = 10. Similarly, we assume that & = (£1,&2,&3) T
and the utility of the consumer with preference £ purchasing product j (j =1,...,m)
is defined as u;(p;,&) = & + &ux; — &pj, where & = (z1,...,2m) ", Pm and ¢ =
(c1,...,cx)T are given. Again, we assume that g(t) = ¢ and h(p,€) = ||p — ¢||* /81.
The feasible set of the price pis P =[1,9] X ... x [1,9]. The ambiguity sets F(n) and

K
F.(n) are the same as those in Example 5.3.

7$m)T7 Pm

.,¢cx) . By (4.11), the DRO problem for an ambiguity-averse target

Analysis of Example 5.4: First of all, we randomly generate x = (z1, ...
and ¢ = (cq,..
firm reads
(5.17)

llp—cll®
81

2 + (vi) " o - C[K]))

HORER O RGN

Since there are multiple products in this example, using the numerical proce-
dures in subsection 5.1 directly may lead to the curse of dimensionality. This moti-
vates us to price each product alternately using an alternate pricing method. Specif-
ically, we first randomly assign an initial price to the K products, and then, for
i from 1 to K, we price product ¢ while keeping the prices of the other products
fixed. We repeat this process until the prices converge. In fact, the pricing prob-
lem for a single product is the same as that in Example 5.3. To generate samples,
we set v = 20, 50, 100, 200, 400, 1000, 2000, 5000, and independently generate {ﬂ};’jzp
{&}y_ |, and {€4}Y_,, each of which are i.i.d. samples according to the uniform prob-
ability distribution over the interval [1,7]. We set the parameters in F, (1) as follows:
=05 v%=1u=(4,4,4)", and ¥ = diag(3,3,3).

The numerical results for problem (5.17) are presented in Table 2 with CPU times,
which show that the scalability of the solution procedure presented in subsection 5.1
is acceptable. Furthermore, we show the objectives of problem (5.17) during the
alternate iteration process in Figure 3. As it can be observed from Figure 3, the
objective values increase with the number of iterations and eventually become stable,
which illustrates the effectiveness of the alternate method. In addition, as the sample

max
pEP, AR {(y )},

(11313” (A, W (1)) —
0

s.t.
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size increases, the final objective values decrease. This observation is consistent with
the fact that the ambiguity set F,(n) in problem (5.17) enlarges as the sample size
increases. Also, the objective values tend to converge as the sample size increases,
which indicates the empirical convergence between problems (4.7) and (4.5) as v tends
to infinity.

TABLE 2
Optimal solutions p* of (5.17) for v = 20,50, 100, 200,400, 1000, 2000, 5000.

v pi Py Py PiP5 Ps Pr Ps Py DPio
20 3.62 2,57 209 354 270 227 311 3.67 2.54 3.42
50 3.98 290 240 354 270 258 3.33 3.67 254 342
100 3.53 2.60 198 3.54 270 2.19 3.06 3.67 2.54 3.42
200 3.35 242 191 354 270 208 284 3.67 254 342
400 3.06 225 1.79 354 270 195 264 3.67 254 342
1000 3.17 2.32 1.81 3.54 2.70 1.97 2.73 3.67 254 3.42
2000 3.08 226 1.79 3.54 270 194 2.65 3.67 2.54 3.42
5000 3.10 227 181 3.54 270 1.95 2.67 3.67 2.54 3.42
18 e 1400 1
16 opOO'OOO'OOO'OQO'O-O o= Ar:‘sgu 9 1200 '
pe —— o0 ]
1.4 ,°'°° ~b 11000 | 1000 !
1 @ B-0-8 B-0-8 500 500 & :: i:iggg-t _ II
812h¢ v 1 2 800 I
£ i s N
o ! " o & 60 ,
0.8 » "/&:mmmmmm:-b 400 /‘
06 P ‘;:z* 1 200 g -
K':;; $m e e = b = T

0.4 0
0 5 10 15 20 25 30 20 50 100 200 400

Iterations

(a) Objective values for v = 20, 50, 100, 200, (b) CPU times for v = 20, 50, 100, 200, 400,
400, 1000, 2000, 5000. 1000, 2000, 5000

1000 2000 5000

F1G. 3. Numerical results of problem (5.17) for v = 20, 50, 100, 200, 400, 1000, 2000, 5000.

6. Conclusions. In this paper, we consider the distributionally robust multi-
product pricing problem (P) in a hierarchical form. We establish measurability and
semicontinuity by using a sparse solution of the second stage optimization problem
(1.5) of problem (P). Moreover, we conduct the data-driven analysis of problem (P)
when the ambiguity set is given by a general moment-based case. Specifically, we
investigate the convergence properties when the moment information is exactly ap-
proximated by true data, and the quantitative statistical robustness when the moment
information is approximated by noisy data. Finally, we propose a numerical procedure
to compute a solution of the distributionally robust multiproduct pricing problem (P)
based on a MPCC reformulation (4.11) and the sparse solution of problem (1.5). Pre-
liminary numerical results are reported to illustrate the effectiveness of our models
and approaches.
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