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Abstract

An adaptive regularization algorithm using high-order models is proposed for solving partially-
separable convexly constrained nonlinear optimization problems whose objective function con-
tains non-Lipschitzian `q-norm regularization terms for q ∈ (0, 1). It is shown that the al-
gorithm using an p-th order Taylor model for p odd needs in general at most O(ε−(p+1)/p)
evaluations of the objective function and its derivatives (at points where they are defined)
to produce an ε-approximate first-order critical point. This result is obtained either with
Taylor models at the price of requiring the feasible set to be ’kernel-centered’ (which inclu-
des bound constraints and many other cases of interest), or for non-Lipschitz models, at the
price of passing the difficulty to the computation of the step. Since this complexity bound
is identical in order to that already known for purely Lipschitzian minimization subject to
convex constraints [5], the new result shows that introducing non-Lipschitzian singularities in
the objective function may not affect the worst-case evaluation complexity order. The result
also shows that using the problem’s partially-separable structure (if present) does not affect
the complexity order either. A final (worse) complexity bound is derived for the case where
Taylor models are used with a general convex feasible set.
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1 Introduction
We consider the partially-separable convexly constrained nonlinear optimization problem:

min
x∈F

f(x) =
∑
i∈N

fi(Uix) +
∑
i∈H
|Uix|q (1.1)

where F ⊆ <n is a non-empty closed convex set, N ∪H def
= M, N ∩H = ∅, q ∈ (0, 1), Ui a (fixed)

ni × n matrix with ni ≤ n and such that

ni = 1 and UiU
T
j = 0 for i, j ∈ H, j 6= i, (1.2)

and fi : <ni → <. Without loss of generality, we assume that, for each i ∈ M, Ui has full row
rank and ‖Ui‖ = 1, and that the ranges of the UTi for i ∈ N span <n so that the intersection of
the nullspaces of the Ui is reduced to the origin(1). In what follows, the “element functions” fi
(i ∈ N ) will be nice “well-behaved” smooth functions with Lipschitz continuous derivatives. We
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(1)If the {UT

i }i∈N do not span <n, problem (1.1) can be modified without altering its optimal value by introducing
an additional identically zero element term f0(U0x) (say) in N with associated U0 such that ∩i∈N ker(Ui) ⊆
range(UT

0 ). It is clear that, since f0(U0x) = 0, it is differentiable with Lipschitz continuous derivative for any order
p ≥ 1. Obviously, this covers the case where N = ∅.
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also require (initially at least(2)) that the feasible set is ’kernel centered’, in the sense that, if PX [·]
is the orthogonal projection onto the convex set X , then, for i ∈ H,

Pker(Ui)[F ] ⊆ F whenever ker(Ui) ∩ F 6= ∅ (1.3)

in addition of F being convex, closed and non-empty. As will be discussed below (after Lemma 4.2),
we may assume without loss of generality that, ker(Ui)∩F 6= ∅ (and thus Pker(Ui)[F ] ⊆ F) for all
i ∈ H. ’Kernel centered’ feasible sets include the whole space <n, boxes (corresponding to bound
constrained problems), spheres/cylinders centered at the origin. For example, the following box
constrained L2-L1/2 minimization problem

min
x∈F

∑
i∈N

(Uix− bi)2 + λ
∑
i∈H
|Uix|

1
2 (1.4)

where Ui ∈ <1×n, i ∈ M, F = {x | ` ≤ x ≤ u} with ` ∈ −<n+, u ∈ <n+ and ` < u, N =
{1, . . . ,K1},H = {K1 + 1, . . . ,K1 +K2} with K1,K2 ≥ 1, bi ∈ < and λ > 0.

Problem (1.1) has many applications in engineering and science. Using the non-Lipschitz re-
gularization function in the second term of the objective function f has remarkable advantages
for the restoration of piecewise constant images and sparse signals [23], and sparse variable se-
lection, for instance in bioinformatics [8, 22]. Theory and algorithms for solving q-norm regularized
optimization problems have been developed in [7, 9].

The partially-separable structure appearing in problem (1.1) is ubiquitous in applications of
optimization. It is most useful in the frequent case where ni � n and subsumes that of sparse
optimization (in the special case where the rows of each Ui are selected rows of the identity matrix).
Moreover the decomposition in (1.1) has the advantage of being invariant for linear changes of
variables (only the Ui matrices vary). Partially-separable optimization was first considered in
Griewank and Toint in [21], studied for more than thirty years (see [14, 15, 24] for instance) and
extensively used in the popular CUTEst testing environment [17] as well as in the AMPL [13],
LANCELOT [11] and FILTRANE [18] packages, amongst others. In particular, the design of trust-
region algorithms exploiting the partially-separable decomposition (1.1) was investigated by Conn,
Gould, Sartenaer and Toint in [10, 12].

Focussing now on the nice multivariate element functions, we note that using the partially-
separable nature of a function f can be very useful. We let xi = Uix ∈ <ni , for i ∈ M, and
fI(x) =

∑
i∈I fi(x), for any I ⊆M. In particular, we denote

fN (x)
def
=
∑
i∈N

fi(Uix) =
∑
i∈N

fi(xi) and fH(x)
def
=
∑
i∈H

fi(Uix) =
∑
i∈H

fi(xi).

When we use derivatives of fN (x) with order larger than one in the context of the p-th order
Taylor series

TfN ,p(x, s) = fN (x) +

p∑
j=1

1

j!
∇jxfN (x)[s]j , (1.5)

it may be verified that

∇jxfN (x)[s]j =
∑
i∈N
∇jxifi(xi)[Uis]

j . (1.6)

This last expression indicates that only the |N | tensors {∇jxifi(xi)}i∈N of dimension nji needs to
be computed and stored, a very substantial gain compared to the nj-dimensional ∇jxfN (x) when
(as is common) ni � n for all i. It may therefore be argued that exploiting derivative tensors of
order larger than 2 — and thus using the high-order Taylor series (1.5) as a local model of f(x+s)
in the neighbourhood of x — may be practically feasible if f is partially-separable. Of course the
same comment applies to fH(x) whenever the required derivatives of fi(xi) = |xi|p (i ∈ H) exist.

(2)We will drop this assumption in Section 5 by using a model defined in (5.1).
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Interestingly, the use of high-order Taylor models for optimization was recently investigated by
Birgin et al. [2] in the context of adaptive regularization algorithms for unconstrained problems.
Their proposal belongs to this emerging class of methods pioneered by Griewank [20], Nesterov
and Polyak [26] and Cartis, Gould and Toint [4] for the unconstrained case and by these last
authors in [5] for the convexly constrained case of interest here. Such methods are distinguis-
hed by their excellent evaluation complexity, in that they need at most O(ε−(p+1)/p) evaluations
of the objective function and their derivatives to produce an ε-approximate first-order critical
point, compared to the O(ε−2) evaluations which might be necessary for the steepest descent and
Newton’s methods (see [3] for details). However, most adaptive regularization methods rely on a
non-separable regularization term in the model of the objective function, making exploitation of
structure difficult(3). We note that complexity issues for non-Lipschitzian problems have already
been investigated [6, 19, 25], but the Lipschitz assumption on the derivatives is then replaced by
a (weaker) Hölder condition. Our ambition here is to assume considerably less, since our purpose
is to cover severe sigularities as present in cusps and norms of fractional index, for which Hölder
conditions fail.
Contributions. The main purpose of the present paper is to establish that first-order worst-case
evaluation complexity for nonconvex minimization subject to convex constraints is not affected
by the introduction of the non-Lipschitzian singularities in the objective function (1.1). This
requires several intermediate steps. The first is to derive, in Section 2, new first-order necessary
optimality conditions that take the non-Lipschitzian nature of (1.1) into account. These conditions
motivate the introduction of a new ’two-sided’ symmetric model of the singularities which is then
exploited in the proposed algorithm. Because the new necessary conditions involve the gradient of
a partial objective with a number of singular terms itself depending on the approximate solution
(see Theorem 2.1 below), this prevents the aggregation of all terms in (1.1) in a single abstracted
objective function. As a consequence, complexity bounds must be derived while preserving the
additive partially-separable structure of the objective function. Our second step is therefore to
show, in Section 3, that first-order worst-case complexity bounds are not affected by the use
of partially-separable structure. In Section 3.1, we then specialize our analysis to a wide class
of kernel-centered feasible sets and show that complexity bounds are again unaffected by the
presence of the considered non-Lipschitzian singularities. The final step is to show in Section 5
that (weaker) complexity results may still be obtained if one considers feasible sets which are not
kernel-centered. All these results are discussed in Section 6 and some conclusions are presented in
Section 7.
Notations. In what follow, ‖ · ‖ denotes the Euclidean norm and ‖T‖p the recursively induced
Euclidean norm on the p-th order tensor T (see [2, 6] for details). The notation T [s]i means that
the tensor T is applied to i copies of the vector s. For any set X , |X | denotes its cardinality.

2 First-order necessary conditions
In this section, we first present exact and approximate first-order necessary conditions for a

local minimizer of problem (1.1). Such conditions for optimization problems with non-Lipschitzian
singularities have been independently defined in the scaled form [9] or in subspaces [1, 8]. The
above optimality conditions take the singularity into account by no longer requiring that the
gradient (for unconstrained problems, say) nearly vanishes at an approximate solution xε (which
would be impossible if the singularity is active) but by requiring that a scaled version of this
requirement holds in that ‖Xε∇1

xf(xε)‖ is suitably small, where Xε is a diagonal matrix whose
diagonal entries are the components of xε. Unfortunately, if the i-th component of xε is small but
not quite small enough to consider that the singularity is active for variable i (say it is equal to 2ε),
the i-th component of ∇1

xf(x) can be as large as a multiple of ε−1. As a result, comparing worst-
case evaluation complexity bounds with those known for purely Lipschitz continuous problems
(such as those proposed in [2] or [6]) may be misleading, since these latter conditions would never
accept an approximate first-order critical point with such a large gradient. In order to avoid these
pitfalls, we now propose a stronger definition of approximate first-order critical point for non-

(3)The only exception we are aware of is the unpublished note [16] in which a p-th order Taylor model is coupled
with a regularization term involving the (totally separable) q-th power of the q norm (q ≥ 1).
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Lipschitzian problems where such “border-line” situations do not occur. The new definition also
makes use of subspaces but exactly reduces to the standard condition for Lipschitzian problems if
the singularity is not active at xε, even if it is close to it.

Given a vector x ∈ <n and ε ≥ 0, denote

C(x, ε) def
= {i ∈ H | |Uix| ≤ ε}, R(x, ε)

def
=

⋂
i∈C(x,ε)

ker(Ui) =

[
span
i∈C(x,ε)

{UTi }

]⊥
(2.1)

and
W(x, ε)

def
= N ∪ (H \ C(x, ε)). (2.2)

(When C(x, ε) = ∅, we set R(x, ε) = <n.) For convenience, if ε = 0, we denote C(x)
def
= C(x, 0),

R(x)
def
= R(x, 0) and W(x)

def
= W(x, 0). Finally note that, although f(x) is nonsmooth if H 6= ∅,

fW(x,ε)(x) is as differentiable as the fi(x) for i ∈ N and any ε ≥ 0. This allows us to formulate
our first-order necessary condition.
Theorem 2.1 If x∗ ∈ F is a local minimizer of problem (1.1), then

χf (x∗) = 0, (2.3)

where, for any x ∈ F ,

χf (x)
def
=

∣∣∣∣∣∣∣ min
x+d∈F

d∈R(x),‖d‖≤1

∇1
xfW(x)(x)T d

∣∣∣∣∣∣∣ . (2.4)

Proof. Suppose first that R(x∗) = {0} (which happens if x∗ = 0 ∈ F and spani∈H{UTi } = <n).
Then (2.3)-(2.4) holds vacuously. Now suppose that R(x∗) 6= {0}. By assumption, there exists
δx∗ > 0 such that

f(x∗) = min{fN (x∗ + d) + fH(x∗ + d) | x∗ + d ∈ F , ‖d‖ ≤ δx∗}

= min
d
{fN (x∗ + d) +

∑
i∈H
|Ui(x∗ + d)|q | x∗ + d ∈ F , ‖d‖ ≤ δx∗}

≤ min
d
{fN (x∗ + d) +

∑
i∈H
|Ui(x∗ + d)|q | x∗ + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ δx∗}

= min
d
{fN (x∗ + d) +

∑
i∈H\C(x∗)

|Ui(x∗ + d)|q | x∗ + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ δx∗},

where we used (2.1) to derive the last equality. We now introduce a new problem, which is problem
(1.1) reduced to R(x∗), namely,{

mind fW(x∗)(x∗ + d) = fN (x∗ + d) +
∑
i∈H\C(x∗) |Ui(x∗ + d)|q,

s.t. x∗ + d ∈ F and d ∈ R(x∗),
(2.5)

whose gradient ∇1
dfW(x∗)(x∗+d) is locally Lipschitz continuous in some (bounded) neighbourhood

of x∗. Since we have that

fW(x∗)(x∗) = fN (x∗) +
∑

i∈H\C(x∗)

|Uix∗|q = fN (x∗) +
∑
i∈H
|Uix∗|q = f(x∗),

we obtain that fW(x∗)(x∗) ≤ min{fW(x∗)(x∗ + d) | x∗ + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ δx∗} and x∗ is
a local minimizer of problem (2.5). Hence no feasible direction from x∗ is a descent direction for
fW(x∗)(x∗ + d), which is to say that

∇1
zfW(x∗)(x∗)

T d ≥ 0, x∗ + d ∈ F , d ∈ R(x∗). (2.6)

In addition, {d = 0} ⊆ {d | x∗ + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ 1} ⊆ {d | x∗ + d ∈ F , d ∈ R(x∗)}
which, combined with (2.6), gives the desired result (2.3)-(2.4). 2
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We call x∗ a first-order stationary point of (1.1), if x∗ satisfies the relation (2.3) in Theorem 2.1.
For ε > 0, we call xε an ε-approximate first-order stationary point of (1.1), if xε satisfies

χf (xε, ε)
def
=

∣∣∣∣∣∣∣ min
xε+d∈F

d∈R(xε,ε),‖d‖≤1

∇1
xfW(xε,ε)(xε)

T d

∣∣∣∣∣∣∣ ≤ ε. (2.7)

Note that χf (x) = χf (x, 0). This optimality measure is identical to that used in [5] for the smooth
convexly-constrained case, but applied here on the subspace R(xε, ε). In particular, both measures
coincide if H = ∅.

Theorem 2.2 For each ε > 0, let xε be an ε-approximate first-order stationary point of (1.1).
Then any cluster point of {xε}ε>0 is a first-order stationary point of problem (1.1) as ε→ 0.

Proof. Suppose that x∗ is any cluster point of {xε}ε>0. Then there must exist an infinite
sequence {εk} converging to zero and an infinite sequence {xεk}k≥0 ⊆ {xε}ε>0 such that x∗ =
limk→∞ xεk and xεk is an εk-approximate first-order stationary point of (1.1) for each k ≥ 0.
If R(x∗) = {0}, (2.3) holds vacuously and hence x∗ is a first-order stationary point. Suppose
therefore that R(x∗) 6= {0}, implying that the dimension of R(x∗) is strictly positive and hence
that H \ C(x∗) 6= ∅. First of all, we claim that there must exist k∗ ≥ 0 such that

C(xεk , εk) ⊆ C(x∗) for k ≥ k∗. (2.8)

To prove this inclusion, choose k∗ sufficiently large to ensure that

‖xεk − x∗‖+ εk < min
j∈H\C(x∗)

|Ujx∗|, for k ≥ k∗, (2.9)

the right-hand side of this inequality being strictly positive by definition of C(x∗). Without loss
of generality, suppose that k∗ = 1. Now consider an arbitrary k ≥ k∗ and an index i ∈ C(xεk , εk).
Using the definition of this latter set, the identity ‖Ui‖ = 1 and (2.9), we then obtain that

|Uix∗| ≤ |Ui(x∗ − xεk)|+ |Uixεk | ≤ ‖x∗ − xεk‖+ εk < min
j∈H\C(x∗)

|Ujx∗|.

This in turn implies that |Uix∗| = 0 and i ∈ C(x∗), proving (2.8). Using (2.1), we see that (2.8)
then implies that, for all k,

R(x∗) ⊆ R(xεk , εk) and W(x∗) ⊆ W(xεk , εk). (2.10)

For any fixed k, consider now the following three minimization problems:

(A, k)

{
mind ∇1

xfW(xεk ,εk)
(xεk)T d,

s.t. xεk + d ∈ F , d ∈ R(xεk , εk), ‖d‖ ≤ 1,
(2.11)

(B, k)

{
mind ∇1

xfW(xεk ,εk)
(xεk)T d,

s.t. xεk + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ 1,
(2.12)

and

(C, k)

{
mind ∇1

xfW(x∗)(xεk)T d,
s.t. xεk + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ 1.

(2.13)

Since d = 0 is a feasible point of all three problems (A, k), (B, k) and (C, k), their minimum values,
which we respectively denote by ϑA,k, ϑB,k and ϑC,k, are all nonpositive. Moreover, it follows
from the first part of (2.10) that, for each k,

ϑB,k ≥ ϑA,k. (2.14)
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It also follows from (2.8) and (1.2) that ∇1
xfW(xεk ,εk)

(x∗)
T d = ∇1

xfW(x∗)(x∗)
T d for all k and all

d ∈ R(x∗), and thus (2.14) becomes

ϑA,k ≤ ϑB,k = ϑC,k for all k. (2.15)

In addition, standard perturbation theory for convex problems (see [12, Theorem 3.2.8], for in-
stance) implies that

χf (x∗) = lim
k→∞

|ϑC,k|. (2.16)

Now the definition of xεk implies that −εk ≤ ϑA,k for all k. Hence, combining this inequa-
lity with the non-positivity of the minimum values, (2.15) and (2.16) gives that 0 ≤ χf (x∗) =
limk→∞ |ϑC,k| ≤ limk→∞ εk = 0, which completes the proof. 2

3 A partially-separable regularization algorithm
We now examine the desired properties of the element functions fi more closely. Assume first

that, for i ∈ N , each element function fi is p times continuously differentiable and its p-th order
derivative tensor ∇pxfi is globally Lipschitz continuous with constant Li ≥ 0 in the sense that, for
all xi, yi ∈ range(Ui),

‖∇pxifi(xi)−∇
p
xifi(yi)‖p ≤ Li‖xi − yi‖. (3.1)

It can be shown (see (4.5) below) that this assumption implies that, for i ∈ N ,

fi(xi + si) = Tfi,p(xi, si) +
1

(p+ 1)!
τiLi‖si‖p+1 with |τi| ≤ 1 and si = Uis. (3.2)

Because the quantity τiLi in (3.2) is usually unknown in practice, it is impossible to use (3.2)
directly to model the objective function in a neighbourhood of x. However, we may replace this
term with an adaptive parameter σi, which yields the following (p+ 1)-th order model for the i-th
“nice” element

mi(xi, si) = Tfi,p(xi, si) +
1

(p+ 1)!
σi‖si‖p+1, (i ∈ N ). (3.3)

There is more than one possible choice for defining the element models for i ∈ H. The first(4)

is to pursue the line of polynomial Taylor-based models, for which we need the following technical
result.
Lemma 3.1 We have that, for i ∈ H and all x, s ∈ <n with Uix 6= 0 6= Ui(x+ s),

|xi + si|q = |xi|q + q

∞∑
j=1

1

j!

(
j−1∏
`=1

(q − `)

)
|xi|q−jµ(xi, si)

j , (3.4)

where

µ(xi, si)
def
=


si if xi > 0 and xi + si > 0,
−si if xi < 0 and xi + si < 0,
−(2xi + si) if xi > 0 and xi + si < 0,

2xi + si if xi < 0 and xi + si > 0.

(3.5)

Proof. If y ∈ <+, it can be verified that the Taylor expansion |y + z|q at y 6= 0 and y + z ∈ <+

is given by

[y + z]q = yq + q

∞∑
j=1

1

j!

[
j−1∏
`=1

(q − `)

]
yq−jzj . (3.6)

Let us now consider i ∈ H. Relation (3.6) yields that, if xi > 0 and xi + si > 0,

|xi + si|q = |xi|q + q

∞∑
j=1

1

j!

[
j−1∏
`=1

(q − `)

]
|xi|q−jsji . (3.7)

(4)Another choice is discussed in Section 5.
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By symmetry, if we have that if xi < 0 and xi + si < 0, then

|xi + si|q = |xi|q + q

∞∑
j=1

(−1)j

j!

[
j−1∏
`=1

(q − `)

]
|xi|q−jsji . (3.8)

Moreover, if xi > 0 and xi + si < 0, then

|xi + si|q = | − xi|q + q

∞∑
j=1

(−1)j

j!

[
j−1∏
`=1

(q − `)

]
| − xi|q−j(2xi + si)

j . (3.9)

Symmetrically, if xi < 0 and xi + si > 0, then again,

|xi + si|q = | − xi|q + q

∞∑
j=1

1

j!

[
j−1∏
`=1

(q − `)

]
| − xi|q−j(2xi + si)

j (3.10)

(3.4)-(3.5) then trivially results from (3.7)-(3.10) and the identity | − xi| = |xi|. 2

We now slightly abuse notation by defining

T|·|q,p(xi, si)
def
=



Txq,p(xi, si) if xi > 0 and xi + si > 0,

T(−x)q,p(xi,−si) if xi < 0 and xi + si < 0,

T(−x)q,p(−xi, 2xi + si) if xi > 0 and xi + si < 0,

Txq,p(−xi, 2xi + si) if xi < 0 and xi + si > 0.

(3.11)

We are now in position to define the regularized “two-sided” model for the element function fi
(i ∈ H) as

mi(xi, si)
def
= T|·|q,p(xi, si). (3.12)

Figure 3.1 illustrates the two-sided model (3.11)-(3.12) for xi = − 1
2 , p = 3, q = 1

2 .

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 3.1: The square root function (continuous) and its two-sided model with p = 3 evaluated
at xi = − 1

2 (dashed)

We may now build a model for the complete f at x on R(x, ε) as

m(x, s) =
∑

i∈W(x,ε)

mi(xi, si). (3.13)

The algorithm considered in this paper exploits the model (3.13) as follows. At each iteration
k, the model (3.13) taken at the iterate x = xk is (approximately) minimized in order to define
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a step sk ∈ R(xk, ε). If the decrease in the objective function value along sk is comparable to
that predicted by the Taylor model, the trial point xk + sk is accepted as the new iterate and the
regularization parameters σi,k (i.e. σi at iteration k) possibly updated. The process is terminated
when an approximate local minimizer is found, that is when, for some k ≥ 0,

χf (xk, ε) ≤ ε. (3.14)

In order to simplify notation in what follows, we make the following definitions:

Ck
def
= C(xk, ε), Rk

def
= R(xk, ε), Wk

def
= W(xk, ε),

and
C+k

def
= C(xk + sk, ε), R+

k
def
= R(xk + sk, ε), W+

k
def
= W(xk + sk, ε).

Having defined the criticality measure (2.4), it is natural to use this measure also for termina-
ting the approximate model minimization: to find sk, we therefore minimize m(xk, s) over s ∈ Rk
until, for some constant θ ≥ 0 and some exponent r > 1,

χm(xk, sk, ε) = χm
W+
k

(xk, sk, ε) ≤ min

[
1
4q

2 min
i∈H∩W+

k

|Ui(xk + sk)|r, θ‖sk‖p
]

(3.15)

where

χm
W+
k

(xk, sk, ε)
def
=

∣∣∣∣∣∣∣ min
xk+sk+d∈F
d∈R+

k ,‖d‖≤1

∇1
smW+

k
(xk, sk)T d

∣∣∣∣∣∣∣ . (3.16)

We also require that, once |Ui(xk + s)| < ε occurs for some i ∈ H in the course of the model
minimization, it is fixed at this value, meaning that the remaining minimization is carried out
in R(xk + s, ε). Thus the dimension of R(xk + s, ε) (and therefore of R(xk, ε)) is monotonically
non-increasing during the step computation and across iterations. Note that computing a step
sk satisfying (3.15) is always possible since the subspace R(xk + s, ε) can only become smaller
during the model minimization and since we have seen in Section 2 that χm(xk, sk) = 0 at
any local minimizer of mW(xk+s,ε)(xk, s). This model minimization is in principle simpler than
the original problem because the general nonlinear fi have been replaced by locally accurate
polynomial approximations and also because the model is now Lipschitz continuous, albeit still
non-smooth. Importantly, the model minimization does not involve any evaluation of the objective
function or its derivatives, and model evaluations within this calculation therefore do not affect
the overall evaluation complexity of the algorithm.

We conclude this section by introducing some useful notation and describing our algorithm.

Define xi,k
def
= Uixk and si,k

def
= Uisk. Also let

δfi,k
def
= fi(xi,k)− fi(xi,k + si,k), δfk

def
= fW+

k
(xk)− fW+

k
(xk + sk) =

∑
i∈W+

k

δfi,k,

δmi,k
def
= mi(xi,k, 0)−mi(xi,k, si,k), δmk

def
= mW+

k
(xk, 0)−mW+

k
(xk, sk) =

∑
i∈W+

k

δmi,k,

and

δTk
def
= Tf

W+
k
,p(xk, 0)− Tf

W+
k
,p(xk, sk)

= [TfN ,p(xk, 0)− TfN ,p(xk, sk)] + [T|·|q
H\C+

k
,p

(xk, 0)− T|·|q
H\C+

k
,p

(xk, sk)]

= δmk + 1
(p+ 1)!

∑
i∈N

σi,k‖si,k‖p+1.

(3.17)
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The partially-separable adaptive regularization algorithm is now formally stated as Algorithm 3.1
on the following page.

Note that an x0 ∈ F can always be computed by projecting an infeasible starting point onto
F . The idea of the second and third parts of (3.21) and (3.22) is to identify cases where the
model mi overestimates the element function fi to an excessive extent, leaving some space for
reducing the regularization and hence allowing longer steps. The requirement that ρk ≥ η in both
(3.21) and (3.22) is intended to prevent a situation where a particular regularization parameter
is increased and another decreased at a given unsuccessful iteration, followed by the opposite
situation at the next iteration, potentially leading to cycling. Other more elaborate mechanisms
can be designed to achieve the same goal, such as attempting to reduce a given regularization
parameter at most a fixed number of times before the occurence of a successful iteration, but we
do not investigate those alternatives in detail here. Observe also that it would have been possible
to use a single regularization parameter σk large enough to ensure that the model overestimates the
objective function f . However this might lead to excessive overestimation for the better behaved
fi, potentially decreasing the quality of the model as an approximation to f . This can be avoided
by our more flexible proposal.

We note at this stage that the condition sk ∈ Rk implies that Ck ⊆ C+k and W+
k ⊆ Wk.

Note that Algorithm 3.1 considerably simplifies in the Lipschitzian case where H = ∅, since
fWk

(x) = fM(x) = f(x) for all k ≥ 0 and all x ∈ F = FQ.

We illustrate some concepts of this algorithm with a special case of problem (1.1)

min
x≥0

∑
i∈N

fi(Uix) + λ

n∑
i=1

|xi|q (3.25)

from [1]. For this problem, H = {|N |+1, . . . , |N |+n}, Ui = eTi for i ∈ H and T|·|q,p(xi, si) reduces
to Txq,p(xi, si) because of the (kernel centered) non-negativity constraint. In Step 1, f(xk) and
its derivatives {∇jxfi(xk)}pj=2, i ∈ Wk are evaluated, where Wk = N ∪ {|xi,k| > ε}. In Step 2,

Rk = ∩|xi,k|≤εker(ei). In (3.15), W+
k = N ∪ {|xi,k + si,k| > ε}.

4 Evaluation complexity for ’kernel-centered’ feasible sets
We start our worst-case analysis by formalizing our assumptions for problem (1.1).

AS.1 The feasible set F is closed, convex and non-empty.

AS.2 Each element function fi (i ∈ N ) is p times continuously differentiable in an open
set containing F , where p is odd whenever H 6= ∅.

AS.3 The p-th derivative of each fi (i ∈ N ) is Lipschitz continuous on F with associated
Lipschitz constant Li (in the sense of (3.1)).

AS.4 There exists a constant flow such that fN (x) ≥ flow for all x ∈ F .

AS.5 There exists a constant κN ≥ 0 such that ‖∇jxfN (x))‖ ≤ κN for all x ∈ F and all
j ∈ {1, . . . , p}.

Note that AS.4 is necessary for problem (1.1) to be well-defined. Also note that, because of AS.2,
AS.5 automatically holds if F is bounded or if the iterates {xk} remain in a bounded set. It is
possible to weaken AS.2 and AS.3 by replacing F with the level set L = {x ∈ F | f(x) ≤ f(x0)}
without affecting the results below. As can be seen in the proof of Lemma 4.7, AS.5 may also be
weakened by replacing F with {x+ s ∈ F | x ∈ L and ‖s‖ ≤ 1} or strengthened by assuming the
boundedness of the level set L = {x ∈ F | f(x) ≤ f(x0)}.

We first observe that our assumptions on the partially-separable nature of the objective function
imply the following useful bounds.
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Algorithm 3.1: Partially-Separable Adaptive Regularization

Step 0: Initialization: x0 ∈ F and {σi,0}i∈N > 0 are given as well as the accuracy ε ∈ (0, 1]
and constants 0 < γ0 < 1 < γ1 ≤ γ2, η ∈ (0, 1), θ ≥ 0, σmin ∈ (0,mini∈N σi,0] and
κbig > 1. Set k = 0.

Step 1: Termination: Evaluate f(xk) and {∇1
xfWk

(xk)}. If χf (xk, ε) ≤ ε, return xε = xk
and terminate. Otherwise evaluate {∇jxfWk

(xk)}pj=2.

Step 2: Step computation: Compute a step sk ∈ Rk such that xk + sk ∈ F , m(xk, sk) <
m(xk, 0) and (3.15) holds.

Step 3: Step acceptance: Compute

ρk =
δfk
δTk

(3.18)

and set xk+1 = xk if ρk < η, or xk+1 = xk + sk if ρk ≥ η.

Step 4: Update the “nice” regularization parameters: For i ∈ N , if

fi(xi,k + si,k) > mi(xi,k, si,k) (3.19)

set
σi,k+1 ∈ [γ1σi,k, γ2σi,k]. (3.20)

Otherwise, if either

ρk ≥ η and δfi,k ≤ 0 and δfi,k < δmi,k − κbig|δfk| (3.21)

or
ρk ≥ η and δfi,k > 0 and δfi,k > δmi,k + κbig|δfk| (3.22)

then set
σi,k+1 ∈ [max[σmin, γ0σi,k], σi,k], (3.23)

else set
σi,k+1 = σi,k. (3.24)

Increment k by one and go to Step 1.
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Lemma 4.1 There exist a constants ς > 0 such that, for all s ∈ <m and all v ≥ 1 and for any
subset N ⊆ X ⊆M,

ςv‖sX ‖v ≤
∑
i∈X
‖si‖v ≤ |X | ‖sX ‖v, where sX = Pspani∈X {UTi }(s). (4.1)

Proof. Assume that, for every ς > 0 there exists a vector sς in spani∈X {UTi } of norm 1 such
that maxi∈X ‖Uisς‖ < ς‖sς‖ = ς. Then taking a sequence of {ςi} converging to zero and using
the compactness of the unit sphere, we obtain that the sequence {sςi} has at least one limit point
s0 with ‖s0‖ = 1 such that maxi∈X ‖Uis0‖ = 0, which is impossible since we assumed that the
intersection of the nullspaces of the Ui is reduced to the origin. Thus our assumption is false and
there is constant ς > 0 such that, for every s ∈ spani∈X {UTi },

max
i∈X
‖si‖ = max

i∈X
‖Uis‖ ≥ ςmin[Ui]‖s‖,

where ςmin[Ui] > 0 is the smallest singular value of Ui. If we now set ς = mini∈X ςmin[Ui], the first
inequality of (4.1) then follows from

∑
i∈X ‖si‖v ≥ maxi∈X ‖si‖v ≥ ςv‖s‖v. We have also that∑

i∈X
‖si‖v ≤ |X |max

i∈X
‖Uis‖v ≤ |X |max

i∈X
(‖Ui‖‖s‖)v ,

which, with the identity ‖Ui‖ = 1, yields the second inequality of (4.1). 2

Taken for v = 1 and X = N , this lemma states that
∑
i∈N ‖ ·‖ is a norm on <n whose equivalence

constants with respect to the Euclidean one are ς and |N |. In most applications, these constants
are very moderate numbers.
We now turn to the consequence of the Lipschitz continuity of ∇pxfi and define, for a given k ≥ 0
and a given constant φ > 0 independent of ε,

Ok,φ
def
= {i ∈ W+

k ∩H | min[ |xi,k|, |xi,k + si,k| ] ≥ φ}. (4.2)

Note that Ok,φ = H \
[
C(xk, φ) ∪ C(xk + sk, φ)

]
.

Lemma 4.2 Suppose that AS.2 and AS.3 hold. Then, for k ≥ 0 and Lmax
def
= maxi∈N Li,

fi(xi,k + si,k) = mi(xi,k, si,k) +
1

(p+ 1)!

[
τi,k(p+ 1)Lmax − σi,k

]
‖si,k‖p+1 with |τi,k| ≤ 1, (4.3)

for all i ∈ N . If, in addition, φ > 0 is given and independent of ε, then there exists a constant
L(φ) independent of ε such that

‖∇1
xfN∪Ok,φ(xk + sk)−∇1

sTfN∪Ok,φ ,p(xk, sk)‖ ≤ L(φ)‖sk‖p. (4.4)

These results hold irrespective of the parity of p.

Proof. First note that, if fi has a Lipschitz continuous p-th derivative as a function of Uix,
then (1.6) shows that it also has a Lipschitz continuous p-th derivative as a function of x. It is
therefore enough to consider the element functions as functions of xi = Uix.

AS.3 and (3.1) imply that

fi(xi,k + si,k) = Tfi,p(xi,k, si,k) +
τi,k
p!
Lmax‖si,k‖p+1 with |τi,k| ≤ 1, (4.5)

for each i ∈ N (see [2]) (4.3) then follows from (3.3).
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Consider now i ∈ Ok,φ and assume first that xi,k > φ and xi,k + si,k > φ. Then fi(xi) = xqi is
infinitely differentiable on the interval [xi,k, xi,k + si,k] ⊂ [φ,∞) and the norm of its (p + 1)-st
derivative tensor is bounded above on this interval by

LH(φ)
def
=

∣∣∣∣∣
p+1∏
`=0

(q − `)

∣∣∣∣∣φq−p−1. (4.6)

We then apply the same reasoning as above using the Taylor series expansion of xqi at xi,k and,
because of the first line of (3.11), deduce that

fi(xi,k + si,k) = mi(xi,k, si,k) +
1

(p+ 1)!
τi,k(p+ 1)LH(φ)|si,k|p+1 with |τi,k| ≤ 1, (4.7)

and
‖∇1

xfi(xi,k + si,k)−∇1
sT|·|q,p(xi,k, si,k)‖ ≤ LH(φ)|si,k|p, (4.8)

hold in this case (see [2]). The argument is obviously similar if xi,k < −φ and xi,k + si,k < −φ,
using symmetry and the second line of (3.11). Let us now consider the case where xi,k > φ and
xi,k + si,k < −φ. The expansion (3.4) then shows that we may reason as for xi,k < −φ and
xi,k + si,k < −φ using a Taylor expansion at −xi (which we know by symmetry) and the third
line of (3.11). The case where xi,k < −φ and xi,k + si,k > φ is similar, using the fourth line of
(3.11). As a consequence, (4.7) and (4.8) hold for every i ∈ Ok,φ with Lipschitz constant LH(φ).
Moreover, using (4.1) and the definitions (4.6),∑

i∈N∪Ok,φ

Li‖si‖p+1 ≤ max [Lmax, LH(φ)]
∑

i∈N∪Ok,φ

‖si‖p+1

and (4.4) then follows from (4.8) and (4.1) with L(φ)
def
= |M| max [Lmax, LH(φ)] . 2

Note that there is no dependence on φ in L if H = ∅. We now return to our statement that

ker(Ui) ∩ F 6= ∅ (4.9)

may be assumed without loss of generality for all i ∈ H. Indeed, assume that (4.9) fails for j ∈ H.
Then j ∈ Ok,ξj for all k ≥ 0, where ξj > 0 is the distance between ker(Uj) and F , and we may
transfer j from H to N (possibly modifying Lmax).

The definition of the model in (3.13) also implies a simple lower bound on model decrease.

Lemma 4.3 For all k ≥ 0, sk 6= 0, (3.18) is well-defined and

δTk ≥
1

(p+ 1)!
σmin

∑
i∈N
‖si,k‖p+1. (4.10)

Proof. The bound directly follows from (3.17), the observation that the algorithm enforces
δmk > 0 and (3.23). Moreover, χm(xk, 0, ε) = χf (xk, ε) > ε. As a consequence, (3.15) cannot
hold for sk = 0 since termination would have then occured in Step 1 of Algorithm 3.1. Hence
at least one ‖si,k‖ is strictly positive because of (4.1) and (4.10) therefore implies that (3.18) is
well-defined. 2

We now verify that the two-sided model (3.12) overestimates |x|q for all relevant xi and si.

Lemma 4.4 Suppose that AS.2 holds. Then, for i ∈ H and all xi, si ∈ <n with xi 6= 0 6= xi + si,
we have that

|xi + si|q ≤ mi(xi, si). (4.11)



Chen, Toint, Wang: Evaluation complexity of non-Lipschitzian optimization 13

Proof. Since i ∈ H by assumption, this implies that H 6= ∅, and thus, by AS.2, that p is odd.
From the mean-value theorem, we obtain that

|xi + si|q = |xi|q + q

p∑
j=1

1

j!

[
j−1∏
`=1

(q − `)

]
|xi|q−jµ(xi, si)

j +

[
p∏
`=1

(q − `)

]
|Uiz|q−p−1

µ(xi, si)
p+1

(p+ 1)!

(4.12)
for some z such that, using symmetry, z ∈ [x, x + s] if (Uix)(Ui(x + s)) > 0 or z ∈ [−x, x + s]
otherwise. As a consequence, we have that |Uiz| ≥ min[ |xi|, |xi + si| ] > 0. Remember now that
p is odd. Then, using that q ∈ (0, 1), we have that µ(xi, si)

p+1 ≥ 0 and
∏p
`=1(q − `) < 0. The

inequality

|xi + si|q ≤ |xi|q + q

p∑
j=1

1

j!

[
j−1∏
`=1

(q − `)

]
|xi|q−jµ(xi, si)

j (4.13)

therefore immediately follows from (4.12), proving (4.11). 2

We next investigate the consequences of the model’s definition (3.12) when the singularity at the
origin is approached and show that the two-sided model has to remain large along the steps when
xi,k is not too far from the singularity.

Lemma 4.5 Suppose that p ≥ 1 is odd, q ∈ (0, 1), i ∈ H, |xi| ∈ (ε, 1], and |xi + si| ≥ ε. Then

|∇1
simi(xi, si)| > 1

2q |∇1
simi(xi, 0)|. (4.14)

Proof. Following the argument in the proof of Lemma 4.2, it is sufficient to consider that xi > 0
and xi + si > 0. From (3.11) (where µ(xi, si) = si), we have that

∇1
siTxq,p(xi, si) = q

p∑
j=1

1

(j − 1)!

[
j−1∏
`=1

(q − `)

]
xq−ji sj−1i . (4.15)

Define si = βxi. This gives that (4.15) now reads

∇1
siTxq,p(xi, βxi) = q

p∑
j=1

1

(j − 1)!

[
j−1∏
`=1

(q − `)

]
xq−1i βj−1, (4.16)

from which we deduce that

∇1
simi(xi, 0) = ∇1

siTxq,p(xi, 0) = qxq−1i . (4.17)

Suppose first that si < 0, i.e. β ∈ (−1, 0), and observe that sj−1i < 0 exactly whenever

j−1∏
`=1

(q − `) < 0,

and thus, using xi ≤ 1 and (4.17), that

∇1
simi(xi, si) > qxq−1i = ∇1

simi(xi, 0) for β ∈ (−1, 0). (4.18)

Suppose now that β ∈ (0, 1
3 ). Then (4.16) implies that

∇1
siTxq,p(xi, βxi) ≥ qxq−1i − q

p∑
j=2

∣∣∣∣∣ 1

(j − 1)!

[
j−1∏
`=1

(q − `)

]∣∣∣∣∣xq−1i ( 1
3 )j−1

= qxq−1i

1−
p∑
j=2

∣∣∣∣∣ 1

(j − 1)!

[
j−1∏
`=1

(q − `)

]∣∣∣∣∣ ( 1
3 )j−1

 .
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Observe now that ∣∣∣∣∣ 1

(j − 1)!

[
j−1∏
`=1

(q − `)

]∣∣∣∣∣ =

∣∣∣∣∣
j−1∏
`=1

q − `
`

∣∣∣∣∣ ≤ 1, (4.19)

and therefore

∇1
siTxq,p(xi, βxi) ≥ qx

q−1
i

1−
p∑
j=2

( 1
3 )j−1

 > qxq−1i

1−
∞∑
j=2

( 1
3 )j−1

 = qxq−1i

(
1−

1
3

1− 1
3

)
.

Using (4.17), this implies that

∇1
siTxq,p(xi, βxi) ≥

1

2
∇1
siTxq,p(xi, 0) for β ∈ [0, 1

3 ]. (4.20)

Suppose therefore that
β > 1

3 . (4.21)

We note that (4.16) gives that

∇1
siTxq,1(xi, si) = qxq−1i and ∇1

siTxq,t+2(xi, si) = ∇1
siTxq,t(xi, si) + qxq−1i ht(β)

for t ∈ {1, . . . , p− 2} odd, where

ht(β)
def
= 1

t!

[
t∏
`=1

(q − `)

]
βt + 1

(t+ 1)!

[
t+1∏
`=1

(q − `)

]
βt+1

= 1
t!

[
t∏
`=1

(q − `)

]
βt
(

1 +
q − (t+ 1)
t+ 1 β

)
.

(4.22)

It is easy to verify that ht(β) has a root of multiplicity t at zero and another root

β0,t =
t+ 1

t+ 1− q
∈
(

1 ,
2

2− q

)
,

where the last inclusion follows from the fact that q ∈ (0, 1). We also observe that ht(β) is a
polynomial of even degree (since t is odd). Thus

ht(β) ≥ 0 for all β ≥ t+ 1

t+ 1− q
and t ∈ {1, . . . , p} odd. (4.23)

Now

∇1
siTxq,p(xi, βxi)

qxq−1i

=
∇1
siTxq,p−2(xi, βxi)

qxq−1i

+ hp−2(β) =
∇1
siTxq,1(xi, βxi)

qxq−1i

+

p−2∑
j=1, j odd

hj(β)

= 1 +

p−2∑
j=1, j odd
hj(β)<0

hj(β) +

p−2∑
j=1, j odd
hj(β)≥0

hj(β) ≥ 1 +

p−2∑
j=1, j odd
hj(β)<0

hj(β)

(4.24)
where we used (4.16) to derive the third equality. Observe now that, because of (4.23),

{j ∈ {1, . . . , p− 2} odd | hj(β) < 0} =
{
j ∈ {1, . . . , p− 2} odd | β < j+1

j+1−q

}
def
= {j ∈ {1, . . . , t0}| | j odd}

(4.25)

for some odd integer t0 ∈ {1, . . . , p− 2}. Hence we deduce from (4.22) and (4.24) that

∇1
siTxq,p(xi, βxi)

qxq−1i

≥ 1 +

t0+1∑
j=1

1

j!

[
j∏
`=1

(q − `)

]
βj . (4.26)
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Moreover, since ht(β) < 0 for t ∈ {1, . . . , t0} odd and observing that the second term in the first
right-hand side of (4.22) is always positive for t odd, we deduce that the terms in the summation
of (4.26) alternate in sign. We also note that they are decreasing in absolute value since

1

(t+ 1)!

∣∣∣∣∣
t+1∏
`=1

(q − `)

∣∣∣∣∣βt+1 − 1

t!

∣∣∣∣∣
t∏
`=1

(q − `)

∣∣∣∣∣βt =
1

t!

∣∣∣∣∣
t∏
`=1

(q − `)

∣∣∣∣∣βt
(
t+ 1− q
t+ 1

β − 1

)
and (4.23) ensures that the term in brackets in the right-hand side is always negative for q ∈ (0, 1)
and t ∈ {1, . . . , t0} odd. Thus, keeping the first (most negative) term in (4.26), we obtain that

∇1
siTxq,p(xi, βxi) ≥ qx

q−1
i (1 + (q − 1)β) ≥ q

2− q
∇1
siTxq,p(xi, 0) >

q

2
∇1
siTxq,p(xi, 0), (4.27)

where we used (4.16) to deduce the second inequality. Combining (4.18), (4.20) and (4.27) then
yields that (4.14) holds for all β ∈ (−1,∞), which completes the proof since si = βxi. 2

Our next step is to verify that the regularization parameters {σi,k}i∈N cannot grow unbounded.

Lemma 4.6 Suppose that AS.2 and AS.3 hold. Then, for all i ∈ N and all k ≥ 0,

σi,k ∈ [σmin, σmax], (4.28)

where σmax
def
= γ2(p+ 1)Lmax.

Proof. Assume that, for some i ∈ N and k ≥ 0, σi,k ≥ (p + 1)Li. Then (4.3) gives that (3.19)
must fail, ensuring (4.28) because of the mechanism of the algorithm. 2

We next investigate the consequences of the model’s definition (3.12) when the singularity at the
origin is approached.

Lemma 4.7 Suppose that AS.2 and AS.5 hold and that H 6= ∅. Let

ω
def
=

 q2

4 max( q
2

4 ,
[
p κN + |N |

p! σmax

]
)

 1
1−q

(4.29)

and suppose, in addition, that
‖sk‖ ≤ 1 (4.30)

and that, for some i ∈ H,
|xi,k| ∈ (0, ω). (4.31)

Then

‖PR{i}[∇1
sm(xk, sk)]‖ ≥ 1

4q
2ωq−1 and sign

(
PR{i}[∇1

sm(xk, sk)]
)

= sign(xi,k + si,k) (4.32)

where R{i}
def
= span{UTi }.

Proof. Consider i ∈ H. Suppose, for the sake of simplicity, that

xi,k > 0 and xi,k + si,k > 0. (4.33)

We first observe that Lemma 4.5 implies that

∇1
simi(xi,k, si,k) ≥ 1

2q∇1
simi(xi,k, 0) for all si,k 6= −xi,k. (4.34)

Moreover,

∇1
smN (xk, sk) = ∇1

xfN (xk) +

p∑
j=2

1

(j − 1)!
∇jxfN (xk)[sk]j−1 +

1

p!

∑
`∈N

σ`,ks`,k‖s`,k‖p−1
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and thus, using the contractive property of orthogonal projections, (4.30), AS.5 and (4.1), that

‖PR{i}[∇1
smN (xk, sk)]‖ ≤ ‖∇1

smN (xk, sk)‖
≤ κN [1 + (p− 1)] +

|N |
p!
σmax

= p κN +
|N |
p!
σmax.

(4.35)

We next successively use the linearity of PR{i}[·], the triangle inequality, (4.34), the facts that
‖UTi ‖ = 1,

|∇1
simi(xi,k, si,k)| = 1

2q|xi,k|q−1 ≥ 1
2qω

q−1 and ‖UTi ∇1
simi(xi,k, si,k)‖ = 1

2q|xi,k|q−1,

the bound (4.35), and (4.29) to deduce that

‖PR{i}[∇1
sm(xk, sk)]‖ = ‖PR{i}[∇1

smN (xk, sk) +∇1
s

∑
j∈H

mj(xk,k, sj,k)]‖

= ‖PR{i}[∇1
smN (xk, sk) +

∑
j∈H

UTj ∇1
sjmj(xj,k, sj,k)]‖

= ‖PR{i}[∇1
smN (xk, sk)] + UTi ∇1

simi(xi,k, si,k)‖

≥
∣∣∣‖UTi ∇1

simi(xi,k, si,k)‖ − ‖PR{i}[∇1
smN (xk, sk)]‖

∣∣∣
≥ 1

2q
2ωq−1 −

[
p κN +

|N |
p!
σmax

]
≥ 1

4q
2ωq−1,

which proves the first part of (4.32) and, because of (4.34), implies the second for the case where
(4.33) holds. The proof for the cases where[

xi,k < 0 and xi,k + si,k < 0
]

or xi,k(xi,k + si,k) < 0

are identical when making use of the symmetry mi(xi) with respect to the origin. 2

Note that, like σmax, ω only depends on problem data. In particular, it is independent of ε.
Lemma 4.7 has the following crucial consequence.

Lemma 4.8 Suppose that (1.3), AS.2, AS.5 and the assumptions (4.30)–(4.31) of Lemma 4.7
hold and that H 6= ∅. Suppose in addition that (3.15) holds at xk, sk. Then, either

|xj,k + sj,k| ≤ ε or |xj,k + sj,k| ≥ ω (j ∈ H). (4.36)

Proof. If j ∈ H ∩ C(xk + sk, ε), then clearly |xj,k + sj,k| ≤ ε, and there is nothing more to
prove. Consider therefore any j ∈ H \ C+k ⊆ W

+
k and observe (1.2) implies that R{j} ⊆ R+

k for

j ∈ H \ C+k . Hence∣∣∣∣∣∣∣ min
xk+sk+d∈F
d∈R{j},‖d‖≤1

PR{j} [∇
1
sm(xk, sk)]T d

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ min
xk+sk+d∈F
d∈R{j},‖d‖≤1

∇1
smW+

k
(xk, sk)T d

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ min
xk+sk+d∈F
d∈R+

k ,‖d‖≤1

∇1
smW+

k
(xk, sk)T d

∣∣∣∣∣∣∣
= χm(xk, sk, ε)

≤ 1
4q

2|xj,k + sj,k|r.

(4.37)
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Observe now that, because of the second part of (4.32) and the fact that nj = 1, the optimal value
for the convex optimization problem in the left-hand side of this relation is given by

|PR{j} [∇
1
sm(xk, sk)]| |d∗|

where d∗ is the problem solution and d∗ has the opposite sign of PR{j} [∇1
sm(xk, sk)]. Moreover,

the facts that j ∈ H and (1.3) ensure that xj,k + sj,k + dj = 0 is feasible for the optimization
problem on the left-hand side of (4.37), and hence that |d∗| ≥ |xj,k + sj,k|. Hence, we obtain that
1
4q

2ωq−1|xj,k + sj,k| ≤ 1
4q

2|xj,k + sj,k|r, and thus, since ω ≤ 1, that |xj,k + sj,k| ≥ ω
q−1
r−1 ≥ ω, and

the second alternative in (4.36) holds. 2

The rest of our complexity analysis depends on the following partitioning of the set of iterations.
Let the index set of the “successful” and “unsuccessful” iterations be given by

S def
= {k ≥ 0 | ρk ≥ η} and U def

= {k ≥ 0 | ρk < η}.

We next focus on the case where H 6= ∅ and partition S into subsets depending on |xi,k| and
|xi,k + si,k| for i ∈ H. We first isolate the set of sucessful iterations which “deactivate” some
variable, that is

Sε
def
= {k ∈ S | |xi,k| > ε and |xi,k + si,k| ≤ ε for some i ∈ H},

as well as the set of successful iterations with large steps

S‖s‖
def
= {k ∈ S \ Sε | ‖sk‖ > 1}. (4.38)

Let us now choose a constant α ≥ 0 such that

α =

{
3
4ω if H 6= ∅,
0 otherwise.

(4.39)

Then, at iteration k ∈ S \ (Sε ∪ S‖s‖), we distinguish

I♥,k
def
=
{
i ∈ H \ Ck | |xi,k| ∈ [α,+∞) and |xi,k + si,k| ∈ [α,+∞)

}
,

I♦,k
def
=
{
i ∈ H \ Ck |

(
|xi,k| ∈ [ω,+∞) and |xi,k + si,k| ∈ (ε, α)

)
or
(
|xi,k| ∈ (ε, α) and |xi,k + si,k| ∈ [ω,+∞)

)}
,

I♣,k
def
=
{
i ∈ H \ Ck | |xi,k| ∈ (ε, ω) and |xi,k + si,k| ∈ (ε, ω)

}
.

Using these notations, we further define

S♥
def
= {k ∈ S \ (Sε ∪ S‖s‖) | I♥,k = H \ Ck}, S♦

def
= {k ∈ S \ (Sε ∪ S‖s‖) | I♦,k 6= ∅},

S♣
def
= {k ∈ S \ (Sε ∪ S‖s‖) | I♣,k 6= ∅}.

Figure (4.2) displays the various kinds of steps in S♥,k, S♦,k, S♣,k and Sε,k.
It is important to observe that the mechanism of the algorithm ensures that, once an xi falls in

the interval [−ε, ε] at iteration k, it never leaves it (and essentially “drops out” of the calculation).
Thus there are no right-oriented dotted steps in Figure 4.2 and also

|Sε| ≤ |H|. (4.40)

Crucially, Lemma 4.8 ensures that I♣,k = ∅ for all k ∈ S, and hence that |S♣| = 0. As a
consequence, one has that

Sε, S‖s‖, S♥, and S♦ form a partition of S. (4.41)
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ε α ω 1
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♥

♥

♦

♣

♣
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♣

ε
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♣
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♦

♥

♥

Figure 4.2: The various steps in S \ S‖s‖ depending on intervals containing their origin |xi,k| and
end |xi,k + si,k| points. The vertical lines show, in increasing order, ε, α and ω. The line type
of the represented step indicates that it belongs to Sε,k (dotted), S♥,k (solid), S♦,k (dashed) and
S♣,k (dash-dotted). The vertical axis is meaningless.

It is also easy to verify that, if k ∈ S♦ and i ∈ I♦,k, then

‖sk‖ ≥ ‖PR{i}(sk)‖ = |si,k| ≥ ω − α = 1
4ω > 0, (4.42)

where we have used the contractive property of orthogonal projections.
We now show that the steps at iterations whose index is in S♥ are not too short.

Lemma 4.9 Suppose that AS.1–AS.3 and AS.5 hold, that

ε < α (4.43)

and consider k ∈ S♥ before termination. Then

‖sk‖ ≥ (κ♥ ε)
1
p , (4.44)

where

κ♥
def
=

[
2(L(α) + θ +

|N |
p!

σmax)

]−1
. (4.45)

Proof. Observe first that, since k ∈ S♥ ⊆ S, we have that xk+1 = xk + sk and, because ε ≤ α
and C+k ⊆ Ck, we deduce that Ck = C+k = Ck+1 and Rk = R+

k = Rk+1. Moreover the definition of
S♥ ensures that, for all i ∈ H \ Ck,

min
[
|xi,k|, |xi,k + si,k|

]
≥ α. (4.46)

Hence
O∗

def
= Ok,α = H \ Ck = H \ C+k ,

and thus
R∗

def
= Rk = R+

k and W∗
def
= Wk =W+

k = N ∪O∗. (4.47)

As a consequence the step computation must have been completed because (3.15) holds, which
implies that

χm(xk, sk, ε) = χmW∗ (xk, sk, ε) =

∣∣∣∣∣∣∣ min
xk+sk+d∈F
d∈R∗,‖d‖≤1

∇smW∗(xk, sk)T d

∣∣∣∣∣∣∣ ≤ θ‖sk‖p. (4.48)
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Observe also that (4.47), (4.4) with φ = α (because k ∈ S♥) , (4.28) and (4.1) then imply that

‖∇1
xfW∗(xk+1)−∇1

smW∗(xk, sk)‖ = ‖∇1
xfN∪O∗(xk+1)−∇1

smN∪O∗(xk, sk)‖

≤ L(α)‖sk‖p + 1
(p+ 1)!

σmax

∑
i∈N
‖∇1

s‖si,k‖p+1 ‖

≤ L(α)‖sk‖p + 1
p!
σmax

∑
i∈N
‖si,k‖p

≤ L(α)‖sk‖p +
|N |
p!

σmax‖sk‖p

=

[
L(α) +

|N |
p!

σmax

]
‖sk‖p,

(4.49)

and also that

χf (xk+1, ε) = |∇1
xfW∗(xk+1)[dk+1]|

≤ |∇1
xfW∗(xk+1)[dk+1]−∇1

smW∗(xk, sk)[dk+1]|+ |∇1
smW∗(xk, sk)[dk+1]|,

(4.50)
where the first equality defines the vector dk+1 with

‖dk+1‖ ≤ 1. (4.51)

Assume now, for the purpose of deriving a contradiction, that

‖sk‖ <

 χf (xk+1, ε)

2(L(α) + θ +
|N |
p!

σmax)


1
p

(4.52)

at iteration k ∈ S♥. Using (4.51) and (4.49), we then obtain that

−∇1
xfW∗(xk+1)[dk+1] +∇1

smW∗(xk, sk)[dk+1]

≤ |∇1
xfW∗(xk+1)[dk+1]−∇1

smW∗(xk, sk)[dk+1]|

= |(∇1
xfW∗(xk+1)−∇1

smW∗(xk, sk))[dk+1]|

≤ ‖∇1
xfW∗(xk+1)−∇1

smW∗(xk, sk)‖ ‖dk+1‖

< (L(α) +
|N |
p!

σmax)‖sk‖p.

(4.53)

From (4.52) and the first part of (4.50), we have that

−∇1
xfW∗(xk+1)[dk+1] +∇1

smW∗(xk, sk))[dk+1] < 1
2χf (xk+1, ε) = − 1

2∇1
xfW∗(xk+1)[dk+1],

which in turn ensures that ∇1
smW∗(xk, sk)[dk+1] < 1

2∇1
xfW∗(xk+1)[dk+1] < 0. Moreover, by defi-

nition of χf (xk+1, ε),
xk+1 + dk+1 ∈ F and dk+1 ∈ Rk+1 = R+

k .

Hence, using (3.16) and (4.51),

|∇1
smW∗(xk, sk)[dk+1]| ≤ χmW∗ (xk, sk, ε). (4.54)

We may then substitute this inequality in (4.50) to deduce as above that

χf (xk+1, ε) ≤ |∇1
xfW∗(xk+1)[dk+1]−∇1

smW∗(xk, sk)[dk+1]|+ χmW∗ (xk, sk, ε)

≤ (L(α) + θ +
|N |
p!

σmax)‖sk‖p,
(4.55)
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where the last inequality results from (4.53), the identity xk+1 = xk + sk and (4.48). But this
contradicts our assumption that (4.52) holds. Hence (4.52) must fail. The inequality (4.44) then
follows by combining this conclusion with the fact that χf (xk+1, ε) > ε before termination. 2

We are now ready to consider our first complexity result, whose proof uses restrictions of the
successful and unsuccessful iteration index sets defined above to {0, . . . , k}, which are given by

Sk
def
= {0, . . . , k} ∩ S, Uk

def
= {0, . . . , k} \ Sk, (4.56)

respectively.

Theorem 4.10 Suppose that AS.1, (1.3) and AS.2–AS.5 hold and that

ε ≤ min

[
α,

(
1
4ωκ

− 1
p+1

♥

)p]
if H 6= ∅. (4.57)

Then Algorithm 3.1 requires at most

κS(f(x0)− flow)ε−
p+1
p + |H| (4.58)

successful iterations to return a point xε ∈ F such that χf (xε, ε) ≤ ε, for

κS =
(p+ 1)!

η σmin ς
p+1

[
2(L(α) + θ +

|N |
p!

γ2)
] p+1

p

. (4.59)

Proof. Let k ∈ S be index of a successful iteration before termination, and suppose first that
H 6= ∅. Because the iteration is successful, we obtain, using AS.4, that

f(x0)− flow ≥ f(x0)− f(xk+1) ≥
∑
`∈Sk

[
f(x`)− f(x` + s`)

]
≥ η

∑
`∈Sk

[
f(x`)−Tf,p(x`, s`)

]
. (4.60)

In addition to (4.56), let us define

Sε,k
def
= {0, . . . , k} ∩ Sε, S‖s‖,k

def
= {0, . . . , k} ∩ S‖s‖, (4.61)

S♥,k
def
= {0, . . . , k} ∩ S♥, S♦,k

def
= {0, . . . , k} ∩ S♦.

We now use the fact that, because of (4.41), S‖s‖,k ∪ S♥,k ∪ S♦,k = Sk \ Sε,k ⊆ Sk, and (4.1) to
deduce from (4.60) and Lemma 4.3 that

f(x0)− flow ≥ η

 ∑
`∈S‖s‖,k

[
f(x`)− Tf,p(x`, s`)

]
+
∑

`∈S♥,k

[
f(x`)− Tf,p(x`, s`)

]

+
∑

`∈S♦,k

[
f(x`)− Tf,p(x`, s`)

]
≥ ησmin

(p+ 1)!

{
|S‖s‖,k| min

`∈S‖s‖,k

[∑
i∈N
‖si,`‖p+1

]
+ |S♥,k| min

`∈S♥,k

[∑
i∈N
‖si,`‖p+1

]

+ |S♦,k| min
`∈S♦,k

[∑
i∈N
‖si,`‖p+1

]}

≥ ησminς
p+1

(p+ 1)!

{
|S‖s‖,k| min

`∈S‖s‖,k
‖s`‖p+1 + |S♥,k| min

`∈S♥,k
‖s`‖p+1

+ |S♦,k| min
`∈S♦,k

‖s`‖p+1

}
.
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Because of (4.38), (4.61), Lemma 4.9 and (4.42), this now yields that

f(x0)− flow ≥ ησminς
p+1

(p+ 1)!

{
|S‖s‖,k|+ |S♥,k|(κ♥ε)

p+1
p + |S♦,k|(ω − α)p+1

}
≥ ησminς

p+1

(p+ 1)!

{
|S‖s‖,k|+ |S♥,k|+ |S♦,k|

}
min

[
(κ♥ε)

p+1
p , ( 1

4ω)p+1
]

≥ ησminς
p+1

(p+ 1)!
|Sk \ Sε| (κ♥ε)

p+1
p

where we used (4.57), the partition of Sk \ Sε,k in S‖s‖,k ∪ S♥,k ∪ S♦,k and the inequality 1
4ω < 1

to obtain the last inequality. Thus

|Sk| ≤ κS(f(x0)− flow)ε−
p+1
p + |Sε,k|, (4.62)

where κS is given by (4.59). The desired iteration complexity (4.58) then follows from this bound,
|Sε,k| ≤ |Sε| and (4.40). 2

We note the presence of the constants ς and σmin at the denominator of (4.59). The first is
problem dependent and typically not much smaller than one. The second is a typical feature of
regularization methods, and is an important difference with other well-known algorithms, such as
Newton’s method for instance. In practice, σmin is chosen (by the user) relatively small (10−3

say). As it is central to the derivation of the complexity bound, its presence appears to be the
price to pay for obtaining an optimal worst-case complexity bound in terms of power of ε.

To complete our analysis in terms of evaluations rather than successful iterations, we need to
bound the total number of all (successful and unsuccessful) iterations.

Lemma 4.11 Assume that AS.2 and AS.3 hold. Then, for all k ≥ 0,

k ≤ κa|Sk|+ κb,

where

κa
def
= 1 +

|N | | log γ0|
log γ1

and κb
def
=
|N |

log γ1
log

(
σmax

σmin

)
.

Proof. For i ∈ N , define Ji,k
def
= {j ∈ {0, . . . , k} | (3.19) holds with k ← j}, (the set of iterations

where σi,j is increased) and Di,k
def
= {j ∈ {0, . . . , k} | (3.23) holds with k ← j} ⊆ Sk (the set of

iterations where σi,j in decreased), the final inclusion resulting from the condition that ρk ≥ η in
both (3.21) and (3.22). Observe also that the mechanism of the algorithm, the fact that γ0 ∈ (0, 1)
and Lemma 4.6 impose that, for each i ∈ N ,

σminγ
|Ji,k|
1 γ

|Sk|
0 ≤ σi,0γ

|Ji,k|
1 γ

|Di,k|
0 ≤ σi,k ≤ σmax.

Dividing by σmin > 0 and taking logarithms yields that, for all i ∈ N and all k > 0,

|Ji,k| log γ1 + |Sk| log γ0 ≤ log

(
σmax

σmin

)
. (4.63)

Note now that, if (3.19) fails for all i ∈ N and given that Lemma 4.4 ensures that fi(xi + si) ≤
mi(xi, si) for i ∈ H \ C+k , then

δfk =
∑
i∈W+

k

δfi,k ≥
∑
i∈W+

k

δmi,k = δmk.

Thus, in view of (3.18), we have that ρk ≥ 1 > η and iteration k is successful. Thus, if iteration k
is unsuccessful, σi,k is increased with (3.20) for at least one i ∈ N . Hence we deduce that

|Uk| ≤
∑
i∈N
|Ji,k| ≤ |N | max

i∈N
|Ji,k|. (4.64)
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The desired bound follows from (4.63) and (4.64) by using the fact that k = |Sk| + |Uk| − 1 ≤
|Sk|+ |Uk|, the term -1 in the equality accounting for iteration 0. 2

We may now state our main evaluation complexity result.

Theorem 4.12 Suppose that AS.1, (1.3), AS.2–AS.5 and (4.57) hold. Then Algorithm 3.1 using
models (3.12) for i ∈ H requires at most

κa
[
κS(f(x0)− flow)ε−

p+1
p + |H|

]
+ κb + 1 (4.65)

iterations and evaluations of f and its first p derivatives to return a point xε ∈ F such that
χf (xε, ε) ≤ ε.

Proof. If termination occurs at iteration 0, the theorem obviously holds. Assume therefore
that termination occurs at iteration k + 1, in which case there must be at least one successful
iteration. We may therefore deduce the desired bound from Theorem 4.10, Lemma 4.11 and the
fact that each successful iteration involves the evaluation of f(xk) and {∇ixfWk

(xk)}pi=1, while
each unsuccessful iteration only involves that of f(xk) and ∇1

xfWk
(xk). 2

Note that we may count derivatives’ evaluations in Theorem 4.12 because only the derivatives of
fWk

are ever evaluated, and these are well-defined. For completeness, we state the complexity
bound of the important purely Lipschitzian case.

Corollary 4.13 Suppose that AS.1–AS.4 hold and H = ∅. Then Algorithm 3.1 requires at most

κa
[
κS(f(x0)− flow)ε−

p+1
p

]
+ κb + 1

iterations and evaluations of f and its first p derivatives to return a point xε ∈ F such that

χf (xε)
def
=

∣∣∣∣∣∣∣ min
x+d∈F
‖d‖≤1

∇1
xfW(x)(x)T d

∣∣∣∣∣∣∣ ≤ ε.
Proof. Directly follows from Theorem 4.12, H = ∅ and the observation that R(x, ε) = <n for all
x ∈ F since C(x, ε) = ∅. 2

5 Evaluation complexity for general convex F
The two-sided model (3.12) has clear advantages, the main ones being that, except at the origin

where it is non-smooth, it is polynomial and has finite gradients (and higher derivatives) over each
of its two branches. It is not however without drawbacks. The first of these is that its prediction
for the gradient (and higher derivatives) is arbitrarily inaccurate as the origin is approached, the
second being its evaluation cost which is typically higher than evaluating |x+ s|q or its derivative
directly. In particular, it is the first drawback that required the careful analysis of Lemma 4.5,
in turn leading, via Lemma 4.7, to the crucial Lemma 4.8. This is significant because this last
lemma, in addition to the use of (3.12) and the requirement that p must be odd, also requires
the ’kernel-centered’ assumption (1.3), a sometimes undesirable restriction of the feasible domain
geometry.

In the case where evaluating fN is very expensive and the convex F is not ’kernel-centered’,
it may sometimes be acceptable to push the difficulty of handling the non-Lipschitzian nature of
the `q norm regularization in the subproblem of computing sk, if evaluations of fN can be saved.
In this context, a simple alternative is then to use

mi(xi, si) = |xi + si|q for i ∈ H (5.1)
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that is mi(xi, si) = fi(xi + si) for i ∈ H. The cost of finding a suitable step satisfying (3.15) may
of course be increased, but, as we already noted, this cost is irrelevant for worst-case evaluation
analysis as long as only the evaluation of fN and its derivatives is taken into account. The choice
(5.1) clearly maintains the overestimation property of Lemma 4.4. Moreover, it is easy to verify
(using AS.3 and (5.1)) that

‖∇xfW+
k

(xk + sk)−∇1
smW+

k
(xk, sk)‖ = ‖∇xfN (xk + sk)−∇1

smN (xk, sk)‖ ≤ Lmax‖sk‖p. (5.2)

This in turn implies that the proof of Lemma 4.9 can be extended without requiring (4.46) and
using O∗ = H \ C+k . The derivation of (4.49) then simplifies because of (5.2) and holds for all
i ∈ H \ C+k with L(α) = Lmax, so that (4.44) holds for all k ∈ S, the assumption (4.43) being now
irrelevant. This result then implies that the distinction made between S♥, S♦, S♣ and S‖s‖ is
unecessary because (4.44) holds for all k ∈ S = S♥. Moreover, since we no longer need Lemma 4.8
to prove that S♣ = ∅, we no longer need the restrictions that p is odd and (1.3) either. As
consequence, we deduce that Theorem 4.10 holds for arbitrary p ≥ 1 and for arbitrary convex,
closed non-empty F , without the need to assume (4.57) and with L(α) replaced by Lmax in (4.59).
Without altering Lemma 4.11, we may therefore deduce the following complexity result.
Theorem 5.1 Suppose that AS.1, AS.2 (without the restriction that p must be odd), AS.3 and
AS.4 hold. Then Algorithm 3.1 using the true models (5.1) for i ∈ H requires at most

κa
[
κtrueS (f(x0)− flow)ε−

p+1
p + |H|

]
+ κb + 1

iterations and evaluations of fN and its first p derivatives to return a point xε ∈ F such that
χf (xε, ε) ≤ ε, where

κtrueS =
(p+ 1)!

η σmin ς
p+1

[
2|N |

(
L+ θ +

γ2
p!

)] p+1
p

.

As indicated, the complexity is expressed in this theorem in terms of evaluations of fN and its
derivatives only. The evaluation count for the terms fi (i ∈ H) may be higher since these terms
are evaluated in computing the step sk using the models (5.1). Note that the difficulty of handling
infinite derivatives is passed on to the subproblem solver in this approach.

Moreover, it also results from the analysis in this section that one may consider objective

functions of the form f(x) = fN (x) + fH(x) and prove an O(ε−
p+1
p ) evaluation compexity bound

if fN has Lipschitz continuous derivatives of order p and if mH(xk, s) = fH(xk + s), passing all
difficulties associated with fH to the subproblem of computing the step sk.

As it turns out, an evaluation complexity bound may also be computed if one insist on using
the Taylor’s models (3.12) while allowing the feasible set to be an arbitrary convex, closed and non-
empty set. Not surprisingly, the bound is (significantly) worse than that provided by Theorem 4.12,
but has the merit of existing. Its derivation is based on the observation that (4.12) in Lemma 4.4
and (4.19) imply that, for i ∈ H \ C+k ,

|∇1
si |xi + si|q −∇1

simi(xi, si)| ≤ q
(

min
[
|xi|, |xi + si|

])q−p−1
|µ(xi, si)|p ≤ qεq−p−1|si|p. (5.3)

This bound can then be used in a variant of Lemma 4.9 just like (5.2) was in Section 5. In the

updated version of Lemma 4.9, we replace L(α) by L∗
def
= |N |Lmax+ |H| q and (4.49) now becomes

‖∇1
xfW+

k
(xk+1)−∇1

smW+
k

(xk, sk)‖ ≤
[
L∗ε

q−p−1 +
|N |
p!
σmax

]
‖sk‖p.

This results in replacing (4.55) by

χf (xk+1) ≤ (L∗ε
q−p−1 + θ +

|N |
p!

σmax)‖sk‖p ≤ (L∗ + θ +
|N |
p!

σmax)εq−p−1‖sk‖p (5.4)
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and therefore (4.44) is replaced by

‖sk‖ ≥
[
2

(
L∗ + θ +

|N |
p!

σmax

)]− 1
p

ε
p+2−q
p .

We may now follow the steps leading to Theorem 5.1 and deduce a new complexity bound.

Theorem 5.2 Suppose that AS.1–AS.4 hold. Then Algorithm 3.1 using the Taylor models (3.12)
for i ∈ H requires at most

κa
[
κ∗S(f(x0)− flow)ε−

(p+2−q)(p+1)
p + |H|

]
+ κb + 1

iterations and evaluations of f and its first p derivatives to return a point xε ∈ F such that
χf (xε, ε) ≤ ε, where

κ∗S =
(p+ 1)!

η σmin ς
p+1

[
2

(
L∗ + θ +

|N |
p!

γ2

)] p+1
p

.

Observe that, due to the second inequality of (5.4), θ can be replaced in (3.15) by θ∗ = θεq−p−1,
making the termination condition for the step computation very weak.

6 Further discussion
The above results suggest some additional comments.
• The complexity result in O(ε−(p+1)/p) evaluations obtained in Theorem 4.12 is identical

in order to that presented in [2] for the unstructured unconstrained and in [5] for the un-
structured convexly constrained cases. It is remarkable that incorporating non-Lipschitzian
singularities in the objective function does not affect the worst-case evaluation complexity
of finding an ε-approximate first-order critical point.

• Interestingly, Corollary 4.13 also shows that using partially-separable structure does not af-
fect the evaluation complexity either, therefore allowing cost-effective use of problem struc-
ture with high-order models.

• The algorithm(5) presented here is considerably simpler than that discussed in [10, 12] in the
context of structured trust-regions. In addition, the present assumptions are also weaker.
Indeed, an additional condition on long steps (see AA.1s in [12, p.364]) is no longer needed.

• Can one use even order models with Taylor models in the present framework? The main issue
is that, when p is even, the two-sided model T|·|q,p(xi, si) is no longer always an overestimate
of |xi+si|q when |xi+si| > |xi|, as can be verified from (4.12). While this can be taken care
of by adding a regularization term to mi, the necessary size of the regularization parameter
may be unbounded when the iterates are sufficiently close from the singularity. This in turn
destroys the good complexity because it forces the algorithm to take much too short steps.

An alternative is to use mixed-orders models, that is models of even order p for the fi whose
index is in N and odd order models for those with index in H. However, this last (odd)
order has to be at least as large as p, because it is the lowest order which dominates in the
crucial Lemma 4.9. The choice of a (p+ 1)-st order model for i ∈ H is then most natural.

• A variant of the algorithm can be stated where it is possible for a particular xi to leave
the ε-neighbourhood of zero, provided the associated step results in a significant (in view
of Theorem 4.10) objective function decrease, such as a multiple of ε(p+1)/p or some ε-
independent constant. These decreases can then be counted separately in the argument
of Theorem 4.10 and cycling is impossible since there can be only a finite number of such
decreases.

(5)And theory, if one restricts one’s attention to the case where H = ∅.
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• We have assumed in (1.1) that the same exponent q is used in all element functions fi
for i ∈ H. This can be extended without modifying the above results to the case where
fi(xi) = |Uix|qi for i ∈ H and 0 < qmin ≤ qi ≤ qmax < 1. The proofs are however (even)
more technical as one then needs to take qmin, qmax and their ratio into account.

7 Conclusions
We have considered the problem of minimizing a partially-separable nonconvex objective

function f involving non-Lipschitzian q-norm regularization terms and subject to general convex
constraints. Problems of this type are important in many areas, including data compression, image
processing and bioinformatics. We have shown that the introduction of these non-Lipschitzian
singularities and the exploitation of problem structure do not affect the worst-case evaluation
complexity. More precisely, we have first defined ε-approximate first-order critical points for the
considered class of problems in a way that make the obtained complexity bounds comparable
to existing results for the purely Lipschitzian case. We have then shown that, if p is the (odd)
degree of the models used by the algorithm, if the feasible set is ’kernel-centered’ and if Taylor

models are used for the q-norm regularization terms, the bound of O(ε−
p+1
p ) evaluations of f

and its relevant derivatives (derived for the Lipschitzian case in [2]) is preserved in the presence
of non-Lipschitzian singularities. In addition, we have shown that partially-separable structure
present in the problem can be exploited (especially for high degree derivative tensors) without
affecting the evaluation complexity either. We have also shown that, if the difficulty of handling
the non-Lipschitzian regularization terms is passed to the subproblem (which can be meaningfull
if evaluating the other parts of the objective function is very expensive) in that non-Lipschitz mo-
dels are used for these terms, then the same bounds hold in terms of evaluation of the expensive
part of the objective function, without the restriction that the feasible set be ‘kernel-centered’. A
worse complexity bound has finally been provided in the case where one uses Taylor models for
the q-norm regularization terms with a general convex feasible set.

These objectives have been attained by introducing a new first-order criticality measure as
well as the new two-sided model of the singularity given by (3.11), which exploits the inherent
symmetry and provides a useful overestimate of |x|q if its order is chosen odd, without the need
for smoothing functions.

An obvious prolongation of our work is the derivation of worst-case complexity bounds for com-
puting an approximate second-order critical point of problem (1.1). This requires specification of
the associated necessary conditions, modifications of the algorithm, not to mention a new complex-
ity theory. While this may be possible, it is clearly non-trivial and is the object of ongoing research.
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