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Least squares approximation on the sphere

S°={ze R’ : |zlo=1}, Area|S* =4nr

P;: the linear space of restrictions of polynomials
of degree < ¢ in 3 variables to S°.



Gram matrix

P; can be spanned by an orthonormal set of real spherical harmonics
with degree ¢ and order k,

(Yo lk=1,...,2041,6=0,1,... 1t}

Let Xy = {z1,...,zx} C S? be a set of N-points on the sphere.
The Gram matrix is defined as

Gi(Xn) =Y (Xn)"Y(Xn),
where Y (Xy) € REFD**N and the j-th column of Y (X ) is given by
Yio(z;), k=1,...,204+1, £=0,1,...,t.

The Gram matrix GG, is a function of a set of N-points X .



Distribution of points on the sphere

t =1, dimP1:4, XN:{Zl,...,Z4}CS2,

‘ det(Gl(XN)) = #

det(G1(Xn)) =0 | det(G(Xn)) =0 |

Regular tetrahedron: G1(Xn) = 11, cond(G1(Xy)) = 1.



Four sets of points on the sphere

minimimum energy system argmin Z HZz T
extremal system argmaxzééyt(Gt(X N))
spherical design /82 p(z)dz = % 3 p(z;), VpeP;
minimum cond points optimal solution é)?l|3roblem:
i A (G (X))

Amin(G(Xn))



Spherical t-Design

Definition 1 (Delsarte-Goethals-Seidel 1977)
A spherical ¢t-design is a set of IV points Xy = {z1,...,z4} C S? such
that

1
47'(' S2

p(a)ds = 3 p(z)

for every polynomial p € P;.

@ The average value of p € P, on the whole sphere equals the
average value of p on the set.

@ The equally weighted cubature rule is exact for all p € P,.

No answer to what is the number of points needed to construct a
spherical ¢t-design for any ¢t > 1 2 Whether N = O(t*) ast — oo ?

Can we guarantee the existence of spherical t-designs with (¢ + 1)?
points and well-conditioned Gram matrices ?



Spherical 100-design

Chen-Frommer-Lang, to appear in Numer. Math.




Reformulation |: Parametrization

N=({t+1)? m=2N-3, Xy=/{z1,...,24} C 5%

Represent z; € Xy C S? using polar coordinates with angles 6;, ¢;.

z; = [sin(0;) cos(¢;), sin(6;)sin(¢;), cos(6;)]*, 61 =0,¢1 = ¢ =0

Fix z; on the north pole and z; on the zero meridian.

rg — [(92, “. ,QN]T, Ly — [¢3, . . .,(bN]T, r = [CIZ‘CQF,ZCC(Z;]T e R™




Reformulation II, Gram matrix

Define the Legendre polynomials by the recurrence

po(u) =1
p1(u) =2
lpe(2) = (20 — Dupe—1(u) — (£ — 1)pe—2(u)

fore=2,...,t, we[-1,1].

Define the Jacobi polynomials

Te(w) =) (20 + 1)pe(u)
¢=0

Define the Gram matrix G(z) € RV*¥

Gij(Xn(@)) = Ji(zi(2)" 2;())



Fuclidean condition number

V € RY™ with £ > n, and rank(V) = n. let A= VTV
The Euclidean condition number of V' is defined by

Vz )\1
#(V) = max 1L mas WV _ vty = /rtd) =

v20 [[Vyl| =20 |zl n(A)
VI = (VTV)~1VT is the Moore-Penrose generalized inverse of V.
Suppose each entry of V' (x) is a continuously differentiable function of
r € R™. Let A(z) = V(2)TV(x).
We consider
minimize  k(A(x))

1
subjectto z € X, &

where X' is a convex set in R™.



A small Vandermonde-like matrix

fay = MA@) ] o 0o o= VIS
An(A(z)) \ 22;  VIs<z<15
We consider minimize  f(z)

subjectto =z € [0.5,1.5].

x* = +/1.5 1s the minimizer. The Clarke generalized gradient at x* is

8f(z*) = conv {2\/2 2\/2} — 2\/2[—1, 1].



An example on the sphere

The condition number for degree t = 9, N = 100 extremal points. The plot is of the
condition number of the Gram matrix G when the point at the north pole is moved to
locations over the whole sphere.
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Least squares approximation on |—1, 1]

Let {p;, 7 =0,...,n—1} be a basis for P,,_;|—1, 1], the linear space of

polynomials of degree < n — 1.
For given / distinct real numbers

—1 <o <as<...<ap <1

we consider the weighted Vandermonde-like matrix

{ ’w1po(a1) w1p1(a1) w1p2(a1) e w1pn—1(a1) \
V(w,a) — wapo(az) wapi(az) wapa(az) ... wapp—1i(az)

\ wepo(ar)  wepi(ag) wepa(aeg) ... wepn—1(ae) )

w= (w1,...,we)’ and a=(a1,...,ar)".



Generalized gradient

Let d(x) be the multiplicity of A\, (A(x)), and b(x) be the multiplicity of
An(A(z)). Let A(x) admit an eigenvalue decomposition

A(x) = U(z)diag(A(A(z)))U (2)"
with U(z)?U(z) = I. Denote
Uo = (ui(x),.. . ug)(x)), and Ug= (Up_p@)+1(2), ..., un(x)).

Suppose that rank(V (x)) = n. Then f is Clarke regular and the Clarke
generalized gradient 9f(x) is

m. . _ 1 T K(A(x)) T
{g c R™: gr — )\n(A(ZC)) <Ua Ak(x)Ua7Pa> — )\n(A(ZC)) <Uﬁ Ak(x)UB7P5>
k=1,.
where P, € DC}L( ) tr( P, ) =1 Pg € Db( ) tr(Pg) = 1}.



Some properties

1. f(x) = k(A(x)) is strongly semismooth on X.

2. Suppose that V() is a linear mapping of x on X. Then A\ (A(x))
with A(x) = V(2)? V(x) is a convex function on X.

3. Let B be a fixed m x n matrix with m > n and rank(B) = n. Define
h(W) =r(B'WB), WeS’T.
Then h is quasi-convex and strongly pseudo-convex.

Exam pIe: V(z) = XB, where X € D+ with diagonal elements
zi,i=1,....,m, AV(z)) = B' XT'XB = B'WB.




Smoothing function |

We introduce the smoothing function of the condition number as
follows:
N In(S™" . eri(A@)/p
f(xnu):_l (Zfrf_l i (A( ))/) . (2)
(. WA= R

i=1 €

In numerical computations, we use an equivalent formula

 M(A®) 4 uln( | A M (AE)
H@ 1) = S ) = p (>, O A XAy

which is more numerically stable than (2).



Smoothing function lI

(i) f(-, ) is continuously differentiable for any fixed x > 0.

(if) There exists ¢ > 0 such that forany x € X and p < 21
nn

< fl@, 1) = f(z) < cp. (3)

lim  f(x, 1) = (7).

r—x,u]0,

(i) Foranyz € X, { lim V,f(z,p)}is nonempty and bounded.

x—x, ul0

lim V. f(x,p)} COf().

x—x,ul0,

(iv) For any fixed p > 0, there exists a constant L,, such that

IV f(z, 1) =V (y, 0| < Lz -yl (a)



Convergence

Theorem From any staring point 2° € X, the sequence {z*}
generated by the SPG method is contained in X and any accumulation
point z of {z*} is a Clarke stationary point, that is, there is g € 0f ()
such that

(9, —Z) >0, VrxelX.

Corollary If the function f(x) is pseudoconvex in a neighborhood

B(z) C X, then the accumulation point is a local optimal solution and if
the function f(z) is pseudoconvex on X, then the accumulation point is
a global optimal solution over X.




Eigenvalues of a Gram matrix on the sphere

Eigenvalues of Gram matrix
4.5
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The eigenvalues of 36 x 36 Gram matrix for degree 5, with 36 points on
the sphere.



Smoothing function

Condition number and smoothing function
4.8 T T
Condition number
Smoothing function: p = 0.10, 0.08, 0.06, 0.04, 0.02

4.6

3 L |
-0.05 0 0.05 0.1

For the same Gram matrix, f(z* + oV, f(z*,0.0766)), a € [—0.05,0.1].



Condition number on the four sets of points

Condition number of Gram matrix
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Thank you very much
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Five sets of points in the interval [—1, 1

2%i — 1)

equally spaced points a; = —1+ 1 1=1,...., /.
1 n—1
Gauss points / p(T)dr = Z a;pla;), Vp € Py,
—1 i=0
Gauss Lobatto points a = argmax det(V ()1 V (x)).
: 21 — 1
Chebyshev points @; = COS ull Z% ), 1=1,..../.
minimum cond points a = optimal solution of (1) .
Here «;,7 = 0,...,n — 1 are the integral values of the Lagrange

interpolation polynomials on [—1, 1].



Distribution of points

11 pointsin [-1, 1]
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condition number and determinant

condition number

determinant

equally spaced points

1.946479e+008

5.755277e-022

Gauss points

1.767123e+007

4.616572e-020

Lobatto points

9.606328e+006

7.968101e-019

Chebyshev points

8.307060e+006

6.310887e-019

min cond points

8.176691e+006

5.826573e-019

Values of the condition number and determinant at equally spaced
points, Gauss Points, Gauss Lobatto points, Chebyshev points and
minimum cond points
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